Merge v6.8-rc1 into drm-misc-fixes
[linux-2.6-microblaze.git] / drivers / dma / ste_dma40.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) Ericsson AB 2007-2008
4  * Copyright (C) ST-Ericsson SA 2008-2010
5  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
6  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_address.h>
23 #include <linux/of_dma.h>
24 #include <linux/amba/bus.h>
25 #include <linux/regulator/consumer.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40.h"
29 #include "ste_dma40_ll.h"
30
31 /**
32  * struct stedma40_platform_data - Configuration struct for the dma device.
33  *
34  * @disabled_channels: A vector, ending with -1, that marks physical channels
35  * that are for different reasons not available for the driver.
36  * @soft_lli_chans: A vector, that marks physical channels will use LLI by SW
37  * which avoids HW bug that exists in some versions of the controller.
38  * SoftLLI introduces relink overhead that could impact performance for
39  * certain use cases.
40  * @num_of_soft_lli_chans: The number of channels that needs to be configured
41  * to use SoftLLI.
42  * @use_esram_lcla: flag for mapping the lcla into esram region
43  * @num_of_memcpy_chans: The number of channels reserved for memcpy.
44  * @num_of_phy_chans: The number of physical channels implemented in HW.
45  * 0 means reading the number of channels from DMA HW but this is only valid
46  * for 'multiple of 4' channels, like 8.
47  */
48 struct stedma40_platform_data {
49         int                              disabled_channels[STEDMA40_MAX_PHYS];
50         int                             *soft_lli_chans;
51         int                              num_of_soft_lli_chans;
52         bool                             use_esram_lcla;
53         int                              num_of_memcpy_chans;
54         int                              num_of_phy_chans;
55 };
56
57 #define D40_NAME "dma40"
58
59 #define D40_PHY_CHAN -1
60
61 /* For masking out/in 2 bit channel positions */
62 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
63 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
64
65 /* Maximum iterations taken before giving up suspending a channel */
66 #define D40_SUSPEND_MAX_IT 500
67
68 /* Milliseconds */
69 #define DMA40_AUTOSUSPEND_DELAY 100
70
71 /* Hardware requirement on LCLA alignment */
72 #define LCLA_ALIGNMENT 0x40000
73
74 /* Max number of links per event group */
75 #define D40_LCLA_LINK_PER_EVENT_GRP 128
76 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
77
78 /* Max number of logical channels per physical channel */
79 #define D40_MAX_LOG_CHAN_PER_PHY 32
80
81 /* Attempts before giving up to trying to get pages that are aligned */
82 #define MAX_LCLA_ALLOC_ATTEMPTS 256
83
84 /* Bit markings for allocation map */
85 #define D40_ALLOC_FREE          BIT(31)
86 #define D40_ALLOC_PHY           BIT(30)
87 #define D40_ALLOC_LOG_FREE      0
88
89 #define D40_MEMCPY_MAX_CHANS    8
90
91 /* Reserved event lines for memcpy only. */
92 #define DB8500_DMA_MEMCPY_EV_0  51
93 #define DB8500_DMA_MEMCPY_EV_1  56
94 #define DB8500_DMA_MEMCPY_EV_2  57
95 #define DB8500_DMA_MEMCPY_EV_3  58
96 #define DB8500_DMA_MEMCPY_EV_4  59
97 #define DB8500_DMA_MEMCPY_EV_5  60
98
99 static int dma40_memcpy_channels[] = {
100         DB8500_DMA_MEMCPY_EV_0,
101         DB8500_DMA_MEMCPY_EV_1,
102         DB8500_DMA_MEMCPY_EV_2,
103         DB8500_DMA_MEMCPY_EV_3,
104         DB8500_DMA_MEMCPY_EV_4,
105         DB8500_DMA_MEMCPY_EV_5,
106 };
107
108 /* Default configuration for physical memcpy */
109 static const struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
110         .mode = STEDMA40_MODE_PHYSICAL,
111         .dir = DMA_MEM_TO_MEM,
112
113         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
114         .src_info.psize = STEDMA40_PSIZE_PHY_1,
115         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
116
117         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
118         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
119         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
120 };
121
122 /* Default configuration for logical memcpy */
123 static const struct stedma40_chan_cfg dma40_memcpy_conf_log = {
124         .mode = STEDMA40_MODE_LOGICAL,
125         .dir = DMA_MEM_TO_MEM,
126
127         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
128         .src_info.psize = STEDMA40_PSIZE_LOG_1,
129         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
130
131         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
132         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
133         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
134 };
135
136 /**
137  * enum d40_command - The different commands and/or statuses.
138  *
139  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
140  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
141  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
142  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
143  */
144 enum d40_command {
145         D40_DMA_STOP            = 0,
146         D40_DMA_RUN             = 1,
147         D40_DMA_SUSPEND_REQ     = 2,
148         D40_DMA_SUSPENDED       = 3
149 };
150
151 /*
152  * enum d40_events - The different Event Enables for the event lines.
153  *
154  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
155  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
156  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
157  * @D40_ROUND_EVENTLINE: Status check for event line.
158  */
159
160 enum d40_events {
161         D40_DEACTIVATE_EVENTLINE        = 0,
162         D40_ACTIVATE_EVENTLINE          = 1,
163         D40_SUSPEND_REQ_EVENTLINE       = 2,
164         D40_ROUND_EVENTLINE             = 3
165 };
166
167 /*
168  * These are the registers that has to be saved and later restored
169  * when the DMA hw is powered off.
170  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
171  */
172 static __maybe_unused u32 d40_backup_regs[] = {
173         D40_DREG_LCPA,
174         D40_DREG_LCLA,
175         D40_DREG_PRMSE,
176         D40_DREG_PRMSO,
177         D40_DREG_PRMOE,
178         D40_DREG_PRMOO,
179 };
180
181 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
182
183 /*
184  * since 9540 and 8540 has the same HW revision
185  * use v4a for 9540 or earlier
186  * use v4b for 8540 or later
187  * HW revision:
188  * DB8500ed has revision 0
189  * DB8500v1 has revision 2
190  * DB8500v2 has revision 3
191  * AP9540v1 has revision 4
192  * DB8540v1 has revision 4
193  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
194  */
195 static u32 d40_backup_regs_v4a[] = {
196         D40_DREG_PSEG1,
197         D40_DREG_PSEG2,
198         D40_DREG_PSEG3,
199         D40_DREG_PSEG4,
200         D40_DREG_PCEG1,
201         D40_DREG_PCEG2,
202         D40_DREG_PCEG3,
203         D40_DREG_PCEG4,
204         D40_DREG_RSEG1,
205         D40_DREG_RSEG2,
206         D40_DREG_RSEG3,
207         D40_DREG_RSEG4,
208         D40_DREG_RCEG1,
209         D40_DREG_RCEG2,
210         D40_DREG_RCEG3,
211         D40_DREG_RCEG4,
212 };
213
214 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
215
216 static u32 d40_backup_regs_v4b[] = {
217         D40_DREG_CPSEG1,
218         D40_DREG_CPSEG2,
219         D40_DREG_CPSEG3,
220         D40_DREG_CPSEG4,
221         D40_DREG_CPSEG5,
222         D40_DREG_CPCEG1,
223         D40_DREG_CPCEG2,
224         D40_DREG_CPCEG3,
225         D40_DREG_CPCEG4,
226         D40_DREG_CPCEG5,
227         D40_DREG_CRSEG1,
228         D40_DREG_CRSEG2,
229         D40_DREG_CRSEG3,
230         D40_DREG_CRSEG4,
231         D40_DREG_CRSEG5,
232         D40_DREG_CRCEG1,
233         D40_DREG_CRCEG2,
234         D40_DREG_CRCEG3,
235         D40_DREG_CRCEG4,
236         D40_DREG_CRCEG5,
237 };
238
239 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
240
241 static __maybe_unused u32 d40_backup_regs_chan[] = {
242         D40_CHAN_REG_SSCFG,
243         D40_CHAN_REG_SSELT,
244         D40_CHAN_REG_SSPTR,
245         D40_CHAN_REG_SSLNK,
246         D40_CHAN_REG_SDCFG,
247         D40_CHAN_REG_SDELT,
248         D40_CHAN_REG_SDPTR,
249         D40_CHAN_REG_SDLNK,
250 };
251
252 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
253                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
254
255 /**
256  * struct d40_interrupt_lookup - lookup table for interrupt handler
257  *
258  * @src: Interrupt mask register.
259  * @clr: Interrupt clear register.
260  * @is_error: true if this is an error interrupt.
261  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
262  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
263  */
264 struct d40_interrupt_lookup {
265         u32 src;
266         u32 clr;
267         bool is_error;
268         int offset;
269 };
270
271
272 static struct d40_interrupt_lookup il_v4a[] = {
273         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
274         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
275         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
276         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
277         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
278         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
279         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
280         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
281         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
282         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
283 };
284
285 static struct d40_interrupt_lookup il_v4b[] = {
286         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
287         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
288         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
289         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
290         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
291         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
292         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
293         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
294         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
295         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
296         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
297         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
298 };
299
300 /**
301  * struct d40_reg_val - simple lookup struct
302  *
303  * @reg: The register.
304  * @val: The value that belongs to the register in reg.
305  */
306 struct d40_reg_val {
307         unsigned int reg;
308         unsigned int val;
309 };
310
311 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
312         /* Clock every part of the DMA block from start */
313         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
314
315         /* Interrupts on all logical channels */
316         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
317         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
318         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
319         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
320         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
321         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
322         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
323         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
324         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
325         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
326         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
327         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
328 };
329 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
330         /* Clock every part of the DMA block from start */
331         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
332
333         /* Interrupts on all logical channels */
334         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
335         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
336         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
337         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
338         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
339         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
340         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
341         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
342         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
343         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
344         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
345         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
346         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
347         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
348         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
349 };
350
351 /**
352  * struct d40_lli_pool - Structure for keeping LLIs in memory
353  *
354  * @base: Pointer to memory area when the pre_alloc_lli's are not large
355  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
356  * pre_alloc_lli is used.
357  * @dma_addr: DMA address, if mapped
358  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
359  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
360  * one buffer to one buffer.
361  */
362 struct d40_lli_pool {
363         void    *base;
364         int      size;
365         dma_addr_t      dma_addr;
366         /* Space for dst and src, plus an extra for padding */
367         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
368 };
369
370 /**
371  * struct d40_desc - A descriptor is one DMA job.
372  *
373  * @lli_phy: LLI settings for physical channel. Both src and dst=
374  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
375  * lli_len equals one.
376  * @lli_log: Same as above but for logical channels.
377  * @lli_pool: The pool with two entries pre-allocated.
378  * @lli_len: Number of llis of current descriptor.
379  * @lli_current: Number of transferred llis.
380  * @lcla_alloc: Number of LCLA entries allocated.
381  * @txd: DMA engine struct. Used for among other things for communication
382  * during a transfer.
383  * @node: List entry.
384  * @is_in_client_list: true if the client owns this descriptor.
385  * @cyclic: true if this is a cyclic job
386  *
387  * This descriptor is used for both logical and physical transfers.
388  */
389 struct d40_desc {
390         /* LLI physical */
391         struct d40_phy_lli_bidir         lli_phy;
392         /* LLI logical */
393         struct d40_log_lli_bidir         lli_log;
394
395         struct d40_lli_pool              lli_pool;
396         int                              lli_len;
397         int                              lli_current;
398         int                              lcla_alloc;
399
400         struct dma_async_tx_descriptor   txd;
401         struct list_head                 node;
402
403         bool                             is_in_client_list;
404         bool                             cyclic;
405 };
406
407 /**
408  * struct d40_lcla_pool - LCLA pool settings and data.
409  *
410  * @base: The virtual address of LCLA. 18 bit aligned.
411  * @dma_addr: DMA address, if mapped
412  * @base_unaligned: The original kmalloc pointer, if kmalloc is used.
413  * This pointer is only there for clean-up on error.
414  * @pages: The number of pages needed for all physical channels.
415  * Only used later for clean-up on error
416  * @lock: Lock to protect the content in this struct.
417  * @alloc_map: big map over which LCLA entry is own by which job.
418  */
419 struct d40_lcla_pool {
420         void            *base;
421         dma_addr_t      dma_addr;
422         void            *base_unaligned;
423         int              pages;
424         spinlock_t       lock;
425         struct d40_desc **alloc_map;
426 };
427
428 /**
429  * struct d40_phy_res - struct for handling eventlines mapped to physical
430  * channels.
431  *
432  * @lock: A lock protection this entity.
433  * @reserved: True if used by secure world or otherwise.
434  * @num: The physical channel number of this entity.
435  * @allocated_src: Bit mapped to show which src event line's are mapped to
436  * this physical channel. Can also be free or physically allocated.
437  * @allocated_dst: Same as for src but is dst.
438  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
439  * event line number.
440  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
441  */
442 struct d40_phy_res {
443         spinlock_t lock;
444         bool       reserved;
445         int        num;
446         u32        allocated_src;
447         u32        allocated_dst;
448         bool       use_soft_lli;
449 };
450
451 struct d40_base;
452
453 /**
454  * struct d40_chan - Struct that describes a channel.
455  *
456  * @lock: A spinlock to protect this struct.
457  * @log_num: The logical number, if any of this channel.
458  * @pending_tx: The number of pending transfers. Used between interrupt handler
459  * and tasklet.
460  * @busy: Set to true when transfer is ongoing on this channel.
461  * @phy_chan: Pointer to physical channel which this instance runs on. If this
462  * point is NULL, then the channel is not allocated.
463  * @chan: DMA engine handle.
464  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
465  * transfer and call client callback.
466  * @client: Cliented owned descriptor list.
467  * @pending_queue: Submitted jobs, to be issued by issue_pending()
468  * @active: Active descriptor.
469  * @done: Completed jobs
470  * @queue: Queued jobs.
471  * @prepare_queue: Prepared jobs.
472  * @dma_cfg: The client configuration of this dma channel.
473  * @slave_config: DMA slave configuration.
474  * @configured: whether the dma_cfg configuration is valid
475  * @base: Pointer to the device instance struct.
476  * @src_def_cfg: Default cfg register setting for src.
477  * @dst_def_cfg: Default cfg register setting for dst.
478  * @log_def: Default logical channel settings.
479  * @lcpa: Pointer to dst and src lcpa settings.
480  * @runtime_addr: runtime configured address.
481  * @runtime_direction: runtime configured direction.
482  *
483  * This struct can either "be" a logical or a physical channel.
484  */
485 struct d40_chan {
486         spinlock_t                       lock;
487         int                              log_num;
488         int                              pending_tx;
489         bool                             busy;
490         struct d40_phy_res              *phy_chan;
491         struct dma_chan                  chan;
492         struct tasklet_struct            tasklet;
493         struct list_head                 client;
494         struct list_head                 pending_queue;
495         struct list_head                 active;
496         struct list_head                 done;
497         struct list_head                 queue;
498         struct list_head                 prepare_queue;
499         struct stedma40_chan_cfg         dma_cfg;
500         struct dma_slave_config          slave_config;
501         bool                             configured;
502         struct d40_base                 *base;
503         /* Default register configurations */
504         u32                              src_def_cfg;
505         u32                              dst_def_cfg;
506         struct d40_def_lcsp              log_def;
507         struct d40_log_lli_full         *lcpa;
508         /* Runtime reconfiguration */
509         dma_addr_t                      runtime_addr;
510         enum dma_transfer_direction     runtime_direction;
511 };
512
513 /**
514  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
515  * controller
516  *
517  * @backup: the pointer to the registers address array for backup
518  * @backup_size: the size of the registers address array for backup
519  * @realtime_en: the realtime enable register
520  * @realtime_clear: the realtime clear register
521  * @high_prio_en: the high priority enable register
522  * @high_prio_clear: the high priority clear register
523  * @interrupt_en: the interrupt enable register
524  * @interrupt_clear: the interrupt clear register
525  * @il: the pointer to struct d40_interrupt_lookup
526  * @il_size: the size of d40_interrupt_lookup array
527  * @init_reg: the pointer to the struct d40_reg_val
528  * @init_reg_size: the size of d40_reg_val array
529  */
530 struct d40_gen_dmac {
531         u32                             *backup;
532         u32                              backup_size;
533         u32                              realtime_en;
534         u32                              realtime_clear;
535         u32                              high_prio_en;
536         u32                              high_prio_clear;
537         u32                              interrupt_en;
538         u32                              interrupt_clear;
539         struct d40_interrupt_lookup     *il;
540         u32                              il_size;
541         struct d40_reg_val              *init_reg;
542         u32                              init_reg_size;
543 };
544
545 /**
546  * struct d40_base - The big global struct, one for each probe'd instance.
547  *
548  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
549  * @execmd_lock: Lock for execute command usage since several channels share
550  * the same physical register.
551  * @dev: The device structure.
552  * @virtbase: The virtual base address of the DMA's register.
553  * @rev: silicon revision detected.
554  * @clk: Pointer to the DMA clock structure.
555  * @irq: The IRQ number.
556  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
557  * transfers).
558  * @num_phy_chans: The number of physical channels. Read from HW. This
559  * is the number of available channels for this driver, not counting "Secure
560  * mode" allocated physical channels.
561  * @num_log_chans: The number of logical channels. Calculated from
562  * num_phy_chans.
563  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
564  * @dma_slave: dma_device channels that can do only do slave transfers.
565  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
566  * @phy_chans: Room for all possible physical channels in system.
567  * @log_chans: Room for all possible logical channels in system.
568  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
569  * to log_chans entries.
570  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
571  * to phy_chans entries.
572  * @plat_data: Pointer to provided platform_data which is the driver
573  * configuration.
574  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
575  * @phy_res: Vector containing all physical channels.
576  * @lcla_pool: lcla pool settings and data.
577  * @lcpa_base: The virtual mapped address of LCPA.
578  * @phy_lcpa: The physical address of the LCPA.
579  * @lcpa_size: The size of the LCPA area.
580  * @desc_slab: cache for descriptors.
581  * @reg_val_backup: Here the values of some hardware registers are stored
582  * before the DMA is powered off. They are restored when the power is back on.
583  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
584  * later
585  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
586  * @regs_interrupt: Scratch space for registers during interrupt.
587  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
588  * @gen_dmac: the struct for generic registers values to represent u8500/8540
589  * DMA controller
590  */
591 struct d40_base {
592         spinlock_t                       interrupt_lock;
593         spinlock_t                       execmd_lock;
594         struct device                    *dev;
595         void __iomem                     *virtbase;
596         u8                                rev:4;
597         struct clk                       *clk;
598         int                               irq;
599         int                               num_memcpy_chans;
600         int                               num_phy_chans;
601         int                               num_log_chans;
602         struct dma_device                 dma_both;
603         struct dma_device                 dma_slave;
604         struct dma_device                 dma_memcpy;
605         struct d40_chan                  *phy_chans;
606         struct d40_chan                  *log_chans;
607         struct d40_chan                 **lookup_log_chans;
608         struct d40_chan                 **lookup_phy_chans;
609         struct stedma40_platform_data    *plat_data;
610         struct regulator                 *lcpa_regulator;
611         /* Physical half channels */
612         struct d40_phy_res               *phy_res;
613         struct d40_lcla_pool              lcla_pool;
614         void                             *lcpa_base;
615         dma_addr_t                        phy_lcpa;
616         resource_size_t                   lcpa_size;
617         struct kmem_cache                *desc_slab;
618         u32                               reg_val_backup[BACKUP_REGS_SZ];
619         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
620         u32                              *reg_val_backup_chan;
621         u32                              *regs_interrupt;
622         u16                               gcc_pwr_off_mask;
623         struct d40_gen_dmac               gen_dmac;
624 };
625
626 static struct device *chan2dev(struct d40_chan *d40c)
627 {
628         return &d40c->chan.dev->device;
629 }
630
631 static bool chan_is_physical(struct d40_chan *chan)
632 {
633         return chan->log_num == D40_PHY_CHAN;
634 }
635
636 static bool chan_is_logical(struct d40_chan *chan)
637 {
638         return !chan_is_physical(chan);
639 }
640
641 static void __iomem *chan_base(struct d40_chan *chan)
642 {
643         return chan->base->virtbase + D40_DREG_PCBASE +
644                chan->phy_chan->num * D40_DREG_PCDELTA;
645 }
646
647 #define d40_err(dev, format, arg...)            \
648         dev_err(dev, "[%s] " format, __func__, ## arg)
649
650 #define chan_err(d40c, format, arg...)          \
651         d40_err(chan2dev(d40c), format, ## arg)
652
653 static int d40_set_runtime_config_write(struct dma_chan *chan,
654                                   struct dma_slave_config *config,
655                                   enum dma_transfer_direction direction);
656
657 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
658                               int lli_len)
659 {
660         bool is_log = chan_is_logical(d40c);
661         u32 align;
662         void *base;
663
664         if (is_log)
665                 align = sizeof(struct d40_log_lli);
666         else
667                 align = sizeof(struct d40_phy_lli);
668
669         if (lli_len == 1) {
670                 base = d40d->lli_pool.pre_alloc_lli;
671                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
672                 d40d->lli_pool.base = NULL;
673         } else {
674                 d40d->lli_pool.size = lli_len * 2 * align;
675
676                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
677                 d40d->lli_pool.base = base;
678
679                 if (d40d->lli_pool.base == NULL)
680                         return -ENOMEM;
681         }
682
683         if (is_log) {
684                 d40d->lli_log.src = PTR_ALIGN(base, align);
685                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
686
687                 d40d->lli_pool.dma_addr = 0;
688         } else {
689                 d40d->lli_phy.src = PTR_ALIGN(base, align);
690                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
691
692                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
693                                                          d40d->lli_phy.src,
694                                                          d40d->lli_pool.size,
695                                                          DMA_TO_DEVICE);
696
697                 if (dma_mapping_error(d40c->base->dev,
698                                       d40d->lli_pool.dma_addr)) {
699                         kfree(d40d->lli_pool.base);
700                         d40d->lli_pool.base = NULL;
701                         d40d->lli_pool.dma_addr = 0;
702                         return -ENOMEM;
703                 }
704         }
705
706         return 0;
707 }
708
709 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
710 {
711         if (d40d->lli_pool.dma_addr)
712                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
713                                  d40d->lli_pool.size, DMA_TO_DEVICE);
714
715         kfree(d40d->lli_pool.base);
716         d40d->lli_pool.base = NULL;
717         d40d->lli_pool.size = 0;
718         d40d->lli_log.src = NULL;
719         d40d->lli_log.dst = NULL;
720         d40d->lli_phy.src = NULL;
721         d40d->lli_phy.dst = NULL;
722 }
723
724 static int d40_lcla_alloc_one(struct d40_chan *d40c,
725                               struct d40_desc *d40d)
726 {
727         unsigned long flags;
728         int i;
729         int ret = -EINVAL;
730
731         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
732
733         /*
734          * Allocate both src and dst at the same time, therefore the half
735          * start on 1 since 0 can't be used since zero is used as end marker.
736          */
737         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
738                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
739
740                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
741                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
742                         d40d->lcla_alloc++;
743                         ret = i;
744                         break;
745                 }
746         }
747
748         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
749
750         return ret;
751 }
752
753 static int d40_lcla_free_all(struct d40_chan *d40c,
754                              struct d40_desc *d40d)
755 {
756         unsigned long flags;
757         int i;
758         int ret = -EINVAL;
759
760         if (chan_is_physical(d40c))
761                 return 0;
762
763         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
764
765         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
766                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
767
768                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
769                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
770                         d40d->lcla_alloc--;
771                         if (d40d->lcla_alloc == 0) {
772                                 ret = 0;
773                                 break;
774                         }
775                 }
776         }
777
778         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
779
780         return ret;
781
782 }
783
784 static void d40_desc_remove(struct d40_desc *d40d)
785 {
786         list_del(&d40d->node);
787 }
788
789 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
790 {
791         struct d40_desc *desc = NULL;
792
793         if (!list_empty(&d40c->client)) {
794                 struct d40_desc *d;
795                 struct d40_desc *_d;
796
797                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
798                         if (async_tx_test_ack(&d->txd)) {
799                                 d40_desc_remove(d);
800                                 desc = d;
801                                 memset(desc, 0, sizeof(*desc));
802                                 break;
803                         }
804                 }
805         }
806
807         if (!desc)
808                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
809
810         if (desc)
811                 INIT_LIST_HEAD(&desc->node);
812
813         return desc;
814 }
815
816 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
817 {
818
819         d40_pool_lli_free(d40c, d40d);
820         d40_lcla_free_all(d40c, d40d);
821         kmem_cache_free(d40c->base->desc_slab, d40d);
822 }
823
824 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
825 {
826         list_add_tail(&desc->node, &d40c->active);
827 }
828
829 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
830 {
831         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
832         struct d40_phy_lli *lli_src = desc->lli_phy.src;
833         void __iomem *base = chan_base(chan);
834
835         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
836         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
837         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
838         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
839
840         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
841         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
842         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
843         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
844 }
845
846 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
847 {
848         list_add_tail(&desc->node, &d40c->done);
849 }
850
851 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
852 {
853         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
854         struct d40_log_lli_bidir *lli = &desc->lli_log;
855         int lli_current = desc->lli_current;
856         int lli_len = desc->lli_len;
857         bool cyclic = desc->cyclic;
858         int curr_lcla = -EINVAL;
859         int first_lcla = 0;
860         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
861         bool linkback;
862
863         /*
864          * We may have partially running cyclic transfers, in case we did't get
865          * enough LCLA entries.
866          */
867         linkback = cyclic && lli_current == 0;
868
869         /*
870          * For linkback, we need one LCLA even with only one link, because we
871          * can't link back to the one in LCPA space
872          */
873         if (linkback || (lli_len - lli_current > 1)) {
874                 /*
875                  * If the channel is expected to use only soft_lli don't
876                  * allocate a lcla. This is to avoid a HW issue that exists
877                  * in some controller during a peripheral to memory transfer
878                  * that uses linked lists.
879                  */
880                 if (!(chan->phy_chan->use_soft_lli &&
881                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
882                         curr_lcla = d40_lcla_alloc_one(chan, desc);
883
884                 first_lcla = curr_lcla;
885         }
886
887         /*
888          * For linkback, we normally load the LCPA in the loop since we need to
889          * link it to the second LCLA and not the first.  However, if we
890          * couldn't even get a first LCLA, then we have to run in LCPA and
891          * reload manually.
892          */
893         if (!linkback || curr_lcla == -EINVAL) {
894                 unsigned int flags = 0;
895
896                 if (curr_lcla == -EINVAL)
897                         flags |= LLI_TERM_INT;
898
899                 d40_log_lli_lcpa_write(chan->lcpa,
900                                        &lli->dst[lli_current],
901                                        &lli->src[lli_current],
902                                        curr_lcla,
903                                        flags);
904                 lli_current++;
905         }
906
907         if (curr_lcla < 0)
908                 goto set_current;
909
910         for (; lli_current < lli_len; lli_current++) {
911                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
912                                            8 * curr_lcla * 2;
913                 struct d40_log_lli *lcla = pool->base + lcla_offset;
914                 unsigned int flags = 0;
915                 int next_lcla;
916
917                 if (lli_current + 1 < lli_len)
918                         next_lcla = d40_lcla_alloc_one(chan, desc);
919                 else
920                         next_lcla = linkback ? first_lcla : -EINVAL;
921
922                 if (cyclic || next_lcla == -EINVAL)
923                         flags |= LLI_TERM_INT;
924
925                 if (linkback && curr_lcla == first_lcla) {
926                         /* First link goes in both LCPA and LCLA */
927                         d40_log_lli_lcpa_write(chan->lcpa,
928                                                &lli->dst[lli_current],
929                                                &lli->src[lli_current],
930                                                next_lcla, flags);
931                 }
932
933                 /*
934                  * One unused LCLA in the cyclic case if the very first
935                  * next_lcla fails...
936                  */
937                 d40_log_lli_lcla_write(lcla,
938                                        &lli->dst[lli_current],
939                                        &lli->src[lli_current],
940                                        next_lcla, flags);
941
942                 /*
943                  * Cache maintenance is not needed if lcla is
944                  * mapped in esram
945                  */
946                 if (!use_esram_lcla) {
947                         dma_sync_single_range_for_device(chan->base->dev,
948                                                 pool->dma_addr, lcla_offset,
949                                                 2 * sizeof(struct d40_log_lli),
950                                                 DMA_TO_DEVICE);
951                 }
952                 curr_lcla = next_lcla;
953
954                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
955                         lli_current++;
956                         break;
957                 }
958         }
959  set_current:
960         desc->lli_current = lli_current;
961 }
962
963 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
964 {
965         if (chan_is_physical(d40c)) {
966                 d40_phy_lli_load(d40c, d40d);
967                 d40d->lli_current = d40d->lli_len;
968         } else
969                 d40_log_lli_to_lcxa(d40c, d40d);
970 }
971
972 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
973 {
974         return list_first_entry_or_null(&d40c->active, struct d40_desc, node);
975 }
976
977 /* remove desc from current queue and add it to the pending_queue */
978 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
979 {
980         d40_desc_remove(desc);
981         desc->is_in_client_list = false;
982         list_add_tail(&desc->node, &d40c->pending_queue);
983 }
984
985 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
986 {
987         return list_first_entry_or_null(&d40c->pending_queue, struct d40_desc,
988                                         node);
989 }
990
991 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
992 {
993         return list_first_entry_or_null(&d40c->queue, struct d40_desc, node);
994 }
995
996 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
997 {
998         return list_first_entry_or_null(&d40c->done, struct d40_desc, node);
999 }
1000
1001 static int d40_psize_2_burst_size(bool is_log, int psize)
1002 {
1003         if (is_log) {
1004                 if (psize == STEDMA40_PSIZE_LOG_1)
1005                         return 1;
1006         } else {
1007                 if (psize == STEDMA40_PSIZE_PHY_1)
1008                         return 1;
1009         }
1010
1011         return 2 << psize;
1012 }
1013
1014 /*
1015  * The dma only supports transmitting packages up to
1016  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1017  *
1018  * Calculate the total number of dma elements required to send the entire sg list.
1019  */
1020 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1021 {
1022         int dmalen;
1023         u32 max_w = max(data_width1, data_width2);
1024         u32 min_w = min(data_width1, data_width2);
1025         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1026
1027         if (seg_max > STEDMA40_MAX_SEG_SIZE)
1028                 seg_max -= max_w;
1029
1030         if (!IS_ALIGNED(size, max_w))
1031                 return -EINVAL;
1032
1033         if (size <= seg_max)
1034                 dmalen = 1;
1035         else {
1036                 dmalen = size / seg_max;
1037                 if (dmalen * seg_max < size)
1038                         dmalen++;
1039         }
1040         return dmalen;
1041 }
1042
1043 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1044                            u32 data_width1, u32 data_width2)
1045 {
1046         struct scatterlist *sg;
1047         int i;
1048         int len = 0;
1049         int ret;
1050
1051         for_each_sg(sgl, sg, sg_len, i) {
1052                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1053                                         data_width1, data_width2);
1054                 if (ret < 0)
1055                         return ret;
1056                 len += ret;
1057         }
1058         return len;
1059 }
1060
1061 static int __d40_execute_command_phy(struct d40_chan *d40c,
1062                                      enum d40_command command)
1063 {
1064         u32 status;
1065         int i;
1066         void __iomem *active_reg;
1067         int ret = 0;
1068         unsigned long flags;
1069         u32 wmask;
1070
1071         if (command == D40_DMA_STOP) {
1072                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1073                 if (ret)
1074                         return ret;
1075         }
1076
1077         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1078
1079         if (d40c->phy_chan->num % 2 == 0)
1080                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1081         else
1082                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1083
1084         if (command == D40_DMA_SUSPEND_REQ) {
1085                 status = (readl(active_reg) &
1086                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1087                         D40_CHAN_POS(d40c->phy_chan->num);
1088
1089                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1090                         goto unlock;
1091         }
1092
1093         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1094         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1095                active_reg);
1096
1097         if (command == D40_DMA_SUSPEND_REQ) {
1098
1099                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1100                         status = (readl(active_reg) &
1101                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1102                                 D40_CHAN_POS(d40c->phy_chan->num);
1103
1104                         cpu_relax();
1105                         /*
1106                          * Reduce the number of bus accesses while
1107                          * waiting for the DMA to suspend.
1108                          */
1109                         udelay(3);
1110
1111                         if (status == D40_DMA_STOP ||
1112                             status == D40_DMA_SUSPENDED)
1113                                 break;
1114                 }
1115
1116                 if (i == D40_SUSPEND_MAX_IT) {
1117                         chan_err(d40c,
1118                                 "unable to suspend the chl %d (log: %d) status %x\n",
1119                                 d40c->phy_chan->num, d40c->log_num,
1120                                 status);
1121                         dump_stack();
1122                         ret = -EBUSY;
1123                 }
1124
1125         }
1126  unlock:
1127         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1128         return ret;
1129 }
1130
1131 static void d40_term_all(struct d40_chan *d40c)
1132 {
1133         struct d40_desc *d40d;
1134         struct d40_desc *_d;
1135
1136         /* Release completed descriptors */
1137         while ((d40d = d40_first_done(d40c))) {
1138                 d40_desc_remove(d40d);
1139                 d40_desc_free(d40c, d40d);
1140         }
1141
1142         /* Release active descriptors */
1143         while ((d40d = d40_first_active_get(d40c))) {
1144                 d40_desc_remove(d40d);
1145                 d40_desc_free(d40c, d40d);
1146         }
1147
1148         /* Release queued descriptors waiting for transfer */
1149         while ((d40d = d40_first_queued(d40c))) {
1150                 d40_desc_remove(d40d);
1151                 d40_desc_free(d40c, d40d);
1152         }
1153
1154         /* Release pending descriptors */
1155         while ((d40d = d40_first_pending(d40c))) {
1156                 d40_desc_remove(d40d);
1157                 d40_desc_free(d40c, d40d);
1158         }
1159
1160         /* Release client owned descriptors */
1161         if (!list_empty(&d40c->client))
1162                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1163                         d40_desc_remove(d40d);
1164                         d40_desc_free(d40c, d40d);
1165                 }
1166
1167         /* Release descriptors in prepare queue */
1168         if (!list_empty(&d40c->prepare_queue))
1169                 list_for_each_entry_safe(d40d, _d,
1170                                          &d40c->prepare_queue, node) {
1171                         d40_desc_remove(d40d);
1172                         d40_desc_free(d40c, d40d);
1173                 }
1174
1175         d40c->pending_tx = 0;
1176 }
1177
1178 static void __d40_config_set_event(struct d40_chan *d40c,
1179                                    enum d40_events event_type, u32 event,
1180                                    int reg)
1181 {
1182         void __iomem *addr = chan_base(d40c) + reg;
1183         int tries;
1184         u32 status;
1185
1186         switch (event_type) {
1187
1188         case D40_DEACTIVATE_EVENTLINE:
1189
1190                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1191                        | ~D40_EVENTLINE_MASK(event), addr);
1192                 break;
1193
1194         case D40_SUSPEND_REQ_EVENTLINE:
1195                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1196                           D40_EVENTLINE_POS(event);
1197
1198                 if (status == D40_DEACTIVATE_EVENTLINE ||
1199                     status == D40_SUSPEND_REQ_EVENTLINE)
1200                         break;
1201
1202                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1203                        | ~D40_EVENTLINE_MASK(event), addr);
1204
1205                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1206
1207                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1208                                   D40_EVENTLINE_POS(event);
1209
1210                         cpu_relax();
1211                         /*
1212                          * Reduce the number of bus accesses while
1213                          * waiting for the DMA to suspend.
1214                          */
1215                         udelay(3);
1216
1217                         if (status == D40_DEACTIVATE_EVENTLINE)
1218                                 break;
1219                 }
1220
1221                 if (tries == D40_SUSPEND_MAX_IT) {
1222                         chan_err(d40c,
1223                                 "unable to stop the event_line chl %d (log: %d)"
1224                                 "status %x\n", d40c->phy_chan->num,
1225                                  d40c->log_num, status);
1226                 }
1227                 break;
1228
1229         case D40_ACTIVATE_EVENTLINE:
1230         /*
1231          * The hardware sometimes doesn't register the enable when src and dst
1232          * event lines are active on the same logical channel.  Retry to ensure
1233          * it does.  Usually only one retry is sufficient.
1234          */
1235                 tries = 100;
1236                 while (--tries) {
1237                         writel((D40_ACTIVATE_EVENTLINE <<
1238                                 D40_EVENTLINE_POS(event)) |
1239                                 ~D40_EVENTLINE_MASK(event), addr);
1240
1241                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1242                                 break;
1243                 }
1244
1245                 if (tries != 99)
1246                         dev_dbg(chan2dev(d40c),
1247                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1248                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1249                                 100 - tries);
1250
1251                 WARN_ON(!tries);
1252                 break;
1253
1254         case D40_ROUND_EVENTLINE:
1255                 BUG();
1256                 break;
1257
1258         }
1259 }
1260
1261 static void d40_config_set_event(struct d40_chan *d40c,
1262                                  enum d40_events event_type)
1263 {
1264         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1265
1266         /* Enable event line connected to device (or memcpy) */
1267         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1268             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1269                 __d40_config_set_event(d40c, event_type, event,
1270                                        D40_CHAN_REG_SSLNK);
1271
1272         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1273                 __d40_config_set_event(d40c, event_type, event,
1274                                        D40_CHAN_REG_SDLNK);
1275 }
1276
1277 static u32 d40_chan_has_events(struct d40_chan *d40c)
1278 {
1279         void __iomem *chanbase = chan_base(d40c);
1280         u32 val;
1281
1282         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1283         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1284
1285         return val;
1286 }
1287
1288 static int
1289 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1290 {
1291         unsigned long flags;
1292         int ret = 0;
1293         u32 active_status;
1294         void __iomem *active_reg;
1295
1296         if (d40c->phy_chan->num % 2 == 0)
1297                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1298         else
1299                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1300
1301
1302         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1303
1304         switch (command) {
1305         case D40_DMA_STOP:
1306         case D40_DMA_SUSPEND_REQ:
1307
1308                 active_status = (readl(active_reg) &
1309                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1310                                  D40_CHAN_POS(d40c->phy_chan->num);
1311
1312                 if (active_status == D40_DMA_RUN)
1313                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1314                 else
1315                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1316
1317                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1318                         ret = __d40_execute_command_phy(d40c, command);
1319
1320                 break;
1321
1322         case D40_DMA_RUN:
1323
1324                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1325                 ret = __d40_execute_command_phy(d40c, command);
1326                 break;
1327
1328         case D40_DMA_SUSPENDED:
1329                 BUG();
1330                 break;
1331         }
1332
1333         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1334         return ret;
1335 }
1336
1337 static int d40_channel_execute_command(struct d40_chan *d40c,
1338                                        enum d40_command command)
1339 {
1340         if (chan_is_logical(d40c))
1341                 return __d40_execute_command_log(d40c, command);
1342         else
1343                 return __d40_execute_command_phy(d40c, command);
1344 }
1345
1346 static u32 d40_get_prmo(struct d40_chan *d40c)
1347 {
1348         static const unsigned int phy_map[] = {
1349                 [STEDMA40_PCHAN_BASIC_MODE]
1350                         = D40_DREG_PRMO_PCHAN_BASIC,
1351                 [STEDMA40_PCHAN_MODULO_MODE]
1352                         = D40_DREG_PRMO_PCHAN_MODULO,
1353                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1354                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1355         };
1356         static const unsigned int log_map[] = {
1357                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1358                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1359                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1360                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1361                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1362                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1363         };
1364
1365         if (chan_is_physical(d40c))
1366                 return phy_map[d40c->dma_cfg.mode_opt];
1367         else
1368                 return log_map[d40c->dma_cfg.mode_opt];
1369 }
1370
1371 static void d40_config_write(struct d40_chan *d40c)
1372 {
1373         u32 addr_base;
1374         u32 var;
1375
1376         /* Odd addresses are even addresses + 4 */
1377         addr_base = (d40c->phy_chan->num % 2) * 4;
1378         /* Setup channel mode to logical or physical */
1379         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1380                 D40_CHAN_POS(d40c->phy_chan->num);
1381         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1382
1383         /* Setup operational mode option register */
1384         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1385
1386         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1387
1388         if (chan_is_logical(d40c)) {
1389                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1390                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1391                 void __iomem *chanbase = chan_base(d40c);
1392
1393                 /* Set default config for CFG reg */
1394                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1395                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1396
1397                 /* Set LIDX for lcla */
1398                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1399                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1400
1401                 /* Clear LNK which will be used by d40_chan_has_events() */
1402                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1403                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1404         }
1405 }
1406
1407 static u32 d40_residue(struct d40_chan *d40c)
1408 {
1409         u32 num_elt;
1410
1411         if (chan_is_logical(d40c))
1412                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1413                         >> D40_MEM_LCSP2_ECNT_POS;
1414         else {
1415                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1416                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1417                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1418         }
1419
1420         return num_elt * d40c->dma_cfg.dst_info.data_width;
1421 }
1422
1423 static bool d40_tx_is_linked(struct d40_chan *d40c)
1424 {
1425         bool is_link;
1426
1427         if (chan_is_logical(d40c))
1428                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1429         else
1430                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1431                           & D40_SREG_LNK_PHYS_LNK_MASK;
1432
1433         return is_link;
1434 }
1435
1436 static int d40_pause(struct dma_chan *chan)
1437 {
1438         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1439         int res = 0;
1440         unsigned long flags;
1441
1442         if (d40c->phy_chan == NULL) {
1443                 chan_err(d40c, "Channel is not allocated!\n");
1444                 return -EINVAL;
1445         }
1446
1447         if (!d40c->busy)
1448                 return 0;
1449
1450         spin_lock_irqsave(&d40c->lock, flags);
1451         pm_runtime_get_sync(d40c->base->dev);
1452
1453         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1454
1455         pm_runtime_mark_last_busy(d40c->base->dev);
1456         pm_runtime_put_autosuspend(d40c->base->dev);
1457         spin_unlock_irqrestore(&d40c->lock, flags);
1458         return res;
1459 }
1460
1461 static int d40_resume(struct dma_chan *chan)
1462 {
1463         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
1464         int res = 0;
1465         unsigned long flags;
1466
1467         if (d40c->phy_chan == NULL) {
1468                 chan_err(d40c, "Channel is not allocated!\n");
1469                 return -EINVAL;
1470         }
1471
1472         if (!d40c->busy)
1473                 return 0;
1474
1475         spin_lock_irqsave(&d40c->lock, flags);
1476         pm_runtime_get_sync(d40c->base->dev);
1477
1478         /* If bytes left to transfer or linked tx resume job */
1479         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1480                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1481
1482         pm_runtime_mark_last_busy(d40c->base->dev);
1483         pm_runtime_put_autosuspend(d40c->base->dev);
1484         spin_unlock_irqrestore(&d40c->lock, flags);
1485         return res;
1486 }
1487
1488 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1489 {
1490         struct d40_chan *d40c = container_of(tx->chan,
1491                                              struct d40_chan,
1492                                              chan);
1493         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1494         unsigned long flags;
1495         dma_cookie_t cookie;
1496
1497         spin_lock_irqsave(&d40c->lock, flags);
1498         cookie = dma_cookie_assign(tx);
1499         d40_desc_queue(d40c, d40d);
1500         spin_unlock_irqrestore(&d40c->lock, flags);
1501
1502         return cookie;
1503 }
1504
1505 static int d40_start(struct d40_chan *d40c)
1506 {
1507         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1508 }
1509
1510 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1511 {
1512         struct d40_desc *d40d;
1513         int err;
1514
1515         /* Start queued jobs, if any */
1516         d40d = d40_first_queued(d40c);
1517
1518         if (d40d != NULL) {
1519                 if (!d40c->busy) {
1520                         d40c->busy = true;
1521                         pm_runtime_get_sync(d40c->base->dev);
1522                 }
1523
1524                 /* Remove from queue */
1525                 d40_desc_remove(d40d);
1526
1527                 /* Add to active queue */
1528                 d40_desc_submit(d40c, d40d);
1529
1530                 /* Initiate DMA job */
1531                 d40_desc_load(d40c, d40d);
1532
1533                 /* Start dma job */
1534                 err = d40_start(d40c);
1535
1536                 if (err)
1537                         return NULL;
1538         }
1539
1540         return d40d;
1541 }
1542
1543 /* called from interrupt context */
1544 static void dma_tc_handle(struct d40_chan *d40c)
1545 {
1546         struct d40_desc *d40d;
1547
1548         /* Get first active entry from list */
1549         d40d = d40_first_active_get(d40c);
1550
1551         if (d40d == NULL)
1552                 return;
1553
1554         if (d40d->cyclic) {
1555                 /*
1556                  * If this was a paritially loaded list, we need to reloaded
1557                  * it, and only when the list is completed.  We need to check
1558                  * for done because the interrupt will hit for every link, and
1559                  * not just the last one.
1560                  */
1561                 if (d40d->lli_current < d40d->lli_len
1562                     && !d40_tx_is_linked(d40c)
1563                     && !d40_residue(d40c)) {
1564                         d40_lcla_free_all(d40c, d40d);
1565                         d40_desc_load(d40c, d40d);
1566                         (void) d40_start(d40c);
1567
1568                         if (d40d->lli_current == d40d->lli_len)
1569                                 d40d->lli_current = 0;
1570                 }
1571         } else {
1572                 d40_lcla_free_all(d40c, d40d);
1573
1574                 if (d40d->lli_current < d40d->lli_len) {
1575                         d40_desc_load(d40c, d40d);
1576                         /* Start dma job */
1577                         (void) d40_start(d40c);
1578                         return;
1579                 }
1580
1581                 if (d40_queue_start(d40c) == NULL) {
1582                         d40c->busy = false;
1583
1584                         pm_runtime_mark_last_busy(d40c->base->dev);
1585                         pm_runtime_put_autosuspend(d40c->base->dev);
1586                 }
1587
1588                 d40_desc_remove(d40d);
1589                 d40_desc_done(d40c, d40d);
1590         }
1591
1592         d40c->pending_tx++;
1593         tasklet_schedule(&d40c->tasklet);
1594
1595 }
1596
1597 static void dma_tasklet(struct tasklet_struct *t)
1598 {
1599         struct d40_chan *d40c = from_tasklet(d40c, t, tasklet);
1600         struct d40_desc *d40d;
1601         unsigned long flags;
1602         bool callback_active;
1603         struct dmaengine_desc_callback cb;
1604
1605         spin_lock_irqsave(&d40c->lock, flags);
1606
1607         /* Get first entry from the done list */
1608         d40d = d40_first_done(d40c);
1609         if (d40d == NULL) {
1610                 /* Check if we have reached here for cyclic job */
1611                 d40d = d40_first_active_get(d40c);
1612                 if (d40d == NULL || !d40d->cyclic)
1613                         goto check_pending_tx;
1614         }
1615
1616         if (!d40d->cyclic)
1617                 dma_cookie_complete(&d40d->txd);
1618
1619         /*
1620          * If terminating a channel pending_tx is set to zero.
1621          * This prevents any finished active jobs to return to the client.
1622          */
1623         if (d40c->pending_tx == 0) {
1624                 spin_unlock_irqrestore(&d40c->lock, flags);
1625                 return;
1626         }
1627
1628         /* Callback to client */
1629         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1630         dmaengine_desc_get_callback(&d40d->txd, &cb);
1631
1632         if (!d40d->cyclic) {
1633                 if (async_tx_test_ack(&d40d->txd)) {
1634                         d40_desc_remove(d40d);
1635                         d40_desc_free(d40c, d40d);
1636                 } else if (!d40d->is_in_client_list) {
1637                         d40_desc_remove(d40d);
1638                         d40_lcla_free_all(d40c, d40d);
1639                         list_add_tail(&d40d->node, &d40c->client);
1640                         d40d->is_in_client_list = true;
1641                 }
1642         }
1643
1644         d40c->pending_tx--;
1645
1646         if (d40c->pending_tx)
1647                 tasklet_schedule(&d40c->tasklet);
1648
1649         spin_unlock_irqrestore(&d40c->lock, flags);
1650
1651         if (callback_active)
1652                 dmaengine_desc_callback_invoke(&cb, NULL);
1653
1654         return;
1655  check_pending_tx:
1656         /* Rescue maneuver if receiving double interrupts */
1657         if (d40c->pending_tx > 0)
1658                 d40c->pending_tx--;
1659         spin_unlock_irqrestore(&d40c->lock, flags);
1660 }
1661
1662 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1663 {
1664         int i;
1665         u32 idx;
1666         u32 row;
1667         long chan = -1;
1668         struct d40_chan *d40c;
1669         struct d40_base *base = data;
1670         u32 *regs = base->regs_interrupt;
1671         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1672         u32 il_size = base->gen_dmac.il_size;
1673
1674         spin_lock(&base->interrupt_lock);
1675
1676         /* Read interrupt status of both logical and physical channels */
1677         for (i = 0; i < il_size; i++)
1678                 regs[i] = readl(base->virtbase + il[i].src);
1679
1680         for (;;) {
1681
1682                 chan = find_next_bit((unsigned long *)regs,
1683                                      BITS_PER_LONG * il_size, chan + 1);
1684
1685                 /* No more set bits found? */
1686                 if (chan == BITS_PER_LONG * il_size)
1687                         break;
1688
1689                 row = chan / BITS_PER_LONG;
1690                 idx = chan & (BITS_PER_LONG - 1);
1691
1692                 if (il[row].offset == D40_PHY_CHAN)
1693                         d40c = base->lookup_phy_chans[idx];
1694                 else
1695                         d40c = base->lookup_log_chans[il[row].offset + idx];
1696
1697                 if (!d40c) {
1698                         /*
1699                          * No error because this can happen if something else
1700                          * in the system is using the channel.
1701                          */
1702                         continue;
1703                 }
1704
1705                 /* ACK interrupt */
1706                 writel(BIT(idx), base->virtbase + il[row].clr);
1707
1708                 spin_lock(&d40c->lock);
1709
1710                 if (!il[row].is_error)
1711                         dma_tc_handle(d40c);
1712                 else
1713                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1714                                 chan, il[row].offset, idx);
1715
1716                 spin_unlock(&d40c->lock);
1717         }
1718
1719         spin_unlock(&base->interrupt_lock);
1720
1721         return IRQ_HANDLED;
1722 }
1723
1724 static int d40_validate_conf(struct d40_chan *d40c,
1725                              struct stedma40_chan_cfg *conf)
1726 {
1727         int res = 0;
1728         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1729
1730         if (!conf->dir) {
1731                 chan_err(d40c, "Invalid direction.\n");
1732                 res = -EINVAL;
1733         }
1734
1735         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1736             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1737             (conf->dev_type < 0)) {
1738                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1739                 res = -EINVAL;
1740         }
1741
1742         if (conf->dir == DMA_DEV_TO_DEV) {
1743                 /*
1744                  * DMAC HW supports it. Will be added to this driver,
1745                  * in case any dma client requires it.
1746                  */
1747                 chan_err(d40c, "periph to periph not supported\n");
1748                 res = -EINVAL;
1749         }
1750
1751         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1752             conf->src_info.data_width !=
1753             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1754             conf->dst_info.data_width) {
1755                 /*
1756                  * The DMAC hardware only supports
1757                  * src (burst x width) == dst (burst x width)
1758                  */
1759
1760                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1761                 res = -EINVAL;
1762         }
1763
1764         return res;
1765 }
1766
1767 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1768                                bool is_src, int log_event_line, bool is_log,
1769                                bool *first_user)
1770 {
1771         unsigned long flags;
1772         spin_lock_irqsave(&phy->lock, flags);
1773
1774         *first_user = ((phy->allocated_src | phy->allocated_dst)
1775                         == D40_ALLOC_FREE);
1776
1777         if (!is_log) {
1778                 /* Physical interrupts are masked per physical full channel */
1779                 if (phy->allocated_src == D40_ALLOC_FREE &&
1780                     phy->allocated_dst == D40_ALLOC_FREE) {
1781                         phy->allocated_dst = D40_ALLOC_PHY;
1782                         phy->allocated_src = D40_ALLOC_PHY;
1783                         goto found_unlock;
1784                 } else
1785                         goto not_found_unlock;
1786         }
1787
1788         /* Logical channel */
1789         if (is_src) {
1790                 if (phy->allocated_src == D40_ALLOC_PHY)
1791                         goto not_found_unlock;
1792
1793                 if (phy->allocated_src == D40_ALLOC_FREE)
1794                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1795
1796                 if (!(phy->allocated_src & BIT(log_event_line))) {
1797                         phy->allocated_src |= BIT(log_event_line);
1798                         goto found_unlock;
1799                 } else
1800                         goto not_found_unlock;
1801         } else {
1802                 if (phy->allocated_dst == D40_ALLOC_PHY)
1803                         goto not_found_unlock;
1804
1805                 if (phy->allocated_dst == D40_ALLOC_FREE)
1806                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1807
1808                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1809                         phy->allocated_dst |= BIT(log_event_line);
1810                         goto found_unlock;
1811                 }
1812         }
1813  not_found_unlock:
1814         spin_unlock_irqrestore(&phy->lock, flags);
1815         return false;
1816  found_unlock:
1817         spin_unlock_irqrestore(&phy->lock, flags);
1818         return true;
1819 }
1820
1821 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1822                                int log_event_line)
1823 {
1824         unsigned long flags;
1825         bool is_free = false;
1826
1827         spin_lock_irqsave(&phy->lock, flags);
1828         if (!log_event_line) {
1829                 phy->allocated_dst = D40_ALLOC_FREE;
1830                 phy->allocated_src = D40_ALLOC_FREE;
1831                 is_free = true;
1832                 goto unlock;
1833         }
1834
1835         /* Logical channel */
1836         if (is_src) {
1837                 phy->allocated_src &= ~BIT(log_event_line);
1838                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1839                         phy->allocated_src = D40_ALLOC_FREE;
1840         } else {
1841                 phy->allocated_dst &= ~BIT(log_event_line);
1842                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1843                         phy->allocated_dst = D40_ALLOC_FREE;
1844         }
1845
1846         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1847                    D40_ALLOC_FREE);
1848  unlock:
1849         spin_unlock_irqrestore(&phy->lock, flags);
1850
1851         return is_free;
1852 }
1853
1854 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1855 {
1856         int dev_type = d40c->dma_cfg.dev_type;
1857         int event_group;
1858         int event_line;
1859         struct d40_phy_res *phys;
1860         int i;
1861         int j;
1862         int log_num;
1863         int num_phy_chans;
1864         bool is_src;
1865         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1866
1867         phys = d40c->base->phy_res;
1868         num_phy_chans = d40c->base->num_phy_chans;
1869
1870         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1871                 log_num = 2 * dev_type;
1872                 is_src = true;
1873         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1874                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1875                 /* dst event lines are used for logical memcpy */
1876                 log_num = 2 * dev_type + 1;
1877                 is_src = false;
1878         } else
1879                 return -EINVAL;
1880
1881         event_group = D40_TYPE_TO_GROUP(dev_type);
1882         event_line = D40_TYPE_TO_EVENT(dev_type);
1883
1884         if (!is_log) {
1885                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1886                         /* Find physical half channel */
1887                         if (d40c->dma_cfg.use_fixed_channel) {
1888                                 i = d40c->dma_cfg.phy_channel;
1889                                 if (d40_alloc_mask_set(&phys[i], is_src,
1890                                                        0, is_log,
1891                                                        first_phy_user))
1892                                         goto found_phy;
1893                         } else {
1894                                 for (i = 0; i < num_phy_chans; i++) {
1895                                         if (d40_alloc_mask_set(&phys[i], is_src,
1896                                                        0, is_log,
1897                                                        first_phy_user))
1898                                                 goto found_phy;
1899                                 }
1900                         }
1901                 } else
1902                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1903                                 int phy_num = j  + event_group * 2;
1904                                 for (i = phy_num; i < phy_num + 2; i++) {
1905                                         if (d40_alloc_mask_set(&phys[i],
1906                                                                is_src,
1907                                                                0,
1908                                                                is_log,
1909                                                                first_phy_user))
1910                                                 goto found_phy;
1911                                 }
1912                         }
1913                 return -EINVAL;
1914 found_phy:
1915                 d40c->phy_chan = &phys[i];
1916                 d40c->log_num = D40_PHY_CHAN;
1917                 goto out;
1918         }
1919         if (dev_type == -1)
1920                 return -EINVAL;
1921
1922         /* Find logical channel */
1923         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1924                 int phy_num = j + event_group * 2;
1925
1926                 if (d40c->dma_cfg.use_fixed_channel) {
1927                         i = d40c->dma_cfg.phy_channel;
1928
1929                         if ((i != phy_num) && (i != phy_num + 1)) {
1930                                 dev_err(chan2dev(d40c),
1931                                         "invalid fixed phy channel %d\n", i);
1932                                 return -EINVAL;
1933                         }
1934
1935                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1936                                                is_log, first_phy_user))
1937                                 goto found_log;
1938
1939                         dev_err(chan2dev(d40c),
1940                                 "could not allocate fixed phy channel %d\n", i);
1941                         return -EINVAL;
1942                 }
1943
1944                 /*
1945                  * Spread logical channels across all available physical rather
1946                  * than pack every logical channel at the first available phy
1947                  * channels.
1948                  */
1949                 if (is_src) {
1950                         for (i = phy_num; i < phy_num + 2; i++) {
1951                                 if (d40_alloc_mask_set(&phys[i], is_src,
1952                                                        event_line, is_log,
1953                                                        first_phy_user))
1954                                         goto found_log;
1955                         }
1956                 } else {
1957                         for (i = phy_num + 1; i >= phy_num; i--) {
1958                                 if (d40_alloc_mask_set(&phys[i], is_src,
1959                                                        event_line, is_log,
1960                                                        first_phy_user))
1961                                         goto found_log;
1962                         }
1963                 }
1964         }
1965         return -EINVAL;
1966
1967 found_log:
1968         d40c->phy_chan = &phys[i];
1969         d40c->log_num = log_num;
1970 out:
1971
1972         if (is_log)
1973                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1974         else
1975                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1976
1977         return 0;
1978
1979 }
1980
1981 static int d40_config_memcpy(struct d40_chan *d40c)
1982 {
1983         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1984
1985         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1986                 d40c->dma_cfg = dma40_memcpy_conf_log;
1987                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
1988
1989                 d40_log_cfg(&d40c->dma_cfg,
1990                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1991
1992         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1993                    dma_has_cap(DMA_SLAVE, cap)) {
1994                 d40c->dma_cfg = dma40_memcpy_conf_phy;
1995
1996                 /* Generate interrupt at end of transfer or relink. */
1997                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
1998
1999                 /* Generate interrupt on error. */
2000                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2001                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2002
2003         } else {
2004                 chan_err(d40c, "No memcpy\n");
2005                 return -EINVAL;
2006         }
2007
2008         return 0;
2009 }
2010
2011 static int d40_free_dma(struct d40_chan *d40c)
2012 {
2013
2014         int res = 0;
2015         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2016         struct d40_phy_res *phy = d40c->phy_chan;
2017         bool is_src;
2018
2019         /* Terminate all queued and active transfers */
2020         d40_term_all(d40c);
2021
2022         if (phy == NULL) {
2023                 chan_err(d40c, "phy == null\n");
2024                 return -EINVAL;
2025         }
2026
2027         if (phy->allocated_src == D40_ALLOC_FREE &&
2028             phy->allocated_dst == D40_ALLOC_FREE) {
2029                 chan_err(d40c, "channel already free\n");
2030                 return -EINVAL;
2031         }
2032
2033         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2034             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2035                 is_src = false;
2036         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2037                 is_src = true;
2038         else {
2039                 chan_err(d40c, "Unknown direction\n");
2040                 return -EINVAL;
2041         }
2042
2043         pm_runtime_get_sync(d40c->base->dev);
2044         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2045         if (res) {
2046                 chan_err(d40c, "stop failed\n");
2047                 goto mark_last_busy;
2048         }
2049
2050         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2051
2052         if (chan_is_logical(d40c))
2053                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2054         else
2055                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2056
2057         if (d40c->busy) {
2058                 pm_runtime_mark_last_busy(d40c->base->dev);
2059                 pm_runtime_put_autosuspend(d40c->base->dev);
2060         }
2061
2062         d40c->busy = false;
2063         d40c->phy_chan = NULL;
2064         d40c->configured = false;
2065  mark_last_busy:
2066         pm_runtime_mark_last_busy(d40c->base->dev);
2067         pm_runtime_put_autosuspend(d40c->base->dev);
2068         return res;
2069 }
2070
2071 static bool d40_is_paused(struct d40_chan *d40c)
2072 {
2073         void __iomem *chanbase = chan_base(d40c);
2074         bool is_paused = false;
2075         unsigned long flags;
2076         void __iomem *active_reg;
2077         u32 status;
2078         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2079
2080         spin_lock_irqsave(&d40c->lock, flags);
2081
2082         if (chan_is_physical(d40c)) {
2083                 if (d40c->phy_chan->num % 2 == 0)
2084                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2085                 else
2086                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2087
2088                 status = (readl(active_reg) &
2089                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2090                         D40_CHAN_POS(d40c->phy_chan->num);
2091                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2092                         is_paused = true;
2093                 goto unlock;
2094         }
2095
2096         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2097             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2098                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2099         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2100                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2101         } else {
2102                 chan_err(d40c, "Unknown direction\n");
2103                 goto unlock;
2104         }
2105
2106         status = (status & D40_EVENTLINE_MASK(event)) >>
2107                 D40_EVENTLINE_POS(event);
2108
2109         if (status != D40_DMA_RUN)
2110                 is_paused = true;
2111  unlock:
2112         spin_unlock_irqrestore(&d40c->lock, flags);
2113         return is_paused;
2114
2115 }
2116
2117 static u32 stedma40_residue(struct dma_chan *chan)
2118 {
2119         struct d40_chan *d40c =
2120                 container_of(chan, struct d40_chan, chan);
2121         u32 bytes_left;
2122         unsigned long flags;
2123
2124         spin_lock_irqsave(&d40c->lock, flags);
2125         bytes_left = d40_residue(d40c);
2126         spin_unlock_irqrestore(&d40c->lock, flags);
2127
2128         return bytes_left;
2129 }
2130
2131 static int
2132 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2133                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2134                 unsigned int sg_len, dma_addr_t src_dev_addr,
2135                 dma_addr_t dst_dev_addr)
2136 {
2137         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2138         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2139         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2140         int ret;
2141
2142         ret = d40_log_sg_to_lli(sg_src, sg_len,
2143                                 src_dev_addr,
2144                                 desc->lli_log.src,
2145                                 chan->log_def.lcsp1,
2146                                 src_info->data_width,
2147                                 dst_info->data_width);
2148
2149         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2150                                 dst_dev_addr,
2151                                 desc->lli_log.dst,
2152                                 chan->log_def.lcsp3,
2153                                 dst_info->data_width,
2154                                 src_info->data_width);
2155
2156         return ret < 0 ? ret : 0;
2157 }
2158
2159 static int
2160 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2161                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2162                 unsigned int sg_len, dma_addr_t src_dev_addr,
2163                 dma_addr_t dst_dev_addr)
2164 {
2165         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2166         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2167         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2168         unsigned long flags = 0;
2169         int ret;
2170
2171         if (desc->cyclic)
2172                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2173
2174         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2175                                 desc->lli_phy.src,
2176                                 virt_to_phys(desc->lli_phy.src),
2177                                 chan->src_def_cfg,
2178                                 src_info, dst_info, flags);
2179
2180         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2181                                 desc->lli_phy.dst,
2182                                 virt_to_phys(desc->lli_phy.dst),
2183                                 chan->dst_def_cfg,
2184                                 dst_info, src_info, flags);
2185
2186         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2187                                    desc->lli_pool.size, DMA_TO_DEVICE);
2188
2189         return ret < 0 ? ret : 0;
2190 }
2191
2192 static struct d40_desc *
2193 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2194               unsigned int sg_len, unsigned long dma_flags)
2195 {
2196         struct stedma40_chan_cfg *cfg;
2197         struct d40_desc *desc;
2198         int ret;
2199
2200         desc = d40_desc_get(chan);
2201         if (!desc)
2202                 return NULL;
2203
2204         cfg = &chan->dma_cfg;
2205         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2206                                         cfg->dst_info.data_width);
2207         if (desc->lli_len < 0) {
2208                 chan_err(chan, "Unaligned size\n");
2209                 goto free_desc;
2210         }
2211
2212         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2213         if (ret < 0) {
2214                 chan_err(chan, "Could not allocate lli\n");
2215                 goto free_desc;
2216         }
2217
2218         desc->lli_current = 0;
2219         desc->txd.flags = dma_flags;
2220         desc->txd.tx_submit = d40_tx_submit;
2221
2222         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2223
2224         return desc;
2225  free_desc:
2226         d40_desc_free(chan, desc);
2227         return NULL;
2228 }
2229
2230 static struct dma_async_tx_descriptor *
2231 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2232             struct scatterlist *sg_dst, unsigned int sg_len,
2233             enum dma_transfer_direction direction, unsigned long dma_flags)
2234 {
2235         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2236         dma_addr_t src_dev_addr;
2237         dma_addr_t dst_dev_addr;
2238         struct d40_desc *desc;
2239         unsigned long flags;
2240         int ret;
2241
2242         if (!chan->phy_chan) {
2243                 chan_err(chan, "Cannot prepare unallocated channel\n");
2244                 return NULL;
2245         }
2246
2247         d40_set_runtime_config_write(dchan, &chan->slave_config, direction);
2248
2249         spin_lock_irqsave(&chan->lock, flags);
2250
2251         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2252         if (desc == NULL)
2253                 goto unlock;
2254
2255         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2256                 desc->cyclic = true;
2257
2258         src_dev_addr = 0;
2259         dst_dev_addr = 0;
2260         if (direction == DMA_DEV_TO_MEM)
2261                 src_dev_addr = chan->runtime_addr;
2262         else if (direction == DMA_MEM_TO_DEV)
2263                 dst_dev_addr = chan->runtime_addr;
2264
2265         if (chan_is_logical(chan))
2266                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2267                                       sg_len, src_dev_addr, dst_dev_addr);
2268         else
2269                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2270                                       sg_len, src_dev_addr, dst_dev_addr);
2271
2272         if (ret) {
2273                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2274                          chan_is_logical(chan) ? "log" : "phy", ret);
2275                 goto free_desc;
2276         }
2277
2278         /*
2279          * add descriptor to the prepare queue in order to be able
2280          * to free them later in terminate_all
2281          */
2282         list_add_tail(&desc->node, &chan->prepare_queue);
2283
2284         spin_unlock_irqrestore(&chan->lock, flags);
2285
2286         return &desc->txd;
2287  free_desc:
2288         d40_desc_free(chan, desc);
2289  unlock:
2290         spin_unlock_irqrestore(&chan->lock, flags);
2291         return NULL;
2292 }
2293
2294 static bool stedma40_filter(struct dma_chan *chan, void *data)
2295 {
2296         struct stedma40_chan_cfg *info = data;
2297         struct d40_chan *d40c =
2298                 container_of(chan, struct d40_chan, chan);
2299         int err;
2300
2301         if (data) {
2302                 err = d40_validate_conf(d40c, info);
2303                 if (!err)
2304                         d40c->dma_cfg = *info;
2305         } else
2306                 err = d40_config_memcpy(d40c);
2307
2308         if (!err)
2309                 d40c->configured = true;
2310
2311         return err == 0;
2312 }
2313
2314 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2315 {
2316         bool realtime = d40c->dma_cfg.realtime;
2317         bool highprio = d40c->dma_cfg.high_priority;
2318         u32 rtreg;
2319         u32 event = D40_TYPE_TO_EVENT(dev_type);
2320         u32 group = D40_TYPE_TO_GROUP(dev_type);
2321         u32 bit = BIT(event);
2322         u32 prioreg;
2323         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2324
2325         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2326         /*
2327          * Due to a hardware bug, in some cases a logical channel triggered by
2328          * a high priority destination event line can generate extra packet
2329          * transactions.
2330          *
2331          * The workaround is to not set the high priority level for the
2332          * destination event lines that trigger logical channels.
2333          */
2334         if (!src && chan_is_logical(d40c))
2335                 highprio = false;
2336
2337         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2338
2339         /* Destination event lines are stored in the upper halfword */
2340         if (!src)
2341                 bit <<= 16;
2342
2343         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2344         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2345 }
2346
2347 static void d40_set_prio_realtime(struct d40_chan *d40c)
2348 {
2349         if (d40c->base->rev < 3)
2350                 return;
2351
2352         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2353             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2354                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2355
2356         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2357             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2358                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2359 }
2360
2361 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2362 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2363 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2364 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2365 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2366
2367 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2368                                   struct of_dma *ofdma)
2369 {
2370         struct stedma40_chan_cfg cfg;
2371         dma_cap_mask_t cap;
2372         u32 flags;
2373
2374         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2375
2376         dma_cap_zero(cap);
2377         dma_cap_set(DMA_SLAVE, cap);
2378
2379         cfg.dev_type = dma_spec->args[0];
2380         flags = dma_spec->args[2];
2381
2382         switch (D40_DT_FLAGS_MODE(flags)) {
2383         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2384         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2385         }
2386
2387         switch (D40_DT_FLAGS_DIR(flags)) {
2388         case 0:
2389                 cfg.dir = DMA_MEM_TO_DEV;
2390                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2391                 break;
2392         case 1:
2393                 cfg.dir = DMA_DEV_TO_MEM;
2394                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2395                 break;
2396         }
2397
2398         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2399                 cfg.phy_channel = dma_spec->args[1];
2400                 cfg.use_fixed_channel = true;
2401         }
2402
2403         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2404                 cfg.high_priority = true;
2405
2406         return dma_request_channel(cap, stedma40_filter, &cfg);
2407 }
2408
2409 /* DMA ENGINE functions */
2410 static int d40_alloc_chan_resources(struct dma_chan *chan)
2411 {
2412         int err;
2413         unsigned long flags;
2414         struct d40_chan *d40c =
2415                 container_of(chan, struct d40_chan, chan);
2416         bool is_free_phy;
2417         spin_lock_irqsave(&d40c->lock, flags);
2418
2419         dma_cookie_init(chan);
2420
2421         /* If no dma configuration is set use default configuration (memcpy) */
2422         if (!d40c->configured) {
2423                 err = d40_config_memcpy(d40c);
2424                 if (err) {
2425                         chan_err(d40c, "Failed to configure memcpy channel\n");
2426                         goto mark_last_busy;
2427                 }
2428         }
2429
2430         err = d40_allocate_channel(d40c, &is_free_phy);
2431         if (err) {
2432                 chan_err(d40c, "Failed to allocate channel\n");
2433                 d40c->configured = false;
2434                 goto mark_last_busy;
2435         }
2436
2437         pm_runtime_get_sync(d40c->base->dev);
2438
2439         d40_set_prio_realtime(d40c);
2440
2441         if (chan_is_logical(d40c)) {
2442                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2443                         d40c->lcpa = d40c->base->lcpa_base +
2444                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2445                 else
2446                         d40c->lcpa = d40c->base->lcpa_base +
2447                                 d40c->dma_cfg.dev_type *
2448                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2449
2450                 /* Unmask the Global Interrupt Mask. */
2451                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2452                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2453         }
2454
2455         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2456                  chan_is_logical(d40c) ? "logical" : "physical",
2457                  d40c->phy_chan->num,
2458                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2459
2460
2461         /*
2462          * Only write channel configuration to the DMA if the physical
2463          * resource is free. In case of multiple logical channels
2464          * on the same physical resource, only the first write is necessary.
2465          */
2466         if (is_free_phy)
2467                 d40_config_write(d40c);
2468  mark_last_busy:
2469         pm_runtime_mark_last_busy(d40c->base->dev);
2470         pm_runtime_put_autosuspend(d40c->base->dev);
2471         spin_unlock_irqrestore(&d40c->lock, flags);
2472         return err;
2473 }
2474
2475 static void d40_free_chan_resources(struct dma_chan *chan)
2476 {
2477         struct d40_chan *d40c =
2478                 container_of(chan, struct d40_chan, chan);
2479         int err;
2480         unsigned long flags;
2481
2482         if (d40c->phy_chan == NULL) {
2483                 chan_err(d40c, "Cannot free unallocated channel\n");
2484                 return;
2485         }
2486
2487         spin_lock_irqsave(&d40c->lock, flags);
2488
2489         err = d40_free_dma(d40c);
2490
2491         if (err)
2492                 chan_err(d40c, "Failed to free channel\n");
2493         spin_unlock_irqrestore(&d40c->lock, flags);
2494 }
2495
2496 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2497                                                        dma_addr_t dst,
2498                                                        dma_addr_t src,
2499                                                        size_t size,
2500                                                        unsigned long dma_flags)
2501 {
2502         struct scatterlist dst_sg;
2503         struct scatterlist src_sg;
2504
2505         sg_init_table(&dst_sg, 1);
2506         sg_init_table(&src_sg, 1);
2507
2508         sg_dma_address(&dst_sg) = dst;
2509         sg_dma_address(&src_sg) = src;
2510
2511         sg_dma_len(&dst_sg) = size;
2512         sg_dma_len(&src_sg) = size;
2513
2514         return d40_prep_sg(chan, &src_sg, &dst_sg, 1,
2515                            DMA_MEM_TO_MEM, dma_flags);
2516 }
2517
2518 static struct dma_async_tx_descriptor *
2519 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2520                   unsigned int sg_len, enum dma_transfer_direction direction,
2521                   unsigned long dma_flags, void *context)
2522 {
2523         if (!is_slave_direction(direction))
2524                 return NULL;
2525
2526         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2527 }
2528
2529 static struct dma_async_tx_descriptor *
2530 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2531                      size_t buf_len, size_t period_len,
2532                      enum dma_transfer_direction direction, unsigned long flags)
2533 {
2534         unsigned int periods = buf_len / period_len;
2535         struct dma_async_tx_descriptor *txd;
2536         struct scatterlist *sg;
2537         int i;
2538
2539         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2540         if (!sg)
2541                 return NULL;
2542
2543         for (i = 0; i < periods; i++) {
2544                 sg_dma_address(&sg[i]) = dma_addr;
2545                 sg_dma_len(&sg[i]) = period_len;
2546                 dma_addr += period_len;
2547         }
2548
2549         sg_chain(sg, periods + 1, sg);
2550
2551         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2552                           DMA_PREP_INTERRUPT);
2553
2554         kfree(sg);
2555
2556         return txd;
2557 }
2558
2559 static enum dma_status d40_tx_status(struct dma_chan *chan,
2560                                      dma_cookie_t cookie,
2561                                      struct dma_tx_state *txstate)
2562 {
2563         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2564         enum dma_status ret;
2565
2566         if (d40c->phy_chan == NULL) {
2567                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2568                 return -EINVAL;
2569         }
2570
2571         ret = dma_cookie_status(chan, cookie, txstate);
2572         if (ret != DMA_COMPLETE && txstate)
2573                 dma_set_residue(txstate, stedma40_residue(chan));
2574
2575         if (d40_is_paused(d40c))
2576                 ret = DMA_PAUSED;
2577
2578         return ret;
2579 }
2580
2581 static void d40_issue_pending(struct dma_chan *chan)
2582 {
2583         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2584         unsigned long flags;
2585
2586         if (d40c->phy_chan == NULL) {
2587                 chan_err(d40c, "Channel is not allocated!\n");
2588                 return;
2589         }
2590
2591         spin_lock_irqsave(&d40c->lock, flags);
2592
2593         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2594
2595         /* Busy means that queued jobs are already being processed */
2596         if (!d40c->busy)
2597                 (void) d40_queue_start(d40c);
2598
2599         spin_unlock_irqrestore(&d40c->lock, flags);
2600 }
2601
2602 static int d40_terminate_all(struct dma_chan *chan)
2603 {
2604         unsigned long flags;
2605         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2606         int ret;
2607
2608         if (d40c->phy_chan == NULL) {
2609                 chan_err(d40c, "Channel is not allocated!\n");
2610                 return -EINVAL;
2611         }
2612
2613         spin_lock_irqsave(&d40c->lock, flags);
2614
2615         pm_runtime_get_sync(d40c->base->dev);
2616         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2617         if (ret)
2618                 chan_err(d40c, "Failed to stop channel\n");
2619
2620         d40_term_all(d40c);
2621         pm_runtime_mark_last_busy(d40c->base->dev);
2622         pm_runtime_put_autosuspend(d40c->base->dev);
2623         if (d40c->busy) {
2624                 pm_runtime_mark_last_busy(d40c->base->dev);
2625                 pm_runtime_put_autosuspend(d40c->base->dev);
2626         }
2627         d40c->busy = false;
2628
2629         spin_unlock_irqrestore(&d40c->lock, flags);
2630         return 0;
2631 }
2632
2633 static int
2634 dma40_config_to_halfchannel(struct d40_chan *d40c,
2635                             struct stedma40_half_channel_info *info,
2636                             u32 maxburst)
2637 {
2638         int psize;
2639
2640         if (chan_is_logical(d40c)) {
2641                 if (maxburst >= 16)
2642                         psize = STEDMA40_PSIZE_LOG_16;
2643                 else if (maxburst >= 8)
2644                         psize = STEDMA40_PSIZE_LOG_8;
2645                 else if (maxburst >= 4)
2646                         psize = STEDMA40_PSIZE_LOG_4;
2647                 else
2648                         psize = STEDMA40_PSIZE_LOG_1;
2649         } else {
2650                 if (maxburst >= 16)
2651                         psize = STEDMA40_PSIZE_PHY_16;
2652                 else if (maxburst >= 8)
2653                         psize = STEDMA40_PSIZE_PHY_8;
2654                 else if (maxburst >= 4)
2655                         psize = STEDMA40_PSIZE_PHY_4;
2656                 else
2657                         psize = STEDMA40_PSIZE_PHY_1;
2658         }
2659
2660         info->psize = psize;
2661         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2662
2663         return 0;
2664 }
2665
2666 static int d40_set_runtime_config(struct dma_chan *chan,
2667                                   struct dma_slave_config *config)
2668 {
2669         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670
2671         memcpy(&d40c->slave_config, config, sizeof(*config));
2672
2673         return 0;
2674 }
2675
2676 /* Runtime reconfiguration extension */
2677 static int d40_set_runtime_config_write(struct dma_chan *chan,
2678                                   struct dma_slave_config *config,
2679                                   enum dma_transfer_direction direction)
2680 {
2681         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2682         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2683         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2684         dma_addr_t config_addr;
2685         u32 src_maxburst, dst_maxburst;
2686         int ret;
2687
2688         if (d40c->phy_chan == NULL) {
2689                 chan_err(d40c, "Channel is not allocated!\n");
2690                 return -EINVAL;
2691         }
2692
2693         src_addr_width = config->src_addr_width;
2694         src_maxburst = config->src_maxburst;
2695         dst_addr_width = config->dst_addr_width;
2696         dst_maxburst = config->dst_maxburst;
2697
2698         if (direction == DMA_DEV_TO_MEM) {
2699                 config_addr = config->src_addr;
2700
2701                 if (cfg->dir != DMA_DEV_TO_MEM)
2702                         dev_dbg(d40c->base->dev,
2703                                 "channel was not configured for peripheral "
2704                                 "to memory transfer (%d) overriding\n",
2705                                 cfg->dir);
2706                 cfg->dir = DMA_DEV_TO_MEM;
2707
2708                 /* Configure the memory side */
2709                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2710                         dst_addr_width = src_addr_width;
2711                 if (dst_maxburst == 0)
2712                         dst_maxburst = src_maxburst;
2713
2714         } else if (direction == DMA_MEM_TO_DEV) {
2715                 config_addr = config->dst_addr;
2716
2717                 if (cfg->dir != DMA_MEM_TO_DEV)
2718                         dev_dbg(d40c->base->dev,
2719                                 "channel was not configured for memory "
2720                                 "to peripheral transfer (%d) overriding\n",
2721                                 cfg->dir);
2722                 cfg->dir = DMA_MEM_TO_DEV;
2723
2724                 /* Configure the memory side */
2725                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2726                         src_addr_width = dst_addr_width;
2727                 if (src_maxburst == 0)
2728                         src_maxburst = dst_maxburst;
2729         } else {
2730                 dev_err(d40c->base->dev,
2731                         "unrecognized channel direction %d\n",
2732                         direction);
2733                 return -EINVAL;
2734         }
2735
2736         if (config_addr <= 0) {
2737                 dev_err(d40c->base->dev, "no address supplied\n");
2738                 return -EINVAL;
2739         }
2740
2741         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2742                 dev_err(d40c->base->dev,
2743                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2744                         src_maxburst,
2745                         src_addr_width,
2746                         dst_maxburst,
2747                         dst_addr_width);
2748                 return -EINVAL;
2749         }
2750
2751         if (src_maxburst > 16) {
2752                 src_maxburst = 16;
2753                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2754         } else if (dst_maxburst > 16) {
2755                 dst_maxburst = 16;
2756                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2757         }
2758
2759         /* Only valid widths are; 1, 2, 4 and 8. */
2760         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2761             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2762             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2763             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2764             !is_power_of_2(src_addr_width) ||
2765             !is_power_of_2(dst_addr_width))
2766                 return -EINVAL;
2767
2768         cfg->src_info.data_width = src_addr_width;
2769         cfg->dst_info.data_width = dst_addr_width;
2770
2771         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2772                                           src_maxburst);
2773         if (ret)
2774                 return ret;
2775
2776         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2777                                           dst_maxburst);
2778         if (ret)
2779                 return ret;
2780
2781         /* Fill in register values */
2782         if (chan_is_logical(d40c))
2783                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2784         else
2785                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2786
2787         /* These settings will take precedence later */
2788         d40c->runtime_addr = config_addr;
2789         d40c->runtime_direction = direction;
2790         dev_dbg(d40c->base->dev,
2791                 "configured channel %s for %s, data width %d/%d, "
2792                 "maxburst %d/%d elements, LE, no flow control\n",
2793                 dma_chan_name(chan),
2794                 (direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2795                 src_addr_width, dst_addr_width,
2796                 src_maxburst, dst_maxburst);
2797
2798         return 0;
2799 }
2800
2801 /* Initialization functions */
2802
2803 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2804                                  struct d40_chan *chans, int offset,
2805                                  int num_chans)
2806 {
2807         int i = 0;
2808         struct d40_chan *d40c;
2809
2810         INIT_LIST_HEAD(&dma->channels);
2811
2812         for (i = offset; i < offset + num_chans; i++) {
2813                 d40c = &chans[i];
2814                 d40c->base = base;
2815                 d40c->chan.device = dma;
2816
2817                 spin_lock_init(&d40c->lock);
2818
2819                 d40c->log_num = D40_PHY_CHAN;
2820
2821                 INIT_LIST_HEAD(&d40c->done);
2822                 INIT_LIST_HEAD(&d40c->active);
2823                 INIT_LIST_HEAD(&d40c->queue);
2824                 INIT_LIST_HEAD(&d40c->pending_queue);
2825                 INIT_LIST_HEAD(&d40c->client);
2826                 INIT_LIST_HEAD(&d40c->prepare_queue);
2827
2828                 tasklet_setup(&d40c->tasklet, dma_tasklet);
2829
2830                 list_add_tail(&d40c->chan.device_node,
2831                               &dma->channels);
2832         }
2833 }
2834
2835 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2836 {
2837         if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) {
2838                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2839                 dev->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2840         }
2841
2842         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2843                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2844                 dev->directions = BIT(DMA_MEM_TO_MEM);
2845                 /*
2846                  * This controller can only access address at even
2847                  * 32bit boundaries, i.e. 2^2
2848                  */
2849                 dev->copy_align = DMAENGINE_ALIGN_4_BYTES;
2850         }
2851
2852         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2853                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2854
2855         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2856         dev->device_free_chan_resources = d40_free_chan_resources;
2857         dev->device_issue_pending = d40_issue_pending;
2858         dev->device_tx_status = d40_tx_status;
2859         dev->device_config = d40_set_runtime_config;
2860         dev->device_pause = d40_pause;
2861         dev->device_resume = d40_resume;
2862         dev->device_terminate_all = d40_terminate_all;
2863         dev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2864         dev->dev = base->dev;
2865 }
2866
2867 static int __init d40_dmaengine_init(struct d40_base *base,
2868                                      int num_reserved_chans)
2869 {
2870         int err ;
2871
2872         d40_chan_init(base, &base->dma_slave, base->log_chans,
2873                       0, base->num_log_chans);
2874
2875         dma_cap_zero(base->dma_slave.cap_mask);
2876         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2877         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2878
2879         d40_ops_init(base, &base->dma_slave);
2880
2881         err = dmaenginem_async_device_register(&base->dma_slave);
2882
2883         if (err) {
2884                 d40_err(base->dev, "Failed to register slave channels\n");
2885                 goto exit;
2886         }
2887
2888         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2889                       base->num_log_chans, base->num_memcpy_chans);
2890
2891         dma_cap_zero(base->dma_memcpy.cap_mask);
2892         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2893
2894         d40_ops_init(base, &base->dma_memcpy);
2895
2896         err = dmaenginem_async_device_register(&base->dma_memcpy);
2897
2898         if (err) {
2899                 d40_err(base->dev,
2900                         "Failed to register memcpy only channels\n");
2901                 goto exit;
2902         }
2903
2904         d40_chan_init(base, &base->dma_both, base->phy_chans,
2905                       0, num_reserved_chans);
2906
2907         dma_cap_zero(base->dma_both.cap_mask);
2908         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2909         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2910         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2911
2912         d40_ops_init(base, &base->dma_both);
2913         err = dmaenginem_async_device_register(&base->dma_both);
2914
2915         if (err) {
2916                 d40_err(base->dev,
2917                         "Failed to register logical and physical capable channels\n");
2918                 goto exit;
2919         }
2920         return 0;
2921  exit:
2922         return err;
2923 }
2924
2925 /* Suspend resume functionality */
2926 #ifdef CONFIG_PM_SLEEP
2927 static int dma40_suspend(struct device *dev)
2928 {
2929         struct d40_base *base = dev_get_drvdata(dev);
2930         int ret;
2931
2932         ret = pm_runtime_force_suspend(dev);
2933         if (ret)
2934                 return ret;
2935
2936         if (base->lcpa_regulator)
2937                 ret = regulator_disable(base->lcpa_regulator);
2938         return ret;
2939 }
2940
2941 static int dma40_resume(struct device *dev)
2942 {
2943         struct d40_base *base = dev_get_drvdata(dev);
2944         int ret = 0;
2945
2946         if (base->lcpa_regulator) {
2947                 ret = regulator_enable(base->lcpa_regulator);
2948                 if (ret)
2949                         return ret;
2950         }
2951
2952         return pm_runtime_force_resume(dev);
2953 }
2954 #endif
2955
2956 #ifdef CONFIG_PM
2957 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
2958                          u32 *regaddr, int num, bool save)
2959 {
2960         int i;
2961
2962         for (i = 0; i < num; i++) {
2963                 void __iomem *addr = baseaddr + regaddr[i];
2964
2965                 if (save)
2966                         backup[i] = readl_relaxed(addr);
2967                 else
2968                         writel_relaxed(backup[i], addr);
2969         }
2970 }
2971
2972 static void d40_save_restore_registers(struct d40_base *base, bool save)
2973 {
2974         int i;
2975
2976         /* Save/Restore channel specific registers */
2977         for (i = 0; i < base->num_phy_chans; i++) {
2978                 void __iomem *addr;
2979                 int idx;
2980
2981                 if (base->phy_res[i].reserved)
2982                         continue;
2983
2984                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
2985                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
2986
2987                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
2988                              d40_backup_regs_chan,
2989                              ARRAY_SIZE(d40_backup_regs_chan),
2990                              save);
2991         }
2992
2993         /* Save/Restore global registers */
2994         dma40_backup(base->virtbase, base->reg_val_backup,
2995                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
2996                      save);
2997
2998         /* Save/Restore registers only existing on dma40 v3 and later */
2999         if (base->gen_dmac.backup)
3000                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
3001                              base->gen_dmac.backup,
3002                         base->gen_dmac.backup_size,
3003                         save);
3004 }
3005
3006 static int dma40_runtime_suspend(struct device *dev)
3007 {
3008         struct d40_base *base = dev_get_drvdata(dev);
3009
3010         d40_save_restore_registers(base, true);
3011
3012         /* Don't disable/enable clocks for v1 due to HW bugs */
3013         if (base->rev != 1)
3014                 writel_relaxed(base->gcc_pwr_off_mask,
3015                                base->virtbase + D40_DREG_GCC);
3016
3017         return 0;
3018 }
3019
3020 static int dma40_runtime_resume(struct device *dev)
3021 {
3022         struct d40_base *base = dev_get_drvdata(dev);
3023
3024         d40_save_restore_registers(base, false);
3025
3026         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3027                        base->virtbase + D40_DREG_GCC);
3028         return 0;
3029 }
3030 #endif
3031
3032 static const struct dev_pm_ops dma40_pm_ops = {
3033         SET_LATE_SYSTEM_SLEEP_PM_OPS(dma40_suspend, dma40_resume)
3034         SET_RUNTIME_PM_OPS(dma40_runtime_suspend,
3035                                 dma40_runtime_resume,
3036                                 NULL)
3037 };
3038
3039 /* Initialization functions. */
3040
3041 static int __init d40_phy_res_init(struct d40_base *base)
3042 {
3043         int i;
3044         int num_phy_chans_avail = 0;
3045         u32 val[2];
3046         int odd_even_bit = -2;
3047         int gcc = D40_DREG_GCC_ENA;
3048
3049         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3050         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3051
3052         for (i = 0; i < base->num_phy_chans; i++) {
3053                 base->phy_res[i].num = i;
3054                 odd_even_bit += 2 * ((i % 2) == 0);
3055                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3056                         /* Mark security only channels as occupied */
3057                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3058                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3059                         base->phy_res[i].reserved = true;
3060                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3061                                                        D40_DREG_GCC_SRC);
3062                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3063                                                        D40_DREG_GCC_DST);
3064
3065
3066                 } else {
3067                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3068                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3069                         base->phy_res[i].reserved = false;
3070                         num_phy_chans_avail++;
3071                 }
3072                 spin_lock_init(&base->phy_res[i].lock);
3073         }
3074
3075         /* Mark disabled channels as occupied */
3076         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3077                 int chan = base->plat_data->disabled_channels[i];
3078
3079                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3080                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3081                 base->phy_res[chan].reserved = true;
3082                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3083                                                D40_DREG_GCC_SRC);
3084                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3085                                                D40_DREG_GCC_DST);
3086                 num_phy_chans_avail--;
3087         }
3088
3089         /* Mark soft_lli channels */
3090         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3091                 int chan = base->plat_data->soft_lli_chans[i];
3092
3093                 base->phy_res[chan].use_soft_lli = true;
3094         }
3095
3096         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3097                  num_phy_chans_avail, base->num_phy_chans);
3098
3099         /* Verify settings extended vs standard */
3100         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3101
3102         for (i = 0; i < base->num_phy_chans; i++) {
3103
3104                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3105                     (val[0] & 0x3) != 1)
3106                         dev_info(base->dev,
3107                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3108                                  __func__, i, val[0] & 0x3);
3109
3110                 val[0] = val[0] >> 2;
3111         }
3112
3113         /*
3114          * To keep things simple, Enable all clocks initially.
3115          * The clocks will get managed later post channel allocation.
3116          * The clocks for the event lines on which reserved channels exists
3117          * are not managed here.
3118          */
3119         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3120         base->gcc_pwr_off_mask = gcc;
3121
3122         return num_phy_chans_avail;
3123 }
3124
3125 /* Called from the registered devm action */
3126 static void d40_drop_kmem_cache_action(void *d)
3127 {
3128         struct kmem_cache *desc_slab = d;
3129
3130         kmem_cache_destroy(desc_slab);
3131 }
3132
3133 static int __init d40_hw_detect_init(struct platform_device *pdev,
3134                                      struct d40_base **retbase)
3135 {
3136         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3137         struct device *dev = &pdev->dev;
3138         struct clk *clk;
3139         void __iomem *virtbase;
3140         struct d40_base *base;
3141         int num_log_chans;
3142         int num_phy_chans;
3143         int num_memcpy_chans;
3144         int i;
3145         u32 pid;
3146         u32 cid;
3147         u8 rev;
3148         int ret;
3149
3150         clk = devm_clk_get_enabled(dev, NULL);
3151         if (IS_ERR(clk))
3152                 return PTR_ERR(clk);
3153
3154         /* Get IO for DMAC base address */
3155         virtbase = devm_platform_ioremap_resource_byname(pdev, "base");
3156         if (IS_ERR(virtbase))
3157                 return PTR_ERR(virtbase);
3158
3159         /* This is just a regular AMBA PrimeCell ID actually */
3160         for (pid = 0, i = 0; i < 4; i++)
3161                 pid |= (readl(virtbase + SZ_4K - 0x20 + 4 * i)
3162                         & 255) << (i * 8);
3163         for (cid = 0, i = 0; i < 4; i++)
3164                 cid |= (readl(virtbase + SZ_4K - 0x10 + 4 * i)
3165                         & 255) << (i * 8);
3166
3167         if (cid != AMBA_CID) {
3168                 d40_err(dev, "Unknown hardware! No PrimeCell ID\n");
3169                 return -EINVAL;
3170         }
3171         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3172                 d40_err(dev, "Unknown designer! Got %x wanted %x\n",
3173                         AMBA_MANF_BITS(pid),
3174                         AMBA_VENDOR_ST);
3175                 return -EINVAL;
3176         }
3177         /*
3178          * HW revision:
3179          * DB8500ed has revision 0
3180          * ? has revision 1
3181          * DB8500v1 has revision 2
3182          * DB8500v2 has revision 3
3183          * AP9540v1 has revision 4
3184          * DB8540v1 has revision 4
3185          */
3186         rev = AMBA_REV_BITS(pid);
3187         if (rev < 2) {
3188                 d40_err(dev, "hardware revision: %d is not supported", rev);
3189                 return -EINVAL;
3190         }
3191
3192         /* The number of physical channels on this HW */
3193         if (plat_data->num_of_phy_chans)
3194                 num_phy_chans = plat_data->num_of_phy_chans;
3195         else
3196                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3197
3198         /* The number of channels used for memcpy */
3199         if (plat_data->num_of_memcpy_chans)
3200                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3201         else
3202                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3203
3204         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3205
3206         dev_info(dev,
3207                  "hardware rev: %d with %d physical and %d logical channels\n",
3208                  rev, num_phy_chans, num_log_chans);
3209
3210         base = devm_kzalloc(dev,
3211                 ALIGN(sizeof(struct d40_base), 4) +
3212                 (num_phy_chans + num_log_chans + num_memcpy_chans) *
3213                 sizeof(struct d40_chan), GFP_KERNEL);
3214
3215         if (!base)
3216                 return -ENOMEM;
3217
3218         base->rev = rev;
3219         base->clk = clk;
3220         base->num_memcpy_chans = num_memcpy_chans;
3221         base->num_phy_chans = num_phy_chans;
3222         base->num_log_chans = num_log_chans;
3223         base->virtbase = virtbase;
3224         base->plat_data = plat_data;
3225         base->dev = dev;
3226         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3227         base->log_chans = &base->phy_chans[num_phy_chans];
3228
3229         if (base->plat_data->num_of_phy_chans == 14) {
3230                 base->gen_dmac.backup = d40_backup_regs_v4b;
3231                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3232                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3233                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3234                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3235                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3236                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3237                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3238                 base->gen_dmac.il = il_v4b;
3239                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3240                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3241                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3242         } else {
3243                 if (base->rev >= 3) {
3244                         base->gen_dmac.backup = d40_backup_regs_v4a;
3245                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3246                 }
3247                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3248                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3249                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3250                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3251                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3252                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3253                 base->gen_dmac.il = il_v4a;
3254                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3255                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3256                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3257         }
3258
3259         base->phy_res = devm_kcalloc(dev, num_phy_chans,
3260                                      sizeof(*base->phy_res),
3261                                      GFP_KERNEL);
3262         if (!base->phy_res)
3263                 return -ENOMEM;
3264
3265         base->lookup_phy_chans = devm_kcalloc(dev, num_phy_chans,
3266                                               sizeof(*base->lookup_phy_chans),
3267                                               GFP_KERNEL);
3268         if (!base->lookup_phy_chans)
3269                 return -ENOMEM;
3270
3271         base->lookup_log_chans = devm_kcalloc(dev, num_log_chans,
3272                                               sizeof(*base->lookup_log_chans),
3273                                               GFP_KERNEL);
3274         if (!base->lookup_log_chans)
3275                 return -ENOMEM;
3276
3277         base->reg_val_backup_chan = devm_kmalloc_array(dev, base->num_phy_chans,
3278                                                   sizeof(d40_backup_regs_chan),
3279                                                   GFP_KERNEL);
3280         if (!base->reg_val_backup_chan)
3281                 return -ENOMEM;
3282
3283         base->lcla_pool.alloc_map = devm_kcalloc(dev, num_phy_chans
3284                                             * D40_LCLA_LINK_PER_EVENT_GRP,
3285                                             sizeof(*base->lcla_pool.alloc_map),
3286                                             GFP_KERNEL);
3287         if (!base->lcla_pool.alloc_map)
3288                 return -ENOMEM;
3289
3290         base->regs_interrupt = devm_kmalloc_array(dev, base->gen_dmac.il_size,
3291                                              sizeof(*base->regs_interrupt),
3292                                              GFP_KERNEL);
3293         if (!base->regs_interrupt)
3294                 return -ENOMEM;
3295
3296         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3297                                             0, SLAB_HWCACHE_ALIGN,
3298                                             NULL);
3299         if (!base->desc_slab)
3300                 return -ENOMEM;
3301
3302         ret = devm_add_action_or_reset(dev, d40_drop_kmem_cache_action,
3303                                        base->desc_slab);
3304         if (ret)
3305                 return ret;
3306
3307         *retbase = base;
3308
3309         return 0;
3310 }
3311
3312 static void __init d40_hw_init(struct d40_base *base)
3313 {
3314
3315         int i;
3316         u32 prmseo[2] = {0, 0};
3317         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3318         u32 pcmis = 0;
3319         u32 pcicr = 0;
3320         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3321         u32 reg_size = base->gen_dmac.init_reg_size;
3322
3323         for (i = 0; i < reg_size; i++)
3324                 writel(dma_init_reg[i].val,
3325                        base->virtbase + dma_init_reg[i].reg);
3326
3327         /* Configure all our dma channels to default settings */
3328         for (i = 0; i < base->num_phy_chans; i++) {
3329
3330                 activeo[i % 2] = activeo[i % 2] << 2;
3331
3332                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3333                     == D40_ALLOC_PHY) {
3334                         activeo[i % 2] |= 3;
3335                         continue;
3336                 }
3337
3338                 /* Enable interrupt # */
3339                 pcmis = (pcmis << 1) | 1;
3340
3341                 /* Clear interrupt # */
3342                 pcicr = (pcicr << 1) | 1;
3343
3344                 /* Set channel to physical mode */
3345                 prmseo[i % 2] = prmseo[i % 2] << 2;
3346                 prmseo[i % 2] |= 1;
3347
3348         }
3349
3350         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3351         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3352         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3353         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3354
3355         /* Write which interrupt to enable */
3356         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3357
3358         /* Write which interrupt to clear */
3359         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3360
3361         /* These are __initdata and cannot be accessed after init */
3362         base->gen_dmac.init_reg = NULL;
3363         base->gen_dmac.init_reg_size = 0;
3364 }
3365
3366 static int __init d40_lcla_allocate(struct d40_base *base)
3367 {
3368         struct d40_lcla_pool *pool = &base->lcla_pool;
3369         unsigned long *page_list;
3370         int i, j;
3371         int ret;
3372
3373         /*
3374          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3375          * To full fill this hardware requirement without wasting 256 kb
3376          * we allocate pages until we get an aligned one.
3377          */
3378         page_list = kmalloc_array(MAX_LCLA_ALLOC_ATTEMPTS,
3379                                   sizeof(*page_list),
3380                                   GFP_KERNEL);
3381         if (!page_list)
3382                 return -ENOMEM;
3383
3384         /* Calculating how many pages that are required */
3385         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3386
3387         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3388                 page_list[i] = __get_free_pages(GFP_KERNEL,
3389                                                 base->lcla_pool.pages);
3390                 if (!page_list[i]) {
3391
3392                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3393                                 base->lcla_pool.pages);
3394                         ret = -ENOMEM;
3395
3396                         for (j = 0; j < i; j++)
3397                                 free_pages(page_list[j], base->lcla_pool.pages);
3398                         goto free_page_list;
3399                 }
3400
3401                 if ((virt_to_phys((void *)page_list[i]) &
3402                      (LCLA_ALIGNMENT - 1)) == 0)
3403                         break;
3404         }
3405
3406         for (j = 0; j < i; j++)
3407                 free_pages(page_list[j], base->lcla_pool.pages);
3408
3409         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3410                 base->lcla_pool.base = (void *)page_list[i];
3411         } else {
3412                 /*
3413                  * After many attempts and no success with finding the correct
3414                  * alignment, try with allocating a big buffer.
3415                  */
3416                 dev_warn(base->dev,
3417                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3418                          __func__, base->lcla_pool.pages);
3419                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3420                                                          base->num_phy_chans +
3421                                                          LCLA_ALIGNMENT,
3422                                                          GFP_KERNEL);
3423                 if (!base->lcla_pool.base_unaligned) {
3424                         ret = -ENOMEM;
3425                         goto free_page_list;
3426                 }
3427
3428                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3429                                                  LCLA_ALIGNMENT);
3430         }
3431
3432         pool->dma_addr = dma_map_single(base->dev, pool->base,
3433                                         SZ_1K * base->num_phy_chans,
3434                                         DMA_TO_DEVICE);
3435         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3436                 pool->dma_addr = 0;
3437                 ret = -ENOMEM;
3438                 goto free_page_list;
3439         }
3440
3441         writel(virt_to_phys(base->lcla_pool.base),
3442                base->virtbase + D40_DREG_LCLA);
3443         ret = 0;
3444  free_page_list:
3445         kfree(page_list);
3446         return ret;
3447 }
3448
3449 static int __init d40_of_probe(struct device *dev,
3450                                struct device_node *np)
3451 {
3452         struct stedma40_platform_data *pdata;
3453         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3454         const __be32 *list;
3455
3456         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
3457         if (!pdata)
3458                 return -ENOMEM;
3459
3460         /* If absent this value will be obtained from h/w. */
3461         of_property_read_u32(np, "dma-channels", &num_phy);
3462         if (num_phy > 0)
3463                 pdata->num_of_phy_chans = num_phy;
3464
3465         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3466         num_memcpy /= sizeof(*list);
3467
3468         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3469                 d40_err(dev,
3470                         "Invalid number of memcpy channels specified (%d)\n",
3471                         num_memcpy);
3472                 return -EINVAL;
3473         }
3474         pdata->num_of_memcpy_chans = num_memcpy;
3475
3476         of_property_read_u32_array(np, "memcpy-channels",
3477                                    dma40_memcpy_channels,
3478                                    num_memcpy);
3479
3480         list = of_get_property(np, "disabled-channels", &num_disabled);
3481         num_disabled /= sizeof(*list);
3482
3483         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3484                 d40_err(dev,
3485                         "Invalid number of disabled channels specified (%d)\n",
3486                         num_disabled);
3487                 return -EINVAL;
3488         }
3489
3490         of_property_read_u32_array(np, "disabled-channels",
3491                                    pdata->disabled_channels,
3492                                    num_disabled);
3493         pdata->disabled_channels[num_disabled] = -1;
3494
3495         dev->platform_data = pdata;
3496
3497         return 0;
3498 }
3499
3500 static int __init d40_probe(struct platform_device *pdev)
3501 {
3502         struct device *dev = &pdev->dev;
3503         struct device_node *np = pdev->dev.of_node;
3504         struct device_node *np_lcpa;
3505         struct d40_base *base;
3506         struct resource *res;
3507         struct resource res_lcpa;
3508         int num_reserved_chans;
3509         u32 val;
3510         int ret;
3511
3512         if (d40_of_probe(dev, np)) {
3513                 ret = -ENOMEM;
3514                 goto report_failure;
3515         }
3516
3517         ret = d40_hw_detect_init(pdev, &base);
3518         if (ret)
3519                 goto report_failure;
3520
3521         num_reserved_chans = d40_phy_res_init(base);
3522
3523         platform_set_drvdata(pdev, base);
3524
3525         spin_lock_init(&base->interrupt_lock);
3526         spin_lock_init(&base->execmd_lock);
3527
3528         /* Get IO for logical channel parameter address (LCPA) */
3529         np_lcpa = of_parse_phandle(np, "sram", 0);
3530         if (!np_lcpa) {
3531                 dev_err(dev, "no LCPA SRAM node\n");
3532                 ret = -EINVAL;
3533                 goto report_failure;
3534         }
3535         /* This is no device so read the address directly from the node */
3536         ret = of_address_to_resource(np_lcpa, 0, &res_lcpa);
3537         if (ret) {
3538                 dev_err(dev, "no LCPA SRAM resource\n");
3539                 goto report_failure;
3540         }
3541         base->lcpa_size = resource_size(&res_lcpa);
3542         base->phy_lcpa = res_lcpa.start;
3543         dev_info(dev, "found LCPA SRAM at %pad, size %pa\n",
3544                  &base->phy_lcpa, &base->lcpa_size);
3545
3546         /* We make use of ESRAM memory for this. */
3547         val = readl(base->virtbase + D40_DREG_LCPA);
3548         if (base->phy_lcpa != val && val != 0) {
3549                 dev_warn(dev,
3550                          "[%s] Mismatch LCPA dma 0x%x, def %08x\n",
3551                          __func__, val, (u32)base->phy_lcpa);
3552         } else
3553                 writel(base->phy_lcpa, base->virtbase + D40_DREG_LCPA);
3554
3555         base->lcpa_base = devm_ioremap(dev, base->phy_lcpa, base->lcpa_size);
3556         if (!base->lcpa_base) {
3557                 ret = -ENOMEM;
3558                 d40_err(dev, "Failed to ioremap LCPA region\n");
3559                 goto report_failure;
3560         }
3561         /* If lcla has to be located in ESRAM we don't need to allocate */
3562         if (base->plat_data->use_esram_lcla) {
3563                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3564                                                         "lcla_esram");
3565                 if (!res) {
3566                         ret = -ENOENT;
3567                         d40_err(dev,
3568                                 "No \"lcla_esram\" memory resource\n");
3569                         goto report_failure;
3570                 }
3571                 base->lcla_pool.base = devm_ioremap(dev, res->start,
3572                                                     resource_size(res));
3573                 if (!base->lcla_pool.base) {
3574                         ret = -ENOMEM;
3575                         d40_err(dev, "Failed to ioremap LCLA region\n");
3576                         goto report_failure;
3577                 }
3578                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3579
3580         } else {
3581                 ret = d40_lcla_allocate(base);
3582                 if (ret) {
3583                         d40_err(dev, "Failed to allocate LCLA area\n");
3584                         goto destroy_cache;
3585                 }
3586         }
3587
3588         spin_lock_init(&base->lcla_pool.lock);
3589
3590         base->irq = platform_get_irq(pdev, 0);
3591         if (base->irq < 0) {
3592                 ret = base->irq;
3593                 goto destroy_cache;
3594         }
3595
3596         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3597         if (ret) {
3598                 d40_err(dev, "No IRQ defined\n");
3599                 goto destroy_cache;
3600         }
3601
3602         if (base->plat_data->use_esram_lcla) {
3603
3604                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3605                 if (IS_ERR(base->lcpa_regulator)) {
3606                         d40_err(dev, "Failed to get lcpa_regulator\n");
3607                         ret = PTR_ERR(base->lcpa_regulator);
3608                         base->lcpa_regulator = NULL;
3609                         goto destroy_cache;
3610                 }
3611
3612                 ret = regulator_enable(base->lcpa_regulator);
3613                 if (ret) {
3614                         d40_err(dev,
3615                                 "Failed to enable lcpa_regulator\n");
3616                         regulator_put(base->lcpa_regulator);
3617                         base->lcpa_regulator = NULL;
3618                         goto destroy_cache;
3619                 }
3620         }
3621
3622         writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3623
3624         pm_runtime_irq_safe(base->dev);
3625         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3626         pm_runtime_use_autosuspend(base->dev);
3627         pm_runtime_mark_last_busy(base->dev);
3628         pm_runtime_set_active(base->dev);
3629         pm_runtime_enable(base->dev);
3630
3631         ret = d40_dmaengine_init(base, num_reserved_chans);
3632         if (ret)
3633                 goto destroy_cache;
3634
3635         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3636         if (ret) {
3637                 d40_err(dev, "Failed to set dma max seg size\n");
3638                 goto destroy_cache;
3639         }
3640
3641         d40_hw_init(base);
3642
3643         ret = of_dma_controller_register(np, d40_xlate, NULL);
3644         if (ret) {
3645                 dev_err(dev,
3646                         "could not register of_dma_controller\n");
3647                 goto destroy_cache;
3648         }
3649
3650         dev_info(base->dev, "initialized\n");
3651         return 0;
3652
3653  destroy_cache:
3654         if (base->lcla_pool.dma_addr)
3655                 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3656                                  SZ_1K * base->num_phy_chans,
3657                                  DMA_TO_DEVICE);
3658
3659         if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3660                 free_pages((unsigned long)base->lcla_pool.base,
3661                            base->lcla_pool.pages);
3662
3663         kfree(base->lcla_pool.base_unaligned);
3664
3665         if (base->lcpa_regulator) {
3666                 regulator_disable(base->lcpa_regulator);
3667                 regulator_put(base->lcpa_regulator);
3668         }
3669         pm_runtime_disable(base->dev);
3670
3671  report_failure:
3672         d40_err(dev, "probe failed\n");
3673         return ret;
3674 }
3675
3676 static const struct of_device_id d40_match[] = {
3677         { .compatible = "stericsson,dma40", },
3678         {}
3679 };
3680
3681 static struct platform_driver d40_driver = {
3682         .driver = {
3683                 .name  = D40_NAME,
3684                 .pm = &dma40_pm_ops,
3685                 .of_match_table = d40_match,
3686         },
3687 };
3688
3689 static int __init stedma40_init(void)
3690 {
3691         return platform_driver_probe(&d40_driver, d40_probe);
3692 }
3693 subsys_initcall(stedma40_init);