KVM: arm64: Simplify handling of ARCH_WORKAROUND_2
[linux-2.6-microblaze.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @slave_config:       Slave configuration
339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
340  * @event_id0:          aka dma request line
341  * @event_id1:          for channels that use 2 events
342  * @word_size:          peripheral access size
343  * @pc_from_device:     script address for those device_2_memory
344  * @pc_to_device:       script address for those memory_2_device
345  * @device_to_device:   script address for those device_2_device
346  * @pc_to_pc:           script address for those memory_2_memory
347  * @flags:              loop mode or not
348  * @per_address:        peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:       peripheral source address in p_2_p case
351  * @event_mask:         event mask used in p_2_p script
352  * @watermark_level:    value for gReg[7], some script will extend it from
353  *                      basic watermark such as p_2_p
354  * @shp_addr:           value for gReg[6]
355  * @per_addr:           value for gReg[2]
356  * @status:             status of dma channel
357  * @context_loaded:     ensure context is only loaded once
358  * @data:               specific sdma interface structure
359  * @bd_pool:            dma_pool for bd
360  * @terminate_worker:   used to call back into terminate work function
361  */
362 struct sdma_channel {
363         struct virt_dma_chan            vc;
364         struct sdma_desc                *desc;
365         struct sdma_engine              *sdma;
366         unsigned int                    channel;
367         enum dma_transfer_direction             direction;
368         struct dma_slave_config         slave_config;
369         enum sdma_peripheral_type       peripheral_type;
370         unsigned int                    event_id0;
371         unsigned int                    event_id1;
372         enum dma_slave_buswidth         word_size;
373         unsigned int                    pc_from_device, pc_to_device;
374         unsigned int                    device_to_device;
375         unsigned int                    pc_to_pc;
376         unsigned long                   flags;
377         dma_addr_t                      per_address, per_address2;
378         unsigned long                   event_mask[2];
379         unsigned long                   watermark_level;
380         u32                             shp_addr, per_addr;
381         enum dma_status                 status;
382         bool                            context_loaded;
383         struct imx_dma_data             data;
384         struct work_struct              terminate_worker;
385 };
386
387 #define IMX_DMA_SG_LOOP         BIT(0)
388
389 #define MAX_DMA_CHANNELS 32
390 #define MXC_SDMA_DEFAULT_PRIORITY 1
391 #define MXC_SDMA_MIN_PRIORITY 1
392 #define MXC_SDMA_MAX_PRIORITY 7
393
394 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395
396 /**
397  * struct sdma_firmware_header - Layout of the firmware image
398  *
399  * @magic:              "SDMA"
400  * @version_major:      increased whenever layout of struct
401  *                      sdma_script_start_addrs changes.
402  * @version_minor:      firmware minor version (for binary compatible changes)
403  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
404  * @num_script_addrs:   Number of script addresses in this image
405  * @ram_code_start:     offset of SDMA ram image in this firmware image
406  * @ram_code_size:      size of SDMA ram image
407  * @script_addrs:       Stores the start address of the SDMA scripts
408  *                      (in SDMA memory space)
409  */
410 struct sdma_firmware_header {
411         u32     magic;
412         u32     version_major;
413         u32     version_minor;
414         u32     script_addrs_start;
415         u32     num_script_addrs;
416         u32     ram_code_start;
417         u32     ram_code_size;
418 };
419
420 struct sdma_driver_data {
421         int chnenbl0;
422         int num_events;
423         struct sdma_script_start_addrs  *script_addrs;
424         bool check_ratio;
425 };
426
427 struct sdma_engine {
428         struct device                   *dev;
429         struct device_dma_parameters    dma_parms;
430         struct sdma_channel             channel[MAX_DMA_CHANNELS];
431         struct sdma_channel_control     *channel_control;
432         void __iomem                    *regs;
433         struct sdma_context_data        *context;
434         dma_addr_t                      context_phys;
435         struct dma_device               dma_device;
436         struct clk                      *clk_ipg;
437         struct clk                      *clk_ahb;
438         spinlock_t                      channel_0_lock;
439         u32                             script_number;
440         struct sdma_script_start_addrs  *script_addrs;
441         const struct sdma_driver_data   *drvdata;
442         u32                             spba_start_addr;
443         u32                             spba_end_addr;
444         unsigned int                    irq;
445         dma_addr_t                      bd0_phys;
446         struct sdma_buffer_descriptor   *bd0;
447         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
448         bool                            clk_ratio;
449 };
450
451 static int sdma_config_write(struct dma_chan *chan,
452                        struct dma_slave_config *dmaengine_cfg,
453                        enum dma_transfer_direction direction);
454
455 static struct sdma_driver_data sdma_imx31 = {
456         .chnenbl0 = SDMA_CHNENBL0_IMX31,
457         .num_events = 32,
458 };
459
460 static struct sdma_script_start_addrs sdma_script_imx25 = {
461         .ap_2_ap_addr = 729,
462         .uart_2_mcu_addr = 904,
463         .per_2_app_addr = 1255,
464         .mcu_2_app_addr = 834,
465         .uartsh_2_mcu_addr = 1120,
466         .per_2_shp_addr = 1329,
467         .mcu_2_shp_addr = 1048,
468         .ata_2_mcu_addr = 1560,
469         .mcu_2_ata_addr = 1479,
470         .app_2_per_addr = 1189,
471         .app_2_mcu_addr = 770,
472         .shp_2_per_addr = 1407,
473         .shp_2_mcu_addr = 979,
474 };
475
476 static struct sdma_driver_data sdma_imx25 = {
477         .chnenbl0 = SDMA_CHNENBL0_IMX35,
478         .num_events = 48,
479         .script_addrs = &sdma_script_imx25,
480 };
481
482 static struct sdma_driver_data sdma_imx35 = {
483         .chnenbl0 = SDMA_CHNENBL0_IMX35,
484         .num_events = 48,
485 };
486
487 static struct sdma_script_start_addrs sdma_script_imx51 = {
488         .ap_2_ap_addr = 642,
489         .uart_2_mcu_addr = 817,
490         .mcu_2_app_addr = 747,
491         .mcu_2_shp_addr = 961,
492         .ata_2_mcu_addr = 1473,
493         .mcu_2_ata_addr = 1392,
494         .app_2_per_addr = 1033,
495         .app_2_mcu_addr = 683,
496         .shp_2_per_addr = 1251,
497         .shp_2_mcu_addr = 892,
498 };
499
500 static struct sdma_driver_data sdma_imx51 = {
501         .chnenbl0 = SDMA_CHNENBL0_IMX35,
502         .num_events = 48,
503         .script_addrs = &sdma_script_imx51,
504 };
505
506 static struct sdma_script_start_addrs sdma_script_imx53 = {
507         .ap_2_ap_addr = 642,
508         .app_2_mcu_addr = 683,
509         .mcu_2_app_addr = 747,
510         .uart_2_mcu_addr = 817,
511         .shp_2_mcu_addr = 891,
512         .mcu_2_shp_addr = 960,
513         .uartsh_2_mcu_addr = 1032,
514         .spdif_2_mcu_addr = 1100,
515         .mcu_2_spdif_addr = 1134,
516         .firi_2_mcu_addr = 1193,
517         .mcu_2_firi_addr = 1290,
518 };
519
520 static struct sdma_driver_data sdma_imx53 = {
521         .chnenbl0 = SDMA_CHNENBL0_IMX35,
522         .num_events = 48,
523         .script_addrs = &sdma_script_imx53,
524 };
525
526 static struct sdma_script_start_addrs sdma_script_imx6q = {
527         .ap_2_ap_addr = 642,
528         .uart_2_mcu_addr = 817,
529         .mcu_2_app_addr = 747,
530         .per_2_per_addr = 6331,
531         .uartsh_2_mcu_addr = 1032,
532         .mcu_2_shp_addr = 960,
533         .app_2_mcu_addr = 683,
534         .shp_2_mcu_addr = 891,
535         .spdif_2_mcu_addr = 1100,
536         .mcu_2_spdif_addr = 1134,
537 };
538
539 static struct sdma_driver_data sdma_imx6q = {
540         .chnenbl0 = SDMA_CHNENBL0_IMX35,
541         .num_events = 48,
542         .script_addrs = &sdma_script_imx6q,
543 };
544
545 static struct sdma_script_start_addrs sdma_script_imx7d = {
546         .ap_2_ap_addr = 644,
547         .uart_2_mcu_addr = 819,
548         .mcu_2_app_addr = 749,
549         .uartsh_2_mcu_addr = 1034,
550         .mcu_2_shp_addr = 962,
551         .app_2_mcu_addr = 685,
552         .shp_2_mcu_addr = 893,
553         .spdif_2_mcu_addr = 1102,
554         .mcu_2_spdif_addr = 1136,
555 };
556
557 static struct sdma_driver_data sdma_imx7d = {
558         .chnenbl0 = SDMA_CHNENBL0_IMX35,
559         .num_events = 48,
560         .script_addrs = &sdma_script_imx7d,
561 };
562
563 static struct sdma_driver_data sdma_imx8mq = {
564         .chnenbl0 = SDMA_CHNENBL0_IMX35,
565         .num_events = 48,
566         .script_addrs = &sdma_script_imx7d,
567         .check_ratio = 1,
568 };
569
570 static const struct platform_device_id sdma_devtypes[] = {
571         {
572                 .name = "imx25-sdma",
573                 .driver_data = (unsigned long)&sdma_imx25,
574         }, {
575                 .name = "imx31-sdma",
576                 .driver_data = (unsigned long)&sdma_imx31,
577         }, {
578                 .name = "imx35-sdma",
579                 .driver_data = (unsigned long)&sdma_imx35,
580         }, {
581                 .name = "imx51-sdma",
582                 .driver_data = (unsigned long)&sdma_imx51,
583         }, {
584                 .name = "imx53-sdma",
585                 .driver_data = (unsigned long)&sdma_imx53,
586         }, {
587                 .name = "imx6q-sdma",
588                 .driver_data = (unsigned long)&sdma_imx6q,
589         }, {
590                 .name = "imx7d-sdma",
591                 .driver_data = (unsigned long)&sdma_imx7d,
592         }, {
593                 .name = "imx8mq-sdma",
594                 .driver_data = (unsigned long)&sdma_imx8mq,
595         }, {
596                 /* sentinel */
597         }
598 };
599 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
600
601 static const struct of_device_id sdma_dt_ids[] = {
602         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
603         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
604         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
605         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
606         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
607         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
608         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
609         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
610         { /* sentinel */ }
611 };
612 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
613
614 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
615 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
616 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
617 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
618
619 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
620 {
621         u32 chnenbl0 = sdma->drvdata->chnenbl0;
622         return chnenbl0 + event * 4;
623 }
624
625 static int sdma_config_ownership(struct sdma_channel *sdmac,
626                 bool event_override, bool mcu_override, bool dsp_override)
627 {
628         struct sdma_engine *sdma = sdmac->sdma;
629         int channel = sdmac->channel;
630         unsigned long evt, mcu, dsp;
631
632         if (event_override && mcu_override && dsp_override)
633                 return -EINVAL;
634
635         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
636         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
637         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
638
639         if (dsp_override)
640                 __clear_bit(channel, &dsp);
641         else
642                 __set_bit(channel, &dsp);
643
644         if (event_override)
645                 __clear_bit(channel, &evt);
646         else
647                 __set_bit(channel, &evt);
648
649         if (mcu_override)
650                 __clear_bit(channel, &mcu);
651         else
652                 __set_bit(channel, &mcu);
653
654         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
655         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
656         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
657
658         return 0;
659 }
660
661 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
662 {
663         writel(BIT(channel), sdma->regs + SDMA_H_START);
664 }
665
666 /*
667  * sdma_run_channel0 - run a channel and wait till it's done
668  */
669 static int sdma_run_channel0(struct sdma_engine *sdma)
670 {
671         int ret;
672         u32 reg;
673
674         sdma_enable_channel(sdma, 0);
675
676         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
677                                                 reg, !(reg & 1), 1, 500);
678         if (ret)
679                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
680
681         /* Set bits of CONFIG register with dynamic context switching */
682         reg = readl(sdma->regs + SDMA_H_CONFIG);
683         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
684                 reg |= SDMA_H_CONFIG_CSM;
685                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
686         }
687
688         return ret;
689 }
690
691 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
692                 u32 address)
693 {
694         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
695         void *buf_virt;
696         dma_addr_t buf_phys;
697         int ret;
698         unsigned long flags;
699
700         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
701         if (!buf_virt) {
702                 return -ENOMEM;
703         }
704
705         spin_lock_irqsave(&sdma->channel_0_lock, flags);
706
707         bd0->mode.command = C0_SETPM;
708         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
709         bd0->mode.count = size / 2;
710         bd0->buffer_addr = buf_phys;
711         bd0->ext_buffer_addr = address;
712
713         memcpy(buf_virt, buf, size);
714
715         ret = sdma_run_channel0(sdma);
716
717         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
718
719         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
720
721         return ret;
722 }
723
724 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
725 {
726         struct sdma_engine *sdma = sdmac->sdma;
727         int channel = sdmac->channel;
728         unsigned long val;
729         u32 chnenbl = chnenbl_ofs(sdma, event);
730
731         val = readl_relaxed(sdma->regs + chnenbl);
732         __set_bit(channel, &val);
733         writel_relaxed(val, sdma->regs + chnenbl);
734 }
735
736 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
737 {
738         struct sdma_engine *sdma = sdmac->sdma;
739         int channel = sdmac->channel;
740         u32 chnenbl = chnenbl_ofs(sdma, event);
741         unsigned long val;
742
743         val = readl_relaxed(sdma->regs + chnenbl);
744         __clear_bit(channel, &val);
745         writel_relaxed(val, sdma->regs + chnenbl);
746 }
747
748 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
749 {
750         return container_of(t, struct sdma_desc, vd.tx);
751 }
752
753 static void sdma_start_desc(struct sdma_channel *sdmac)
754 {
755         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
756         struct sdma_desc *desc;
757         struct sdma_engine *sdma = sdmac->sdma;
758         int channel = sdmac->channel;
759
760         if (!vd) {
761                 sdmac->desc = NULL;
762                 return;
763         }
764         sdmac->desc = desc = to_sdma_desc(&vd->tx);
765
766         list_del(&vd->node);
767
768         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
769         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
770         sdma_enable_channel(sdma, sdmac->channel);
771 }
772
773 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
774 {
775         struct sdma_buffer_descriptor *bd;
776         int error = 0;
777         enum dma_status old_status = sdmac->status;
778
779         /*
780          * loop mode. Iterate over descriptors, re-setup them and
781          * call callback function.
782          */
783         while (sdmac->desc) {
784                 struct sdma_desc *desc = sdmac->desc;
785
786                 bd = &desc->bd[desc->buf_tail];
787
788                 if (bd->mode.status & BD_DONE)
789                         break;
790
791                 if (bd->mode.status & BD_RROR) {
792                         bd->mode.status &= ~BD_RROR;
793                         sdmac->status = DMA_ERROR;
794                         error = -EIO;
795                 }
796
797                /*
798                 * We use bd->mode.count to calculate the residue, since contains
799                 * the number of bytes present in the current buffer descriptor.
800                 */
801
802                 desc->chn_real_count = bd->mode.count;
803                 bd->mode.status |= BD_DONE;
804                 bd->mode.count = desc->period_len;
805                 desc->buf_ptail = desc->buf_tail;
806                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
807
808                 /*
809                  * The callback is called from the interrupt context in order
810                  * to reduce latency and to avoid the risk of altering the
811                  * SDMA transaction status by the time the client tasklet is
812                  * executed.
813                  */
814                 spin_unlock(&sdmac->vc.lock);
815                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
816                 spin_lock(&sdmac->vc.lock);
817
818                 if (error)
819                         sdmac->status = old_status;
820         }
821 }
822
823 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
824 {
825         struct sdma_channel *sdmac = (struct sdma_channel *) data;
826         struct sdma_buffer_descriptor *bd;
827         int i, error = 0;
828
829         sdmac->desc->chn_real_count = 0;
830         /*
831          * non loop mode. Iterate over all descriptors, collect
832          * errors and call callback function
833          */
834         for (i = 0; i < sdmac->desc->num_bd; i++) {
835                 bd = &sdmac->desc->bd[i];
836
837                  if (bd->mode.status & (BD_DONE | BD_RROR))
838                         error = -EIO;
839                  sdmac->desc->chn_real_count += bd->mode.count;
840         }
841
842         if (error)
843                 sdmac->status = DMA_ERROR;
844         else
845                 sdmac->status = DMA_COMPLETE;
846 }
847
848 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
849 {
850         struct sdma_engine *sdma = dev_id;
851         unsigned long stat;
852
853         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
854         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
855         /* channel 0 is special and not handled here, see run_channel0() */
856         stat &= ~1;
857
858         while (stat) {
859                 int channel = fls(stat) - 1;
860                 struct sdma_channel *sdmac = &sdma->channel[channel];
861                 struct sdma_desc *desc;
862
863                 spin_lock(&sdmac->vc.lock);
864                 desc = sdmac->desc;
865                 if (desc) {
866                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
867                                 sdma_update_channel_loop(sdmac);
868                         } else {
869                                 mxc_sdma_handle_channel_normal(sdmac);
870                                 vchan_cookie_complete(&desc->vd);
871                                 sdma_start_desc(sdmac);
872                         }
873                 }
874
875                 spin_unlock(&sdmac->vc.lock);
876                 __clear_bit(channel, &stat);
877         }
878
879         return IRQ_HANDLED;
880 }
881
882 /*
883  * sets the pc of SDMA script according to the peripheral type
884  */
885 static void sdma_get_pc(struct sdma_channel *sdmac,
886                 enum sdma_peripheral_type peripheral_type)
887 {
888         struct sdma_engine *sdma = sdmac->sdma;
889         int per_2_emi = 0, emi_2_per = 0;
890         /*
891          * These are needed once we start to support transfers between
892          * two peripherals or memory-to-memory transfers
893          */
894         int per_2_per = 0, emi_2_emi = 0;
895
896         sdmac->pc_from_device = 0;
897         sdmac->pc_to_device = 0;
898         sdmac->device_to_device = 0;
899         sdmac->pc_to_pc = 0;
900
901         switch (peripheral_type) {
902         case IMX_DMATYPE_MEMORY:
903                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
904                 break;
905         case IMX_DMATYPE_DSP:
906                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
907                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
908                 break;
909         case IMX_DMATYPE_FIRI:
910                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
911                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
912                 break;
913         case IMX_DMATYPE_UART:
914                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
915                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
916                 break;
917         case IMX_DMATYPE_UART_SP:
918                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
919                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
920                 break;
921         case IMX_DMATYPE_ATA:
922                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
923                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
924                 break;
925         case IMX_DMATYPE_CSPI:
926         case IMX_DMATYPE_EXT:
927         case IMX_DMATYPE_SSI:
928         case IMX_DMATYPE_SAI:
929                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
930                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
931                 break;
932         case IMX_DMATYPE_SSI_DUAL:
933                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
934                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
935                 break;
936         case IMX_DMATYPE_SSI_SP:
937         case IMX_DMATYPE_MMC:
938         case IMX_DMATYPE_SDHC:
939         case IMX_DMATYPE_CSPI_SP:
940         case IMX_DMATYPE_ESAI:
941         case IMX_DMATYPE_MSHC_SP:
942                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
943                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
944                 break;
945         case IMX_DMATYPE_ASRC:
946                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
947                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
948                 per_2_per = sdma->script_addrs->per_2_per_addr;
949                 break;
950         case IMX_DMATYPE_ASRC_SP:
951                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
952                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
953                 per_2_per = sdma->script_addrs->per_2_per_addr;
954                 break;
955         case IMX_DMATYPE_MSHC:
956                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
957                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
958                 break;
959         case IMX_DMATYPE_CCM:
960                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
961                 break;
962         case IMX_DMATYPE_SPDIF:
963                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
964                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
965                 break;
966         case IMX_DMATYPE_IPU_MEMORY:
967                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
968                 break;
969         default:
970                 break;
971         }
972
973         sdmac->pc_from_device = per_2_emi;
974         sdmac->pc_to_device = emi_2_per;
975         sdmac->device_to_device = per_2_per;
976         sdmac->pc_to_pc = emi_2_emi;
977 }
978
979 static int sdma_load_context(struct sdma_channel *sdmac)
980 {
981         struct sdma_engine *sdma = sdmac->sdma;
982         int channel = sdmac->channel;
983         int load_address;
984         struct sdma_context_data *context = sdma->context;
985         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
986         int ret;
987         unsigned long flags;
988
989         if (sdmac->context_loaded)
990                 return 0;
991
992         if (sdmac->direction == DMA_DEV_TO_MEM)
993                 load_address = sdmac->pc_from_device;
994         else if (sdmac->direction == DMA_DEV_TO_DEV)
995                 load_address = sdmac->device_to_device;
996         else if (sdmac->direction == DMA_MEM_TO_MEM)
997                 load_address = sdmac->pc_to_pc;
998         else
999                 load_address = sdmac->pc_to_device;
1000
1001         if (load_address < 0)
1002                 return load_address;
1003
1004         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1005         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1006         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1007         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1008         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1009         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1010
1011         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1012
1013         memset(context, 0, sizeof(*context));
1014         context->channel_state.pc = load_address;
1015
1016         /* Send by context the event mask,base address for peripheral
1017          * and watermark level
1018          */
1019         context->gReg[0] = sdmac->event_mask[1];
1020         context->gReg[1] = sdmac->event_mask[0];
1021         context->gReg[2] = sdmac->per_addr;
1022         context->gReg[6] = sdmac->shp_addr;
1023         context->gReg[7] = sdmac->watermark_level;
1024
1025         bd0->mode.command = C0_SETDM;
1026         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1027         bd0->mode.count = sizeof(*context) / 4;
1028         bd0->buffer_addr = sdma->context_phys;
1029         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1030         ret = sdma_run_channel0(sdma);
1031
1032         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1033
1034         sdmac->context_loaded = true;
1035
1036         return ret;
1037 }
1038
1039 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1040 {
1041         return container_of(chan, struct sdma_channel, vc.chan);
1042 }
1043
1044 static int sdma_disable_channel(struct dma_chan *chan)
1045 {
1046         struct sdma_channel *sdmac = to_sdma_chan(chan);
1047         struct sdma_engine *sdma = sdmac->sdma;
1048         int channel = sdmac->channel;
1049
1050         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1051         sdmac->status = DMA_ERROR;
1052
1053         return 0;
1054 }
1055 static void sdma_channel_terminate_work(struct work_struct *work)
1056 {
1057         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1058                                                   terminate_worker);
1059         unsigned long flags;
1060         LIST_HEAD(head);
1061
1062         /*
1063          * According to NXP R&D team a delay of one BD SDMA cost time
1064          * (maximum is 1ms) should be added after disable of the channel
1065          * bit, to ensure SDMA core has really been stopped after SDMA
1066          * clients call .device_terminate_all.
1067          */
1068         usleep_range(1000, 2000);
1069
1070         spin_lock_irqsave(&sdmac->vc.lock, flags);
1071         vchan_get_all_descriptors(&sdmac->vc, &head);
1072         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1073         vchan_dma_desc_free_list(&sdmac->vc, &head);
1074         sdmac->context_loaded = false;
1075 }
1076
1077 static int sdma_terminate_all(struct dma_chan *chan)
1078 {
1079         struct sdma_channel *sdmac = to_sdma_chan(chan);
1080         unsigned long flags;
1081
1082         spin_lock_irqsave(&sdmac->vc.lock, flags);
1083
1084         sdma_disable_channel(chan);
1085
1086         if (sdmac->desc) {
1087                 vchan_terminate_vdesc(&sdmac->desc->vd);
1088                 sdmac->desc = NULL;
1089                 schedule_work(&sdmac->terminate_worker);
1090         }
1091
1092         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1093
1094         return 0;
1095 }
1096
1097 static void sdma_channel_synchronize(struct dma_chan *chan)
1098 {
1099         struct sdma_channel *sdmac = to_sdma_chan(chan);
1100
1101         vchan_synchronize(&sdmac->vc);
1102
1103         flush_work(&sdmac->terminate_worker);
1104 }
1105
1106 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1107 {
1108         struct sdma_engine *sdma = sdmac->sdma;
1109
1110         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1111         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1112
1113         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1114         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1115
1116         if (sdmac->event_id0 > 31)
1117                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1118
1119         if (sdmac->event_id1 > 31)
1120                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1121
1122         /*
1123          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1124          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1125          * r0(event_mask[1]) and r1(event_mask[0]).
1126          */
1127         if (lwml > hwml) {
1128                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1129                                                 SDMA_WATERMARK_LEVEL_HWML);
1130                 sdmac->watermark_level |= hwml;
1131                 sdmac->watermark_level |= lwml << 16;
1132                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1133         }
1134
1135         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1136                         sdmac->per_address2 <= sdma->spba_end_addr)
1137                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1138
1139         if (sdmac->per_address >= sdma->spba_start_addr &&
1140                         sdmac->per_address <= sdma->spba_end_addr)
1141                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1142
1143         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1144 }
1145
1146 static int sdma_config_channel(struct dma_chan *chan)
1147 {
1148         struct sdma_channel *sdmac = to_sdma_chan(chan);
1149         int ret;
1150
1151         sdma_disable_channel(chan);
1152
1153         sdmac->event_mask[0] = 0;
1154         sdmac->event_mask[1] = 0;
1155         sdmac->shp_addr = 0;
1156         sdmac->per_addr = 0;
1157
1158         switch (sdmac->peripheral_type) {
1159         case IMX_DMATYPE_DSP:
1160                 sdma_config_ownership(sdmac, false, true, true);
1161                 break;
1162         case IMX_DMATYPE_MEMORY:
1163                 sdma_config_ownership(sdmac, false, true, false);
1164                 break;
1165         default:
1166                 sdma_config_ownership(sdmac, true, true, false);
1167                 break;
1168         }
1169
1170         sdma_get_pc(sdmac, sdmac->peripheral_type);
1171
1172         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1173                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1174                 /* Handle multiple event channels differently */
1175                 if (sdmac->event_id1) {
1176                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1177                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1178                                 sdma_set_watermarklevel_for_p2p(sdmac);
1179                 } else
1180                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1181
1182                 /* Address */
1183                 sdmac->shp_addr = sdmac->per_address;
1184                 sdmac->per_addr = sdmac->per_address2;
1185         } else {
1186                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1187         }
1188
1189         ret = sdma_load_context(sdmac);
1190
1191         return ret;
1192 }
1193
1194 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1195                 unsigned int priority)
1196 {
1197         struct sdma_engine *sdma = sdmac->sdma;
1198         int channel = sdmac->channel;
1199
1200         if (priority < MXC_SDMA_MIN_PRIORITY
1201             || priority > MXC_SDMA_MAX_PRIORITY) {
1202                 return -EINVAL;
1203         }
1204
1205         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1206
1207         return 0;
1208 }
1209
1210 static int sdma_request_channel0(struct sdma_engine *sdma)
1211 {
1212         int ret = -EBUSY;
1213
1214         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1215                                         GFP_NOWAIT);
1216         if (!sdma->bd0) {
1217                 ret = -ENOMEM;
1218                 goto out;
1219         }
1220
1221         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1222         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1223
1224         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1225         return 0;
1226 out:
1227
1228         return ret;
1229 }
1230
1231
1232 static int sdma_alloc_bd(struct sdma_desc *desc)
1233 {
1234         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1235         int ret = 0;
1236
1237         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1238                                        &desc->bd_phys, GFP_NOWAIT);
1239         if (!desc->bd) {
1240                 ret = -ENOMEM;
1241                 goto out;
1242         }
1243 out:
1244         return ret;
1245 }
1246
1247 static void sdma_free_bd(struct sdma_desc *desc)
1248 {
1249         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1250
1251         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1252                           desc->bd_phys);
1253 }
1254
1255 static void sdma_desc_free(struct virt_dma_desc *vd)
1256 {
1257         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1258
1259         sdma_free_bd(desc);
1260         kfree(desc);
1261 }
1262
1263 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1264 {
1265         struct sdma_channel *sdmac = to_sdma_chan(chan);
1266         struct imx_dma_data *data = chan->private;
1267         struct imx_dma_data mem_data;
1268         int prio, ret;
1269
1270         /*
1271          * MEMCPY may never setup chan->private by filter function such as
1272          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1273          * Please note in any other slave case, you have to setup chan->private
1274          * with 'struct imx_dma_data' in your own filter function if you want to
1275          * request dma channel by dma_request_channel() rather than
1276          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1277          * to warn you to correct your filter function.
1278          */
1279         if (!data) {
1280                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1281                 mem_data.priority = 2;
1282                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1283                 mem_data.dma_request = 0;
1284                 mem_data.dma_request2 = 0;
1285                 data = &mem_data;
1286
1287                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1288         }
1289
1290         switch (data->priority) {
1291         case DMA_PRIO_HIGH:
1292                 prio = 3;
1293                 break;
1294         case DMA_PRIO_MEDIUM:
1295                 prio = 2;
1296                 break;
1297         case DMA_PRIO_LOW:
1298         default:
1299                 prio = 1;
1300                 break;
1301         }
1302
1303         sdmac->peripheral_type = data->peripheral_type;
1304         sdmac->event_id0 = data->dma_request;
1305         sdmac->event_id1 = data->dma_request2;
1306
1307         ret = clk_enable(sdmac->sdma->clk_ipg);
1308         if (ret)
1309                 return ret;
1310         ret = clk_enable(sdmac->sdma->clk_ahb);
1311         if (ret)
1312                 goto disable_clk_ipg;
1313
1314         ret = sdma_set_channel_priority(sdmac, prio);
1315         if (ret)
1316                 goto disable_clk_ahb;
1317
1318         return 0;
1319
1320 disable_clk_ahb:
1321         clk_disable(sdmac->sdma->clk_ahb);
1322 disable_clk_ipg:
1323         clk_disable(sdmac->sdma->clk_ipg);
1324         return ret;
1325 }
1326
1327 static void sdma_free_chan_resources(struct dma_chan *chan)
1328 {
1329         struct sdma_channel *sdmac = to_sdma_chan(chan);
1330         struct sdma_engine *sdma = sdmac->sdma;
1331
1332         sdma_terminate_all(chan);
1333
1334         sdma_channel_synchronize(chan);
1335
1336         sdma_event_disable(sdmac, sdmac->event_id0);
1337         if (sdmac->event_id1)
1338                 sdma_event_disable(sdmac, sdmac->event_id1);
1339
1340         sdmac->event_id0 = 0;
1341         sdmac->event_id1 = 0;
1342         sdmac->context_loaded = false;
1343
1344         sdma_set_channel_priority(sdmac, 0);
1345
1346         clk_disable(sdma->clk_ipg);
1347         clk_disable(sdma->clk_ahb);
1348 }
1349
1350 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1351                                 enum dma_transfer_direction direction, u32 bds)
1352 {
1353         struct sdma_desc *desc;
1354
1355         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1356         if (!desc)
1357                 goto err_out;
1358
1359         sdmac->status = DMA_IN_PROGRESS;
1360         sdmac->direction = direction;
1361         sdmac->flags = 0;
1362
1363         desc->chn_count = 0;
1364         desc->chn_real_count = 0;
1365         desc->buf_tail = 0;
1366         desc->buf_ptail = 0;
1367         desc->sdmac = sdmac;
1368         desc->num_bd = bds;
1369
1370         if (sdma_alloc_bd(desc))
1371                 goto err_desc_out;
1372
1373         /* No slave_config called in MEMCPY case, so do here */
1374         if (direction == DMA_MEM_TO_MEM)
1375                 sdma_config_ownership(sdmac, false, true, false);
1376
1377         if (sdma_load_context(sdmac))
1378                 goto err_desc_out;
1379
1380         return desc;
1381
1382 err_desc_out:
1383         kfree(desc);
1384 err_out:
1385         return NULL;
1386 }
1387
1388 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1389                 struct dma_chan *chan, dma_addr_t dma_dst,
1390                 dma_addr_t dma_src, size_t len, unsigned long flags)
1391 {
1392         struct sdma_channel *sdmac = to_sdma_chan(chan);
1393         struct sdma_engine *sdma = sdmac->sdma;
1394         int channel = sdmac->channel;
1395         size_t count;
1396         int i = 0, param;
1397         struct sdma_buffer_descriptor *bd;
1398         struct sdma_desc *desc;
1399
1400         if (!chan || !len)
1401                 return NULL;
1402
1403         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1404                 &dma_src, &dma_dst, len, channel);
1405
1406         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1407                                         len / SDMA_BD_MAX_CNT + 1);
1408         if (!desc)
1409                 return NULL;
1410
1411         do {
1412                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1413                 bd = &desc->bd[i];
1414                 bd->buffer_addr = dma_src;
1415                 bd->ext_buffer_addr = dma_dst;
1416                 bd->mode.count = count;
1417                 desc->chn_count += count;
1418                 bd->mode.command = 0;
1419
1420                 dma_src += count;
1421                 dma_dst += count;
1422                 len -= count;
1423                 i++;
1424
1425                 param = BD_DONE | BD_EXTD | BD_CONT;
1426                 /* last bd */
1427                 if (!len) {
1428                         param |= BD_INTR;
1429                         param |= BD_LAST;
1430                         param &= ~BD_CONT;
1431                 }
1432
1433                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1434                                 i, count, bd->buffer_addr,
1435                                 param & BD_WRAP ? "wrap" : "",
1436                                 param & BD_INTR ? " intr" : "");
1437
1438                 bd->mode.status = param;
1439         } while (len);
1440
1441         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1442 }
1443
1444 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1445                 struct dma_chan *chan, struct scatterlist *sgl,
1446                 unsigned int sg_len, enum dma_transfer_direction direction,
1447                 unsigned long flags, void *context)
1448 {
1449         struct sdma_channel *sdmac = to_sdma_chan(chan);
1450         struct sdma_engine *sdma = sdmac->sdma;
1451         int i, count;
1452         int channel = sdmac->channel;
1453         struct scatterlist *sg;
1454         struct sdma_desc *desc;
1455
1456         sdma_config_write(chan, &sdmac->slave_config, direction);
1457
1458         desc = sdma_transfer_init(sdmac, direction, sg_len);
1459         if (!desc)
1460                 goto err_out;
1461
1462         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1463                         sg_len, channel);
1464
1465         for_each_sg(sgl, sg, sg_len, i) {
1466                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1467                 int param;
1468
1469                 bd->buffer_addr = sg->dma_address;
1470
1471                 count = sg_dma_len(sg);
1472
1473                 if (count > SDMA_BD_MAX_CNT) {
1474                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1475                                         channel, count, SDMA_BD_MAX_CNT);
1476                         goto err_bd_out;
1477                 }
1478
1479                 bd->mode.count = count;
1480                 desc->chn_count += count;
1481
1482                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1483                         goto err_bd_out;
1484
1485                 switch (sdmac->word_size) {
1486                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1487                         bd->mode.command = 0;
1488                         if (count & 3 || sg->dma_address & 3)
1489                                 goto err_bd_out;
1490                         break;
1491                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1492                         bd->mode.command = 2;
1493                         if (count & 1 || sg->dma_address & 1)
1494                                 goto err_bd_out;
1495                         break;
1496                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1497                         bd->mode.command = 1;
1498                         break;
1499                 default:
1500                         goto err_bd_out;
1501                 }
1502
1503                 param = BD_DONE | BD_EXTD | BD_CONT;
1504
1505                 if (i + 1 == sg_len) {
1506                         param |= BD_INTR;
1507                         param |= BD_LAST;
1508                         param &= ~BD_CONT;
1509                 }
1510
1511                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1512                                 i, count, (u64)sg->dma_address,
1513                                 param & BD_WRAP ? "wrap" : "",
1514                                 param & BD_INTR ? " intr" : "");
1515
1516                 bd->mode.status = param;
1517         }
1518
1519         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1520 err_bd_out:
1521         sdma_free_bd(desc);
1522         kfree(desc);
1523 err_out:
1524         sdmac->status = DMA_ERROR;
1525         return NULL;
1526 }
1527
1528 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1529                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1530                 size_t period_len, enum dma_transfer_direction direction,
1531                 unsigned long flags)
1532 {
1533         struct sdma_channel *sdmac = to_sdma_chan(chan);
1534         struct sdma_engine *sdma = sdmac->sdma;
1535         int num_periods = buf_len / period_len;
1536         int channel = sdmac->channel;
1537         int i = 0, buf = 0;
1538         struct sdma_desc *desc;
1539
1540         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1541
1542         sdma_config_write(chan, &sdmac->slave_config, direction);
1543
1544         desc = sdma_transfer_init(sdmac, direction, num_periods);
1545         if (!desc)
1546                 goto err_out;
1547
1548         desc->period_len = period_len;
1549
1550         sdmac->flags |= IMX_DMA_SG_LOOP;
1551
1552         if (period_len > SDMA_BD_MAX_CNT) {
1553                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1554                                 channel, period_len, SDMA_BD_MAX_CNT);
1555                 goto err_bd_out;
1556         }
1557
1558         while (buf < buf_len) {
1559                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1560                 int param;
1561
1562                 bd->buffer_addr = dma_addr;
1563
1564                 bd->mode.count = period_len;
1565
1566                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1567                         goto err_bd_out;
1568                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1569                         bd->mode.command = 0;
1570                 else
1571                         bd->mode.command = sdmac->word_size;
1572
1573                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1574                 if (i + 1 == num_periods)
1575                         param |= BD_WRAP;
1576
1577                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1578                                 i, period_len, (u64)dma_addr,
1579                                 param & BD_WRAP ? "wrap" : "",
1580                                 param & BD_INTR ? " intr" : "");
1581
1582                 bd->mode.status = param;
1583
1584                 dma_addr += period_len;
1585                 buf += period_len;
1586
1587                 i++;
1588         }
1589
1590         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1591 err_bd_out:
1592         sdma_free_bd(desc);
1593         kfree(desc);
1594 err_out:
1595         sdmac->status = DMA_ERROR;
1596         return NULL;
1597 }
1598
1599 static int sdma_config_write(struct dma_chan *chan,
1600                        struct dma_slave_config *dmaengine_cfg,
1601                        enum dma_transfer_direction direction)
1602 {
1603         struct sdma_channel *sdmac = to_sdma_chan(chan);
1604
1605         if (direction == DMA_DEV_TO_MEM) {
1606                 sdmac->per_address = dmaengine_cfg->src_addr;
1607                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1608                         dmaengine_cfg->src_addr_width;
1609                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1610         } else if (direction == DMA_DEV_TO_DEV) {
1611                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1612                 sdmac->per_address = dmaengine_cfg->dst_addr;
1613                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1614                         SDMA_WATERMARK_LEVEL_LWML;
1615                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1616                         SDMA_WATERMARK_LEVEL_HWML;
1617                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1618         } else {
1619                 sdmac->per_address = dmaengine_cfg->dst_addr;
1620                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1621                         dmaengine_cfg->dst_addr_width;
1622                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1623         }
1624         sdmac->direction = direction;
1625         return sdma_config_channel(chan);
1626 }
1627
1628 static int sdma_config(struct dma_chan *chan,
1629                        struct dma_slave_config *dmaengine_cfg)
1630 {
1631         struct sdma_channel *sdmac = to_sdma_chan(chan);
1632
1633         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1634
1635         /* Set ENBLn earlier to make sure dma request triggered after that */
1636         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1637                 return -EINVAL;
1638         sdma_event_enable(sdmac, sdmac->event_id0);
1639
1640         if (sdmac->event_id1) {
1641                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1642                         return -EINVAL;
1643                 sdma_event_enable(sdmac, sdmac->event_id1);
1644         }
1645
1646         return 0;
1647 }
1648
1649 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1650                                       dma_cookie_t cookie,
1651                                       struct dma_tx_state *txstate)
1652 {
1653         struct sdma_channel *sdmac = to_sdma_chan(chan);
1654         struct sdma_desc *desc = NULL;
1655         u32 residue;
1656         struct virt_dma_desc *vd;
1657         enum dma_status ret;
1658         unsigned long flags;
1659
1660         ret = dma_cookie_status(chan, cookie, txstate);
1661         if (ret == DMA_COMPLETE || !txstate)
1662                 return ret;
1663
1664         spin_lock_irqsave(&sdmac->vc.lock, flags);
1665
1666         vd = vchan_find_desc(&sdmac->vc, cookie);
1667         if (vd)
1668                 desc = to_sdma_desc(&vd->tx);
1669         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1670                 desc = sdmac->desc;
1671
1672         if (desc) {
1673                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1674                         residue = (desc->num_bd - desc->buf_ptail) *
1675                                 desc->period_len - desc->chn_real_count;
1676                 else
1677                         residue = desc->chn_count - desc->chn_real_count;
1678         } else {
1679                 residue = 0;
1680         }
1681
1682         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1683
1684         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1685                          residue);
1686
1687         return sdmac->status;
1688 }
1689
1690 static void sdma_issue_pending(struct dma_chan *chan)
1691 {
1692         struct sdma_channel *sdmac = to_sdma_chan(chan);
1693         unsigned long flags;
1694
1695         spin_lock_irqsave(&sdmac->vc.lock, flags);
1696         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1697                 sdma_start_desc(sdmac);
1698         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1699 }
1700
1701 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1702 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1703 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1704 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1705
1706 static void sdma_add_scripts(struct sdma_engine *sdma,
1707                 const struct sdma_script_start_addrs *addr)
1708 {
1709         s32 *addr_arr = (u32 *)addr;
1710         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1711         int i;
1712
1713         /* use the default firmware in ROM if missing external firmware */
1714         if (!sdma->script_number)
1715                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1716
1717         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1718                                   / sizeof(s32)) {
1719                 dev_err(sdma->dev,
1720                         "SDMA script number %d not match with firmware.\n",
1721                         sdma->script_number);
1722                 return;
1723         }
1724
1725         for (i = 0; i < sdma->script_number; i++)
1726                 if (addr_arr[i] > 0)
1727                         saddr_arr[i] = addr_arr[i];
1728 }
1729
1730 static void sdma_load_firmware(const struct firmware *fw, void *context)
1731 {
1732         struct sdma_engine *sdma = context;
1733         const struct sdma_firmware_header *header;
1734         const struct sdma_script_start_addrs *addr;
1735         unsigned short *ram_code;
1736
1737         if (!fw) {
1738                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1739                 /* In this case we just use the ROM firmware. */
1740                 return;
1741         }
1742
1743         if (fw->size < sizeof(*header))
1744                 goto err_firmware;
1745
1746         header = (struct sdma_firmware_header *)fw->data;
1747
1748         if (header->magic != SDMA_FIRMWARE_MAGIC)
1749                 goto err_firmware;
1750         if (header->ram_code_start + header->ram_code_size > fw->size)
1751                 goto err_firmware;
1752         switch (header->version_major) {
1753         case 1:
1754                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1755                 break;
1756         case 2:
1757                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1758                 break;
1759         case 3:
1760                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1761                 break;
1762         case 4:
1763                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1764                 break;
1765         default:
1766                 dev_err(sdma->dev, "unknown firmware version\n");
1767                 goto err_firmware;
1768         }
1769
1770         addr = (void *)header + header->script_addrs_start;
1771         ram_code = (void *)header + header->ram_code_start;
1772
1773         clk_enable(sdma->clk_ipg);
1774         clk_enable(sdma->clk_ahb);
1775         /* download the RAM image for SDMA */
1776         sdma_load_script(sdma, ram_code,
1777                         header->ram_code_size,
1778                         addr->ram_code_start_addr);
1779         clk_disable(sdma->clk_ipg);
1780         clk_disable(sdma->clk_ahb);
1781
1782         sdma_add_scripts(sdma, addr);
1783
1784         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1785                         header->version_major,
1786                         header->version_minor);
1787
1788 err_firmware:
1789         release_firmware(fw);
1790 }
1791
1792 #define EVENT_REMAP_CELLS 3
1793
1794 static int sdma_event_remap(struct sdma_engine *sdma)
1795 {
1796         struct device_node *np = sdma->dev->of_node;
1797         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1798         struct property *event_remap;
1799         struct regmap *gpr;
1800         char propname[] = "fsl,sdma-event-remap";
1801         u32 reg, val, shift, num_map, i;
1802         int ret = 0;
1803
1804         if (IS_ERR(np) || IS_ERR(gpr_np))
1805                 goto out;
1806
1807         event_remap = of_find_property(np, propname, NULL);
1808         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1809         if (!num_map) {
1810                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1811                 goto out;
1812         } else if (num_map % EVENT_REMAP_CELLS) {
1813                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1814                                 propname, EVENT_REMAP_CELLS);
1815                 ret = -EINVAL;
1816                 goto out;
1817         }
1818
1819         gpr = syscon_node_to_regmap(gpr_np);
1820         if (IS_ERR(gpr)) {
1821                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1822                 ret = PTR_ERR(gpr);
1823                 goto out;
1824         }
1825
1826         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1827                 ret = of_property_read_u32_index(np, propname, i, &reg);
1828                 if (ret) {
1829                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1830                                         propname, i);
1831                         goto out;
1832                 }
1833
1834                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1835                 if (ret) {
1836                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1837                                         propname, i + 1);
1838                         goto out;
1839                 }
1840
1841                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1842                 if (ret) {
1843                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1844                                         propname, i + 2);
1845                         goto out;
1846                 }
1847
1848                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1849         }
1850
1851 out:
1852         if (!IS_ERR(gpr_np))
1853                 of_node_put(gpr_np);
1854
1855         return ret;
1856 }
1857
1858 static int sdma_get_firmware(struct sdma_engine *sdma,
1859                 const char *fw_name)
1860 {
1861         int ret;
1862
1863         ret = request_firmware_nowait(THIS_MODULE,
1864                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1865                         GFP_KERNEL, sdma, sdma_load_firmware);
1866
1867         return ret;
1868 }
1869
1870 static int sdma_init(struct sdma_engine *sdma)
1871 {
1872         int i, ret;
1873         dma_addr_t ccb_phys;
1874
1875         ret = clk_enable(sdma->clk_ipg);
1876         if (ret)
1877                 return ret;
1878         ret = clk_enable(sdma->clk_ahb);
1879         if (ret)
1880                 goto disable_clk_ipg;
1881
1882         if (sdma->drvdata->check_ratio &&
1883             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1884                 sdma->clk_ratio = 1;
1885
1886         /* Be sure SDMA has not started yet */
1887         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1888
1889         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1890                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1891                         sizeof(struct sdma_context_data),
1892                         &ccb_phys, GFP_KERNEL);
1893
1894         if (!sdma->channel_control) {
1895                 ret = -ENOMEM;
1896                 goto err_dma_alloc;
1897         }
1898
1899         sdma->context = (void *)sdma->channel_control +
1900                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1901         sdma->context_phys = ccb_phys +
1902                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1903
1904         /* disable all channels */
1905         for (i = 0; i < sdma->drvdata->num_events; i++)
1906                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1907
1908         /* All channels have priority 0 */
1909         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1910                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1911
1912         ret = sdma_request_channel0(sdma);
1913         if (ret)
1914                 goto err_dma_alloc;
1915
1916         sdma_config_ownership(&sdma->channel[0], false, true, false);
1917
1918         /* Set Command Channel (Channel Zero) */
1919         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1920
1921         /* Set bits of CONFIG register but with static context switching */
1922         if (sdma->clk_ratio)
1923                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1924         else
1925                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1926
1927         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1928
1929         /* Initializes channel's priorities */
1930         sdma_set_channel_priority(&sdma->channel[0], 7);
1931
1932         clk_disable(sdma->clk_ipg);
1933         clk_disable(sdma->clk_ahb);
1934
1935         return 0;
1936
1937 err_dma_alloc:
1938         clk_disable(sdma->clk_ahb);
1939 disable_clk_ipg:
1940         clk_disable(sdma->clk_ipg);
1941         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1942         return ret;
1943 }
1944
1945 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1946 {
1947         struct sdma_channel *sdmac = to_sdma_chan(chan);
1948         struct imx_dma_data *data = fn_param;
1949
1950         if (!imx_dma_is_general_purpose(chan))
1951                 return false;
1952
1953         sdmac->data = *data;
1954         chan->private = &sdmac->data;
1955
1956         return true;
1957 }
1958
1959 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1960                                    struct of_dma *ofdma)
1961 {
1962         struct sdma_engine *sdma = ofdma->of_dma_data;
1963         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1964         struct imx_dma_data data;
1965
1966         if (dma_spec->args_count != 3)
1967                 return NULL;
1968
1969         data.dma_request = dma_spec->args[0];
1970         data.peripheral_type = dma_spec->args[1];
1971         data.priority = dma_spec->args[2];
1972         /*
1973          * init dma_request2 to zero, which is not used by the dts.
1974          * For P2P, dma_request2 is init from dma_request_channel(),
1975          * chan->private will point to the imx_dma_data, and in
1976          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1977          * be set to sdmac->event_id1.
1978          */
1979         data.dma_request2 = 0;
1980
1981         return __dma_request_channel(&mask, sdma_filter_fn, &data,
1982                                      ofdma->of_node);
1983 }
1984
1985 static int sdma_probe(struct platform_device *pdev)
1986 {
1987         const struct of_device_id *of_id =
1988                         of_match_device(sdma_dt_ids, &pdev->dev);
1989         struct device_node *np = pdev->dev.of_node;
1990         struct device_node *spba_bus;
1991         const char *fw_name;
1992         int ret;
1993         int irq;
1994         struct resource *iores;
1995         struct resource spba_res;
1996         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1997         int i;
1998         struct sdma_engine *sdma;
1999         s32 *saddr_arr;
2000         const struct sdma_driver_data *drvdata = NULL;
2001
2002         if (of_id)
2003                 drvdata = of_id->data;
2004         else if (pdev->id_entry)
2005                 drvdata = (void *)pdev->id_entry->driver_data;
2006
2007         if (!drvdata) {
2008                 dev_err(&pdev->dev, "unable to find driver data\n");
2009                 return -EINVAL;
2010         }
2011
2012         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2013         if (ret)
2014                 return ret;
2015
2016         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2017         if (!sdma)
2018                 return -ENOMEM;
2019
2020         spin_lock_init(&sdma->channel_0_lock);
2021
2022         sdma->dev = &pdev->dev;
2023         sdma->drvdata = drvdata;
2024
2025         irq = platform_get_irq(pdev, 0);
2026         if (irq < 0)
2027                 return irq;
2028
2029         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2030         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2031         if (IS_ERR(sdma->regs))
2032                 return PTR_ERR(sdma->regs);
2033
2034         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2035         if (IS_ERR(sdma->clk_ipg))
2036                 return PTR_ERR(sdma->clk_ipg);
2037
2038         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2039         if (IS_ERR(sdma->clk_ahb))
2040                 return PTR_ERR(sdma->clk_ahb);
2041
2042         ret = clk_prepare(sdma->clk_ipg);
2043         if (ret)
2044                 return ret;
2045
2046         ret = clk_prepare(sdma->clk_ahb);
2047         if (ret)
2048                 goto err_clk;
2049
2050         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2051                                sdma);
2052         if (ret)
2053                 goto err_irq;
2054
2055         sdma->irq = irq;
2056
2057         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2058         if (!sdma->script_addrs) {
2059                 ret = -ENOMEM;
2060                 goto err_irq;
2061         }
2062
2063         /* initially no scripts available */
2064         saddr_arr = (s32 *)sdma->script_addrs;
2065         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2066                 saddr_arr[i] = -EINVAL;
2067
2068         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2069         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2070         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2071
2072         INIT_LIST_HEAD(&sdma->dma_device.channels);
2073         /* Initialize channel parameters */
2074         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2075                 struct sdma_channel *sdmac = &sdma->channel[i];
2076
2077                 sdmac->sdma = sdma;
2078
2079                 sdmac->channel = i;
2080                 sdmac->vc.desc_free = sdma_desc_free;
2081                 INIT_WORK(&sdmac->terminate_worker,
2082                                 sdma_channel_terminate_work);
2083                 /*
2084                  * Add the channel to the DMAC list. Do not add channel 0 though
2085                  * because we need it internally in the SDMA driver. This also means
2086                  * that channel 0 in dmaengine counting matches sdma channel 1.
2087                  */
2088                 if (i)
2089                         vchan_init(&sdmac->vc, &sdma->dma_device);
2090         }
2091
2092         ret = sdma_init(sdma);
2093         if (ret)
2094                 goto err_init;
2095
2096         ret = sdma_event_remap(sdma);
2097         if (ret)
2098                 goto err_init;
2099
2100         if (sdma->drvdata->script_addrs)
2101                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2102         if (pdata && pdata->script_addrs)
2103                 sdma_add_scripts(sdma, pdata->script_addrs);
2104
2105         sdma->dma_device.dev = &pdev->dev;
2106
2107         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2108         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2109         sdma->dma_device.device_tx_status = sdma_tx_status;
2110         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2111         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2112         sdma->dma_device.device_config = sdma_config;
2113         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2114         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2115         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2116         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2117         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2118         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2119         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2120         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2121         sdma->dma_device.dev->dma_parms = &sdma->dma_parms;
2122         sdma->dma_device.copy_align = 2;
2123         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2124
2125         platform_set_drvdata(pdev, sdma);
2126
2127         ret = dma_async_device_register(&sdma->dma_device);
2128         if (ret) {
2129                 dev_err(&pdev->dev, "unable to register\n");
2130                 goto err_init;
2131         }
2132
2133         if (np) {
2134                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2135                 if (ret) {
2136                         dev_err(&pdev->dev, "failed to register controller\n");
2137                         goto err_register;
2138                 }
2139
2140                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2141                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2142                 if (!ret) {
2143                         sdma->spba_start_addr = spba_res.start;
2144                         sdma->spba_end_addr = spba_res.end;
2145                 }
2146                 of_node_put(spba_bus);
2147         }
2148
2149         /*
2150          * Kick off firmware loading as the very last step:
2151          * attempt to load firmware only if we're not on the error path, because
2152          * the firmware callback requires a fully functional and allocated sdma
2153          * instance.
2154          */
2155         if (pdata) {
2156                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2157                 if (ret)
2158                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2159         } else {
2160                 /*
2161                  * Because that device tree does not encode ROM script address,
2162                  * the RAM script in firmware is mandatory for device tree
2163                  * probe, otherwise it fails.
2164                  */
2165                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2166                                               &fw_name);
2167                 if (ret) {
2168                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2169                 } else {
2170                         ret = sdma_get_firmware(sdma, fw_name);
2171                         if (ret)
2172                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2173                 }
2174         }
2175
2176         return 0;
2177
2178 err_register:
2179         dma_async_device_unregister(&sdma->dma_device);
2180 err_init:
2181         kfree(sdma->script_addrs);
2182 err_irq:
2183         clk_unprepare(sdma->clk_ahb);
2184 err_clk:
2185         clk_unprepare(sdma->clk_ipg);
2186         return ret;
2187 }
2188
2189 static int sdma_remove(struct platform_device *pdev)
2190 {
2191         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2192         int i;
2193
2194         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2195         dma_async_device_unregister(&sdma->dma_device);
2196         kfree(sdma->script_addrs);
2197         clk_unprepare(sdma->clk_ahb);
2198         clk_unprepare(sdma->clk_ipg);
2199         /* Kill the tasklet */
2200         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2201                 struct sdma_channel *sdmac = &sdma->channel[i];
2202
2203                 tasklet_kill(&sdmac->vc.task);
2204                 sdma_free_chan_resources(&sdmac->vc.chan);
2205         }
2206
2207         platform_set_drvdata(pdev, NULL);
2208         return 0;
2209 }
2210
2211 static struct platform_driver sdma_driver = {
2212         .driver         = {
2213                 .name   = "imx-sdma",
2214                 .of_match_table = sdma_dt_ids,
2215         },
2216         .id_table       = sdma_devtypes,
2217         .remove         = sdma_remove,
2218         .probe          = sdma_probe,
2219 };
2220
2221 module_platform_driver(sdma_driver);
2222
2223 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2224 MODULE_DESCRIPTION("i.MX SDMA driver");
2225 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2226 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2227 #endif
2228 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2229 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2230 #endif
2231 MODULE_LICENSE("GPL");