Merge tag 'i2c-for-5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-2.6-microblaze.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitfield.h>
18 #include <linux/bitops.h>
19 #include <linux/mm.h>
20 #include <linux/interrupt.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/semaphore.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/firmware.h>
29 #include <linux/slab.h>
30 #include <linux/platform_device.h>
31 #include <linux/dmaengine.h>
32 #include <linux/of.h>
33 #include <linux/of_address.h>
34 #include <linux/of_device.h>
35 #include <linux/of_dma.h>
36 #include <linux/workqueue.h>
37
38 #include <asm/irq.h>
39 #include <linux/dma/imx-dma.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77 #define SDMA_DONE0_CONFIG       0x1000
78
79 /*
80  * Buffer descriptor status values.
81  */
82 #define BD_DONE  0x01
83 #define BD_WRAP  0x02
84 #define BD_CONT  0x04
85 #define BD_INTR  0x08
86 #define BD_RROR  0x10
87 #define BD_LAST  0x20
88 #define BD_EXTD  0x80
89
90 /*
91  * Data Node descriptor status values.
92  */
93 #define DND_END_OF_FRAME  0x80
94 #define DND_END_OF_XFER   0x40
95 #define DND_DONE          0x20
96 #define DND_UNUSED        0x01
97
98 /*
99  * IPCV2 descriptor status values.
100  */
101 #define BD_IPCV2_END_OF_FRAME  0x40
102
103 #define IPCV2_MAX_NODES        50
104 /*
105  * Error bit set in the CCB status field by the SDMA,
106  * in setbd routine, in case of a transfer error
107  */
108 #define DATA_ERROR  0x10000000
109
110 /*
111  * Buffer descriptor commands.
112  */
113 #define C0_ADDR             0x01
114 #define C0_LOAD             0x02
115 #define C0_DUMP             0x03
116 #define C0_SETCTX           0x07
117 #define C0_GETCTX           0x03
118 #define C0_SETDM            0x01
119 #define C0_SETPM            0x04
120 #define C0_GETDM            0x02
121 #define C0_GETPM            0x08
122 /*
123  * Change endianness indicator in the BD command field
124  */
125 #define CHANGE_ENDIANNESS   0x80
126
127 /*
128  *  p_2_p watermark_level description
129  *      Bits            Name                    Description
130  *      0-7             Lower WML               Lower watermark level
131  *      8               PS                      1: Pad Swallowing
132  *                                              0: No Pad Swallowing
133  *      9               PA                      1: Pad Adding
134  *                                              0: No Pad Adding
135  *      10              SPDIF                   If this bit is set both source
136  *                                              and destination are on SPBA
137  *      11              Source Bit(SP)          1: Source on SPBA
138  *                                              0: Source on AIPS
139  *      12              Destination Bit(DP)     1: Destination on SPBA
140  *                                              0: Destination on AIPS
141  *      13-15           ---------               MUST BE 0
142  *      16-23           Higher WML              HWML
143  *      24-27           N                       Total number of samples after
144  *                                              which Pad adding/Swallowing
145  *                                              must be done. It must be odd.
146  *      28              Lower WML Event(LWE)    SDMA events reg to check for
147  *                                              LWML event mask
148  *                                              0: LWE in EVENTS register
149  *                                              1: LWE in EVENTS2 register
150  *      29              Higher WML Event(HWE)   SDMA events reg to check for
151  *                                              HWML event mask
152  *                                              0: HWE in EVENTS register
153  *                                              1: HWE in EVENTS2 register
154  *      30              ---------               MUST BE 0
155  *      31              CONT                    1: Amount of samples to be
156  *                                              transferred is unknown and
157  *                                              script will keep on
158  *                                              transferring samples as long as
159  *                                              both events are detected and
160  *                                              script must be manually stopped
161  *                                              by the application
162  *                                              0: The amount of samples to be
163  *                                              transferred is equal to the
164  *                                              count field of mode word
165  */
166 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
167 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
168 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
169 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
170 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
171 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
172 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
173 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
174 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
175 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
176
177 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
179                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180
181 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
182                                  BIT(DMA_MEM_TO_DEV) | \
183                                  BIT(DMA_DEV_TO_DEV))
184
185 #define SDMA_WATERMARK_LEVEL_N_FIFOS    GENMASK(15, 12)
186 #define SDMA_WATERMARK_LEVEL_SW_DONE    BIT(23)
187
188 #define SDMA_DONE0_CONFIG_DONE_SEL      BIT(7)
189 #define SDMA_DONE0_CONFIG_DONE_DIS      BIT(6)
190
191 /**
192  * struct sdma_script_start_addrs - SDMA script start pointers
193  *
194  * start addresses of the different functions in the physical
195  * address space of the SDMA engine.
196  */
197 struct sdma_script_start_addrs {
198         s32 ap_2_ap_addr;
199         s32 ap_2_bp_addr;
200         s32 ap_2_ap_fixed_addr;
201         s32 bp_2_ap_addr;
202         s32 loopback_on_dsp_side_addr;
203         s32 mcu_interrupt_only_addr;
204         s32 firi_2_per_addr;
205         s32 firi_2_mcu_addr;
206         s32 per_2_firi_addr;
207         s32 mcu_2_firi_addr;
208         s32 uart_2_per_addr;
209         s32 uart_2_mcu_addr;
210         s32 per_2_app_addr;
211         s32 mcu_2_app_addr;
212         s32 per_2_per_addr;
213         s32 uartsh_2_per_addr;
214         s32 uartsh_2_mcu_addr;
215         s32 per_2_shp_addr;
216         s32 mcu_2_shp_addr;
217         s32 ata_2_mcu_addr;
218         s32 mcu_2_ata_addr;
219         s32 app_2_per_addr;
220         s32 app_2_mcu_addr;
221         s32 shp_2_per_addr;
222         s32 shp_2_mcu_addr;
223         s32 mshc_2_mcu_addr;
224         s32 mcu_2_mshc_addr;
225         s32 spdif_2_mcu_addr;
226         s32 mcu_2_spdif_addr;
227         s32 asrc_2_mcu_addr;
228         s32 ext_mem_2_ipu_addr;
229         s32 descrambler_addr;
230         s32 dptc_dvfs_addr;
231         s32 utra_addr;
232         s32 ram_code_start_addr;
233         /* End of v1 array */
234         s32 mcu_2_ssish_addr;
235         s32 ssish_2_mcu_addr;
236         s32 hdmi_dma_addr;
237         /* End of v2 array */
238         s32 zcanfd_2_mcu_addr;
239         s32 zqspi_2_mcu_addr;
240         s32 mcu_2_ecspi_addr;
241         s32 mcu_2_sai_addr;
242         s32 sai_2_mcu_addr;
243         s32 uart_2_mcu_rom_addr;
244         s32 uartsh_2_mcu_rom_addr;
245         /* End of v3 array */
246         s32 mcu_2_zqspi_addr;
247         /* End of v4 array */
248 };
249
250 /*
251  * Mode/Count of data node descriptors - IPCv2
252  */
253 struct sdma_mode_count {
254 #define SDMA_BD_MAX_CNT 0xffff
255         u32 count   : 16; /* size of the buffer pointed by this BD */
256         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
257         u32 command :  8; /* command mostly used for channel 0 */
258 };
259
260 /*
261  * Buffer descriptor
262  */
263 struct sdma_buffer_descriptor {
264         struct sdma_mode_count  mode;
265         u32 buffer_addr;        /* address of the buffer described */
266         u32 ext_buffer_addr;    /* extended buffer address */
267 } __attribute__ ((packed));
268
269 /**
270  * struct sdma_channel_control - Channel control Block
271  *
272  * @current_bd_ptr:     current buffer descriptor processed
273  * @base_bd_ptr:        first element of buffer descriptor array
274  * @unused:             padding. The SDMA engine expects an array of 128 byte
275  *                      control blocks
276  */
277 struct sdma_channel_control {
278         u32 current_bd_ptr;
279         u32 base_bd_ptr;
280         u32 unused[2];
281 } __attribute__ ((packed));
282
283 /**
284  * struct sdma_state_registers - SDMA context for a channel
285  *
286  * @pc:         program counter
287  * @unused1:    unused
288  * @t:          test bit: status of arithmetic & test instruction
289  * @rpc:        return program counter
290  * @unused0:    unused
291  * @sf:         source fault while loading data
292  * @spc:        loop start program counter
293  * @unused2:    unused
294  * @df:         destination fault while storing data
295  * @epc:        loop end program counter
296  * @lm:         loop mode
297  */
298 struct sdma_state_registers {
299         u32 pc     :14;
300         u32 unused1: 1;
301         u32 t      : 1;
302         u32 rpc    :14;
303         u32 unused0: 1;
304         u32 sf     : 1;
305         u32 spc    :14;
306         u32 unused2: 1;
307         u32 df     : 1;
308         u32 epc    :14;
309         u32 lm     : 2;
310 } __attribute__ ((packed));
311
312 /**
313  * struct sdma_context_data - sdma context specific to a channel
314  *
315  * @channel_state:      channel state bits
316  * @gReg:               general registers
317  * @mda:                burst dma destination address register
318  * @msa:                burst dma source address register
319  * @ms:                 burst dma status register
320  * @md:                 burst dma data register
321  * @pda:                peripheral dma destination address register
322  * @psa:                peripheral dma source address register
323  * @ps:                 peripheral dma status register
324  * @pd:                 peripheral dma data register
325  * @ca:                 CRC polynomial register
326  * @cs:                 CRC accumulator register
327  * @dda:                dedicated core destination address register
328  * @dsa:                dedicated core source address register
329  * @ds:                 dedicated core status register
330  * @dd:                 dedicated core data register
331  * @scratch0:           1st word of dedicated ram for context switch
332  * @scratch1:           2nd word of dedicated ram for context switch
333  * @scratch2:           3rd word of dedicated ram for context switch
334  * @scratch3:           4th word of dedicated ram for context switch
335  * @scratch4:           5th word of dedicated ram for context switch
336  * @scratch5:           6th word of dedicated ram for context switch
337  * @scratch6:           7th word of dedicated ram for context switch
338  * @scratch7:           8th word of dedicated ram for context switch
339  */
340 struct sdma_context_data {
341         struct sdma_state_registers  channel_state;
342         u32  gReg[8];
343         u32  mda;
344         u32  msa;
345         u32  ms;
346         u32  md;
347         u32  pda;
348         u32  psa;
349         u32  ps;
350         u32  pd;
351         u32  ca;
352         u32  cs;
353         u32  dda;
354         u32  dsa;
355         u32  ds;
356         u32  dd;
357         u32  scratch0;
358         u32  scratch1;
359         u32  scratch2;
360         u32  scratch3;
361         u32  scratch4;
362         u32  scratch5;
363         u32  scratch6;
364         u32  scratch7;
365 } __attribute__ ((packed));
366
367
368 struct sdma_engine;
369
370 /**
371  * struct sdma_desc - descriptor structor for one transfer
372  * @vd:                 descriptor for virt dma
373  * @num_bd:             number of descriptors currently handling
374  * @bd_phys:            physical address of bd
375  * @buf_tail:           ID of the buffer that was processed
376  * @buf_ptail:          ID of the previous buffer that was processed
377  * @period_len:         period length, used in cyclic.
378  * @chn_real_count:     the real count updated from bd->mode.count
379  * @chn_count:          the transfer count set
380  * @sdmac:              sdma_channel pointer
381  * @bd:                 pointer of allocate bd
382  */
383 struct sdma_desc {
384         struct virt_dma_desc    vd;
385         unsigned int            num_bd;
386         dma_addr_t              bd_phys;
387         unsigned int            buf_tail;
388         unsigned int            buf_ptail;
389         unsigned int            period_len;
390         unsigned int            chn_real_count;
391         unsigned int            chn_count;
392         struct sdma_channel     *sdmac;
393         struct sdma_buffer_descriptor *bd;
394 };
395
396 /**
397  * struct sdma_channel - housekeeping for a SDMA channel
398  *
399  * @vc:                 virt_dma base structure
400  * @desc:               sdma description including vd and other special member
401  * @sdma:               pointer to the SDMA engine for this channel
402  * @channel:            the channel number, matches dmaengine chan_id + 1
403  * @direction:          transfer type. Needed for setting SDMA script
404  * @slave_config:       Slave configuration
405  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
406  * @event_id0:          aka dma request line
407  * @event_id1:          for channels that use 2 events
408  * @word_size:          peripheral access size
409  * @pc_from_device:     script address for those device_2_memory
410  * @pc_to_device:       script address for those memory_2_device
411  * @device_to_device:   script address for those device_2_device
412  * @pc_to_pc:           script address for those memory_2_memory
413  * @flags:              loop mode or not
414  * @per_address:        peripheral source or destination address in common case
415  *                      destination address in p_2_p case
416  * @per_address2:       peripheral source address in p_2_p case
417  * @event_mask:         event mask used in p_2_p script
418  * @watermark_level:    value for gReg[7], some script will extend it from
419  *                      basic watermark such as p_2_p
420  * @shp_addr:           value for gReg[6]
421  * @per_addr:           value for gReg[2]
422  * @status:             status of dma channel
423  * @context_loaded:     ensure context is only loaded once
424  * @data:               specific sdma interface structure
425  * @bd_pool:            dma_pool for bd
426  * @terminate_worker:   used to call back into terminate work function
427  */
428 struct sdma_channel {
429         struct virt_dma_chan            vc;
430         struct sdma_desc                *desc;
431         struct sdma_engine              *sdma;
432         unsigned int                    channel;
433         enum dma_transfer_direction             direction;
434         struct dma_slave_config         slave_config;
435         enum sdma_peripheral_type       peripheral_type;
436         unsigned int                    event_id0;
437         unsigned int                    event_id1;
438         enum dma_slave_buswidth         word_size;
439         unsigned int                    pc_from_device, pc_to_device;
440         unsigned int                    device_to_device;
441         unsigned int                    pc_to_pc;
442         unsigned long                   flags;
443         dma_addr_t                      per_address, per_address2;
444         unsigned long                   event_mask[2];
445         unsigned long                   watermark_level;
446         u32                             shp_addr, per_addr;
447         enum dma_status                 status;
448         struct imx_dma_data             data;
449         struct work_struct              terminate_worker;
450         struct list_head                terminated;
451         bool                            is_ram_script;
452         unsigned int                    n_fifos_src;
453         unsigned int                    n_fifos_dst;
454         bool                            sw_done;
455 };
456
457 #define IMX_DMA_SG_LOOP         BIT(0)
458
459 #define MAX_DMA_CHANNELS 32
460 #define MXC_SDMA_DEFAULT_PRIORITY 1
461 #define MXC_SDMA_MIN_PRIORITY 1
462 #define MXC_SDMA_MAX_PRIORITY 7
463
464 #define SDMA_FIRMWARE_MAGIC 0x414d4453
465
466 /**
467  * struct sdma_firmware_header - Layout of the firmware image
468  *
469  * @magic:              "SDMA"
470  * @version_major:      increased whenever layout of struct
471  *                      sdma_script_start_addrs changes.
472  * @version_minor:      firmware minor version (for binary compatible changes)
473  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
474  * @num_script_addrs:   Number of script addresses in this image
475  * @ram_code_start:     offset of SDMA ram image in this firmware image
476  * @ram_code_size:      size of SDMA ram image
477  * @script_addrs:       Stores the start address of the SDMA scripts
478  *                      (in SDMA memory space)
479  */
480 struct sdma_firmware_header {
481         u32     magic;
482         u32     version_major;
483         u32     version_minor;
484         u32     script_addrs_start;
485         u32     num_script_addrs;
486         u32     ram_code_start;
487         u32     ram_code_size;
488 };
489
490 struct sdma_driver_data {
491         int chnenbl0;
492         int num_events;
493         struct sdma_script_start_addrs  *script_addrs;
494         bool check_ratio;
495         /*
496          * ecspi ERR009165 fixed should be done in sdma script
497          * and it has been fixed in soc from i.mx6ul.
498          * please get more information from the below link:
499          * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
500          */
501         bool ecspi_fixed;
502 };
503
504 struct sdma_engine {
505         struct device                   *dev;
506         struct sdma_channel             channel[MAX_DMA_CHANNELS];
507         struct sdma_channel_control     *channel_control;
508         void __iomem                    *regs;
509         struct sdma_context_data        *context;
510         dma_addr_t                      context_phys;
511         struct dma_device               dma_device;
512         struct clk                      *clk_ipg;
513         struct clk                      *clk_ahb;
514         spinlock_t                      channel_0_lock;
515         u32                             script_number;
516         struct sdma_script_start_addrs  *script_addrs;
517         const struct sdma_driver_data   *drvdata;
518         u32                             spba_start_addr;
519         u32                             spba_end_addr;
520         unsigned int                    irq;
521         dma_addr_t                      bd0_phys;
522         struct sdma_buffer_descriptor   *bd0;
523         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
524         bool                            clk_ratio;
525         bool                            fw_loaded;
526 };
527
528 static int sdma_config_write(struct dma_chan *chan,
529                        struct dma_slave_config *dmaengine_cfg,
530                        enum dma_transfer_direction direction);
531
532 static struct sdma_driver_data sdma_imx31 = {
533         .chnenbl0 = SDMA_CHNENBL0_IMX31,
534         .num_events = 32,
535 };
536
537 static struct sdma_script_start_addrs sdma_script_imx25 = {
538         .ap_2_ap_addr = 729,
539         .uart_2_mcu_addr = 904,
540         .per_2_app_addr = 1255,
541         .mcu_2_app_addr = 834,
542         .uartsh_2_mcu_addr = 1120,
543         .per_2_shp_addr = 1329,
544         .mcu_2_shp_addr = 1048,
545         .ata_2_mcu_addr = 1560,
546         .mcu_2_ata_addr = 1479,
547         .app_2_per_addr = 1189,
548         .app_2_mcu_addr = 770,
549         .shp_2_per_addr = 1407,
550         .shp_2_mcu_addr = 979,
551 };
552
553 static struct sdma_driver_data sdma_imx25 = {
554         .chnenbl0 = SDMA_CHNENBL0_IMX35,
555         .num_events = 48,
556         .script_addrs = &sdma_script_imx25,
557 };
558
559 static struct sdma_driver_data sdma_imx35 = {
560         .chnenbl0 = SDMA_CHNENBL0_IMX35,
561         .num_events = 48,
562 };
563
564 static struct sdma_script_start_addrs sdma_script_imx51 = {
565         .ap_2_ap_addr = 642,
566         .uart_2_mcu_addr = 817,
567         .mcu_2_app_addr = 747,
568         .mcu_2_shp_addr = 961,
569         .ata_2_mcu_addr = 1473,
570         .mcu_2_ata_addr = 1392,
571         .app_2_per_addr = 1033,
572         .app_2_mcu_addr = 683,
573         .shp_2_per_addr = 1251,
574         .shp_2_mcu_addr = 892,
575 };
576
577 static struct sdma_driver_data sdma_imx51 = {
578         .chnenbl0 = SDMA_CHNENBL0_IMX35,
579         .num_events = 48,
580         .script_addrs = &sdma_script_imx51,
581 };
582
583 static struct sdma_script_start_addrs sdma_script_imx53 = {
584         .ap_2_ap_addr = 642,
585         .app_2_mcu_addr = 683,
586         .mcu_2_app_addr = 747,
587         .uart_2_mcu_addr = 817,
588         .shp_2_mcu_addr = 891,
589         .mcu_2_shp_addr = 960,
590         .uartsh_2_mcu_addr = 1032,
591         .spdif_2_mcu_addr = 1100,
592         .mcu_2_spdif_addr = 1134,
593         .firi_2_mcu_addr = 1193,
594         .mcu_2_firi_addr = 1290,
595 };
596
597 static struct sdma_driver_data sdma_imx53 = {
598         .chnenbl0 = SDMA_CHNENBL0_IMX35,
599         .num_events = 48,
600         .script_addrs = &sdma_script_imx53,
601 };
602
603 static struct sdma_script_start_addrs sdma_script_imx6q = {
604         .ap_2_ap_addr = 642,
605         .uart_2_mcu_addr = 817,
606         .mcu_2_app_addr = 747,
607         .per_2_per_addr = 6331,
608         .uartsh_2_mcu_addr = 1032,
609         .mcu_2_shp_addr = 960,
610         .app_2_mcu_addr = 683,
611         .shp_2_mcu_addr = 891,
612         .spdif_2_mcu_addr = 1100,
613         .mcu_2_spdif_addr = 1134,
614 };
615
616 static struct sdma_driver_data sdma_imx6q = {
617         .chnenbl0 = SDMA_CHNENBL0_IMX35,
618         .num_events = 48,
619         .script_addrs = &sdma_script_imx6q,
620 };
621
622 static struct sdma_driver_data sdma_imx6ul = {
623         .chnenbl0 = SDMA_CHNENBL0_IMX35,
624         .num_events = 48,
625         .script_addrs = &sdma_script_imx6q,
626         .ecspi_fixed = true,
627 };
628
629 static struct sdma_script_start_addrs sdma_script_imx7d = {
630         .ap_2_ap_addr = 644,
631         .uart_2_mcu_addr = 819,
632         .mcu_2_app_addr = 749,
633         .uartsh_2_mcu_addr = 1034,
634         .mcu_2_shp_addr = 962,
635         .app_2_mcu_addr = 685,
636         .shp_2_mcu_addr = 893,
637         .spdif_2_mcu_addr = 1102,
638         .mcu_2_spdif_addr = 1136,
639 };
640
641 static struct sdma_driver_data sdma_imx7d = {
642         .chnenbl0 = SDMA_CHNENBL0_IMX35,
643         .num_events = 48,
644         .script_addrs = &sdma_script_imx7d,
645 };
646
647 static struct sdma_driver_data sdma_imx8mq = {
648         .chnenbl0 = SDMA_CHNENBL0_IMX35,
649         .num_events = 48,
650         .script_addrs = &sdma_script_imx7d,
651         .check_ratio = 1,
652 };
653
654 static const struct of_device_id sdma_dt_ids[] = {
655         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
656         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
657         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
658         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
659         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
660         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
661         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
662         { .compatible = "fsl,imx6ul-sdma", .data = &sdma_imx6ul, },
663         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
664         { /* sentinel */ }
665 };
666 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
667
668 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
669 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
670 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
671 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
672
673 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
674 {
675         u32 chnenbl0 = sdma->drvdata->chnenbl0;
676         return chnenbl0 + event * 4;
677 }
678
679 static int sdma_config_ownership(struct sdma_channel *sdmac,
680                 bool event_override, bool mcu_override, bool dsp_override)
681 {
682         struct sdma_engine *sdma = sdmac->sdma;
683         int channel = sdmac->channel;
684         unsigned long evt, mcu, dsp;
685
686         if (event_override && mcu_override && dsp_override)
687                 return -EINVAL;
688
689         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
690         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
691         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
692
693         if (dsp_override)
694                 __clear_bit(channel, &dsp);
695         else
696                 __set_bit(channel, &dsp);
697
698         if (event_override)
699                 __clear_bit(channel, &evt);
700         else
701                 __set_bit(channel, &evt);
702
703         if (mcu_override)
704                 __clear_bit(channel, &mcu);
705         else
706                 __set_bit(channel, &mcu);
707
708         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
709         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
710         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
711
712         return 0;
713 }
714
715 static int is_sdma_channel_enabled(struct sdma_engine *sdma, int channel)
716 {
717         return !!(readl(sdma->regs + SDMA_H_STATSTOP) & BIT(channel));
718 }
719
720 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
721 {
722         writel(BIT(channel), sdma->regs + SDMA_H_START);
723 }
724
725 /*
726  * sdma_run_channel0 - run a channel and wait till it's done
727  */
728 static int sdma_run_channel0(struct sdma_engine *sdma)
729 {
730         int ret;
731         u32 reg;
732
733         sdma_enable_channel(sdma, 0);
734
735         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
736                                                 reg, !(reg & 1), 1, 500);
737         if (ret)
738                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
739
740         /* Set bits of CONFIG register with dynamic context switching */
741         reg = readl(sdma->regs + SDMA_H_CONFIG);
742         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
743                 reg |= SDMA_H_CONFIG_CSM;
744                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
745         }
746
747         return ret;
748 }
749
750 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
751                 u32 address)
752 {
753         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
754         void *buf_virt;
755         dma_addr_t buf_phys;
756         int ret;
757         unsigned long flags;
758
759         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
760         if (!buf_virt)
761                 return -ENOMEM;
762
763         spin_lock_irqsave(&sdma->channel_0_lock, flags);
764
765         bd0->mode.command = C0_SETPM;
766         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
767         bd0->mode.count = size / 2;
768         bd0->buffer_addr = buf_phys;
769         bd0->ext_buffer_addr = address;
770
771         memcpy(buf_virt, buf, size);
772
773         ret = sdma_run_channel0(sdma);
774
775         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
776
777         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
778
779         return ret;
780 }
781
782 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
783 {
784         struct sdma_engine *sdma = sdmac->sdma;
785         int channel = sdmac->channel;
786         unsigned long val;
787         u32 chnenbl = chnenbl_ofs(sdma, event);
788
789         val = readl_relaxed(sdma->regs + chnenbl);
790         __set_bit(channel, &val);
791         writel_relaxed(val, sdma->regs + chnenbl);
792
793         /* Set SDMA_DONEx_CONFIG is sw_done enabled */
794         if (sdmac->sw_done) {
795                 val = readl_relaxed(sdma->regs + SDMA_DONE0_CONFIG);
796                 val |= SDMA_DONE0_CONFIG_DONE_SEL;
797                 val &= ~SDMA_DONE0_CONFIG_DONE_DIS;
798                 writel_relaxed(val, sdma->regs + SDMA_DONE0_CONFIG);
799         }
800 }
801
802 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
803 {
804         struct sdma_engine *sdma = sdmac->sdma;
805         int channel = sdmac->channel;
806         u32 chnenbl = chnenbl_ofs(sdma, event);
807         unsigned long val;
808
809         val = readl_relaxed(sdma->regs + chnenbl);
810         __clear_bit(channel, &val);
811         writel_relaxed(val, sdma->regs + chnenbl);
812 }
813
814 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
815 {
816         return container_of(t, struct sdma_desc, vd.tx);
817 }
818
819 static void sdma_start_desc(struct sdma_channel *sdmac)
820 {
821         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
822         struct sdma_desc *desc;
823         struct sdma_engine *sdma = sdmac->sdma;
824         int channel = sdmac->channel;
825
826         if (!vd) {
827                 sdmac->desc = NULL;
828                 return;
829         }
830         sdmac->desc = desc = to_sdma_desc(&vd->tx);
831
832         list_del(&vd->node);
833
834         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
835         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
836         sdma_enable_channel(sdma, sdmac->channel);
837 }
838
839 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
840 {
841         struct sdma_buffer_descriptor *bd;
842         int error = 0;
843         enum dma_status old_status = sdmac->status;
844
845         /*
846          * loop mode. Iterate over descriptors, re-setup them and
847          * call callback function.
848          */
849         while (sdmac->desc) {
850                 struct sdma_desc *desc = sdmac->desc;
851
852                 bd = &desc->bd[desc->buf_tail];
853
854                 if (bd->mode.status & BD_DONE)
855                         break;
856
857                 if (bd->mode.status & BD_RROR) {
858                         bd->mode.status &= ~BD_RROR;
859                         sdmac->status = DMA_ERROR;
860                         error = -EIO;
861                 }
862
863                /*
864                 * We use bd->mode.count to calculate the residue, since contains
865                 * the number of bytes present in the current buffer descriptor.
866                 */
867
868                 desc->chn_real_count = bd->mode.count;
869                 bd->mode.count = desc->period_len;
870                 desc->buf_ptail = desc->buf_tail;
871                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
872
873                 /*
874                  * The callback is called from the interrupt context in order
875                  * to reduce latency and to avoid the risk of altering the
876                  * SDMA transaction status by the time the client tasklet is
877                  * executed.
878                  */
879                 spin_unlock(&sdmac->vc.lock);
880                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
881                 spin_lock(&sdmac->vc.lock);
882
883                 /* Assign buffer ownership to SDMA */
884                 bd->mode.status |= BD_DONE;
885
886                 if (error)
887                         sdmac->status = old_status;
888         }
889
890         /*
891          * SDMA stops cyclic channel when DMA request triggers a channel and no SDMA
892          * owned buffer is available (i.e. BD_DONE was set too late).
893          */
894         if (sdmac->desc && !is_sdma_channel_enabled(sdmac->sdma, sdmac->channel)) {
895                 dev_warn(sdmac->sdma->dev, "restart cyclic channel %d\n", sdmac->channel);
896                 sdma_enable_channel(sdmac->sdma, sdmac->channel);
897         }
898 }
899
900 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
901 {
902         struct sdma_channel *sdmac = (struct sdma_channel *) data;
903         struct sdma_buffer_descriptor *bd;
904         int i, error = 0;
905
906         sdmac->desc->chn_real_count = 0;
907         /*
908          * non loop mode. Iterate over all descriptors, collect
909          * errors and call callback function
910          */
911         for (i = 0; i < sdmac->desc->num_bd; i++) {
912                 bd = &sdmac->desc->bd[i];
913
914                 if (bd->mode.status & (BD_DONE | BD_RROR))
915                         error = -EIO;
916                 sdmac->desc->chn_real_count += bd->mode.count;
917         }
918
919         if (error)
920                 sdmac->status = DMA_ERROR;
921         else
922                 sdmac->status = DMA_COMPLETE;
923 }
924
925 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
926 {
927         struct sdma_engine *sdma = dev_id;
928         unsigned long stat;
929
930         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
931         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
932         /* channel 0 is special and not handled here, see run_channel0() */
933         stat &= ~1;
934
935         while (stat) {
936                 int channel = fls(stat) - 1;
937                 struct sdma_channel *sdmac = &sdma->channel[channel];
938                 struct sdma_desc *desc;
939
940                 spin_lock(&sdmac->vc.lock);
941                 desc = sdmac->desc;
942                 if (desc) {
943                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
944                                 sdma_update_channel_loop(sdmac);
945                         } else {
946                                 mxc_sdma_handle_channel_normal(sdmac);
947                                 vchan_cookie_complete(&desc->vd);
948                                 sdma_start_desc(sdmac);
949                         }
950                 }
951
952                 spin_unlock(&sdmac->vc.lock);
953                 __clear_bit(channel, &stat);
954         }
955
956         return IRQ_HANDLED;
957 }
958
959 /*
960  * sets the pc of SDMA script according to the peripheral type
961  */
962 static int sdma_get_pc(struct sdma_channel *sdmac,
963                 enum sdma_peripheral_type peripheral_type)
964 {
965         struct sdma_engine *sdma = sdmac->sdma;
966         int per_2_emi = 0, emi_2_per = 0;
967         /*
968          * These are needed once we start to support transfers between
969          * two peripherals or memory-to-memory transfers
970          */
971         int per_2_per = 0, emi_2_emi = 0;
972
973         sdmac->pc_from_device = 0;
974         sdmac->pc_to_device = 0;
975         sdmac->device_to_device = 0;
976         sdmac->pc_to_pc = 0;
977         sdmac->is_ram_script = false;
978
979         switch (peripheral_type) {
980         case IMX_DMATYPE_MEMORY:
981                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
982                 break;
983         case IMX_DMATYPE_DSP:
984                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
985                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
986                 break;
987         case IMX_DMATYPE_FIRI:
988                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
989                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
990                 break;
991         case IMX_DMATYPE_UART:
992                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
993                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
994                 break;
995         case IMX_DMATYPE_UART_SP:
996                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
997                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
998                 break;
999         case IMX_DMATYPE_ATA:
1000                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
1001                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
1002                 break;
1003         case IMX_DMATYPE_CSPI:
1004                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1005
1006                 /* Use rom script mcu_2_app if ERR009165 fixed */
1007                 if (sdmac->sdma->drvdata->ecspi_fixed) {
1008                         emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1009                 } else {
1010                         emi_2_per = sdma->script_addrs->mcu_2_ecspi_addr;
1011                         sdmac->is_ram_script = true;
1012                 }
1013
1014                 break;
1015         case IMX_DMATYPE_EXT:
1016         case IMX_DMATYPE_SSI:
1017         case IMX_DMATYPE_SAI:
1018                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
1019                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
1020                 break;
1021         case IMX_DMATYPE_SSI_DUAL:
1022                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
1023                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
1024                 sdmac->is_ram_script = true;
1025                 break;
1026         case IMX_DMATYPE_SSI_SP:
1027         case IMX_DMATYPE_MMC:
1028         case IMX_DMATYPE_SDHC:
1029         case IMX_DMATYPE_CSPI_SP:
1030         case IMX_DMATYPE_ESAI:
1031         case IMX_DMATYPE_MSHC_SP:
1032                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1033                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1034                 break;
1035         case IMX_DMATYPE_ASRC:
1036                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
1037                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
1038                 per_2_per = sdma->script_addrs->per_2_per_addr;
1039                 sdmac->is_ram_script = true;
1040                 break;
1041         case IMX_DMATYPE_ASRC_SP:
1042                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
1043                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
1044                 per_2_per = sdma->script_addrs->per_2_per_addr;
1045                 break;
1046         case IMX_DMATYPE_MSHC:
1047                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
1048                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
1049                 break;
1050         case IMX_DMATYPE_CCM:
1051                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
1052                 break;
1053         case IMX_DMATYPE_SPDIF:
1054                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
1055                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
1056                 break;
1057         case IMX_DMATYPE_IPU_MEMORY:
1058                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
1059                 break;
1060         case IMX_DMATYPE_MULTI_SAI:
1061                 per_2_emi = sdma->script_addrs->sai_2_mcu_addr;
1062                 emi_2_per = sdma->script_addrs->mcu_2_sai_addr;
1063                 break;
1064         default:
1065                 dev_err(sdma->dev, "Unsupported transfer type %d\n",
1066                         peripheral_type);
1067                 return -EINVAL;
1068         }
1069
1070         sdmac->pc_from_device = per_2_emi;
1071         sdmac->pc_to_device = emi_2_per;
1072         sdmac->device_to_device = per_2_per;
1073         sdmac->pc_to_pc = emi_2_emi;
1074
1075         return 0;
1076 }
1077
1078 static int sdma_load_context(struct sdma_channel *sdmac)
1079 {
1080         struct sdma_engine *sdma = sdmac->sdma;
1081         int channel = sdmac->channel;
1082         int load_address;
1083         struct sdma_context_data *context = sdma->context;
1084         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
1085         int ret;
1086         unsigned long flags;
1087
1088         if (sdmac->direction == DMA_DEV_TO_MEM)
1089                 load_address = sdmac->pc_from_device;
1090         else if (sdmac->direction == DMA_DEV_TO_DEV)
1091                 load_address = sdmac->device_to_device;
1092         else if (sdmac->direction == DMA_MEM_TO_MEM)
1093                 load_address = sdmac->pc_to_pc;
1094         else
1095                 load_address = sdmac->pc_to_device;
1096
1097         if (load_address < 0)
1098                 return load_address;
1099
1100         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1101         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1102         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1103         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1104         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1105         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1106
1107         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1108
1109         memset(context, 0, sizeof(*context));
1110         context->channel_state.pc = load_address;
1111
1112         /* Send by context the event mask,base address for peripheral
1113          * and watermark level
1114          */
1115         context->gReg[0] = sdmac->event_mask[1];
1116         context->gReg[1] = sdmac->event_mask[0];
1117         context->gReg[2] = sdmac->per_addr;
1118         context->gReg[6] = sdmac->shp_addr;
1119         context->gReg[7] = sdmac->watermark_level;
1120
1121         bd0->mode.command = C0_SETDM;
1122         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1123         bd0->mode.count = sizeof(*context) / 4;
1124         bd0->buffer_addr = sdma->context_phys;
1125         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1126         ret = sdma_run_channel0(sdma);
1127
1128         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1129
1130         return ret;
1131 }
1132
1133 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1134 {
1135         return container_of(chan, struct sdma_channel, vc.chan);
1136 }
1137
1138 static int sdma_disable_channel(struct dma_chan *chan)
1139 {
1140         struct sdma_channel *sdmac = to_sdma_chan(chan);
1141         struct sdma_engine *sdma = sdmac->sdma;
1142         int channel = sdmac->channel;
1143
1144         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1145         sdmac->status = DMA_ERROR;
1146
1147         return 0;
1148 }
1149 static void sdma_channel_terminate_work(struct work_struct *work)
1150 {
1151         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1152                                                   terminate_worker);
1153         /*
1154          * According to NXP R&D team a delay of one BD SDMA cost time
1155          * (maximum is 1ms) should be added after disable of the channel
1156          * bit, to ensure SDMA core has really been stopped after SDMA
1157          * clients call .device_terminate_all.
1158          */
1159         usleep_range(1000, 2000);
1160
1161         vchan_dma_desc_free_list(&sdmac->vc, &sdmac->terminated);
1162 }
1163
1164 static int sdma_terminate_all(struct dma_chan *chan)
1165 {
1166         struct sdma_channel *sdmac = to_sdma_chan(chan);
1167         unsigned long flags;
1168
1169         spin_lock_irqsave(&sdmac->vc.lock, flags);
1170
1171         sdma_disable_channel(chan);
1172
1173         if (sdmac->desc) {
1174                 vchan_terminate_vdesc(&sdmac->desc->vd);
1175                 /*
1176                  * move out current descriptor into terminated list so that
1177                  * it could be free in sdma_channel_terminate_work alone
1178                  * later without potential involving next descriptor raised
1179                  * up before the last descriptor terminated.
1180                  */
1181                 vchan_get_all_descriptors(&sdmac->vc, &sdmac->terminated);
1182                 sdmac->desc = NULL;
1183                 schedule_work(&sdmac->terminate_worker);
1184         }
1185
1186         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1187
1188         return 0;
1189 }
1190
1191 static void sdma_channel_synchronize(struct dma_chan *chan)
1192 {
1193         struct sdma_channel *sdmac = to_sdma_chan(chan);
1194
1195         vchan_synchronize(&sdmac->vc);
1196
1197         flush_work(&sdmac->terminate_worker);
1198 }
1199
1200 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1201 {
1202         struct sdma_engine *sdma = sdmac->sdma;
1203
1204         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1205         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1206
1207         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1208         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1209
1210         if (sdmac->event_id0 > 31)
1211                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1212
1213         if (sdmac->event_id1 > 31)
1214                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1215
1216         /*
1217          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1218          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1219          * r0(event_mask[1]) and r1(event_mask[0]).
1220          */
1221         if (lwml > hwml) {
1222                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1223                                                 SDMA_WATERMARK_LEVEL_HWML);
1224                 sdmac->watermark_level |= hwml;
1225                 sdmac->watermark_level |= lwml << 16;
1226                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1227         }
1228
1229         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1230                         sdmac->per_address2 <= sdma->spba_end_addr)
1231                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1232
1233         if (sdmac->per_address >= sdma->spba_start_addr &&
1234                         sdmac->per_address <= sdma->spba_end_addr)
1235                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1236
1237         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1238 }
1239
1240 static void sdma_set_watermarklevel_for_sais(struct sdma_channel *sdmac)
1241 {
1242         unsigned int n_fifos;
1243
1244         if (sdmac->sw_done)
1245                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SW_DONE;
1246
1247         if (sdmac->direction == DMA_DEV_TO_MEM)
1248                 n_fifos = sdmac->n_fifos_src;
1249         else
1250                 n_fifos = sdmac->n_fifos_dst;
1251
1252         sdmac->watermark_level |=
1253                         FIELD_PREP(SDMA_WATERMARK_LEVEL_N_FIFOS, n_fifos);
1254 }
1255
1256 static int sdma_config_channel(struct dma_chan *chan)
1257 {
1258         struct sdma_channel *sdmac = to_sdma_chan(chan);
1259         int ret;
1260
1261         sdma_disable_channel(chan);
1262
1263         sdmac->event_mask[0] = 0;
1264         sdmac->event_mask[1] = 0;
1265         sdmac->shp_addr = 0;
1266         sdmac->per_addr = 0;
1267
1268         switch (sdmac->peripheral_type) {
1269         case IMX_DMATYPE_DSP:
1270                 sdma_config_ownership(sdmac, false, true, true);
1271                 break;
1272         case IMX_DMATYPE_MEMORY:
1273                 sdma_config_ownership(sdmac, false, true, false);
1274                 break;
1275         default:
1276                 sdma_config_ownership(sdmac, true, true, false);
1277                 break;
1278         }
1279
1280         ret = sdma_get_pc(sdmac, sdmac->peripheral_type);
1281         if (ret)
1282                 return ret;
1283
1284         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1285                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1286                 /* Handle multiple event channels differently */
1287                 if (sdmac->event_id1) {
1288                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1289                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1290                                 sdma_set_watermarklevel_for_p2p(sdmac);
1291                 } else {
1292                         if (sdmac->peripheral_type ==
1293                                         IMX_DMATYPE_MULTI_SAI)
1294                                 sdma_set_watermarklevel_for_sais(sdmac);
1295
1296                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1297                 }
1298
1299                 /* Address */
1300                 sdmac->shp_addr = sdmac->per_address;
1301                 sdmac->per_addr = sdmac->per_address2;
1302         } else {
1303                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1304         }
1305
1306         return 0;
1307 }
1308
1309 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1310                                      unsigned int priority)
1311 {
1312         struct sdma_engine *sdma = sdmac->sdma;
1313         int channel = sdmac->channel;
1314
1315         if (priority < MXC_SDMA_MIN_PRIORITY
1316             || priority > MXC_SDMA_MAX_PRIORITY) {
1317                 return -EINVAL;
1318         }
1319
1320         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1321
1322         return 0;
1323 }
1324
1325 static int sdma_request_channel0(struct sdma_engine *sdma)
1326 {
1327         int ret = -EBUSY;
1328
1329         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1330                                        GFP_NOWAIT);
1331         if (!sdma->bd0) {
1332                 ret = -ENOMEM;
1333                 goto out;
1334         }
1335
1336         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1337         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1338
1339         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1340         return 0;
1341 out:
1342
1343         return ret;
1344 }
1345
1346
1347 static int sdma_alloc_bd(struct sdma_desc *desc)
1348 {
1349         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1350         int ret = 0;
1351
1352         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1353                                       &desc->bd_phys, GFP_NOWAIT);
1354         if (!desc->bd) {
1355                 ret = -ENOMEM;
1356                 goto out;
1357         }
1358 out:
1359         return ret;
1360 }
1361
1362 static void sdma_free_bd(struct sdma_desc *desc)
1363 {
1364         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1365
1366         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1367                           desc->bd_phys);
1368 }
1369
1370 static void sdma_desc_free(struct virt_dma_desc *vd)
1371 {
1372         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1373
1374         sdma_free_bd(desc);
1375         kfree(desc);
1376 }
1377
1378 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1379 {
1380         struct sdma_channel *sdmac = to_sdma_chan(chan);
1381         struct imx_dma_data *data = chan->private;
1382         struct imx_dma_data mem_data;
1383         int prio, ret;
1384
1385         /*
1386          * MEMCPY may never setup chan->private by filter function such as
1387          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1388          * Please note in any other slave case, you have to setup chan->private
1389          * with 'struct imx_dma_data' in your own filter function if you want to
1390          * request dma channel by dma_request_channel() rather than
1391          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1392          * to warn you to correct your filter function.
1393          */
1394         if (!data) {
1395                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1396                 mem_data.priority = 2;
1397                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1398                 mem_data.dma_request = 0;
1399                 mem_data.dma_request2 = 0;
1400                 data = &mem_data;
1401
1402                 ret = sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1403                 if (ret)
1404                         return ret;
1405         }
1406
1407         switch (data->priority) {
1408         case DMA_PRIO_HIGH:
1409                 prio = 3;
1410                 break;
1411         case DMA_PRIO_MEDIUM:
1412                 prio = 2;
1413                 break;
1414         case DMA_PRIO_LOW:
1415         default:
1416                 prio = 1;
1417                 break;
1418         }
1419
1420         sdmac->peripheral_type = data->peripheral_type;
1421         sdmac->event_id0 = data->dma_request;
1422         sdmac->event_id1 = data->dma_request2;
1423
1424         ret = clk_enable(sdmac->sdma->clk_ipg);
1425         if (ret)
1426                 return ret;
1427         ret = clk_enable(sdmac->sdma->clk_ahb);
1428         if (ret)
1429                 goto disable_clk_ipg;
1430
1431         ret = sdma_set_channel_priority(sdmac, prio);
1432         if (ret)
1433                 goto disable_clk_ahb;
1434
1435         return 0;
1436
1437 disable_clk_ahb:
1438         clk_disable(sdmac->sdma->clk_ahb);
1439 disable_clk_ipg:
1440         clk_disable(sdmac->sdma->clk_ipg);
1441         return ret;
1442 }
1443
1444 static void sdma_free_chan_resources(struct dma_chan *chan)
1445 {
1446         struct sdma_channel *sdmac = to_sdma_chan(chan);
1447         struct sdma_engine *sdma = sdmac->sdma;
1448
1449         sdma_terminate_all(chan);
1450
1451         sdma_channel_synchronize(chan);
1452
1453         sdma_event_disable(sdmac, sdmac->event_id0);
1454         if (sdmac->event_id1)
1455                 sdma_event_disable(sdmac, sdmac->event_id1);
1456
1457         sdmac->event_id0 = 0;
1458         sdmac->event_id1 = 0;
1459
1460         sdma_set_channel_priority(sdmac, 0);
1461
1462         clk_disable(sdma->clk_ipg);
1463         clk_disable(sdma->clk_ahb);
1464 }
1465
1466 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1467                                 enum dma_transfer_direction direction, u32 bds)
1468 {
1469         struct sdma_desc *desc;
1470
1471         if (!sdmac->sdma->fw_loaded && sdmac->is_ram_script) {
1472                 dev_warn_once(sdmac->sdma->dev, "sdma firmware not ready!\n");
1473                 goto err_out;
1474         }
1475
1476         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1477         if (!desc)
1478                 goto err_out;
1479
1480         sdmac->status = DMA_IN_PROGRESS;
1481         sdmac->direction = direction;
1482         sdmac->flags = 0;
1483
1484         desc->chn_count = 0;
1485         desc->chn_real_count = 0;
1486         desc->buf_tail = 0;
1487         desc->buf_ptail = 0;
1488         desc->sdmac = sdmac;
1489         desc->num_bd = bds;
1490
1491         if (sdma_alloc_bd(desc))
1492                 goto err_desc_out;
1493
1494         /* No slave_config called in MEMCPY case, so do here */
1495         if (direction == DMA_MEM_TO_MEM)
1496                 sdma_config_ownership(sdmac, false, true, false);
1497
1498         if (sdma_load_context(sdmac))
1499                 goto err_desc_out;
1500
1501         return desc;
1502
1503 err_desc_out:
1504         kfree(desc);
1505 err_out:
1506         return NULL;
1507 }
1508
1509 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1510                 struct dma_chan *chan, dma_addr_t dma_dst,
1511                 dma_addr_t dma_src, size_t len, unsigned long flags)
1512 {
1513         struct sdma_channel *sdmac = to_sdma_chan(chan);
1514         struct sdma_engine *sdma = sdmac->sdma;
1515         int channel = sdmac->channel;
1516         size_t count;
1517         int i = 0, param;
1518         struct sdma_buffer_descriptor *bd;
1519         struct sdma_desc *desc;
1520
1521         if (!chan || !len)
1522                 return NULL;
1523
1524         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1525                 &dma_src, &dma_dst, len, channel);
1526
1527         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1528                                         len / SDMA_BD_MAX_CNT + 1);
1529         if (!desc)
1530                 return NULL;
1531
1532         do {
1533                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1534                 bd = &desc->bd[i];
1535                 bd->buffer_addr = dma_src;
1536                 bd->ext_buffer_addr = dma_dst;
1537                 bd->mode.count = count;
1538                 desc->chn_count += count;
1539                 bd->mode.command = 0;
1540
1541                 dma_src += count;
1542                 dma_dst += count;
1543                 len -= count;
1544                 i++;
1545
1546                 param = BD_DONE | BD_EXTD | BD_CONT;
1547                 /* last bd */
1548                 if (!len) {
1549                         param |= BD_INTR;
1550                         param |= BD_LAST;
1551                         param &= ~BD_CONT;
1552                 }
1553
1554                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1555                                 i, count, bd->buffer_addr,
1556                                 param & BD_WRAP ? "wrap" : "",
1557                                 param & BD_INTR ? " intr" : "");
1558
1559                 bd->mode.status = param;
1560         } while (len);
1561
1562         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1563 }
1564
1565 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1566                 struct dma_chan *chan, struct scatterlist *sgl,
1567                 unsigned int sg_len, enum dma_transfer_direction direction,
1568                 unsigned long flags, void *context)
1569 {
1570         struct sdma_channel *sdmac = to_sdma_chan(chan);
1571         struct sdma_engine *sdma = sdmac->sdma;
1572         int i, count;
1573         int channel = sdmac->channel;
1574         struct scatterlist *sg;
1575         struct sdma_desc *desc;
1576
1577         sdma_config_write(chan, &sdmac->slave_config, direction);
1578
1579         desc = sdma_transfer_init(sdmac, direction, sg_len);
1580         if (!desc)
1581                 goto err_out;
1582
1583         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1584                         sg_len, channel);
1585
1586         for_each_sg(sgl, sg, sg_len, i) {
1587                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1588                 int param;
1589
1590                 bd->buffer_addr = sg->dma_address;
1591
1592                 count = sg_dma_len(sg);
1593
1594                 if (count > SDMA_BD_MAX_CNT) {
1595                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1596                                         channel, count, SDMA_BD_MAX_CNT);
1597                         goto err_bd_out;
1598                 }
1599
1600                 bd->mode.count = count;
1601                 desc->chn_count += count;
1602
1603                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1604                         goto err_bd_out;
1605
1606                 switch (sdmac->word_size) {
1607                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1608                         bd->mode.command = 0;
1609                         if (count & 3 || sg->dma_address & 3)
1610                                 goto err_bd_out;
1611                         break;
1612                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1613                         bd->mode.command = 2;
1614                         if (count & 1 || sg->dma_address & 1)
1615                                 goto err_bd_out;
1616                         break;
1617                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1618                         bd->mode.command = 1;
1619                         break;
1620                 default:
1621                         goto err_bd_out;
1622                 }
1623
1624                 param = BD_DONE | BD_EXTD | BD_CONT;
1625
1626                 if (i + 1 == sg_len) {
1627                         param |= BD_INTR;
1628                         param |= BD_LAST;
1629                         param &= ~BD_CONT;
1630                 }
1631
1632                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1633                                 i, count, (u64)sg->dma_address,
1634                                 param & BD_WRAP ? "wrap" : "",
1635                                 param & BD_INTR ? " intr" : "");
1636
1637                 bd->mode.status = param;
1638         }
1639
1640         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1641 err_bd_out:
1642         sdma_free_bd(desc);
1643         kfree(desc);
1644 err_out:
1645         sdmac->status = DMA_ERROR;
1646         return NULL;
1647 }
1648
1649 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1650                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1651                 size_t period_len, enum dma_transfer_direction direction,
1652                 unsigned long flags)
1653 {
1654         struct sdma_channel *sdmac = to_sdma_chan(chan);
1655         struct sdma_engine *sdma = sdmac->sdma;
1656         int num_periods = buf_len / period_len;
1657         int channel = sdmac->channel;
1658         int i = 0, buf = 0;
1659         struct sdma_desc *desc;
1660
1661         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1662
1663         sdma_config_write(chan, &sdmac->slave_config, direction);
1664
1665         desc = sdma_transfer_init(sdmac, direction, num_periods);
1666         if (!desc)
1667                 goto err_out;
1668
1669         desc->period_len = period_len;
1670
1671         sdmac->flags |= IMX_DMA_SG_LOOP;
1672
1673         if (period_len > SDMA_BD_MAX_CNT) {
1674                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1675                                 channel, period_len, SDMA_BD_MAX_CNT);
1676                 goto err_bd_out;
1677         }
1678
1679         while (buf < buf_len) {
1680                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1681                 int param;
1682
1683                 bd->buffer_addr = dma_addr;
1684
1685                 bd->mode.count = period_len;
1686
1687                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1688                         goto err_bd_out;
1689                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1690                         bd->mode.command = 0;
1691                 else
1692                         bd->mode.command = sdmac->word_size;
1693
1694                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1695                 if (i + 1 == num_periods)
1696                         param |= BD_WRAP;
1697
1698                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1699                                 i, period_len, (u64)dma_addr,
1700                                 param & BD_WRAP ? "wrap" : "",
1701                                 param & BD_INTR ? " intr" : "");
1702
1703                 bd->mode.status = param;
1704
1705                 dma_addr += period_len;
1706                 buf += period_len;
1707
1708                 i++;
1709         }
1710
1711         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1712 err_bd_out:
1713         sdma_free_bd(desc);
1714         kfree(desc);
1715 err_out:
1716         sdmac->status = DMA_ERROR;
1717         return NULL;
1718 }
1719
1720 static int sdma_config_write(struct dma_chan *chan,
1721                        struct dma_slave_config *dmaengine_cfg,
1722                        enum dma_transfer_direction direction)
1723 {
1724         struct sdma_channel *sdmac = to_sdma_chan(chan);
1725
1726         if (direction == DMA_DEV_TO_MEM) {
1727                 sdmac->per_address = dmaengine_cfg->src_addr;
1728                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1729                         dmaengine_cfg->src_addr_width;
1730                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1731         } else if (direction == DMA_DEV_TO_DEV) {
1732                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1733                 sdmac->per_address = dmaengine_cfg->dst_addr;
1734                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1735                         SDMA_WATERMARK_LEVEL_LWML;
1736                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1737                         SDMA_WATERMARK_LEVEL_HWML;
1738                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1739         } else {
1740                 sdmac->per_address = dmaengine_cfg->dst_addr;
1741                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1742                         dmaengine_cfg->dst_addr_width;
1743                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1744         }
1745         sdmac->direction = direction;
1746         return sdma_config_channel(chan);
1747 }
1748
1749 static int sdma_config(struct dma_chan *chan,
1750                        struct dma_slave_config *dmaengine_cfg)
1751 {
1752         struct sdma_channel *sdmac = to_sdma_chan(chan);
1753         struct sdma_engine *sdma = sdmac->sdma;
1754
1755         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1756
1757         if (dmaengine_cfg->peripheral_config) {
1758                 struct sdma_peripheral_config *sdmacfg = dmaengine_cfg->peripheral_config;
1759                 if (dmaengine_cfg->peripheral_size != sizeof(struct sdma_peripheral_config)) {
1760                         dev_err(sdma->dev, "Invalid peripheral size %zu, expected %zu\n",
1761                                 dmaengine_cfg->peripheral_size,
1762                                 sizeof(struct sdma_peripheral_config));
1763                         return -EINVAL;
1764                 }
1765                 sdmac->n_fifos_src = sdmacfg->n_fifos_src;
1766                 sdmac->n_fifos_dst = sdmacfg->n_fifos_dst;
1767                 sdmac->sw_done = sdmacfg->sw_done;
1768         }
1769
1770         /* Set ENBLn earlier to make sure dma request triggered after that */
1771         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1772                 return -EINVAL;
1773         sdma_event_enable(sdmac, sdmac->event_id0);
1774
1775         if (sdmac->event_id1) {
1776                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1777                         return -EINVAL;
1778                 sdma_event_enable(sdmac, sdmac->event_id1);
1779         }
1780
1781         return 0;
1782 }
1783
1784 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1785                                       dma_cookie_t cookie,
1786                                       struct dma_tx_state *txstate)
1787 {
1788         struct sdma_channel *sdmac = to_sdma_chan(chan);
1789         struct sdma_desc *desc = NULL;
1790         u32 residue;
1791         struct virt_dma_desc *vd;
1792         enum dma_status ret;
1793         unsigned long flags;
1794
1795         ret = dma_cookie_status(chan, cookie, txstate);
1796         if (ret == DMA_COMPLETE || !txstate)
1797                 return ret;
1798
1799         spin_lock_irqsave(&sdmac->vc.lock, flags);
1800
1801         vd = vchan_find_desc(&sdmac->vc, cookie);
1802         if (vd)
1803                 desc = to_sdma_desc(&vd->tx);
1804         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1805                 desc = sdmac->desc;
1806
1807         if (desc) {
1808                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1809                         residue = (desc->num_bd - desc->buf_ptail) *
1810                                 desc->period_len - desc->chn_real_count;
1811                 else
1812                         residue = desc->chn_count - desc->chn_real_count;
1813         } else {
1814                 residue = 0;
1815         }
1816
1817         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1818
1819         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1820                          residue);
1821
1822         return sdmac->status;
1823 }
1824
1825 static void sdma_issue_pending(struct dma_chan *chan)
1826 {
1827         struct sdma_channel *sdmac = to_sdma_chan(chan);
1828         unsigned long flags;
1829
1830         spin_lock_irqsave(&sdmac->vc.lock, flags);
1831         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1832                 sdma_start_desc(sdmac);
1833         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1834 }
1835
1836 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1837 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1838 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 45
1839 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 46
1840
1841 static void sdma_add_scripts(struct sdma_engine *sdma,
1842                              const struct sdma_script_start_addrs *addr)
1843 {
1844         s32 *addr_arr = (u32 *)addr;
1845         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1846         int i;
1847
1848         /* use the default firmware in ROM if missing external firmware */
1849         if (!sdma->script_number)
1850                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1851
1852         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1853                                   / sizeof(s32)) {
1854                 dev_err(sdma->dev,
1855                         "SDMA script number %d not match with firmware.\n",
1856                         sdma->script_number);
1857                 return;
1858         }
1859
1860         for (i = 0; i < sdma->script_number; i++)
1861                 if (addr_arr[i] > 0)
1862                         saddr_arr[i] = addr_arr[i];
1863
1864         /*
1865          * For compatibility with NXP internal legacy kernel before 4.19 which
1866          * is based on uart ram script and mainline kernel based on uart rom
1867          * script, both uart ram/rom scripts are present in newer sdma
1868          * firmware. Use the rom versions if they are present (V3 or newer).
1869          */
1870         if (sdma->script_number >= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3) {
1871                 if (addr->uart_2_mcu_rom_addr)
1872                         sdma->script_addrs->uart_2_mcu_addr = addr->uart_2_mcu_rom_addr;
1873                 if (addr->uartsh_2_mcu_rom_addr)
1874                         sdma->script_addrs->uartsh_2_mcu_addr = addr->uartsh_2_mcu_rom_addr;
1875         }
1876 }
1877
1878 static void sdma_load_firmware(const struct firmware *fw, void *context)
1879 {
1880         struct sdma_engine *sdma = context;
1881         const struct sdma_firmware_header *header;
1882         const struct sdma_script_start_addrs *addr;
1883         unsigned short *ram_code;
1884
1885         if (!fw) {
1886                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1887                 /* In this case we just use the ROM firmware. */
1888                 return;
1889         }
1890
1891         if (fw->size < sizeof(*header))
1892                 goto err_firmware;
1893
1894         header = (struct sdma_firmware_header *)fw->data;
1895
1896         if (header->magic != SDMA_FIRMWARE_MAGIC)
1897                 goto err_firmware;
1898         if (header->ram_code_start + header->ram_code_size > fw->size)
1899                 goto err_firmware;
1900         switch (header->version_major) {
1901         case 1:
1902                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1903                 break;
1904         case 2:
1905                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1906                 break;
1907         case 3:
1908                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1909                 break;
1910         case 4:
1911                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1912                 break;
1913         default:
1914                 dev_err(sdma->dev, "unknown firmware version\n");
1915                 goto err_firmware;
1916         }
1917
1918         addr = (void *)header + header->script_addrs_start;
1919         ram_code = (void *)header + header->ram_code_start;
1920
1921         clk_enable(sdma->clk_ipg);
1922         clk_enable(sdma->clk_ahb);
1923         /* download the RAM image for SDMA */
1924         sdma_load_script(sdma, ram_code,
1925                          header->ram_code_size,
1926                          addr->ram_code_start_addr);
1927         clk_disable(sdma->clk_ipg);
1928         clk_disable(sdma->clk_ahb);
1929
1930         sdma_add_scripts(sdma, addr);
1931
1932         sdma->fw_loaded = true;
1933
1934         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1935                  header->version_major,
1936                  header->version_minor);
1937
1938 err_firmware:
1939         release_firmware(fw);
1940 }
1941
1942 #define EVENT_REMAP_CELLS 3
1943
1944 static int sdma_event_remap(struct sdma_engine *sdma)
1945 {
1946         struct device_node *np = sdma->dev->of_node;
1947         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1948         struct property *event_remap;
1949         struct regmap *gpr;
1950         char propname[] = "fsl,sdma-event-remap";
1951         u32 reg, val, shift, num_map, i;
1952         int ret = 0;
1953
1954         if (IS_ERR(np) || !gpr_np)
1955                 goto out;
1956
1957         event_remap = of_find_property(np, propname, NULL);
1958         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1959         if (!num_map) {
1960                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1961                 goto out;
1962         } else if (num_map % EVENT_REMAP_CELLS) {
1963                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1964                                 propname, EVENT_REMAP_CELLS);
1965                 ret = -EINVAL;
1966                 goto out;
1967         }
1968
1969         gpr = syscon_node_to_regmap(gpr_np);
1970         if (IS_ERR(gpr)) {
1971                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1972                 ret = PTR_ERR(gpr);
1973                 goto out;
1974         }
1975
1976         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1977                 ret = of_property_read_u32_index(np, propname, i, &reg);
1978                 if (ret) {
1979                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1980                                         propname, i);
1981                         goto out;
1982                 }
1983
1984                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1985                 if (ret) {
1986                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1987                                         propname, i + 1);
1988                         goto out;
1989                 }
1990
1991                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1992                 if (ret) {
1993                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1994                                         propname, i + 2);
1995                         goto out;
1996                 }
1997
1998                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1999         }
2000
2001 out:
2002         if (gpr_np)
2003                 of_node_put(gpr_np);
2004
2005         return ret;
2006 }
2007
2008 static int sdma_get_firmware(struct sdma_engine *sdma,
2009                 const char *fw_name)
2010 {
2011         int ret;
2012
2013         ret = request_firmware_nowait(THIS_MODULE,
2014                         FW_ACTION_UEVENT, fw_name, sdma->dev,
2015                         GFP_KERNEL, sdma, sdma_load_firmware);
2016
2017         return ret;
2018 }
2019
2020 static int sdma_init(struct sdma_engine *sdma)
2021 {
2022         int i, ret;
2023         dma_addr_t ccb_phys;
2024
2025         ret = clk_enable(sdma->clk_ipg);
2026         if (ret)
2027                 return ret;
2028         ret = clk_enable(sdma->clk_ahb);
2029         if (ret)
2030                 goto disable_clk_ipg;
2031
2032         if (sdma->drvdata->check_ratio &&
2033             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
2034                 sdma->clk_ratio = 1;
2035
2036         /* Be sure SDMA has not started yet */
2037         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
2038
2039         sdma->channel_control = dma_alloc_coherent(sdma->dev,
2040                         MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control) +
2041                         sizeof(struct sdma_context_data),
2042                         &ccb_phys, GFP_KERNEL);
2043
2044         if (!sdma->channel_control) {
2045                 ret = -ENOMEM;
2046                 goto err_dma_alloc;
2047         }
2048
2049         sdma->context = (void *)sdma->channel_control +
2050                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2051         sdma->context_phys = ccb_phys +
2052                 MAX_DMA_CHANNELS * sizeof(struct sdma_channel_control);
2053
2054         /* disable all channels */
2055         for (i = 0; i < sdma->drvdata->num_events; i++)
2056                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
2057
2058         /* All channels have priority 0 */
2059         for (i = 0; i < MAX_DMA_CHANNELS; i++)
2060                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
2061
2062         ret = sdma_request_channel0(sdma);
2063         if (ret)
2064                 goto err_dma_alloc;
2065
2066         sdma_config_ownership(&sdma->channel[0], false, true, false);
2067
2068         /* Set Command Channel (Channel Zero) */
2069         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
2070
2071         /* Set bits of CONFIG register but with static context switching */
2072         if (sdma->clk_ratio)
2073                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
2074         else
2075                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
2076
2077         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
2078
2079         /* Initializes channel's priorities */
2080         sdma_set_channel_priority(&sdma->channel[0], 7);
2081
2082         clk_disable(sdma->clk_ipg);
2083         clk_disable(sdma->clk_ahb);
2084
2085         return 0;
2086
2087 err_dma_alloc:
2088         clk_disable(sdma->clk_ahb);
2089 disable_clk_ipg:
2090         clk_disable(sdma->clk_ipg);
2091         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
2092         return ret;
2093 }
2094
2095 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
2096 {
2097         struct sdma_channel *sdmac = to_sdma_chan(chan);
2098         struct imx_dma_data *data = fn_param;
2099
2100         if (!imx_dma_is_general_purpose(chan))
2101                 return false;
2102
2103         sdmac->data = *data;
2104         chan->private = &sdmac->data;
2105
2106         return true;
2107 }
2108
2109 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
2110                                    struct of_dma *ofdma)
2111 {
2112         struct sdma_engine *sdma = ofdma->of_dma_data;
2113         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
2114         struct imx_dma_data data;
2115
2116         if (dma_spec->args_count != 3)
2117                 return NULL;
2118
2119         data.dma_request = dma_spec->args[0];
2120         data.peripheral_type = dma_spec->args[1];
2121         data.priority = dma_spec->args[2];
2122         /*
2123          * init dma_request2 to zero, which is not used by the dts.
2124          * For P2P, dma_request2 is init from dma_request_channel(),
2125          * chan->private will point to the imx_dma_data, and in
2126          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
2127          * be set to sdmac->event_id1.
2128          */
2129         data.dma_request2 = 0;
2130
2131         return __dma_request_channel(&mask, sdma_filter_fn, &data,
2132                                      ofdma->of_node);
2133 }
2134
2135 static int sdma_probe(struct platform_device *pdev)
2136 {
2137         struct device_node *np = pdev->dev.of_node;
2138         struct device_node *spba_bus;
2139         const char *fw_name;
2140         int ret;
2141         int irq;
2142         struct resource *iores;
2143         struct resource spba_res;
2144         int i;
2145         struct sdma_engine *sdma;
2146         s32 *saddr_arr;
2147
2148         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2149         if (ret)
2150                 return ret;
2151
2152         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2153         if (!sdma)
2154                 return -ENOMEM;
2155
2156         spin_lock_init(&sdma->channel_0_lock);
2157
2158         sdma->dev = &pdev->dev;
2159         sdma->drvdata = of_device_get_match_data(sdma->dev);
2160
2161         irq = platform_get_irq(pdev, 0);
2162         if (irq < 0)
2163                 return irq;
2164
2165         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2166         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2167         if (IS_ERR(sdma->regs))
2168                 return PTR_ERR(sdma->regs);
2169
2170         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2171         if (IS_ERR(sdma->clk_ipg))
2172                 return PTR_ERR(sdma->clk_ipg);
2173
2174         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2175         if (IS_ERR(sdma->clk_ahb))
2176                 return PTR_ERR(sdma->clk_ahb);
2177
2178         ret = clk_prepare(sdma->clk_ipg);
2179         if (ret)
2180                 return ret;
2181
2182         ret = clk_prepare(sdma->clk_ahb);
2183         if (ret)
2184                 goto err_clk;
2185
2186         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2187                                sdma);
2188         if (ret)
2189                 goto err_irq;
2190
2191         sdma->irq = irq;
2192
2193         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2194         if (!sdma->script_addrs) {
2195                 ret = -ENOMEM;
2196                 goto err_irq;
2197         }
2198
2199         /* initially no scripts available */
2200         saddr_arr = (s32 *)sdma->script_addrs;
2201         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2202                 saddr_arr[i] = -EINVAL;
2203
2204         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2205         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2206         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2207
2208         INIT_LIST_HEAD(&sdma->dma_device.channels);
2209         /* Initialize channel parameters */
2210         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2211                 struct sdma_channel *sdmac = &sdma->channel[i];
2212
2213                 sdmac->sdma = sdma;
2214
2215                 sdmac->channel = i;
2216                 sdmac->vc.desc_free = sdma_desc_free;
2217                 INIT_LIST_HEAD(&sdmac->terminated);
2218                 INIT_WORK(&sdmac->terminate_worker,
2219                                 sdma_channel_terminate_work);
2220                 /*
2221                  * Add the channel to the DMAC list. Do not add channel 0 though
2222                  * because we need it internally in the SDMA driver. This also means
2223                  * that channel 0 in dmaengine counting matches sdma channel 1.
2224                  */
2225                 if (i)
2226                         vchan_init(&sdmac->vc, &sdma->dma_device);
2227         }
2228
2229         ret = sdma_init(sdma);
2230         if (ret)
2231                 goto err_init;
2232
2233         ret = sdma_event_remap(sdma);
2234         if (ret)
2235                 goto err_init;
2236
2237         if (sdma->drvdata->script_addrs)
2238                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2239
2240         sdma->dma_device.dev = &pdev->dev;
2241
2242         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2243         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2244         sdma->dma_device.device_tx_status = sdma_tx_status;
2245         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2246         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2247         sdma->dma_device.device_config = sdma_config;
2248         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2249         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2250         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2251         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2252         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2253         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2254         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2255         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2256         sdma->dma_device.copy_align = 2;
2257         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2258
2259         platform_set_drvdata(pdev, sdma);
2260
2261         ret = dma_async_device_register(&sdma->dma_device);
2262         if (ret) {
2263                 dev_err(&pdev->dev, "unable to register\n");
2264                 goto err_init;
2265         }
2266
2267         if (np) {
2268                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2269                 if (ret) {
2270                         dev_err(&pdev->dev, "failed to register controller\n");
2271                         goto err_register;
2272                 }
2273
2274                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2275                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2276                 if (!ret) {
2277                         sdma->spba_start_addr = spba_res.start;
2278                         sdma->spba_end_addr = spba_res.end;
2279                 }
2280                 of_node_put(spba_bus);
2281         }
2282
2283         /*
2284          * Because that device tree does not encode ROM script address,
2285          * the RAM script in firmware is mandatory for device tree
2286          * probe, otherwise it fails.
2287          */
2288         ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2289                                       &fw_name);
2290         if (ret) {
2291                 dev_warn(&pdev->dev, "failed to get firmware name\n");
2292         } else {
2293                 ret = sdma_get_firmware(sdma, fw_name);
2294                 if (ret)
2295                         dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2296         }
2297
2298         return 0;
2299
2300 err_register:
2301         dma_async_device_unregister(&sdma->dma_device);
2302 err_init:
2303         kfree(sdma->script_addrs);
2304 err_irq:
2305         clk_unprepare(sdma->clk_ahb);
2306 err_clk:
2307         clk_unprepare(sdma->clk_ipg);
2308         return ret;
2309 }
2310
2311 static int sdma_remove(struct platform_device *pdev)
2312 {
2313         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2314         int i;
2315
2316         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2317         dma_async_device_unregister(&sdma->dma_device);
2318         kfree(sdma->script_addrs);
2319         clk_unprepare(sdma->clk_ahb);
2320         clk_unprepare(sdma->clk_ipg);
2321         /* Kill the tasklet */
2322         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2323                 struct sdma_channel *sdmac = &sdma->channel[i];
2324
2325                 tasklet_kill(&sdmac->vc.task);
2326                 sdma_free_chan_resources(&sdmac->vc.chan);
2327         }
2328
2329         platform_set_drvdata(pdev, NULL);
2330         return 0;
2331 }
2332
2333 static struct platform_driver sdma_driver = {
2334         .driver         = {
2335                 .name   = "imx-sdma",
2336                 .of_match_table = sdma_dt_ids,
2337         },
2338         .remove         = sdma_remove,
2339         .probe          = sdma_probe,
2340 };
2341
2342 module_platform_driver(sdma_driver);
2343
2344 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2345 MODULE_DESCRIPTION("i.MX SDMA driver");
2346 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2347 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2348 #endif
2349 #if IS_ENABLED(CONFIG_SOC_IMX7D) || IS_ENABLED(CONFIG_SOC_IMX8M)
2350 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2351 #endif
2352 MODULE_LICENSE("GPL");