Merge tag 'sound-5.11-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-microblaze.git] / drivers / dma / qcom / gpi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2017-2020, The Linux Foundation. All rights reserved.
4  * Copyright (c) 2020, Linaro Limited
5  */
6
7 #include <dt-bindings/dma/qcom-gpi.h>
8 #include <linux/bitfield.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmaengine.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/dma/qcom-gpi-dma.h>
15 #include <linux/scatterlist.h>
16 #include <linux/slab.h>
17 #include "../dmaengine.h"
18 #include "../virt-dma.h"
19
20 #define TRE_TYPE_DMA            0x10
21 #define TRE_TYPE_GO             0x20
22 #define TRE_TYPE_CONFIG0        0x22
23
24 /* TRE flags */
25 #define TRE_FLAGS_CHAIN         BIT(0)
26 #define TRE_FLAGS_IEOB          BIT(8)
27 #define TRE_FLAGS_IEOT          BIT(9)
28 #define TRE_FLAGS_BEI           BIT(10)
29 #define TRE_FLAGS_LINK          BIT(11)
30 #define TRE_FLAGS_TYPE          GENMASK(23, 16)
31
32 /* SPI CONFIG0 WD0 */
33 #define TRE_SPI_C0_WORD_SZ      GENMASK(4, 0)
34 #define TRE_SPI_C0_LOOPBACK     BIT(8)
35 #define TRE_SPI_C0_CS           BIT(11)
36 #define TRE_SPI_C0_CPHA         BIT(12)
37 #define TRE_SPI_C0_CPOL         BIT(13)
38 #define TRE_SPI_C0_TX_PACK      BIT(24)
39 #define TRE_SPI_C0_RX_PACK      BIT(25)
40
41 /* CONFIG0 WD2 */
42 #define TRE_C0_CLK_DIV          GENMASK(11, 0)
43 #define TRE_C0_CLK_SRC          GENMASK(19, 16)
44
45 /* SPI GO WD0 */
46 #define TRE_SPI_GO_CMD          GENMASK(4, 0)
47 #define TRE_SPI_GO_CS           GENMASK(10, 8)
48 #define TRE_SPI_GO_FRAG         BIT(26)
49
50 /* GO WD2 */
51 #define TRE_RX_LEN              GENMASK(23, 0)
52
53 /* I2C Config0 WD0 */
54 #define TRE_I2C_C0_TLOW         GENMASK(7, 0)
55 #define TRE_I2C_C0_THIGH        GENMASK(15, 8)
56 #define TRE_I2C_C0_TCYL         GENMASK(23, 16)
57 #define TRE_I2C_C0_TX_PACK      BIT(24)
58 #define TRE_I2C_C0_RX_PACK      BIT(25)
59
60 /* I2C GO WD0 */
61 #define TRE_I2C_GO_CMD          GENMASK(4, 0)
62 #define TRE_I2C_GO_ADDR         GENMASK(14, 8)
63 #define TRE_I2C_GO_STRETCH      BIT(26)
64
65 /* DMA TRE */
66 #define TRE_DMA_LEN             GENMASK(23, 0)
67
68 /* Register offsets from gpi-top */
69 #define GPII_n_CH_k_CNTXT_0_OFFS(n, k)  (0x20000 + (0x4000 * (n)) + (0x80 * (k)))
70 #define GPII_n_CH_k_CNTXT_0_EL_SIZE     GENMASK(31, 24)
71 #define GPII_n_CH_k_CNTXT_0_CHSTATE     GENMASK(23, 20)
72 #define GPII_n_CH_k_CNTXT_0_ERIDX       GENMASK(18, 14)
73 #define GPII_n_CH_k_CNTXT_0_DIR         BIT(3)
74 #define GPII_n_CH_k_CNTXT_0_PROTO       GENMASK(2, 0)
75
76 #define GPII_n_CH_k_CNTXT_0(el_size, erindex, dir, chtype_proto)  \
77         (FIELD_PREP(GPII_n_CH_k_CNTXT_0_EL_SIZE, el_size)       | \
78          FIELD_PREP(GPII_n_CH_k_CNTXT_0_ERIDX, erindex)         | \
79          FIELD_PREP(GPII_n_CH_k_CNTXT_0_DIR, dir)               | \
80          FIELD_PREP(GPII_n_CH_k_CNTXT_0_PROTO, chtype_proto))
81
82 #define GPI_CHTYPE_DIR_IN       (0)
83 #define GPI_CHTYPE_DIR_OUT      (1)
84
85 #define GPI_CHTYPE_PROTO_GPI    (0x2)
86
87 #define GPII_n_CH_k_DOORBELL_0_OFFS(n, k)       (0x22000 + (0x4000 * (n)) + (0x8 * (k)))
88 #define GPII_n_CH_CMD_OFFS(n)                   (0x23008 + (0x4000 * (n)))
89 #define GPII_n_CH_CMD_OPCODE                    GENMASK(31, 24)
90 #define GPII_n_CH_CMD_CHID                      GENMASK(7, 0)
91 #define GPII_n_CH_CMD(opcode, chid)                              \
92                      (FIELD_PREP(GPII_n_CH_CMD_OPCODE, opcode) | \
93                       FIELD_PREP(GPII_n_CH_CMD_CHID, chid))
94
95 #define GPII_n_CH_CMD_ALLOCATE          (0)
96 #define GPII_n_CH_CMD_START             (1)
97 #define GPII_n_CH_CMD_STOP              (2)
98 #define GPII_n_CH_CMD_RESET             (9)
99 #define GPII_n_CH_CMD_DE_ALLOC          (10)
100 #define GPII_n_CH_CMD_UART_SW_STALE     (32)
101 #define GPII_n_CH_CMD_UART_RFR_READY    (33)
102 #define GPII_n_CH_CMD_UART_RFR_NOT_READY (34)
103
104 /* EV Context Array */
105 #define GPII_n_EV_CH_k_CNTXT_0_OFFS(n, k) (0x21000 + (0x4000 * (n)) + (0x80 * (k)))
106 #define GPII_n_EV_k_CNTXT_0_EL_SIZE     GENMASK(31, 24)
107 #define GPII_n_EV_k_CNTXT_0_CHSTATE     GENMASK(23, 20)
108 #define GPII_n_EV_k_CNTXT_0_INTYPE      BIT(16)
109 #define GPII_n_EV_k_CNTXT_0_CHTYPE      GENMASK(3, 0)
110
111 #define GPII_n_EV_k_CNTXT_0(el_size, inttype, chtype)           \
112         (FIELD_PREP(GPII_n_EV_k_CNTXT_0_EL_SIZE, el_size) |     \
113          FIELD_PREP(GPII_n_EV_k_CNTXT_0_INTYPE, inttype)  |     \
114          FIELD_PREP(GPII_n_EV_k_CNTXT_0_CHTYPE, chtype))
115
116 #define GPI_INTTYPE_IRQ         (1)
117 #define GPI_CHTYPE_GPI_EV       (0x2)
118
119 enum CNTXT_OFFS {
120         CNTXT_0_CONFIG = 0x0,
121         CNTXT_1_R_LENGTH = 0x4,
122         CNTXT_2_RING_BASE_LSB = 0x8,
123         CNTXT_3_RING_BASE_MSB = 0xC,
124         CNTXT_4_RING_RP_LSB = 0x10,
125         CNTXT_5_RING_RP_MSB = 0x14,
126         CNTXT_6_RING_WP_LSB = 0x18,
127         CNTXT_7_RING_WP_MSB = 0x1C,
128         CNTXT_8_RING_INT_MOD = 0x20,
129         CNTXT_9_RING_INTVEC = 0x24,
130         CNTXT_10_RING_MSI_LSB = 0x28,
131         CNTXT_11_RING_MSI_MSB = 0x2C,
132         CNTXT_12_RING_RP_UPDATE_LSB = 0x30,
133         CNTXT_13_RING_RP_UPDATE_MSB = 0x34,
134 };
135
136 #define GPII_n_EV_CH_k_DOORBELL_0_OFFS(n, k)    (0x22100 + (0x4000 * (n)) + (0x8 * (k)))
137 #define GPII_n_EV_CH_CMD_OFFS(n)                (0x23010 + (0x4000 * (n)))
138 #define GPII_n_EV_CMD_OPCODE                    GENMASK(31, 24)
139 #define GPII_n_EV_CMD_CHID                      GENMASK(7, 0)
140 #define GPII_n_EV_CMD(opcode, chid)                              \
141                      (FIELD_PREP(GPII_n_EV_CMD_OPCODE, opcode) | \
142                       FIELD_PREP(GPII_n_EV_CMD_CHID, chid))
143
144 #define GPII_n_EV_CH_CMD_ALLOCATE               (0x00)
145 #define GPII_n_EV_CH_CMD_RESET                  (0x09)
146 #define GPII_n_EV_CH_CMD_DE_ALLOC               (0x0A)
147
148 #define GPII_n_CNTXT_TYPE_IRQ_OFFS(n)           (0x23080 + (0x4000 * (n)))
149
150 /* mask type register */
151 #define GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(n)       (0x23088 + (0x4000 * (n)))
152 #define GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK          GENMASK(6, 0)
153 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL       BIT(6)
154 #define GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB          BIT(3)
155 #define GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB          BIT(2)
156 #define GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL       BIT(1)
157 #define GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL       BIT(0)
158
159 #define GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(n)    (0x23090 + (0x4000 * (n)))
160 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(n)      (0x23094 + (0x4000 * (n)))
161
162 /* Mask channel control interrupt register */
163 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(n)     (0x23098 + (0x4000 * (n)))
164 #define GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK        GENMASK(1, 0)
165
166 /* Mask event control interrupt register */
167 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(n)  (0x2309C + (0x4000 * (n)))
168 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK     BIT(0)
169
170 #define GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(n)     (0x230A0 + (0x4000 * (n)))
171 #define GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS(n)  (0x230A4 + (0x4000 * (n)))
172
173 /* Mask event interrupt register */
174 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(n)   (0x230B8 + (0x4000 * (n)))
175 #define GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK      BIT(0)
176
177 #define GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(n)   (0x230C0 + (0x4000 * (n)))
178 #define GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(n)      (0x23100 + (0x4000 * (n)))
179 #define GPI_GLOB_IRQ_ERROR_INT_MSK              BIT(0)
180
181 /* GPII specific Global - Enable bit register */
182 #define GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(n)        (0x23108 + (0x4000 * (n)))
183 #define GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(n)       (0x23110 + (0x4000 * (n)))
184 #define GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(n)      (0x23118 + (0x4000 * (n)))
185
186 /* GPII general interrupt - Enable bit register */
187 #define GPII_n_CNTXT_GPII_IRQ_EN_OFFS(n)        (0x23120 + (0x4000 * (n)))
188 #define GPII_n_CNTXT_GPII_IRQ_EN_BMSK           GENMASK(3, 0)
189
190 #define GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(n)       (0x23128 + (0x4000 * (n)))
191
192 /* GPII Interrupt Type register */
193 #define GPII_n_CNTXT_INTSET_OFFS(n)             (0x23180 + (0x4000 * (n)))
194 #define GPII_n_CNTXT_INTSET_BMSK                BIT(0)
195
196 #define GPII_n_CNTXT_MSI_BASE_LSB_OFFS(n)       (0x23188 + (0x4000 * (n)))
197 #define GPII_n_CNTXT_MSI_BASE_MSB_OFFS(n)       (0x2318C + (0x4000 * (n)))
198 #define GPII_n_CNTXT_SCRATCH_0_OFFS(n)          (0x23400 + (0x4000 * (n)))
199 #define GPII_n_CNTXT_SCRATCH_1_OFFS(n)          (0x23404 + (0x4000 * (n)))
200
201 #define GPII_n_ERROR_LOG_OFFS(n)                (0x23200 + (0x4000 * (n)))
202
203 /* QOS Registers */
204 #define GPII_n_CH_k_QOS_OFFS(n, k)              (0x2005C + (0x4000 * (n)) + (0x80 * (k)))
205
206 /* Scratch registers */
207 #define GPII_n_CH_k_SCRATCH_0_OFFS(n, k)        (0x20060 + (0x4000 * (n)) + (0x80 * (k)))
208 #define GPII_n_CH_k_SCRATCH_0_SEID              GENMASK(2, 0)
209 #define GPII_n_CH_k_SCRATCH_0_PROTO             GENMASK(7, 4)
210 #define GPII_n_CH_k_SCRATCH_0_PAIR              GENMASK(20, 16)
211 #define GPII_n_CH_k_SCRATCH_0(pair, proto, seid)                \
212                              (FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PAIR, pair)      | \
213                               FIELD_PREP(GPII_n_CH_k_SCRATCH_0_PROTO, proto)    | \
214                               FIELD_PREP(GPII_n_CH_k_SCRATCH_0_SEID, seid))
215 #define GPII_n_CH_k_SCRATCH_1_OFFS(n, k)        (0x20064 + (0x4000 * (n)) + (0x80 * (k)))
216 #define GPII_n_CH_k_SCRATCH_2_OFFS(n, k)        (0x20068 + (0x4000 * (n)) + (0x80 * (k)))
217 #define GPII_n_CH_k_SCRATCH_3_OFFS(n, k)        (0x2006C + (0x4000 * (n)) + (0x80 * (k)))
218
219 struct __packed gpi_tre {
220         u32 dword[4];
221 };
222
223 enum msm_gpi_tce_code {
224         MSM_GPI_TCE_SUCCESS = 1,
225         MSM_GPI_TCE_EOT = 2,
226         MSM_GPI_TCE_EOB = 4,
227         MSM_GPI_TCE_UNEXP_ERR = 16,
228 };
229
230 #define CMD_TIMEOUT_MS          (250)
231
232 #define MAX_CHANNELS_PER_GPII   (2)
233 #define GPI_TX_CHAN             (0)
234 #define GPI_RX_CHAN             (1)
235 #define STATE_IGNORE            (U32_MAX)
236 #define EV_FACTOR               (2)
237 #define REQ_OF_DMA_ARGS         (5) /* # of arguments required from client */
238 #define CHAN_TRES               64
239
240 struct __packed xfer_compl_event {
241         u64 ptr;
242         u32 length:24;
243         u8 code;
244         u16 status;
245         u8 type;
246         u8 chid;
247 };
248
249 struct __packed immediate_data_event {
250         u8 data_bytes[8];
251         u8 length:4;
252         u8 resvd:4;
253         u16 tre_index;
254         u8 code;
255         u16 status;
256         u8 type;
257         u8 chid;
258 };
259
260 struct __packed qup_notif_event {
261         u32 status;
262         u32 time;
263         u32 count:24;
264         u8 resvd;
265         u16 resvd1;
266         u8 type;
267         u8 chid;
268 };
269
270 struct __packed gpi_ere {
271         u32 dword[4];
272 };
273
274 enum GPI_EV_TYPE {
275         XFER_COMPLETE_EV_TYPE = 0x22,
276         IMMEDIATE_DATA_EV_TYPE = 0x30,
277         QUP_NOTIF_EV_TYPE = 0x31,
278         STALE_EV_TYPE = 0xFF,
279 };
280
281 union __packed gpi_event {
282         struct __packed xfer_compl_event xfer_compl_event;
283         struct __packed immediate_data_event immediate_data_event;
284         struct __packed qup_notif_event qup_notif_event;
285         struct __packed gpi_ere gpi_ere;
286 };
287
288 enum gpii_irq_settings {
289         DEFAULT_IRQ_SETTINGS,
290         MASK_IEOB_SETTINGS,
291 };
292
293 enum gpi_ev_state {
294         DEFAULT_EV_CH_STATE = 0,
295         EV_STATE_NOT_ALLOCATED = DEFAULT_EV_CH_STATE,
296         EV_STATE_ALLOCATED,
297         MAX_EV_STATES
298 };
299
300 static const char *const gpi_ev_state_str[MAX_EV_STATES] = {
301         [EV_STATE_NOT_ALLOCATED] = "NOT ALLOCATED",
302         [EV_STATE_ALLOCATED] = "ALLOCATED",
303 };
304
305 #define TO_GPI_EV_STATE_STR(_state) (((_state) >= MAX_EV_STATES) ? \
306                                     "INVALID" : gpi_ev_state_str[(_state)])
307
308 enum gpi_ch_state {
309         DEFAULT_CH_STATE = 0x0,
310         CH_STATE_NOT_ALLOCATED = DEFAULT_CH_STATE,
311         CH_STATE_ALLOCATED = 0x1,
312         CH_STATE_STARTED = 0x2,
313         CH_STATE_STOPPED = 0x3,
314         CH_STATE_STOP_IN_PROC = 0x4,
315         CH_STATE_ERROR = 0xf,
316         MAX_CH_STATES
317 };
318
319 enum gpi_cmd {
320         GPI_CH_CMD_BEGIN,
321         GPI_CH_CMD_ALLOCATE = GPI_CH_CMD_BEGIN,
322         GPI_CH_CMD_START,
323         GPI_CH_CMD_STOP,
324         GPI_CH_CMD_RESET,
325         GPI_CH_CMD_DE_ALLOC,
326         GPI_CH_CMD_UART_SW_STALE,
327         GPI_CH_CMD_UART_RFR_READY,
328         GPI_CH_CMD_UART_RFR_NOT_READY,
329         GPI_CH_CMD_END = GPI_CH_CMD_UART_RFR_NOT_READY,
330         GPI_EV_CMD_BEGIN,
331         GPI_EV_CMD_ALLOCATE = GPI_EV_CMD_BEGIN,
332         GPI_EV_CMD_RESET,
333         GPI_EV_CMD_DEALLOC,
334         GPI_EV_CMD_END = GPI_EV_CMD_DEALLOC,
335         GPI_MAX_CMD,
336 };
337
338 #define IS_CHAN_CMD(_cmd) ((_cmd) <= GPI_CH_CMD_END)
339
340 static const char *const gpi_cmd_str[GPI_MAX_CMD] = {
341         [GPI_CH_CMD_ALLOCATE] = "CH ALLOCATE",
342         [GPI_CH_CMD_START] = "CH START",
343         [GPI_CH_CMD_STOP] = "CH STOP",
344         [GPI_CH_CMD_RESET] = "CH_RESET",
345         [GPI_CH_CMD_DE_ALLOC] = "DE ALLOC",
346         [GPI_CH_CMD_UART_SW_STALE] = "UART SW STALE",
347         [GPI_CH_CMD_UART_RFR_READY] = "UART RFR READY",
348         [GPI_CH_CMD_UART_RFR_NOT_READY] = "UART RFR NOT READY",
349         [GPI_EV_CMD_ALLOCATE] = "EV ALLOCATE",
350         [GPI_EV_CMD_RESET] = "EV RESET",
351         [GPI_EV_CMD_DEALLOC] = "EV DEALLOC",
352 };
353
354 #define TO_GPI_CMD_STR(_cmd) (((_cmd) >= GPI_MAX_CMD) ? "INVALID" : \
355                                   gpi_cmd_str[(_cmd)])
356
357 /*
358  * @DISABLE_STATE: no register access allowed
359  * @CONFIG_STATE:  client has configured the channel
360  * @PREP_HARDWARE: register access is allowed
361  *                 however, no processing EVENTS
362  * @ACTIVE_STATE: channels are fully operational
363  * @PREPARE_TERMINATE: graceful termination of channels
364  *                     register access is allowed
365  * @PAUSE_STATE: channels are active, but not processing any events
366  */
367 enum gpi_pm_state {
368         DISABLE_STATE,
369         CONFIG_STATE,
370         PREPARE_HARDWARE,
371         ACTIVE_STATE,
372         PREPARE_TERMINATE,
373         PAUSE_STATE,
374         MAX_PM_STATE
375 };
376
377 #define REG_ACCESS_VALID(_pm_state) ((_pm_state) >= PREPARE_HARDWARE)
378
379 static const char *const gpi_pm_state_str[MAX_PM_STATE] = {
380         [DISABLE_STATE] = "DISABLE",
381         [CONFIG_STATE] = "CONFIG",
382         [PREPARE_HARDWARE] = "PREPARE HARDWARE",
383         [ACTIVE_STATE] = "ACTIVE",
384         [PREPARE_TERMINATE] = "PREPARE TERMINATE",
385         [PAUSE_STATE] = "PAUSE",
386 };
387
388 #define TO_GPI_PM_STR(_state) (((_state) >= MAX_PM_STATE) ? \
389                               "INVALID" : gpi_pm_state_str[(_state)])
390
391 static const struct {
392         enum gpi_cmd gpi_cmd;
393         u32 opcode;
394         u32 state;
395 } gpi_cmd_info[GPI_MAX_CMD] = {
396         {
397                 GPI_CH_CMD_ALLOCATE,
398                 GPII_n_CH_CMD_ALLOCATE,
399                 CH_STATE_ALLOCATED,
400         },
401         {
402                 GPI_CH_CMD_START,
403                 GPII_n_CH_CMD_START,
404                 CH_STATE_STARTED,
405         },
406         {
407                 GPI_CH_CMD_STOP,
408                 GPII_n_CH_CMD_STOP,
409                 CH_STATE_STOPPED,
410         },
411         {
412                 GPI_CH_CMD_RESET,
413                 GPII_n_CH_CMD_RESET,
414                 CH_STATE_ALLOCATED,
415         },
416         {
417                 GPI_CH_CMD_DE_ALLOC,
418                 GPII_n_CH_CMD_DE_ALLOC,
419                 CH_STATE_NOT_ALLOCATED,
420         },
421         {
422                 GPI_CH_CMD_UART_SW_STALE,
423                 GPII_n_CH_CMD_UART_SW_STALE,
424                 STATE_IGNORE,
425         },
426         {
427                 GPI_CH_CMD_UART_RFR_READY,
428                 GPII_n_CH_CMD_UART_RFR_READY,
429                 STATE_IGNORE,
430         },
431         {
432                 GPI_CH_CMD_UART_RFR_NOT_READY,
433                 GPII_n_CH_CMD_UART_RFR_NOT_READY,
434                 STATE_IGNORE,
435         },
436         {
437                 GPI_EV_CMD_ALLOCATE,
438                 GPII_n_EV_CH_CMD_ALLOCATE,
439                 EV_STATE_ALLOCATED,
440         },
441         {
442                 GPI_EV_CMD_RESET,
443                 GPII_n_EV_CH_CMD_RESET,
444                 EV_STATE_ALLOCATED,
445         },
446         {
447                 GPI_EV_CMD_DEALLOC,
448                 GPII_n_EV_CH_CMD_DE_ALLOC,
449                 EV_STATE_NOT_ALLOCATED,
450         },
451 };
452
453 struct gpi_ring {
454         void *pre_aligned;
455         size_t alloc_size;
456         phys_addr_t phys_addr;
457         dma_addr_t dma_handle;
458         void *base;
459         void *wp;
460         void *rp;
461         u32 len;
462         u32 el_size;
463         u32 elements;
464         bool configured;
465 };
466
467 struct gpi_dev {
468         struct dma_device dma_device;
469         struct device *dev;
470         struct resource *res;
471         void __iomem *regs;
472         void __iomem *ee_base; /*ee register base address*/
473         u32 max_gpii; /* maximum # of gpii instances available per gpi block */
474         u32 gpii_mask; /* gpii instances available for apps */
475         u32 ev_factor; /* ev ring length factor */
476         struct gpii *gpiis;
477 };
478
479 struct reg_info {
480         char *name;
481         u32 offset;
482         u32 val;
483 };
484
485 struct gchan {
486         struct virt_dma_chan vc;
487         u32 chid;
488         u32 seid;
489         u32 protocol;
490         struct gpii *gpii;
491         enum gpi_ch_state ch_state;
492         enum gpi_pm_state pm_state;
493         void __iomem *ch_cntxt_base_reg;
494         void __iomem *ch_cntxt_db_reg;
495         void __iomem *ch_cmd_reg;
496         u32 dir;
497         struct gpi_ring ch_ring;
498         void *config;
499 };
500
501 struct gpii {
502         u32 gpii_id;
503         struct gchan gchan[MAX_CHANNELS_PER_GPII];
504         struct gpi_dev *gpi_dev;
505         int irq;
506         void __iomem *regs; /* points to gpi top */
507         void __iomem *ev_cntxt_base_reg;
508         void __iomem *ev_cntxt_db_reg;
509         void __iomem *ev_ring_rp_lsb_reg;
510         void __iomem *ev_cmd_reg;
511         void __iomem *ieob_clr_reg;
512         struct mutex ctrl_lock;
513         enum gpi_ev_state ev_state;
514         bool configured_irq;
515         enum gpi_pm_state pm_state;
516         rwlock_t pm_lock;
517         struct gpi_ring ev_ring;
518         struct tasklet_struct ev_task; /* event processing tasklet */
519         struct completion cmd_completion;
520         enum gpi_cmd gpi_cmd;
521         u32 cntxt_type_irq_msk;
522         bool ieob_set;
523 };
524
525 #define MAX_TRE 3
526
527 struct gpi_desc {
528         struct virt_dma_desc vd;
529         size_t len;
530         void *db; /* DB register to program */
531         struct gchan *gchan;
532         struct gpi_tre tre[MAX_TRE];
533         u32 num_tre;
534 };
535
536 static const u32 GPII_CHAN_DIR[MAX_CHANNELS_PER_GPII] = {
537         GPI_CHTYPE_DIR_OUT, GPI_CHTYPE_DIR_IN
538 };
539
540 static irqreturn_t gpi_handle_irq(int irq, void *data);
541 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring);
542 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp);
543 static void gpi_process_events(struct gpii *gpii);
544
545 static inline struct gchan *to_gchan(struct dma_chan *dma_chan)
546 {
547         return container_of(dma_chan, struct gchan, vc.chan);
548 }
549
550 static inline struct gpi_desc *to_gpi_desc(struct virt_dma_desc *vd)
551 {
552         return container_of(vd, struct gpi_desc, vd);
553 }
554
555 static inline phys_addr_t to_physical(const struct gpi_ring *const ring,
556                                       void *addr)
557 {
558         return ring->phys_addr + (addr - ring->base);
559 }
560
561 static inline void *to_virtual(const struct gpi_ring *const ring, phys_addr_t addr)
562 {
563         return ring->base + (addr - ring->phys_addr);
564 }
565
566 static inline u32 gpi_read_reg(struct gpii *gpii, void __iomem *addr)
567 {
568         return readl_relaxed(addr);
569 }
570
571 static inline void gpi_write_reg(struct gpii *gpii, void __iomem *addr, u32 val)
572 {
573         writel_relaxed(val, addr);
574 }
575
576 /* gpi_write_reg_field - write to specific bit field */
577 static inline void gpi_write_reg_field(struct gpii *gpii, void __iomem *addr,
578                                        u32 mask, u32 shift, u32 val)
579 {
580         u32 tmp = gpi_read_reg(gpii, addr);
581
582         tmp &= ~mask;
583         val = tmp | ((val << shift) & mask);
584         gpi_write_reg(gpii, addr, val);
585 }
586
587 static inline void
588 gpi_update_reg(struct gpii *gpii, u32 offset, u32 mask, u32 val)
589 {
590         void __iomem *addr = gpii->regs + offset;
591         u32 tmp = gpi_read_reg(gpii, addr);
592
593         tmp &= ~mask;
594         tmp |= u32_encode_bits(val, mask);
595
596         gpi_write_reg(gpii, addr, tmp);
597 }
598
599 static void gpi_disable_interrupts(struct gpii *gpii)
600 {
601         gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
602                        GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, 0);
603         gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
604                        GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK, 0);
605         gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
606                        GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK, 0);
607         gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
608                        GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK, 0);
609         gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
610                        GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
611         gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
612                        GPII_n_CNTXT_GPII_IRQ_EN_BMSK, 0);
613         gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
614                        GPII_n_CNTXT_INTSET_BMSK, 0);
615
616         gpii->cntxt_type_irq_msk = 0;
617         devm_free_irq(gpii->gpi_dev->dev, gpii->irq, gpii);
618         gpii->configured_irq = false;
619 }
620
621 /* configure and enable interrupts */
622 static int gpi_config_interrupts(struct gpii *gpii, enum gpii_irq_settings settings, bool mask)
623 {
624         const u32 enable = (GPII_n_CNTXT_TYPE_IRQ_MSK_GENERAL |
625                               GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB |
626                               GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB |
627                               GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL |
628                               GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
629         int ret;
630
631         if (!gpii->configured_irq) {
632                 ret = devm_request_irq(gpii->gpi_dev->dev, gpii->irq,
633                                        gpi_handle_irq, IRQF_TRIGGER_HIGH,
634                                        "gpi-dma", gpii);
635                 if (ret < 0) {
636                         dev_err(gpii->gpi_dev->dev, "error request irq:%d ret:%d\n",
637                                 gpii->irq, ret);
638                         return ret;
639                 }
640         }
641
642         if (settings == MASK_IEOB_SETTINGS) {
643                 /*
644                  * GPII only uses one EV ring per gpii so we can globally
645                  * enable/disable IEOB interrupt
646                  */
647                 if (mask)
648                         gpii->cntxt_type_irq_msk |= GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
649                 else
650                         gpii->cntxt_type_irq_msk &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB);
651                 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
652                                GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, gpii->cntxt_type_irq_msk);
653         } else {
654                 gpi_update_reg(gpii, GPII_n_CNTXT_TYPE_IRQ_MSK_OFFS(gpii->gpii_id),
655                                GPII_n_CNTXT_TYPE_IRQ_MSK_BMSK, enable);
656                 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_OFFS(gpii->gpii_id),
657                                GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK,
658                                GPII_n_CNTXT_SRC_IEOB_IRQ_MSK_BMSK);
659                 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_CH_IRQ_MSK_OFFS(gpii->gpii_id),
660                                GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK,
661                                GPII_n_CNTXT_SRC_CH_IRQ_MSK_BMSK);
662                 gpi_update_reg(gpii, GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_OFFS(gpii->gpii_id),
663                                GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK,
664                                GPII_n_CNTXT_SRC_EV_CH_IRQ_MSK_BMSK);
665                 gpi_update_reg(gpii, GPII_n_CNTXT_GLOB_IRQ_EN_OFFS(gpii->gpii_id),
666                                GPII_n_CNTXT_GPII_IRQ_EN_BMSK,
667                                GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
668                 gpi_update_reg(gpii, GPII_n_CNTXT_GPII_IRQ_EN_OFFS(gpii->gpii_id),
669                                GPII_n_CNTXT_GPII_IRQ_EN_BMSK, GPII_n_CNTXT_GPII_IRQ_EN_BMSK);
670                 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_LSB_OFFS(gpii->gpii_id), U32_MAX, 0);
671                 gpi_update_reg(gpii, GPII_n_CNTXT_MSI_BASE_MSB_OFFS(gpii->gpii_id), U32_MAX, 0);
672                 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_0_OFFS(gpii->gpii_id), U32_MAX, 0);
673                 gpi_update_reg(gpii, GPII_n_CNTXT_SCRATCH_1_OFFS(gpii->gpii_id), U32_MAX, 0);
674                 gpi_update_reg(gpii, GPII_n_CNTXT_INTSET_OFFS(gpii->gpii_id),
675                                GPII_n_CNTXT_INTSET_BMSK, 1);
676                 gpi_update_reg(gpii, GPII_n_ERROR_LOG_OFFS(gpii->gpii_id), U32_MAX, 0);
677
678                 gpii->cntxt_type_irq_msk = enable;
679         }
680
681         gpii->configured_irq = true;
682         return 0;
683 }
684
685 /* Sends gpii event or channel command */
686 static int gpi_send_cmd(struct gpii *gpii, struct gchan *gchan,
687                         enum gpi_cmd gpi_cmd)
688 {
689         u32 chid = MAX_CHANNELS_PER_GPII;
690         unsigned long timeout;
691         void __iomem *cmd_reg;
692         u32 cmd;
693
694         if (gpi_cmd >= GPI_MAX_CMD)
695                 return -EINVAL;
696         if (IS_CHAN_CMD(gpi_cmd))
697                 chid = gchan->chid;
698
699         dev_dbg(gpii->gpi_dev->dev,
700                 "sending cmd: %s:%u\n", TO_GPI_CMD_STR(gpi_cmd), chid);
701
702         /* send opcode and wait for completion */
703         reinit_completion(&gpii->cmd_completion);
704         gpii->gpi_cmd = gpi_cmd;
705
706         cmd_reg = IS_CHAN_CMD(gpi_cmd) ? gchan->ch_cmd_reg : gpii->ev_cmd_reg;
707         cmd = IS_CHAN_CMD(gpi_cmd) ? GPII_n_CH_CMD(gpi_cmd_info[gpi_cmd].opcode, chid) :
708                                      GPII_n_EV_CMD(gpi_cmd_info[gpi_cmd].opcode, 0);
709         gpi_write_reg(gpii, cmd_reg, cmd);
710         timeout = wait_for_completion_timeout(&gpii->cmd_completion,
711                                               msecs_to_jiffies(CMD_TIMEOUT_MS));
712         if (!timeout) {
713                 dev_err(gpii->gpi_dev->dev, "cmd: %s completion timeout:%u\n",
714                         TO_GPI_CMD_STR(gpi_cmd), chid);
715                 return -EIO;
716         }
717
718         /* confirm new ch state is correct , if the cmd is a state change cmd */
719         if (gpi_cmd_info[gpi_cmd].state == STATE_IGNORE)
720                 return 0;
721
722         if (IS_CHAN_CMD(gpi_cmd) && gchan->ch_state == gpi_cmd_info[gpi_cmd].state)
723                 return 0;
724
725         if (!IS_CHAN_CMD(gpi_cmd) && gpii->ev_state == gpi_cmd_info[gpi_cmd].state)
726                 return 0;
727
728         return -EIO;
729 }
730
731 /* program transfer ring DB register */
732 static inline void gpi_write_ch_db(struct gchan *gchan,
733                                    struct gpi_ring *ring, void *wp)
734 {
735         struct gpii *gpii = gchan->gpii;
736         phys_addr_t p_wp;
737
738         p_wp = to_physical(ring, wp);
739         gpi_write_reg(gpii, gchan->ch_cntxt_db_reg, p_wp);
740 }
741
742 /* program event ring DB register */
743 static inline void gpi_write_ev_db(struct gpii *gpii,
744                                    struct gpi_ring *ring, void *wp)
745 {
746         phys_addr_t p_wp;
747
748         p_wp = ring->phys_addr + (wp - ring->base);
749         gpi_write_reg(gpii, gpii->ev_cntxt_db_reg, p_wp);
750 }
751
752 /* process transfer completion interrupt */
753 static void gpi_process_ieob(struct gpii *gpii)
754 {
755         gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
756
757         gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 0);
758         tasklet_hi_schedule(&gpii->ev_task);
759 }
760
761 /* process channel control interrupt */
762 static void gpi_process_ch_ctrl_irq(struct gpii *gpii)
763 {
764         u32 gpii_id = gpii->gpii_id;
765         u32 offset = GPII_n_CNTXT_SRC_GPII_CH_IRQ_OFFS(gpii_id);
766         u32 ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
767         struct gchan *gchan;
768         u32 chid, state;
769
770         /* clear the status */
771         offset = GPII_n_CNTXT_SRC_CH_IRQ_CLR_OFFS(gpii_id);
772         gpi_write_reg(gpii, gpii->regs + offset, (u32)ch_irq);
773
774         for (chid = 0; chid < MAX_CHANNELS_PER_GPII; chid++) {
775                 if (!(BIT(chid) & ch_irq))
776                         continue;
777
778                 gchan = &gpii->gchan[chid];
779                 state = gpi_read_reg(gpii, gchan->ch_cntxt_base_reg +
780                                      CNTXT_0_CONFIG);
781                 state = FIELD_GET(GPII_n_CH_k_CNTXT_0_CHSTATE, state);
782
783                 /*
784                  * CH_CMD_DEALLOC cmd always successful. However cmd does
785                  * not change hardware status. So overwriting software state
786                  * to default state.
787                  */
788                 if (gpii->gpi_cmd == GPI_CH_CMD_DE_ALLOC)
789                         state = DEFAULT_CH_STATE;
790                 gchan->ch_state = state;
791
792                 /*
793                  * Triggering complete all if ch_state is not a stop in process.
794                  * Stop in process is a transition state and we will wait for
795                  * stop interrupt before notifying.
796                  */
797                 if (gchan->ch_state != CH_STATE_STOP_IN_PROC)
798                         complete_all(&gpii->cmd_completion);
799         }
800 }
801
802 /* processing gpi general error interrupts */
803 static void gpi_process_gen_err_irq(struct gpii *gpii)
804 {
805         u32 gpii_id = gpii->gpii_id;
806         u32 offset = GPII_n_CNTXT_GPII_IRQ_STTS_OFFS(gpii_id);
807         u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
808
809         /* clear the status */
810         dev_dbg(gpii->gpi_dev->dev, "irq_stts:0x%x\n", irq_stts);
811
812         /* Clear the register */
813         offset = GPII_n_CNTXT_GPII_IRQ_CLR_OFFS(gpii_id);
814         gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
815 }
816
817 /* processing gpi level error interrupts */
818 static void gpi_process_glob_err_irq(struct gpii *gpii)
819 {
820         u32 gpii_id = gpii->gpii_id;
821         u32 offset = GPII_n_CNTXT_GLOB_IRQ_STTS_OFFS(gpii_id);
822         u32 irq_stts = gpi_read_reg(gpii, gpii->regs + offset);
823
824         offset = GPII_n_CNTXT_GLOB_IRQ_CLR_OFFS(gpii_id);
825         gpi_write_reg(gpii, gpii->regs + offset, irq_stts);
826
827         /* only error interrupt should be set */
828         if (irq_stts & ~GPI_GLOB_IRQ_ERROR_INT_MSK) {
829                 dev_err(gpii->gpi_dev->dev, "invalid error status:0x%x\n", irq_stts);
830                 return;
831         }
832
833         offset = GPII_n_ERROR_LOG_OFFS(gpii_id);
834         gpi_write_reg(gpii, gpii->regs + offset, 0);
835 }
836
837 /* gpii interrupt handler */
838 static irqreturn_t gpi_handle_irq(int irq, void *data)
839 {
840         struct gpii *gpii = data;
841         u32 gpii_id = gpii->gpii_id;
842         u32 type, offset;
843         unsigned long flags;
844
845         read_lock_irqsave(&gpii->pm_lock, flags);
846
847         /*
848          * States are out of sync to receive interrupt
849          * while software state is in DISABLE state, bailing out.
850          */
851         if (!REG_ACCESS_VALID(gpii->pm_state)) {
852                 dev_err(gpii->gpi_dev->dev, "receive interrupt while in %s state\n",
853                         TO_GPI_PM_STR(gpii->pm_state));
854                 goto exit_irq;
855         }
856
857         offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
858         type = gpi_read_reg(gpii, gpii->regs + offset);
859
860         do {
861                 /* global gpii error */
862                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB) {
863                         gpi_process_glob_err_irq(gpii);
864                         type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_GLOB);
865                 }
866
867                 /* transfer complete interrupt */
868                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB) {
869                         gpi_process_ieob(gpii);
870                         type &= ~GPII_n_CNTXT_TYPE_IRQ_MSK_IEOB;
871                 }
872
873                 /* event control irq */
874                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL) {
875                         u32 ev_state;
876                         u32 ev_ch_irq;
877
878                         dev_dbg(gpii->gpi_dev->dev,
879                                 "processing EV CTRL interrupt\n");
880                         offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_OFFS(gpii_id);
881                         ev_ch_irq = gpi_read_reg(gpii, gpii->regs + offset);
882
883                         offset = GPII_n_CNTXT_SRC_EV_CH_IRQ_CLR_OFFS
884                                 (gpii_id);
885                         gpi_write_reg(gpii, gpii->regs + offset, ev_ch_irq);
886                         ev_state = gpi_read_reg(gpii, gpii->ev_cntxt_base_reg +
887                                                 CNTXT_0_CONFIG);
888                         ev_state = FIELD_GET(GPII_n_EV_k_CNTXT_0_CHSTATE, ev_state);
889
890                         /*
891                          * CMD EV_CMD_DEALLOC is always successful. However
892                          * cmd does not change hardware status. So overwriting
893                          * software state to default state.
894                          */
895                         if (gpii->gpi_cmd == GPI_EV_CMD_DEALLOC)
896                                 ev_state = DEFAULT_EV_CH_STATE;
897
898                         gpii->ev_state = ev_state;
899                         dev_dbg(gpii->gpi_dev->dev, "setting EV state to %s\n",
900                                 TO_GPI_EV_STATE_STR(gpii->ev_state));
901                         complete_all(&gpii->cmd_completion);
902                         type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_EV_CTRL);
903                 }
904
905                 /* channel control irq */
906                 if (type & GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL) {
907                         dev_dbg(gpii->gpi_dev->dev, "process CH CTRL interrupts\n");
908                         gpi_process_ch_ctrl_irq(gpii);
909                         type &= ~(GPII_n_CNTXT_TYPE_IRQ_MSK_CH_CTRL);
910                 }
911
912                 if (type) {
913                         dev_err(gpii->gpi_dev->dev, "Unhandled interrupt status:0x%x\n", type);
914                         gpi_process_gen_err_irq(gpii);
915                         goto exit_irq;
916                 }
917
918                 offset = GPII_n_CNTXT_TYPE_IRQ_OFFS(gpii->gpii_id);
919                 type = gpi_read_reg(gpii, gpii->regs + offset);
920         } while (type);
921
922 exit_irq:
923         read_unlock_irqrestore(&gpii->pm_lock, flags);
924
925         return IRQ_HANDLED;
926 }
927
928 /* process DMA Immediate completion data events */
929 static void gpi_process_imed_data_event(struct gchan *gchan,
930                                         struct immediate_data_event *imed_event)
931 {
932         struct gpii *gpii = gchan->gpii;
933         struct gpi_ring *ch_ring = &gchan->ch_ring;
934         void *tre = ch_ring->base + (ch_ring->el_size * imed_event->tre_index);
935         struct dmaengine_result result;
936         struct gpi_desc *gpi_desc;
937         struct virt_dma_desc *vd;
938         unsigned long flags;
939         u32 chid;
940
941         /*
942          * If channel not active don't process event
943          */
944         if (gchan->pm_state != ACTIVE_STATE) {
945                 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
946                         TO_GPI_PM_STR(gchan->pm_state));
947                 return;
948         }
949
950         spin_lock_irqsave(&gchan->vc.lock, flags);
951         vd = vchan_next_desc(&gchan->vc);
952         if (!vd) {
953                 struct gpi_ere *gpi_ere;
954                 struct gpi_tre *gpi_tre;
955
956                 spin_unlock_irqrestore(&gchan->vc.lock, flags);
957                 dev_dbg(gpii->gpi_dev->dev, "event without a pending descriptor!\n");
958                 gpi_ere = (struct gpi_ere *)imed_event;
959                 dev_dbg(gpii->gpi_dev->dev,
960                         "Event: %08x %08x %08x %08x\n",
961                         gpi_ere->dword[0], gpi_ere->dword[1],
962                         gpi_ere->dword[2], gpi_ere->dword[3]);
963                 gpi_tre = tre;
964                 dev_dbg(gpii->gpi_dev->dev,
965                         "Pending TRE: %08x %08x %08x %08x\n",
966                         gpi_tre->dword[0], gpi_tre->dword[1],
967                         gpi_tre->dword[2], gpi_tre->dword[3]);
968                 return;
969         }
970         gpi_desc = to_gpi_desc(vd);
971         spin_unlock_irqrestore(&gchan->vc.lock, flags);
972
973         /*
974          * RP pointed by Event is to last TRE processed,
975          * we need to update ring rp to tre + 1
976          */
977         tre += ch_ring->el_size;
978         if (tre >= (ch_ring->base + ch_ring->len))
979                 tre = ch_ring->base;
980         ch_ring->rp = tre;
981
982         /* make sure rp updates are immediately visible to all cores */
983         smp_wmb();
984
985         chid = imed_event->chid;
986         if (imed_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
987                 if (chid == GPI_RX_CHAN)
988                         goto gpi_free_desc;
989                 else
990                         return;
991         }
992
993         if (imed_event->code == MSM_GPI_TCE_UNEXP_ERR)
994                 result.result = DMA_TRANS_ABORTED;
995         else
996                 result.result = DMA_TRANS_NOERROR;
997         result.residue = gpi_desc->len - imed_event->length;
998
999         dma_cookie_complete(&vd->tx);
1000         dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1001
1002 gpi_free_desc:
1003         spin_lock_irqsave(&gchan->vc.lock, flags);
1004         list_del(&vd->node);
1005         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1006         kfree(gpi_desc);
1007         gpi_desc = NULL;
1008 }
1009
1010 /* processing transfer completion events */
1011 static void gpi_process_xfer_compl_event(struct gchan *gchan,
1012                                          struct xfer_compl_event *compl_event)
1013 {
1014         struct gpii *gpii = gchan->gpii;
1015         struct gpi_ring *ch_ring = &gchan->ch_ring;
1016         void *ev_rp = to_virtual(ch_ring, compl_event->ptr);
1017         struct virt_dma_desc *vd;
1018         struct gpi_desc *gpi_desc;
1019         struct dmaengine_result result;
1020         unsigned long flags;
1021         u32 chid;
1022
1023         /* only process events on active channel */
1024         if (unlikely(gchan->pm_state != ACTIVE_STATE)) {
1025                 dev_err(gpii->gpi_dev->dev, "skipping processing event because ch @ %s state\n",
1026                         TO_GPI_PM_STR(gchan->pm_state));
1027                 return;
1028         }
1029
1030         spin_lock_irqsave(&gchan->vc.lock, flags);
1031         vd = vchan_next_desc(&gchan->vc);
1032         if (!vd) {
1033                 struct gpi_ere *gpi_ere;
1034
1035                 spin_unlock_irqrestore(&gchan->vc.lock, flags);
1036                 dev_err(gpii->gpi_dev->dev, "Event without a pending descriptor!\n");
1037                 gpi_ere = (struct gpi_ere *)compl_event;
1038                 dev_err(gpii->gpi_dev->dev,
1039                         "Event: %08x %08x %08x %08x\n",
1040                         gpi_ere->dword[0], gpi_ere->dword[1],
1041                         gpi_ere->dword[2], gpi_ere->dword[3]);
1042                 return;
1043         }
1044
1045         gpi_desc = to_gpi_desc(vd);
1046         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1047
1048         /*
1049          * RP pointed by Event is to last TRE processed,
1050          * we need to update ring rp to ev_rp + 1
1051          */
1052         ev_rp += ch_ring->el_size;
1053         if (ev_rp >= (ch_ring->base + ch_ring->len))
1054                 ev_rp = ch_ring->base;
1055         ch_ring->rp = ev_rp;
1056
1057         /* update must be visible to other cores */
1058         smp_wmb();
1059
1060         chid = compl_event->chid;
1061         if (compl_event->code == MSM_GPI_TCE_EOT && gpii->ieob_set) {
1062                 if (chid == GPI_RX_CHAN)
1063                         goto gpi_free_desc;
1064                 else
1065                         return;
1066         }
1067
1068         if (compl_event->code == MSM_GPI_TCE_UNEXP_ERR) {
1069                 dev_err(gpii->gpi_dev->dev, "Error in Transaction\n");
1070                 result.result = DMA_TRANS_ABORTED;
1071         } else {
1072                 dev_dbg(gpii->gpi_dev->dev, "Transaction Success\n");
1073                 result.result = DMA_TRANS_NOERROR;
1074         }
1075         result.residue = gpi_desc->len - compl_event->length;
1076         dev_dbg(gpii->gpi_dev->dev, "Residue %d\n", result.residue);
1077
1078         dma_cookie_complete(&vd->tx);
1079         dmaengine_desc_get_callback_invoke(&vd->tx, &result);
1080
1081 gpi_free_desc:
1082         spin_lock_irqsave(&gchan->vc.lock, flags);
1083         list_del(&vd->node);
1084         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1085         kfree(gpi_desc);
1086         gpi_desc = NULL;
1087 }
1088
1089 /* process all events */
1090 static void gpi_process_events(struct gpii *gpii)
1091 {
1092         struct gpi_ring *ev_ring = &gpii->ev_ring;
1093         phys_addr_t cntxt_rp;
1094         void *rp;
1095         union gpi_event *gpi_event;
1096         struct gchan *gchan;
1097         u32 chid, type;
1098
1099         cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1100         rp = to_virtual(ev_ring, cntxt_rp);
1101
1102         do {
1103                 while (rp != ev_ring->rp) {
1104                         gpi_event = ev_ring->rp;
1105                         chid = gpi_event->xfer_compl_event.chid;
1106                         type = gpi_event->xfer_compl_event.type;
1107
1108                         dev_dbg(gpii->gpi_dev->dev,
1109                                 "Event: CHID:%u, type:%x %08x %08x %08x %08x\n",
1110                                 chid, type, gpi_event->gpi_ere.dword[0],
1111                                 gpi_event->gpi_ere.dword[1], gpi_event->gpi_ere.dword[2],
1112                                 gpi_event->gpi_ere.dword[3]);
1113
1114                         switch (type) {
1115                         case XFER_COMPLETE_EV_TYPE:
1116                                 gchan = &gpii->gchan[chid];
1117                                 gpi_process_xfer_compl_event(gchan,
1118                                                              &gpi_event->xfer_compl_event);
1119                                 break;
1120                         case STALE_EV_TYPE:
1121                                 dev_dbg(gpii->gpi_dev->dev, "stale event, not processing\n");
1122                                 break;
1123                         case IMMEDIATE_DATA_EV_TYPE:
1124                                 gchan = &gpii->gchan[chid];
1125                                 gpi_process_imed_data_event(gchan,
1126                                                             &gpi_event->immediate_data_event);
1127                                 break;
1128                         case QUP_NOTIF_EV_TYPE:
1129                                 dev_dbg(gpii->gpi_dev->dev, "QUP_NOTIF_EV_TYPE\n");
1130                                 break;
1131                         default:
1132                                 dev_dbg(gpii->gpi_dev->dev,
1133                                         "not supported event type:0x%x\n", type);
1134                         }
1135                         gpi_ring_recycle_ev_element(ev_ring);
1136                 }
1137                 gpi_write_ev_db(gpii, ev_ring, ev_ring->wp);
1138
1139                 /* clear pending IEOB events */
1140                 gpi_write_reg(gpii, gpii->ieob_clr_reg, BIT(0));
1141
1142                 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1143                 rp = to_virtual(ev_ring, cntxt_rp);
1144
1145         } while (rp != ev_ring->rp);
1146 }
1147
1148 /* processing events using tasklet */
1149 static void gpi_ev_tasklet(unsigned long data)
1150 {
1151         struct gpii *gpii = (struct gpii *)data;
1152
1153         read_lock_bh(&gpii->pm_lock);
1154         if (!REG_ACCESS_VALID(gpii->pm_state)) {
1155                 read_unlock_bh(&gpii->pm_lock);
1156                 dev_err(gpii->gpi_dev->dev, "not processing any events, pm_state:%s\n",
1157                         TO_GPI_PM_STR(gpii->pm_state));
1158                 return;
1159         }
1160
1161         /* process the events */
1162         gpi_process_events(gpii);
1163
1164         /* enable IEOB, switching back to interrupts */
1165         gpi_config_interrupts(gpii, MASK_IEOB_SETTINGS, 1);
1166         read_unlock_bh(&gpii->pm_lock);
1167 }
1168
1169 /* marks all pending events for the channel as stale */
1170 static void gpi_mark_stale_events(struct gchan *gchan)
1171 {
1172         struct gpii *gpii = gchan->gpii;
1173         struct gpi_ring *ev_ring = &gpii->ev_ring;
1174         u32 cntxt_rp, local_rp;
1175         void *ev_rp;
1176
1177         cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1178
1179         ev_rp = ev_ring->rp;
1180         local_rp = (u32)to_physical(ev_ring, ev_rp);
1181         while (local_rp != cntxt_rp) {
1182                 union gpi_event *gpi_event = ev_rp;
1183                 u32 chid = gpi_event->xfer_compl_event.chid;
1184
1185                 if (chid == gchan->chid)
1186                         gpi_event->xfer_compl_event.type = STALE_EV_TYPE;
1187                 ev_rp += ev_ring->el_size;
1188                 if (ev_rp >= (ev_ring->base + ev_ring->len))
1189                         ev_rp = ev_ring->base;
1190                 cntxt_rp = gpi_read_reg(gpii, gpii->ev_ring_rp_lsb_reg);
1191                 local_rp = (u32)to_physical(ev_ring, ev_rp);
1192         }
1193 }
1194
1195 /* reset sw state and issue channel reset or de-alloc */
1196 static int gpi_reset_chan(struct gchan *gchan, enum gpi_cmd gpi_cmd)
1197 {
1198         struct gpii *gpii = gchan->gpii;
1199         struct gpi_ring *ch_ring = &gchan->ch_ring;
1200         unsigned long flags;
1201         LIST_HEAD(list);
1202         int ret;
1203
1204         ret = gpi_send_cmd(gpii, gchan, gpi_cmd);
1205         if (ret) {
1206                 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1207                         TO_GPI_CMD_STR(gpi_cmd), ret);
1208                 return ret;
1209         }
1210
1211         /* initialize the local ring ptrs */
1212         ch_ring->rp = ch_ring->base;
1213         ch_ring->wp = ch_ring->base;
1214
1215         /* visible to other cores */
1216         smp_wmb();
1217
1218         /* check event ring for any stale events */
1219         write_lock_irq(&gpii->pm_lock);
1220         gpi_mark_stale_events(gchan);
1221
1222         /* remove all async descriptors */
1223         spin_lock_irqsave(&gchan->vc.lock, flags);
1224         vchan_get_all_descriptors(&gchan->vc, &list);
1225         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1226         write_unlock_irq(&gpii->pm_lock);
1227         vchan_dma_desc_free_list(&gchan->vc, &list);
1228
1229         return 0;
1230 }
1231
1232 static int gpi_start_chan(struct gchan *gchan)
1233 {
1234         struct gpii *gpii = gchan->gpii;
1235         int ret;
1236
1237         ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_START);
1238         if (ret) {
1239                 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1240                         TO_GPI_CMD_STR(GPI_CH_CMD_START), ret);
1241                 return ret;
1242         }
1243
1244         /* gpii CH is active now */
1245         write_lock_irq(&gpii->pm_lock);
1246         gchan->pm_state = ACTIVE_STATE;
1247         write_unlock_irq(&gpii->pm_lock);
1248
1249         return 0;
1250 }
1251
1252 static int gpi_stop_chan(struct gchan *gchan)
1253 {
1254         struct gpii *gpii = gchan->gpii;
1255         int ret;
1256
1257         ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_STOP);
1258         if (ret) {
1259                 dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1260                         TO_GPI_CMD_STR(GPI_CH_CMD_STOP), ret);
1261                 return ret;
1262         }
1263
1264         return 0;
1265 }
1266
1267 /* allocate and configure the transfer channel */
1268 static int gpi_alloc_chan(struct gchan *chan, bool send_alloc_cmd)
1269 {
1270         struct gpii *gpii = chan->gpii;
1271         struct gpi_ring *ring = &chan->ch_ring;
1272         int ret;
1273         u32 id = gpii->gpii_id;
1274         u32 chid = chan->chid;
1275         u32 pair_chid = !chid;
1276
1277         if (send_alloc_cmd) {
1278                 ret = gpi_send_cmd(gpii, chan, GPI_CH_CMD_ALLOCATE);
1279                 if (ret) {
1280                         dev_err(gpii->gpi_dev->dev, "Error with cmd:%s ret:%d\n",
1281                                 TO_GPI_CMD_STR(GPI_CH_CMD_ALLOCATE), ret);
1282                         return ret;
1283                 }
1284         }
1285
1286         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_0_CONFIG,
1287                       GPII_n_CH_k_CNTXT_0(ring->el_size, 0, chan->dir, GPI_CHTYPE_PROTO_GPI));
1288         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_1_R_LENGTH, ring->len);
1289         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_2_RING_BASE_LSB, ring->phys_addr);
1290         gpi_write_reg(gpii, chan->ch_cntxt_base_reg + CNTXT_3_RING_BASE_MSB,
1291                       upper_32_bits(ring->phys_addr));
1292         gpi_write_reg(gpii, chan->ch_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1293                       upper_32_bits(ring->phys_addr));
1294         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_0_OFFS(id, chid),
1295                       GPII_n_CH_k_SCRATCH_0(pair_chid, chan->protocol, chan->seid));
1296         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_1_OFFS(id, chid), 0);
1297         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_2_OFFS(id, chid), 0);
1298         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_SCRATCH_3_OFFS(id, chid), 0);
1299         gpi_write_reg(gpii, gpii->regs + GPII_n_CH_k_QOS_OFFS(id, chid), 1);
1300
1301         /* flush all the writes */
1302         wmb();
1303         return 0;
1304 }
1305
1306 /* allocate and configure event ring */
1307 static int gpi_alloc_ev_chan(struct gpii *gpii)
1308 {
1309         struct gpi_ring *ring = &gpii->ev_ring;
1310         void __iomem *base = gpii->ev_cntxt_base_reg;
1311         int ret;
1312
1313         ret = gpi_send_cmd(gpii, NULL, GPI_EV_CMD_ALLOCATE);
1314         if (ret) {
1315                 dev_err(gpii->gpi_dev->dev, "error with cmd:%s ret:%d\n",
1316                         TO_GPI_CMD_STR(GPI_EV_CMD_ALLOCATE), ret);
1317                 return ret;
1318         }
1319
1320         /* program event context */
1321         gpi_write_reg(gpii, base + CNTXT_0_CONFIG,
1322                       GPII_n_EV_k_CNTXT_0(ring->el_size, GPI_INTTYPE_IRQ, GPI_CHTYPE_GPI_EV));
1323         gpi_write_reg(gpii, base + CNTXT_1_R_LENGTH, ring->len);
1324         gpi_write_reg(gpii, base + CNTXT_2_RING_BASE_LSB, lower_32_bits(ring->phys_addr));
1325         gpi_write_reg(gpii, base + CNTXT_3_RING_BASE_MSB, upper_32_bits(ring->phys_addr));
1326         gpi_write_reg(gpii, gpii->ev_cntxt_db_reg + CNTXT_5_RING_RP_MSB - CNTXT_4_RING_RP_LSB,
1327                       upper_32_bits(ring->phys_addr));
1328         gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1329         gpi_write_reg(gpii, base + CNTXT_10_RING_MSI_LSB, 0);
1330         gpi_write_reg(gpii, base + CNTXT_11_RING_MSI_MSB, 0);
1331         gpi_write_reg(gpii, base + CNTXT_8_RING_INT_MOD, 0);
1332         gpi_write_reg(gpii, base + CNTXT_12_RING_RP_UPDATE_LSB, 0);
1333         gpi_write_reg(gpii, base + CNTXT_13_RING_RP_UPDATE_MSB, 0);
1334
1335         /* add events to ring */
1336         ring->wp = (ring->base + ring->len - ring->el_size);
1337
1338         /* flush all the writes */
1339         wmb();
1340
1341         /* gpii is active now */
1342         write_lock_irq(&gpii->pm_lock);
1343         gpii->pm_state = ACTIVE_STATE;
1344         write_unlock_irq(&gpii->pm_lock);
1345         gpi_write_ev_db(gpii, ring, ring->wp);
1346
1347         return 0;
1348 }
1349
1350 /* calculate # of ERE/TRE available to queue */
1351 static int gpi_ring_num_elements_avail(const struct gpi_ring * const ring)
1352 {
1353         int elements = 0;
1354
1355         if (ring->wp < ring->rp) {
1356                 elements = ((ring->rp - ring->wp) / ring->el_size) - 1;
1357         } else {
1358                 elements = (ring->rp - ring->base) / ring->el_size;
1359                 elements += ((ring->base + ring->len - ring->wp) / ring->el_size) - 1;
1360         }
1361
1362         return elements;
1363 }
1364
1365 static int gpi_ring_add_element(struct gpi_ring *ring, void **wp)
1366 {
1367         if (gpi_ring_num_elements_avail(ring) <= 0)
1368                 return -ENOMEM;
1369
1370         *wp = ring->wp;
1371         ring->wp += ring->el_size;
1372         if (ring->wp  >= (ring->base + ring->len))
1373                 ring->wp = ring->base;
1374
1375         /* visible to other cores */
1376         smp_wmb();
1377
1378         return 0;
1379 }
1380
1381 static void gpi_ring_recycle_ev_element(struct gpi_ring *ring)
1382 {
1383         /* Update the WP */
1384         ring->wp += ring->el_size;
1385         if (ring->wp  >= (ring->base + ring->len))
1386                 ring->wp = ring->base;
1387
1388         /* Update the RP */
1389         ring->rp += ring->el_size;
1390         if (ring->rp  >= (ring->base + ring->len))
1391                 ring->rp = ring->base;
1392
1393         /* visible to other cores */
1394         smp_wmb();
1395 }
1396
1397 static void gpi_free_ring(struct gpi_ring *ring,
1398                           struct gpii *gpii)
1399 {
1400         dma_free_coherent(gpii->gpi_dev->dev, ring->alloc_size,
1401                           ring->pre_aligned, ring->dma_handle);
1402         memset(ring, 0, sizeof(*ring));
1403 }
1404
1405 /* allocate memory for transfer and event rings */
1406 static int gpi_alloc_ring(struct gpi_ring *ring, u32 elements,
1407                           u32 el_size, struct gpii *gpii)
1408 {
1409         u64 len = elements * el_size;
1410         int bit;
1411
1412         /* ring len must be power of 2 */
1413         bit = find_last_bit((unsigned long *)&len, 32);
1414         if (((1 << bit) - 1) & len)
1415                 bit++;
1416         len = 1 << bit;
1417         ring->alloc_size = (len + (len - 1));
1418         dev_dbg(gpii->gpi_dev->dev,
1419                 "#el:%u el_size:%u len:%u actual_len:%llu alloc_size:%lu\n",
1420                   elements, el_size, (elements * el_size), len,
1421                   ring->alloc_size);
1422
1423         ring->pre_aligned = dma_alloc_coherent(gpii->gpi_dev->dev,
1424                                                ring->alloc_size,
1425                                                &ring->dma_handle, GFP_KERNEL);
1426         if (!ring->pre_aligned) {
1427                 dev_err(gpii->gpi_dev->dev, "could not alloc size:%lu mem for ring\n",
1428                         ring->alloc_size);
1429                 return -ENOMEM;
1430         }
1431
1432         /* align the physical mem */
1433         ring->phys_addr = (ring->dma_handle + (len - 1)) & ~(len - 1);
1434         ring->base = ring->pre_aligned + (ring->phys_addr - ring->dma_handle);
1435         ring->rp = ring->base;
1436         ring->wp = ring->base;
1437         ring->len = len;
1438         ring->el_size = el_size;
1439         ring->elements = ring->len / ring->el_size;
1440         memset(ring->base, 0, ring->len);
1441         ring->configured = true;
1442
1443         /* update to other cores */
1444         smp_wmb();
1445
1446         dev_dbg(gpii->gpi_dev->dev,
1447                 "phy_pre:0x%0llx phy_alig:0x%0llx len:%u el_size:%u elements:%u\n",
1448                 ring->dma_handle, ring->phys_addr, ring->len,
1449                 ring->el_size, ring->elements);
1450
1451         return 0;
1452 }
1453
1454 /* copy tre into transfer ring */
1455 static void gpi_queue_xfer(struct gpii *gpii, struct gchan *gchan,
1456                            struct gpi_tre *gpi_tre, void **wp)
1457 {
1458         struct gpi_tre *ch_tre;
1459         int ret;
1460
1461         /* get next tre location we can copy */
1462         ret = gpi_ring_add_element(&gchan->ch_ring, (void **)&ch_tre);
1463         if (unlikely(ret)) {
1464                 dev_err(gpii->gpi_dev->dev, "Error adding ring element to xfer ring\n");
1465                 return;
1466         }
1467
1468         /* copy the tre info */
1469         memcpy(ch_tre, gpi_tre, sizeof(*ch_tre));
1470         *wp = ch_tre;
1471 }
1472
1473 /* reset and restart transfer channel */
1474 static int gpi_terminate_all(struct dma_chan *chan)
1475 {
1476         struct gchan *gchan = to_gchan(chan);
1477         struct gpii *gpii = gchan->gpii;
1478         int schid, echid, i;
1479         int ret = 0;
1480
1481         mutex_lock(&gpii->ctrl_lock);
1482
1483         /*
1484          * treat both channels as a group if its protocol is not UART
1485          * STOP, RESET, or START needs to be in lockstep
1486          */
1487         schid = (gchan->protocol == QCOM_GPI_UART) ? gchan->chid : 0;
1488         echid = (gchan->protocol == QCOM_GPI_UART) ? schid + 1 : MAX_CHANNELS_PER_GPII;
1489
1490         /* stop the channel */
1491         for (i = schid; i < echid; i++) {
1492                 gchan = &gpii->gchan[i];
1493
1494                 /* disable ch state so no more TRE processing */
1495                 write_lock_irq(&gpii->pm_lock);
1496                 gchan->pm_state = PREPARE_TERMINATE;
1497                 write_unlock_irq(&gpii->pm_lock);
1498
1499                 /* send command to Stop the channel */
1500                 ret = gpi_stop_chan(gchan);
1501         }
1502
1503         /* reset the channels (clears any pending tre) */
1504         for (i = schid; i < echid; i++) {
1505                 gchan = &gpii->gchan[i];
1506
1507                 ret = gpi_reset_chan(gchan, GPI_CH_CMD_RESET);
1508                 if (ret) {
1509                         dev_err(gpii->gpi_dev->dev, "Error resetting channel ret:%d\n", ret);
1510                         goto terminate_exit;
1511                 }
1512
1513                 /* reprogram channel CNTXT */
1514                 ret = gpi_alloc_chan(gchan, false);
1515                 if (ret) {
1516                         dev_err(gpii->gpi_dev->dev, "Error alloc_channel ret:%d\n", ret);
1517                         goto terminate_exit;
1518                 }
1519         }
1520
1521         /* restart the channels */
1522         for (i = schid; i < echid; i++) {
1523                 gchan = &gpii->gchan[i];
1524
1525                 ret = gpi_start_chan(gchan);
1526                 if (ret) {
1527                         dev_err(gpii->gpi_dev->dev, "Error Starting Channel ret:%d\n", ret);
1528                         goto terminate_exit;
1529                 }
1530         }
1531
1532 terminate_exit:
1533         mutex_unlock(&gpii->ctrl_lock);
1534         return ret;
1535 }
1536
1537 /* pause dma transfer for all channels */
1538 static int gpi_pause(struct dma_chan *chan)
1539 {
1540         struct gchan *gchan = to_gchan(chan);
1541         struct gpii *gpii = gchan->gpii;
1542         int i, ret;
1543
1544         mutex_lock(&gpii->ctrl_lock);
1545
1546         /*
1547          * pause/resume are per gpii not per channel, so
1548          * client needs to call pause only once
1549          */
1550         if (gpii->pm_state == PAUSE_STATE) {
1551                 dev_dbg(gpii->gpi_dev->dev, "channel is already paused\n");
1552                 mutex_unlock(&gpii->ctrl_lock);
1553                 return 0;
1554         }
1555
1556         /* send stop command to stop the channels */
1557         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1558                 ret = gpi_stop_chan(&gpii->gchan[i]);
1559                 if (ret) {
1560                         mutex_unlock(&gpii->ctrl_lock);
1561                         return ret;
1562                 }
1563         }
1564
1565         disable_irq(gpii->irq);
1566
1567         /* Wait for threads to complete out */
1568         tasklet_kill(&gpii->ev_task);
1569
1570         write_lock_irq(&gpii->pm_lock);
1571         gpii->pm_state = PAUSE_STATE;
1572         write_unlock_irq(&gpii->pm_lock);
1573         mutex_unlock(&gpii->ctrl_lock);
1574
1575         return 0;
1576 }
1577
1578 /* resume dma transfer */
1579 static int gpi_resume(struct dma_chan *chan)
1580 {
1581         struct gchan *gchan = to_gchan(chan);
1582         struct gpii *gpii = gchan->gpii;
1583         int i, ret;
1584
1585         mutex_lock(&gpii->ctrl_lock);
1586         if (gpii->pm_state == ACTIVE_STATE) {
1587                 dev_dbg(gpii->gpi_dev->dev, "channel is already active\n");
1588                 mutex_unlock(&gpii->ctrl_lock);
1589                 return 0;
1590         }
1591
1592         enable_irq(gpii->irq);
1593
1594         /* send start command to start the channels */
1595         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1596                 ret = gpi_send_cmd(gpii, &gpii->gchan[i], GPI_CH_CMD_START);
1597                 if (ret) {
1598                         dev_err(gpii->gpi_dev->dev, "Error starting chan, ret:%d\n", ret);
1599                         mutex_unlock(&gpii->ctrl_lock);
1600                         return ret;
1601                 }
1602         }
1603
1604         write_lock_irq(&gpii->pm_lock);
1605         gpii->pm_state = ACTIVE_STATE;
1606         write_unlock_irq(&gpii->pm_lock);
1607         mutex_unlock(&gpii->ctrl_lock);
1608
1609         return 0;
1610 }
1611
1612 static void gpi_desc_free(struct virt_dma_desc *vd)
1613 {
1614         struct gpi_desc *gpi_desc = to_gpi_desc(vd);
1615
1616         kfree(gpi_desc);
1617         gpi_desc = NULL;
1618 }
1619
1620 static int
1621 gpi_peripheral_config(struct dma_chan *chan, struct dma_slave_config *config)
1622 {
1623         struct gchan *gchan = to_gchan(chan);
1624
1625         if (!config->peripheral_config)
1626                 return -EINVAL;
1627
1628         gchan->config = krealloc(gchan->config, config->peripheral_size, GFP_NOWAIT);
1629         if (!gchan->config)
1630                 return -ENOMEM;
1631
1632         memcpy(gchan->config, config->peripheral_config, config->peripheral_size);
1633
1634         return 0;
1635 }
1636
1637 static int gpi_create_i2c_tre(struct gchan *chan, struct gpi_desc *desc,
1638                               struct scatterlist *sgl, enum dma_transfer_direction direction)
1639 {
1640         struct gpi_i2c_config *i2c = chan->config;
1641         struct device *dev = chan->gpii->gpi_dev->dev;
1642         unsigned int tre_idx = 0;
1643         dma_addr_t address;
1644         struct gpi_tre *tre;
1645         unsigned int i;
1646
1647         /* first create config tre if applicable */
1648         if (i2c->set_config) {
1649                 tre = &desc->tre[tre_idx];
1650                 tre_idx++;
1651
1652                 tre->dword[0] = u32_encode_bits(i2c->low_count, TRE_I2C_C0_TLOW);
1653                 tre->dword[0] |= u32_encode_bits(i2c->high_count, TRE_I2C_C0_THIGH);
1654                 tre->dword[0] |= u32_encode_bits(i2c->cycle_count, TRE_I2C_C0_TCYL);
1655                 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_TX_PACK);
1656                 tre->dword[0] |= u32_encode_bits(i2c->pack_enable, TRE_I2C_C0_RX_PACK);
1657
1658                 tre->dword[1] = 0;
1659
1660                 tre->dword[2] = u32_encode_bits(i2c->clk_div, TRE_C0_CLK_DIV);
1661
1662                 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1663                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1664         }
1665
1666         /* create the GO tre for Tx */
1667         if (i2c->op == I2C_WRITE) {
1668                 tre = &desc->tre[tre_idx];
1669                 tre_idx++;
1670
1671                 if (i2c->multi_msg)
1672                         tre->dword[0] = u32_encode_bits(I2C_READ, TRE_I2C_GO_CMD);
1673                 else
1674                         tre->dword[0] = u32_encode_bits(i2c->op, TRE_I2C_GO_CMD);
1675
1676                 tre->dword[0] |= u32_encode_bits(i2c->addr, TRE_I2C_GO_ADDR);
1677                 tre->dword[0] |= u32_encode_bits(i2c->stretch, TRE_I2C_GO_STRETCH);
1678
1679                 tre->dword[1] = 0;
1680                 tre->dword[2] = u32_encode_bits(i2c->rx_len, TRE_RX_LEN);
1681
1682                 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1683
1684                 if (i2c->multi_msg)
1685                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_LINK);
1686                 else
1687                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1688         }
1689
1690         if (i2c->op == I2C_READ || i2c->multi_msg == false) {
1691                 /* create the DMA TRE */
1692                 tre = &desc->tre[tre_idx];
1693                 tre_idx++;
1694
1695                 address = sg_dma_address(sgl);
1696                 tre->dword[0] = lower_32_bits(address);
1697                 tre->dword[1] = upper_32_bits(address);
1698
1699                 tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1700
1701                 tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1702                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1703         };
1704
1705         for (i = 0; i < tre_idx; i++)
1706                 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1707                         desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1708
1709         return tre_idx;
1710 }
1711
1712 static int gpi_create_spi_tre(struct gchan *chan, struct gpi_desc *desc,
1713                               struct scatterlist *sgl, enum dma_transfer_direction direction)
1714 {
1715         struct gpi_spi_config *spi = chan->config;
1716         struct device *dev = chan->gpii->gpi_dev->dev;
1717         unsigned int tre_idx = 0;
1718         dma_addr_t address;
1719         struct gpi_tre *tre;
1720         unsigned int i;
1721
1722         /* first create config tre if applicable */
1723         if (direction == DMA_MEM_TO_DEV && spi->set_config) {
1724                 tre = &desc->tre[tre_idx];
1725                 tre_idx++;
1726
1727                 tre->dword[0] = u32_encode_bits(spi->word_len, TRE_SPI_C0_WORD_SZ);
1728                 tre->dword[0] |= u32_encode_bits(spi->loopback_en, TRE_SPI_C0_LOOPBACK);
1729                 tre->dword[0] |= u32_encode_bits(spi->clock_pol_high, TRE_SPI_C0_CPOL);
1730                 tre->dword[0] |= u32_encode_bits(spi->data_pol_high, TRE_SPI_C0_CPHA);
1731                 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_TX_PACK);
1732                 tre->dword[0] |= u32_encode_bits(spi->pack_en, TRE_SPI_C0_RX_PACK);
1733
1734                 tre->dword[1] = 0;
1735
1736                 tre->dword[2] = u32_encode_bits(spi->clk_div, TRE_C0_CLK_DIV);
1737                 tre->dword[2] |= u32_encode_bits(spi->clk_src, TRE_C0_CLK_SRC);
1738
1739                 tre->dword[3] = u32_encode_bits(TRE_TYPE_CONFIG0, TRE_FLAGS_TYPE);
1740                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1741         }
1742
1743         /* create the GO tre for Tx */
1744         if (direction == DMA_MEM_TO_DEV) {
1745                 tre = &desc->tre[tre_idx];
1746                 tre_idx++;
1747
1748                 tre->dword[0] = u32_encode_bits(spi->fragmentation, TRE_SPI_GO_FRAG);
1749                 tre->dword[0] |= u32_encode_bits(spi->cs, TRE_SPI_GO_CS);
1750                 tre->dword[0] |= u32_encode_bits(spi->cmd, TRE_SPI_GO_CMD);
1751
1752                 tre->dword[1] = 0;
1753
1754                 tre->dword[2] = u32_encode_bits(spi->rx_len, TRE_RX_LEN);
1755
1756                 tre->dword[3] = u32_encode_bits(TRE_TYPE_GO, TRE_FLAGS_TYPE);
1757                 if (spi->cmd == SPI_RX)
1758                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOB);
1759                 else
1760                         tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_CHAIN);
1761         }
1762
1763         /* create the dma tre */
1764         tre = &desc->tre[tre_idx];
1765         tre_idx++;
1766
1767         address = sg_dma_address(sgl);
1768         tre->dword[0] = lower_32_bits(address);
1769         tre->dword[1] = upper_32_bits(address);
1770
1771         tre->dword[2] = u32_encode_bits(sg_dma_len(sgl), TRE_DMA_LEN);
1772
1773         tre->dword[3] = u32_encode_bits(TRE_TYPE_DMA, TRE_FLAGS_TYPE);
1774         if (direction == DMA_MEM_TO_DEV)
1775                 tre->dword[3] |= u32_encode_bits(1, TRE_FLAGS_IEOT);
1776
1777         for (i = 0; i < tre_idx; i++)
1778                 dev_dbg(dev, "TRE:%d %x:%x:%x:%x\n", i, desc->tre[i].dword[0],
1779                         desc->tre[i].dword[1], desc->tre[i].dword[2], desc->tre[i].dword[3]);
1780
1781         return tre_idx;
1782 }
1783
1784 /* copy tre into transfer ring */
1785 static struct dma_async_tx_descriptor *
1786 gpi_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1787                   unsigned int sg_len, enum dma_transfer_direction direction,
1788                   unsigned long flags, void *context)
1789 {
1790         struct gchan *gchan = to_gchan(chan);
1791         struct gpii *gpii = gchan->gpii;
1792         struct device *dev = gpii->gpi_dev->dev;
1793         struct gpi_ring *ch_ring = &gchan->ch_ring;
1794         struct gpi_desc *gpi_desc;
1795         u32 nr, nr_tre = 0;
1796         u8 set_config;
1797         int i;
1798
1799         gpii->ieob_set = false;
1800         if (!is_slave_direction(direction)) {
1801                 dev_err(gpii->gpi_dev->dev, "invalid dma direction: %d\n", direction);
1802                 return NULL;
1803         }
1804
1805         if (sg_len > 1) {
1806                 dev_err(dev, "Multi sg sent, we support only one atm: %d\n", sg_len);
1807                 return NULL;
1808         }
1809
1810         nr_tre = 3;
1811         set_config = *(u32 *)gchan->config;
1812         if (!set_config)
1813                 nr_tre = 2;
1814         if (direction == DMA_DEV_TO_MEM) /* rx */
1815                 nr_tre = 1;
1816
1817         /* calculate # of elements required & available */
1818         nr = gpi_ring_num_elements_avail(ch_ring);
1819         if (nr < nr_tre) {
1820                 dev_err(dev, "not enough space in ring, avail:%u required:%u\n", nr, nr_tre);
1821                 return NULL;
1822         }
1823
1824         gpi_desc = kzalloc(sizeof(*gpi_desc), GFP_NOWAIT);
1825         if (!gpi_desc)
1826                 return NULL;
1827
1828         /* create TREs for xfer */
1829         if (gchan->protocol == QCOM_GPI_SPI) {
1830                 i = gpi_create_spi_tre(gchan, gpi_desc, sgl, direction);
1831         } else if (gchan->protocol == QCOM_GPI_I2C) {
1832                 i = gpi_create_i2c_tre(gchan, gpi_desc, sgl, direction);
1833         } else {
1834                 dev_err(dev, "invalid peripheral: %d\n", gchan->protocol);
1835                 kfree(gpi_desc);
1836                 return NULL;
1837         }
1838
1839         /* set up the descriptor */
1840         gpi_desc->gchan = gchan;
1841         gpi_desc->len = sg_dma_len(sgl);
1842         gpi_desc->num_tre  = i;
1843
1844         return vchan_tx_prep(&gchan->vc, &gpi_desc->vd, flags);
1845 }
1846
1847 /* rings transfer ring db to being transfer */
1848 static void gpi_issue_pending(struct dma_chan *chan)
1849 {
1850         struct gchan *gchan = to_gchan(chan);
1851         struct gpii *gpii = gchan->gpii;
1852         unsigned long flags, pm_lock_flags;
1853         struct virt_dma_desc *vd = NULL;
1854         struct gpi_desc *gpi_desc;
1855         struct gpi_ring *ch_ring = &gchan->ch_ring;
1856         void *tre, *wp = NULL;
1857         int i;
1858
1859         read_lock_irqsave(&gpii->pm_lock, pm_lock_flags);
1860
1861         /* move all submitted discriptors to issued list */
1862         spin_lock_irqsave(&gchan->vc.lock, flags);
1863         if (vchan_issue_pending(&gchan->vc))
1864                 vd = list_last_entry(&gchan->vc.desc_issued,
1865                                      struct virt_dma_desc, node);
1866         spin_unlock_irqrestore(&gchan->vc.lock, flags);
1867
1868         /* nothing to do list is empty */
1869         if (!vd) {
1870                 read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1871                 return;
1872         }
1873
1874         gpi_desc = to_gpi_desc(vd);
1875         for (i = 0; i < gpi_desc->num_tre; i++) {
1876                 tre = &gpi_desc->tre[i];
1877                 gpi_queue_xfer(gpii, gchan, tre, &wp);
1878         }
1879
1880         gpi_desc->db = ch_ring->wp;
1881         gpi_write_ch_db(gchan, &gchan->ch_ring, gpi_desc->db);
1882         read_unlock_irqrestore(&gpii->pm_lock, pm_lock_flags);
1883 }
1884
1885 static int gpi_ch_init(struct gchan *gchan)
1886 {
1887         struct gpii *gpii = gchan->gpii;
1888         const int ev_factor = gpii->gpi_dev->ev_factor;
1889         u32 elements;
1890         int i = 0, ret = 0;
1891
1892         gchan->pm_state = CONFIG_STATE;
1893
1894         /* check if both channels are configured before continue */
1895         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
1896                 if (gpii->gchan[i].pm_state != CONFIG_STATE)
1897                         goto exit_gpi_init;
1898
1899         /* protocol must be same for both channels */
1900         if (gpii->gchan[0].protocol != gpii->gchan[1].protocol) {
1901                 dev_err(gpii->gpi_dev->dev, "protocol did not match protocol %u != %u\n",
1902                         gpii->gchan[0].protocol, gpii->gchan[1].protocol);
1903                 ret = -EINVAL;
1904                 goto exit_gpi_init;
1905         }
1906
1907         /* allocate memory for event ring */
1908         elements = CHAN_TRES << ev_factor;
1909         ret = gpi_alloc_ring(&gpii->ev_ring, elements,
1910                              sizeof(union gpi_event), gpii);
1911         if (ret)
1912                 goto exit_gpi_init;
1913
1914         /* configure interrupts */
1915         write_lock_irq(&gpii->pm_lock);
1916         gpii->pm_state = PREPARE_HARDWARE;
1917         write_unlock_irq(&gpii->pm_lock);
1918         ret = gpi_config_interrupts(gpii, DEFAULT_IRQ_SETTINGS, 0);
1919         if (ret) {
1920                 dev_err(gpii->gpi_dev->dev, "error config. interrupts, ret:%d\n", ret);
1921                 goto error_config_int;
1922         }
1923
1924         /* allocate event rings */
1925         ret = gpi_alloc_ev_chan(gpii);
1926         if (ret) {
1927                 dev_err(gpii->gpi_dev->dev, "error alloc_ev_chan:%d\n", ret);
1928                 goto error_alloc_ev_ring;
1929         }
1930
1931         /* Allocate all channels */
1932         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1933                 ret = gpi_alloc_chan(&gpii->gchan[i], true);
1934                 if (ret) {
1935                         dev_err(gpii->gpi_dev->dev, "Error allocating chan:%d\n", ret);
1936                         goto error_alloc_chan;
1937                 }
1938         }
1939
1940         /* start channels  */
1941         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++) {
1942                 ret = gpi_start_chan(&gpii->gchan[i]);
1943                 if (ret) {
1944                         dev_err(gpii->gpi_dev->dev, "Error start chan:%d\n", ret);
1945                         goto error_start_chan;
1946                 }
1947         }
1948         return ret;
1949
1950 error_start_chan:
1951         for (i = i - 1; i >= 0; i++) {
1952                 gpi_stop_chan(&gpii->gchan[i]);
1953                 gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1954         }
1955         i = 2;
1956 error_alloc_chan:
1957         for (i = i - 1; i >= 0; i--)
1958                 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1959 error_alloc_ev_ring:
1960         gpi_disable_interrupts(gpii);
1961 error_config_int:
1962         gpi_free_ring(&gpii->ev_ring, gpii);
1963 exit_gpi_init:
1964         mutex_unlock(&gpii->ctrl_lock);
1965         return ret;
1966 }
1967
1968 /* release all channel resources */
1969 static void gpi_free_chan_resources(struct dma_chan *chan)
1970 {
1971         struct gchan *gchan = to_gchan(chan);
1972         struct gpii *gpii = gchan->gpii;
1973         enum gpi_pm_state cur_state;
1974         int ret, i;
1975
1976         mutex_lock(&gpii->ctrl_lock);
1977
1978         cur_state = gchan->pm_state;
1979
1980         /* disable ch state so no more TRE processing for this channel */
1981         write_lock_irq(&gpii->pm_lock);
1982         gchan->pm_state = PREPARE_TERMINATE;
1983         write_unlock_irq(&gpii->pm_lock);
1984
1985         /* attempt to do graceful hardware shutdown */
1986         if (cur_state == ACTIVE_STATE) {
1987                 gpi_stop_chan(gchan);
1988
1989                 ret = gpi_send_cmd(gpii, gchan, GPI_CH_CMD_RESET);
1990                 if (ret)
1991                         dev_err(gpii->gpi_dev->dev, "error resetting channel:%d\n", ret);
1992
1993                 gpi_reset_chan(gchan, GPI_CH_CMD_DE_ALLOC);
1994         }
1995
1996         /* free all allocated memory */
1997         gpi_free_ring(&gchan->ch_ring, gpii);
1998         vchan_free_chan_resources(&gchan->vc);
1999         kfree(gchan->config);
2000
2001         write_lock_irq(&gpii->pm_lock);
2002         gchan->pm_state = DISABLE_STATE;
2003         write_unlock_irq(&gpii->pm_lock);
2004
2005         /* if other rings are still active exit */
2006         for (i = 0; i < MAX_CHANNELS_PER_GPII; i++)
2007                 if (gpii->gchan[i].ch_ring.configured)
2008                         goto exit_free;
2009
2010         /* deallocate EV Ring */
2011         cur_state = gpii->pm_state;
2012         write_lock_irq(&gpii->pm_lock);
2013         gpii->pm_state = PREPARE_TERMINATE;
2014         write_unlock_irq(&gpii->pm_lock);
2015
2016         /* wait for threads to complete out */
2017         tasklet_kill(&gpii->ev_task);
2018
2019         /* send command to de allocate event ring */
2020         if (cur_state == ACTIVE_STATE)
2021                 gpi_send_cmd(gpii, NULL, GPI_EV_CMD_DEALLOC);
2022
2023         gpi_free_ring(&gpii->ev_ring, gpii);
2024
2025         /* disable interrupts */
2026         if (cur_state == ACTIVE_STATE)
2027                 gpi_disable_interrupts(gpii);
2028
2029         /* set final state to disable */
2030         write_lock_irq(&gpii->pm_lock);
2031         gpii->pm_state = DISABLE_STATE;
2032         write_unlock_irq(&gpii->pm_lock);
2033
2034 exit_free:
2035         mutex_unlock(&gpii->ctrl_lock);
2036 }
2037
2038 /* allocate channel resources */
2039 static int gpi_alloc_chan_resources(struct dma_chan *chan)
2040 {
2041         struct gchan *gchan = to_gchan(chan);
2042         struct gpii *gpii = gchan->gpii;
2043         int ret;
2044
2045         mutex_lock(&gpii->ctrl_lock);
2046
2047         /* allocate memory for transfer ring */
2048         ret = gpi_alloc_ring(&gchan->ch_ring, CHAN_TRES,
2049                              sizeof(struct gpi_tre), gpii);
2050         if (ret)
2051                 goto xfer_alloc_err;
2052
2053         ret = gpi_ch_init(gchan);
2054
2055         mutex_unlock(&gpii->ctrl_lock);
2056
2057         return ret;
2058 xfer_alloc_err:
2059         mutex_unlock(&gpii->ctrl_lock);
2060
2061         return ret;
2062 }
2063
2064 static int gpi_find_avail_gpii(struct gpi_dev *gpi_dev, u32 seid)
2065 {
2066         struct gchan *tx_chan, *rx_chan;
2067         unsigned int gpii;
2068
2069         /* check if same seid is already configured for another chid */
2070         for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2071                 if (!((1 << gpii) & gpi_dev->gpii_mask))
2072                         continue;
2073
2074                 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2075                 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2076
2077                 if (rx_chan->vc.chan.client_count && rx_chan->seid == seid)
2078                         return gpii;
2079                 if (tx_chan->vc.chan.client_count && tx_chan->seid == seid)
2080                         return gpii;
2081         }
2082
2083         /* no channels configured with same seid, return next avail gpii */
2084         for (gpii = 0; gpii < gpi_dev->max_gpii; gpii++) {
2085                 if (!((1 << gpii) & gpi_dev->gpii_mask))
2086                         continue;
2087
2088                 tx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_TX_CHAN];
2089                 rx_chan = &gpi_dev->gpiis[gpii].gchan[GPI_RX_CHAN];
2090
2091                 /* check if gpii is configured */
2092                 if (tx_chan->vc.chan.client_count ||
2093                     rx_chan->vc.chan.client_count)
2094                         continue;
2095
2096                 /* found a free gpii */
2097                 return gpii;
2098         }
2099
2100         /* no gpii instance available to use */
2101         return -EIO;
2102 }
2103
2104 /* gpi_of_dma_xlate: open client requested channel */
2105 static struct dma_chan *gpi_of_dma_xlate(struct of_phandle_args *args,
2106                                          struct of_dma *of_dma)
2107 {
2108         struct gpi_dev *gpi_dev = (struct gpi_dev *)of_dma->of_dma_data;
2109         u32 seid, chid;
2110         int gpii;
2111         struct gchan *gchan;
2112
2113         if (args->args_count < 3) {
2114                 dev_err(gpi_dev->dev, "gpii require minimum 2 args, client passed:%d args\n",
2115                         args->args_count);
2116                 return NULL;
2117         }
2118
2119         chid = args->args[0];
2120         if (chid >= MAX_CHANNELS_PER_GPII) {
2121                 dev_err(gpi_dev->dev, "gpii channel:%d not valid\n", chid);
2122                 return NULL;
2123         }
2124
2125         seid = args->args[1];
2126
2127         /* find next available gpii to use */
2128         gpii = gpi_find_avail_gpii(gpi_dev, seid);
2129         if (gpii < 0) {
2130                 dev_err(gpi_dev->dev, "no available gpii instances\n");
2131                 return NULL;
2132         }
2133
2134         gchan = &gpi_dev->gpiis[gpii].gchan[chid];
2135         if (gchan->vc.chan.client_count) {
2136                 dev_err(gpi_dev->dev, "gpii:%d chid:%d seid:%d already configured\n",
2137                         gpii, chid, gchan->seid);
2138                 return NULL;
2139         }
2140
2141         gchan->seid = seid;
2142         gchan->protocol = args->args[2];
2143
2144         return dma_get_slave_channel(&gchan->vc.chan);
2145 }
2146
2147 static int gpi_probe(struct platform_device *pdev)
2148 {
2149         struct gpi_dev *gpi_dev;
2150         unsigned int i;
2151         int ret;
2152
2153         gpi_dev = devm_kzalloc(&pdev->dev, sizeof(*gpi_dev), GFP_KERNEL);
2154         if (!gpi_dev)
2155                 return -ENOMEM;
2156
2157         gpi_dev->dev = &pdev->dev;
2158         gpi_dev->res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2159         gpi_dev->regs = devm_ioremap_resource(gpi_dev->dev, gpi_dev->res);
2160         if (IS_ERR(gpi_dev->regs))
2161                 return PTR_ERR(gpi_dev->regs);
2162         gpi_dev->ee_base = gpi_dev->regs;
2163
2164         ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channels",
2165                                    &gpi_dev->max_gpii);
2166         if (ret) {
2167                 dev_err(gpi_dev->dev, "missing 'max-no-gpii' DT node\n");
2168                 return ret;
2169         }
2170
2171         ret = of_property_read_u32(gpi_dev->dev->of_node, "dma-channel-mask",
2172                                    &gpi_dev->gpii_mask);
2173         if (ret) {
2174                 dev_err(gpi_dev->dev, "missing 'gpii-mask' DT node\n");
2175                 return ret;
2176         }
2177
2178         gpi_dev->ev_factor = EV_FACTOR;
2179
2180         ret = dma_set_mask(gpi_dev->dev, DMA_BIT_MASK(64));
2181         if (ret) {
2182                 dev_err(gpi_dev->dev, "Error setting dma_mask to 64, ret:%d\n", ret);
2183                 return ret;
2184         }
2185
2186         gpi_dev->gpiis = devm_kzalloc(gpi_dev->dev, sizeof(*gpi_dev->gpiis) *
2187                                       gpi_dev->max_gpii, GFP_KERNEL);
2188         if (!gpi_dev->gpiis)
2189                 return -ENOMEM;
2190
2191         /* setup all the supported gpii */
2192         INIT_LIST_HEAD(&gpi_dev->dma_device.channels);
2193         for (i = 0; i < gpi_dev->max_gpii; i++) {
2194                 struct gpii *gpii = &gpi_dev->gpiis[i];
2195                 int chan;
2196
2197                 if (!((1 << i) & gpi_dev->gpii_mask))
2198                         continue;
2199
2200                 /* set up ev cntxt register map */
2201                 gpii->ev_cntxt_base_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_CNTXT_0_OFFS(i, 0);
2202                 gpii->ev_cntxt_db_reg = gpi_dev->ee_base + GPII_n_EV_CH_k_DOORBELL_0_OFFS(i, 0);
2203                 gpii->ev_ring_rp_lsb_reg = gpii->ev_cntxt_base_reg + CNTXT_4_RING_RP_LSB;
2204                 gpii->ev_cmd_reg = gpi_dev->ee_base + GPII_n_EV_CH_CMD_OFFS(i);
2205                 gpii->ieob_clr_reg = gpi_dev->ee_base + GPII_n_CNTXT_SRC_IEOB_IRQ_CLR_OFFS(i);
2206
2207                 /* set up irq */
2208                 ret = platform_get_irq(pdev, i);
2209                 if (ret < 0) {
2210                         dev_err(gpi_dev->dev, "platform_get_irq failed for %d:%d\n", i, ret);
2211                         return ret;
2212                 }
2213                 gpii->irq = ret;
2214
2215                 /* set up channel specific register info */
2216                 for (chan = 0; chan < MAX_CHANNELS_PER_GPII; chan++) {
2217                         struct gchan *gchan = &gpii->gchan[chan];
2218
2219                         /* set up ch cntxt register map */
2220                         gchan->ch_cntxt_base_reg = gpi_dev->ee_base +
2221                                 GPII_n_CH_k_CNTXT_0_OFFS(i, chan);
2222                         gchan->ch_cntxt_db_reg = gpi_dev->ee_base +
2223                                 GPII_n_CH_k_DOORBELL_0_OFFS(i, chan);
2224                         gchan->ch_cmd_reg = gpi_dev->ee_base + GPII_n_CH_CMD_OFFS(i);
2225
2226                         /* vchan setup */
2227                         vchan_init(&gchan->vc, &gpi_dev->dma_device);
2228                         gchan->vc.desc_free = gpi_desc_free;
2229                         gchan->chid = chan;
2230                         gchan->gpii = gpii;
2231                         gchan->dir = GPII_CHAN_DIR[chan];
2232                 }
2233                 mutex_init(&gpii->ctrl_lock);
2234                 rwlock_init(&gpii->pm_lock);
2235                 tasklet_init(&gpii->ev_task, gpi_ev_tasklet,
2236                              (unsigned long)gpii);
2237                 init_completion(&gpii->cmd_completion);
2238                 gpii->gpii_id = i;
2239                 gpii->regs = gpi_dev->ee_base;
2240                 gpii->gpi_dev = gpi_dev;
2241         }
2242
2243         platform_set_drvdata(pdev, gpi_dev);
2244
2245         /* clear and Set capabilities */
2246         dma_cap_zero(gpi_dev->dma_device.cap_mask);
2247         dma_cap_set(DMA_SLAVE, gpi_dev->dma_device.cap_mask);
2248
2249         /* configure dmaengine apis */
2250         gpi_dev->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2251         gpi_dev->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
2252         gpi_dev->dma_device.src_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2253         gpi_dev->dma_device.dst_addr_widths = DMA_SLAVE_BUSWIDTH_8_BYTES;
2254         gpi_dev->dma_device.device_alloc_chan_resources = gpi_alloc_chan_resources;
2255         gpi_dev->dma_device.device_free_chan_resources = gpi_free_chan_resources;
2256         gpi_dev->dma_device.device_tx_status = dma_cookie_status;
2257         gpi_dev->dma_device.device_issue_pending = gpi_issue_pending;
2258         gpi_dev->dma_device.device_prep_slave_sg = gpi_prep_slave_sg;
2259         gpi_dev->dma_device.device_config = gpi_peripheral_config;
2260         gpi_dev->dma_device.device_terminate_all = gpi_terminate_all;
2261         gpi_dev->dma_device.dev = gpi_dev->dev;
2262         gpi_dev->dma_device.device_pause = gpi_pause;
2263         gpi_dev->dma_device.device_resume = gpi_resume;
2264
2265         /* register with dmaengine framework */
2266         ret = dma_async_device_register(&gpi_dev->dma_device);
2267         if (ret) {
2268                 dev_err(gpi_dev->dev, "async_device_register failed ret:%d", ret);
2269                 return ret;
2270         }
2271
2272         ret = of_dma_controller_register(gpi_dev->dev->of_node,
2273                                          gpi_of_dma_xlate, gpi_dev);
2274         if (ret) {
2275                 dev_err(gpi_dev->dev, "of_dma_controller_reg failed ret:%d", ret);
2276                 return ret;
2277         }
2278
2279         return ret;
2280 }
2281
2282 static const struct of_device_id gpi_of_match[] = {
2283         { .compatible = "qcom,sdm845-gpi-dma" },
2284         { },
2285 };
2286 MODULE_DEVICE_TABLE(of, gpi_of_match);
2287
2288 static struct platform_driver gpi_driver = {
2289         .probe = gpi_probe,
2290         .driver = {
2291                 .name = KBUILD_MODNAME,
2292                 .of_match_table = gpi_of_match,
2293         },
2294 };
2295
2296 static int __init gpi_init(void)
2297 {
2298         return platform_driver_register(&gpi_driver);
2299 }
2300 subsys_initcall(gpi_init)
2301
2302 MODULE_DESCRIPTION("QCOM GPI DMA engine driver");
2303 MODULE_LICENSE("GPL v2");