Merge branch 'turbostat' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[linux-2.6-microblaze.git] / drivers / dma / imx-sdma.c
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // drivers/dma/imx-sdma.c
4 //
5 // This file contains a driver for the Freescale Smart DMA engine
6 //
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
8 //
9 // Based on code from Freescale:
10 //
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
12
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
18 #include <linux/mm.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
36
37 #include <asm/irq.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
43
44 #include "dmaengine.h"
45 #include "virt-dma.h"
46
47 /* SDMA registers */
48 #define SDMA_H_C0PTR            0x000
49 #define SDMA_H_INTR             0x004
50 #define SDMA_H_STATSTOP         0x008
51 #define SDMA_H_START            0x00c
52 #define SDMA_H_EVTOVR           0x010
53 #define SDMA_H_DSPOVR           0x014
54 #define SDMA_H_HOSTOVR          0x018
55 #define SDMA_H_EVTPEND          0x01c
56 #define SDMA_H_DSPENBL          0x020
57 #define SDMA_H_RESET            0x024
58 #define SDMA_H_EVTERR           0x028
59 #define SDMA_H_INTRMSK          0x02c
60 #define SDMA_H_PSW              0x030
61 #define SDMA_H_EVTERRDBG        0x034
62 #define SDMA_H_CONFIG           0x038
63 #define SDMA_ONCE_ENB           0x040
64 #define SDMA_ONCE_DATA          0x044
65 #define SDMA_ONCE_INSTR         0x048
66 #define SDMA_ONCE_STAT          0x04c
67 #define SDMA_ONCE_CMD           0x050
68 #define SDMA_EVT_MIRROR         0x054
69 #define SDMA_ILLINSTADDR        0x058
70 #define SDMA_CHN0ADDR           0x05c
71 #define SDMA_ONCE_RTB           0x060
72 #define SDMA_XTRIG_CONF1        0x070
73 #define SDMA_XTRIG_CONF2        0x074
74 #define SDMA_CHNENBL0_IMX35     0x200
75 #define SDMA_CHNENBL0_IMX31     0x080
76 #define SDMA_CHNPRI_0           0x100
77
78 /*
79  * Buffer descriptor status values.
80  */
81 #define BD_DONE  0x01
82 #define BD_WRAP  0x02
83 #define BD_CONT  0x04
84 #define BD_INTR  0x08
85 #define BD_RROR  0x10
86 #define BD_LAST  0x20
87 #define BD_EXTD  0x80
88
89 /*
90  * Data Node descriptor status values.
91  */
92 #define DND_END_OF_FRAME  0x80
93 #define DND_END_OF_XFER   0x40
94 #define DND_DONE          0x20
95 #define DND_UNUSED        0x01
96
97 /*
98  * IPCV2 descriptor status values.
99  */
100 #define BD_IPCV2_END_OF_FRAME  0x40
101
102 #define IPCV2_MAX_NODES        50
103 /*
104  * Error bit set in the CCB status field by the SDMA,
105  * in setbd routine, in case of a transfer error
106  */
107 #define DATA_ERROR  0x10000000
108
109 /*
110  * Buffer descriptor commands.
111  */
112 #define C0_ADDR             0x01
113 #define C0_LOAD             0x02
114 #define C0_DUMP             0x03
115 #define C0_SETCTX           0x07
116 #define C0_GETCTX           0x03
117 #define C0_SETDM            0x01
118 #define C0_SETPM            0x04
119 #define C0_GETDM            0x02
120 #define C0_GETPM            0x08
121 /*
122  * Change endianness indicator in the BD command field
123  */
124 #define CHANGE_ENDIANNESS   0x80
125
126 /*
127  *  p_2_p watermark_level description
128  *      Bits            Name                    Description
129  *      0-7             Lower WML               Lower watermark level
130  *      8               PS                      1: Pad Swallowing
131  *                                              0: No Pad Swallowing
132  *      9               PA                      1: Pad Adding
133  *                                              0: No Pad Adding
134  *      10              SPDIF                   If this bit is set both source
135  *                                              and destination are on SPBA
136  *      11              Source Bit(SP)          1: Source on SPBA
137  *                                              0: Source on AIPS
138  *      12              Destination Bit(DP)     1: Destination on SPBA
139  *                                              0: Destination on AIPS
140  *      13-15           ---------               MUST BE 0
141  *      16-23           Higher WML              HWML
142  *      24-27           N                       Total number of samples after
143  *                                              which Pad adding/Swallowing
144  *                                              must be done. It must be odd.
145  *      28              Lower WML Event(LWE)    SDMA events reg to check for
146  *                                              LWML event mask
147  *                                              0: LWE in EVENTS register
148  *                                              1: LWE in EVENTS2 register
149  *      29              Higher WML Event(HWE)   SDMA events reg to check for
150  *                                              HWML event mask
151  *                                              0: HWE in EVENTS register
152  *                                              1: HWE in EVENTS2 register
153  *      30              ---------               MUST BE 0
154  *      31              CONT                    1: Amount of samples to be
155  *                                              transferred is unknown and
156  *                                              script will keep on
157  *                                              transferring samples as long as
158  *                                              both events are detected and
159  *                                              script must be manually stopped
160  *                                              by the application
161  *                                              0: The amount of samples to be
162  *                                              transferred is equal to the
163  *                                              count field of mode word
164  */
165 #define SDMA_WATERMARK_LEVEL_LWML       0xFF
166 #define SDMA_WATERMARK_LEVEL_PS         BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA         BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF      BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP         BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP         BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML       (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE        BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE        BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT       BIT(31)
175
176 #define SDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
179
180 #define SDMA_DMA_DIRECTIONS     (BIT(DMA_DEV_TO_MEM) | \
181                                  BIT(DMA_MEM_TO_DEV) | \
182                                  BIT(DMA_DEV_TO_DEV))
183
184 /*
185  * Mode/Count of data node descriptors - IPCv2
186  */
187 struct sdma_mode_count {
188 #define SDMA_BD_MAX_CNT 0xffff
189         u32 count   : 16; /* size of the buffer pointed by this BD */
190         u32 status  :  8; /* E,R,I,C,W,D status bits stored here */
191         u32 command :  8; /* command mostly used for channel 0 */
192 };
193
194 /*
195  * Buffer descriptor
196  */
197 struct sdma_buffer_descriptor {
198         struct sdma_mode_count  mode;
199         u32 buffer_addr;        /* address of the buffer described */
200         u32 ext_buffer_addr;    /* extended buffer address */
201 } __attribute__ ((packed));
202
203 /**
204  * struct sdma_channel_control - Channel control Block
205  *
206  * @current_bd_ptr:     current buffer descriptor processed
207  * @base_bd_ptr:        first element of buffer descriptor array
208  * @unused:             padding. The SDMA engine expects an array of 128 byte
209  *                      control blocks
210  */
211 struct sdma_channel_control {
212         u32 current_bd_ptr;
213         u32 base_bd_ptr;
214         u32 unused[2];
215 } __attribute__ ((packed));
216
217 /**
218  * struct sdma_state_registers - SDMA context for a channel
219  *
220  * @pc:         program counter
221  * @unused1:    unused
222  * @t:          test bit: status of arithmetic & test instruction
223  * @rpc:        return program counter
224  * @unused0:    unused
225  * @sf:         source fault while loading data
226  * @spc:        loop start program counter
227  * @unused2:    unused
228  * @df:         destination fault while storing data
229  * @epc:        loop end program counter
230  * @lm:         loop mode
231  */
232 struct sdma_state_registers {
233         u32 pc     :14;
234         u32 unused1: 1;
235         u32 t      : 1;
236         u32 rpc    :14;
237         u32 unused0: 1;
238         u32 sf     : 1;
239         u32 spc    :14;
240         u32 unused2: 1;
241         u32 df     : 1;
242         u32 epc    :14;
243         u32 lm     : 2;
244 } __attribute__ ((packed));
245
246 /**
247  * struct sdma_context_data - sdma context specific to a channel
248  *
249  * @channel_state:      channel state bits
250  * @gReg:               general registers
251  * @mda:                burst dma destination address register
252  * @msa:                burst dma source address register
253  * @ms:                 burst dma status register
254  * @md:                 burst dma data register
255  * @pda:                peripheral dma destination address register
256  * @psa:                peripheral dma source address register
257  * @ps:                 peripheral dma status register
258  * @pd:                 peripheral dma data register
259  * @ca:                 CRC polynomial register
260  * @cs:                 CRC accumulator register
261  * @dda:                dedicated core destination address register
262  * @dsa:                dedicated core source address register
263  * @ds:                 dedicated core status register
264  * @dd:                 dedicated core data register
265  * @scratch0:           1st word of dedicated ram for context switch
266  * @scratch1:           2nd word of dedicated ram for context switch
267  * @scratch2:           3rd word of dedicated ram for context switch
268  * @scratch3:           4th word of dedicated ram for context switch
269  * @scratch4:           5th word of dedicated ram for context switch
270  * @scratch5:           6th word of dedicated ram for context switch
271  * @scratch6:           7th word of dedicated ram for context switch
272  * @scratch7:           8th word of dedicated ram for context switch
273  */
274 struct sdma_context_data {
275         struct sdma_state_registers  channel_state;
276         u32  gReg[8];
277         u32  mda;
278         u32  msa;
279         u32  ms;
280         u32  md;
281         u32  pda;
282         u32  psa;
283         u32  ps;
284         u32  pd;
285         u32  ca;
286         u32  cs;
287         u32  dda;
288         u32  dsa;
289         u32  ds;
290         u32  dd;
291         u32  scratch0;
292         u32  scratch1;
293         u32  scratch2;
294         u32  scratch3;
295         u32  scratch4;
296         u32  scratch5;
297         u32  scratch6;
298         u32  scratch7;
299 } __attribute__ ((packed));
300
301
302 struct sdma_engine;
303
304 /**
305  * struct sdma_desc - descriptor structor for one transfer
306  * @vd:                 descriptor for virt dma
307  * @num_bd:             number of descriptors currently handling
308  * @bd_phys:            physical address of bd
309  * @buf_tail:           ID of the buffer that was processed
310  * @buf_ptail:          ID of the previous buffer that was processed
311  * @period_len:         period length, used in cyclic.
312  * @chn_real_count:     the real count updated from bd->mode.count
313  * @chn_count:          the transfer count set
314  * @sdmac:              sdma_channel pointer
315  * @bd:                 pointer of allocate bd
316  */
317 struct sdma_desc {
318         struct virt_dma_desc    vd;
319         unsigned int            num_bd;
320         dma_addr_t              bd_phys;
321         unsigned int            buf_tail;
322         unsigned int            buf_ptail;
323         unsigned int            period_len;
324         unsigned int            chn_real_count;
325         unsigned int            chn_count;
326         struct sdma_channel     *sdmac;
327         struct sdma_buffer_descriptor *bd;
328 };
329
330 /**
331  * struct sdma_channel - housekeeping for a SDMA channel
332  *
333  * @vc:                 virt_dma base structure
334  * @desc:               sdma description including vd and other special member
335  * @sdma:               pointer to the SDMA engine for this channel
336  * @channel:            the channel number, matches dmaengine chan_id + 1
337  * @direction:          transfer type. Needed for setting SDMA script
338  * @slave_config:       Slave configuration
339  * @peripheral_type:    Peripheral type. Needed for setting SDMA script
340  * @event_id0:          aka dma request line
341  * @event_id1:          for channels that use 2 events
342  * @word_size:          peripheral access size
343  * @pc_from_device:     script address for those device_2_memory
344  * @pc_to_device:       script address for those memory_2_device
345  * @device_to_device:   script address for those device_2_device
346  * @pc_to_pc:           script address for those memory_2_memory
347  * @flags:              loop mode or not
348  * @per_address:        peripheral source or destination address in common case
349  *                      destination address in p_2_p case
350  * @per_address2:       peripheral source address in p_2_p case
351  * @event_mask:         event mask used in p_2_p script
352  * @watermark_level:    value for gReg[7], some script will extend it from
353  *                      basic watermark such as p_2_p
354  * @shp_addr:           value for gReg[6]
355  * @per_addr:           value for gReg[2]
356  * @status:             status of dma channel
357  * @context_loaded:     ensure context is only loaded once
358  * @data:               specific sdma interface structure
359  * @bd_pool:            dma_pool for bd
360  * @terminate_worker:   used to call back into terminate work function
361  */
362 struct sdma_channel {
363         struct virt_dma_chan            vc;
364         struct sdma_desc                *desc;
365         struct sdma_engine              *sdma;
366         unsigned int                    channel;
367         enum dma_transfer_direction             direction;
368         struct dma_slave_config         slave_config;
369         enum sdma_peripheral_type       peripheral_type;
370         unsigned int                    event_id0;
371         unsigned int                    event_id1;
372         enum dma_slave_buswidth         word_size;
373         unsigned int                    pc_from_device, pc_to_device;
374         unsigned int                    device_to_device;
375         unsigned int                    pc_to_pc;
376         unsigned long                   flags;
377         dma_addr_t                      per_address, per_address2;
378         unsigned long                   event_mask[2];
379         unsigned long                   watermark_level;
380         u32                             shp_addr, per_addr;
381         enum dma_status                 status;
382         bool                            context_loaded;
383         struct imx_dma_data             data;
384         struct work_struct              terminate_worker;
385 };
386
387 #define IMX_DMA_SG_LOOP         BIT(0)
388
389 #define MAX_DMA_CHANNELS 32
390 #define MXC_SDMA_DEFAULT_PRIORITY 1
391 #define MXC_SDMA_MIN_PRIORITY 1
392 #define MXC_SDMA_MAX_PRIORITY 7
393
394 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395
396 /**
397  * struct sdma_firmware_header - Layout of the firmware image
398  *
399  * @magic:              "SDMA"
400  * @version_major:      increased whenever layout of struct
401  *                      sdma_script_start_addrs changes.
402  * @version_minor:      firmware minor version (for binary compatible changes)
403  * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
404  * @num_script_addrs:   Number of script addresses in this image
405  * @ram_code_start:     offset of SDMA ram image in this firmware image
406  * @ram_code_size:      size of SDMA ram image
407  * @script_addrs:       Stores the start address of the SDMA scripts
408  *                      (in SDMA memory space)
409  */
410 struct sdma_firmware_header {
411         u32     magic;
412         u32     version_major;
413         u32     version_minor;
414         u32     script_addrs_start;
415         u32     num_script_addrs;
416         u32     ram_code_start;
417         u32     ram_code_size;
418 };
419
420 struct sdma_driver_data {
421         int chnenbl0;
422         int num_events;
423         struct sdma_script_start_addrs  *script_addrs;
424         bool check_ratio;
425 };
426
427 struct sdma_engine {
428         struct device                   *dev;
429         struct sdma_channel             channel[MAX_DMA_CHANNELS];
430         struct sdma_channel_control     *channel_control;
431         void __iomem                    *regs;
432         struct sdma_context_data        *context;
433         dma_addr_t                      context_phys;
434         struct dma_device               dma_device;
435         struct clk                      *clk_ipg;
436         struct clk                      *clk_ahb;
437         spinlock_t                      channel_0_lock;
438         u32                             script_number;
439         struct sdma_script_start_addrs  *script_addrs;
440         const struct sdma_driver_data   *drvdata;
441         u32                             spba_start_addr;
442         u32                             spba_end_addr;
443         unsigned int                    irq;
444         dma_addr_t                      bd0_phys;
445         struct sdma_buffer_descriptor   *bd0;
446         /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
447         bool                            clk_ratio;
448 };
449
450 static int sdma_config_write(struct dma_chan *chan,
451                        struct dma_slave_config *dmaengine_cfg,
452                        enum dma_transfer_direction direction);
453
454 static struct sdma_driver_data sdma_imx31 = {
455         .chnenbl0 = SDMA_CHNENBL0_IMX31,
456         .num_events = 32,
457 };
458
459 static struct sdma_script_start_addrs sdma_script_imx25 = {
460         .ap_2_ap_addr = 729,
461         .uart_2_mcu_addr = 904,
462         .per_2_app_addr = 1255,
463         .mcu_2_app_addr = 834,
464         .uartsh_2_mcu_addr = 1120,
465         .per_2_shp_addr = 1329,
466         .mcu_2_shp_addr = 1048,
467         .ata_2_mcu_addr = 1560,
468         .mcu_2_ata_addr = 1479,
469         .app_2_per_addr = 1189,
470         .app_2_mcu_addr = 770,
471         .shp_2_per_addr = 1407,
472         .shp_2_mcu_addr = 979,
473 };
474
475 static struct sdma_driver_data sdma_imx25 = {
476         .chnenbl0 = SDMA_CHNENBL0_IMX35,
477         .num_events = 48,
478         .script_addrs = &sdma_script_imx25,
479 };
480
481 static struct sdma_driver_data sdma_imx35 = {
482         .chnenbl0 = SDMA_CHNENBL0_IMX35,
483         .num_events = 48,
484 };
485
486 static struct sdma_script_start_addrs sdma_script_imx51 = {
487         .ap_2_ap_addr = 642,
488         .uart_2_mcu_addr = 817,
489         .mcu_2_app_addr = 747,
490         .mcu_2_shp_addr = 961,
491         .ata_2_mcu_addr = 1473,
492         .mcu_2_ata_addr = 1392,
493         .app_2_per_addr = 1033,
494         .app_2_mcu_addr = 683,
495         .shp_2_per_addr = 1251,
496         .shp_2_mcu_addr = 892,
497 };
498
499 static struct sdma_driver_data sdma_imx51 = {
500         .chnenbl0 = SDMA_CHNENBL0_IMX35,
501         .num_events = 48,
502         .script_addrs = &sdma_script_imx51,
503 };
504
505 static struct sdma_script_start_addrs sdma_script_imx53 = {
506         .ap_2_ap_addr = 642,
507         .app_2_mcu_addr = 683,
508         .mcu_2_app_addr = 747,
509         .uart_2_mcu_addr = 817,
510         .shp_2_mcu_addr = 891,
511         .mcu_2_shp_addr = 960,
512         .uartsh_2_mcu_addr = 1032,
513         .spdif_2_mcu_addr = 1100,
514         .mcu_2_spdif_addr = 1134,
515         .firi_2_mcu_addr = 1193,
516         .mcu_2_firi_addr = 1290,
517 };
518
519 static struct sdma_driver_data sdma_imx53 = {
520         .chnenbl0 = SDMA_CHNENBL0_IMX35,
521         .num_events = 48,
522         .script_addrs = &sdma_script_imx53,
523 };
524
525 static struct sdma_script_start_addrs sdma_script_imx6q = {
526         .ap_2_ap_addr = 642,
527         .uart_2_mcu_addr = 817,
528         .mcu_2_app_addr = 747,
529         .per_2_per_addr = 6331,
530         .uartsh_2_mcu_addr = 1032,
531         .mcu_2_shp_addr = 960,
532         .app_2_mcu_addr = 683,
533         .shp_2_mcu_addr = 891,
534         .spdif_2_mcu_addr = 1100,
535         .mcu_2_spdif_addr = 1134,
536 };
537
538 static struct sdma_driver_data sdma_imx6q = {
539         .chnenbl0 = SDMA_CHNENBL0_IMX35,
540         .num_events = 48,
541         .script_addrs = &sdma_script_imx6q,
542 };
543
544 static struct sdma_script_start_addrs sdma_script_imx7d = {
545         .ap_2_ap_addr = 644,
546         .uart_2_mcu_addr = 819,
547         .mcu_2_app_addr = 749,
548         .uartsh_2_mcu_addr = 1034,
549         .mcu_2_shp_addr = 962,
550         .app_2_mcu_addr = 685,
551         .shp_2_mcu_addr = 893,
552         .spdif_2_mcu_addr = 1102,
553         .mcu_2_spdif_addr = 1136,
554 };
555
556 static struct sdma_driver_data sdma_imx7d = {
557         .chnenbl0 = SDMA_CHNENBL0_IMX35,
558         .num_events = 48,
559         .script_addrs = &sdma_script_imx7d,
560 };
561
562 static struct sdma_driver_data sdma_imx8mq = {
563         .chnenbl0 = SDMA_CHNENBL0_IMX35,
564         .num_events = 48,
565         .script_addrs = &sdma_script_imx7d,
566         .check_ratio = 1,
567 };
568
569 static const struct platform_device_id sdma_devtypes[] = {
570         {
571                 .name = "imx25-sdma",
572                 .driver_data = (unsigned long)&sdma_imx25,
573         }, {
574                 .name = "imx31-sdma",
575                 .driver_data = (unsigned long)&sdma_imx31,
576         }, {
577                 .name = "imx35-sdma",
578                 .driver_data = (unsigned long)&sdma_imx35,
579         }, {
580                 .name = "imx51-sdma",
581                 .driver_data = (unsigned long)&sdma_imx51,
582         }, {
583                 .name = "imx53-sdma",
584                 .driver_data = (unsigned long)&sdma_imx53,
585         }, {
586                 .name = "imx6q-sdma",
587                 .driver_data = (unsigned long)&sdma_imx6q,
588         }, {
589                 .name = "imx7d-sdma",
590                 .driver_data = (unsigned long)&sdma_imx7d,
591         }, {
592                 .name = "imx8mq-sdma",
593                 .driver_data = (unsigned long)&sdma_imx8mq,
594         }, {
595                 /* sentinel */
596         }
597 };
598 MODULE_DEVICE_TABLE(platform, sdma_devtypes);
599
600 static const struct of_device_id sdma_dt_ids[] = {
601         { .compatible = "fsl,imx6q-sdma", .data = &sdma_imx6q, },
602         { .compatible = "fsl,imx53-sdma", .data = &sdma_imx53, },
603         { .compatible = "fsl,imx51-sdma", .data = &sdma_imx51, },
604         { .compatible = "fsl,imx35-sdma", .data = &sdma_imx35, },
605         { .compatible = "fsl,imx31-sdma", .data = &sdma_imx31, },
606         { .compatible = "fsl,imx25-sdma", .data = &sdma_imx25, },
607         { .compatible = "fsl,imx7d-sdma", .data = &sdma_imx7d, },
608         { .compatible = "fsl,imx8mq-sdma", .data = &sdma_imx8mq, },
609         { /* sentinel */ }
610 };
611 MODULE_DEVICE_TABLE(of, sdma_dt_ids);
612
613 #define SDMA_H_CONFIG_DSPDMA    BIT(12) /* indicates if the DSPDMA is used */
614 #define SDMA_H_CONFIG_RTD_PINS  BIT(11) /* indicates if Real-Time Debug pins are enabled */
615 #define SDMA_H_CONFIG_ACR       BIT(4)  /* indicates if AHB freq /core freq = 2 or 1 */
616 #define SDMA_H_CONFIG_CSM       (3)       /* indicates which context switch mode is selected*/
617
618 static inline u32 chnenbl_ofs(struct sdma_engine *sdma, unsigned int event)
619 {
620         u32 chnenbl0 = sdma->drvdata->chnenbl0;
621         return chnenbl0 + event * 4;
622 }
623
624 static int sdma_config_ownership(struct sdma_channel *sdmac,
625                 bool event_override, bool mcu_override, bool dsp_override)
626 {
627         struct sdma_engine *sdma = sdmac->sdma;
628         int channel = sdmac->channel;
629         unsigned long evt, mcu, dsp;
630
631         if (event_override && mcu_override && dsp_override)
632                 return -EINVAL;
633
634         evt = readl_relaxed(sdma->regs + SDMA_H_EVTOVR);
635         mcu = readl_relaxed(sdma->regs + SDMA_H_HOSTOVR);
636         dsp = readl_relaxed(sdma->regs + SDMA_H_DSPOVR);
637
638         if (dsp_override)
639                 __clear_bit(channel, &dsp);
640         else
641                 __set_bit(channel, &dsp);
642
643         if (event_override)
644                 __clear_bit(channel, &evt);
645         else
646                 __set_bit(channel, &evt);
647
648         if (mcu_override)
649                 __clear_bit(channel, &mcu);
650         else
651                 __set_bit(channel, &mcu);
652
653         writel_relaxed(evt, sdma->regs + SDMA_H_EVTOVR);
654         writel_relaxed(mcu, sdma->regs + SDMA_H_HOSTOVR);
655         writel_relaxed(dsp, sdma->regs + SDMA_H_DSPOVR);
656
657         return 0;
658 }
659
660 static void sdma_enable_channel(struct sdma_engine *sdma, int channel)
661 {
662         writel(BIT(channel), sdma->regs + SDMA_H_START);
663 }
664
665 /*
666  * sdma_run_channel0 - run a channel and wait till it's done
667  */
668 static int sdma_run_channel0(struct sdma_engine *sdma)
669 {
670         int ret;
671         u32 reg;
672
673         sdma_enable_channel(sdma, 0);
674
675         ret = readl_relaxed_poll_timeout_atomic(sdma->regs + SDMA_H_STATSTOP,
676                                                 reg, !(reg & 1), 1, 500);
677         if (ret)
678                 dev_err(sdma->dev, "Timeout waiting for CH0 ready\n");
679
680         /* Set bits of CONFIG register with dynamic context switching */
681         reg = readl(sdma->regs + SDMA_H_CONFIG);
682         if ((reg & SDMA_H_CONFIG_CSM) == 0) {
683                 reg |= SDMA_H_CONFIG_CSM;
684                 writel_relaxed(reg, sdma->regs + SDMA_H_CONFIG);
685         }
686
687         return ret;
688 }
689
690 static int sdma_load_script(struct sdma_engine *sdma, void *buf, int size,
691                 u32 address)
692 {
693         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
694         void *buf_virt;
695         dma_addr_t buf_phys;
696         int ret;
697         unsigned long flags;
698
699         buf_virt = dma_alloc_coherent(sdma->dev, size, &buf_phys, GFP_KERNEL);
700         if (!buf_virt) {
701                 return -ENOMEM;
702         }
703
704         spin_lock_irqsave(&sdma->channel_0_lock, flags);
705
706         bd0->mode.command = C0_SETPM;
707         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
708         bd0->mode.count = size / 2;
709         bd0->buffer_addr = buf_phys;
710         bd0->ext_buffer_addr = address;
711
712         memcpy(buf_virt, buf, size);
713
714         ret = sdma_run_channel0(sdma);
715
716         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
717
718         dma_free_coherent(sdma->dev, size, buf_virt, buf_phys);
719
720         return ret;
721 }
722
723 static void sdma_event_enable(struct sdma_channel *sdmac, unsigned int event)
724 {
725         struct sdma_engine *sdma = sdmac->sdma;
726         int channel = sdmac->channel;
727         unsigned long val;
728         u32 chnenbl = chnenbl_ofs(sdma, event);
729
730         val = readl_relaxed(sdma->regs + chnenbl);
731         __set_bit(channel, &val);
732         writel_relaxed(val, sdma->regs + chnenbl);
733 }
734
735 static void sdma_event_disable(struct sdma_channel *sdmac, unsigned int event)
736 {
737         struct sdma_engine *sdma = sdmac->sdma;
738         int channel = sdmac->channel;
739         u32 chnenbl = chnenbl_ofs(sdma, event);
740         unsigned long val;
741
742         val = readl_relaxed(sdma->regs + chnenbl);
743         __clear_bit(channel, &val);
744         writel_relaxed(val, sdma->regs + chnenbl);
745 }
746
747 static struct sdma_desc *to_sdma_desc(struct dma_async_tx_descriptor *t)
748 {
749         return container_of(t, struct sdma_desc, vd.tx);
750 }
751
752 static void sdma_start_desc(struct sdma_channel *sdmac)
753 {
754         struct virt_dma_desc *vd = vchan_next_desc(&sdmac->vc);
755         struct sdma_desc *desc;
756         struct sdma_engine *sdma = sdmac->sdma;
757         int channel = sdmac->channel;
758
759         if (!vd) {
760                 sdmac->desc = NULL;
761                 return;
762         }
763         sdmac->desc = desc = to_sdma_desc(&vd->tx);
764
765         list_del(&vd->node);
766
767         sdma->channel_control[channel].base_bd_ptr = desc->bd_phys;
768         sdma->channel_control[channel].current_bd_ptr = desc->bd_phys;
769         sdma_enable_channel(sdma, sdmac->channel);
770 }
771
772 static void sdma_update_channel_loop(struct sdma_channel *sdmac)
773 {
774         struct sdma_buffer_descriptor *bd;
775         int error = 0;
776         enum dma_status old_status = sdmac->status;
777
778         /*
779          * loop mode. Iterate over descriptors, re-setup them and
780          * call callback function.
781          */
782         while (sdmac->desc) {
783                 struct sdma_desc *desc = sdmac->desc;
784
785                 bd = &desc->bd[desc->buf_tail];
786
787                 if (bd->mode.status & BD_DONE)
788                         break;
789
790                 if (bd->mode.status & BD_RROR) {
791                         bd->mode.status &= ~BD_RROR;
792                         sdmac->status = DMA_ERROR;
793                         error = -EIO;
794                 }
795
796                /*
797                 * We use bd->mode.count to calculate the residue, since contains
798                 * the number of bytes present in the current buffer descriptor.
799                 */
800
801                 desc->chn_real_count = bd->mode.count;
802                 bd->mode.status |= BD_DONE;
803                 bd->mode.count = desc->period_len;
804                 desc->buf_ptail = desc->buf_tail;
805                 desc->buf_tail = (desc->buf_tail + 1) % desc->num_bd;
806
807                 /*
808                  * The callback is called from the interrupt context in order
809                  * to reduce latency and to avoid the risk of altering the
810                  * SDMA transaction status by the time the client tasklet is
811                  * executed.
812                  */
813                 spin_unlock(&sdmac->vc.lock);
814                 dmaengine_desc_get_callback_invoke(&desc->vd.tx, NULL);
815                 spin_lock(&sdmac->vc.lock);
816
817                 if (error)
818                         sdmac->status = old_status;
819         }
820 }
821
822 static void mxc_sdma_handle_channel_normal(struct sdma_channel *data)
823 {
824         struct sdma_channel *sdmac = (struct sdma_channel *) data;
825         struct sdma_buffer_descriptor *bd;
826         int i, error = 0;
827
828         sdmac->desc->chn_real_count = 0;
829         /*
830          * non loop mode. Iterate over all descriptors, collect
831          * errors and call callback function
832          */
833         for (i = 0; i < sdmac->desc->num_bd; i++) {
834                 bd = &sdmac->desc->bd[i];
835
836                  if (bd->mode.status & (BD_DONE | BD_RROR))
837                         error = -EIO;
838                  sdmac->desc->chn_real_count += bd->mode.count;
839         }
840
841         if (error)
842                 sdmac->status = DMA_ERROR;
843         else
844                 sdmac->status = DMA_COMPLETE;
845 }
846
847 static irqreturn_t sdma_int_handler(int irq, void *dev_id)
848 {
849         struct sdma_engine *sdma = dev_id;
850         unsigned long stat;
851
852         stat = readl_relaxed(sdma->regs + SDMA_H_INTR);
853         writel_relaxed(stat, sdma->regs + SDMA_H_INTR);
854         /* channel 0 is special and not handled here, see run_channel0() */
855         stat &= ~1;
856
857         while (stat) {
858                 int channel = fls(stat) - 1;
859                 struct sdma_channel *sdmac = &sdma->channel[channel];
860                 struct sdma_desc *desc;
861
862                 spin_lock(&sdmac->vc.lock);
863                 desc = sdmac->desc;
864                 if (desc) {
865                         if (sdmac->flags & IMX_DMA_SG_LOOP) {
866                                 sdma_update_channel_loop(sdmac);
867                         } else {
868                                 mxc_sdma_handle_channel_normal(sdmac);
869                                 vchan_cookie_complete(&desc->vd);
870                                 sdma_start_desc(sdmac);
871                         }
872                 }
873
874                 spin_unlock(&sdmac->vc.lock);
875                 __clear_bit(channel, &stat);
876         }
877
878         return IRQ_HANDLED;
879 }
880
881 /*
882  * sets the pc of SDMA script according to the peripheral type
883  */
884 static void sdma_get_pc(struct sdma_channel *sdmac,
885                 enum sdma_peripheral_type peripheral_type)
886 {
887         struct sdma_engine *sdma = sdmac->sdma;
888         int per_2_emi = 0, emi_2_per = 0;
889         /*
890          * These are needed once we start to support transfers between
891          * two peripherals or memory-to-memory transfers
892          */
893         int per_2_per = 0, emi_2_emi = 0;
894
895         sdmac->pc_from_device = 0;
896         sdmac->pc_to_device = 0;
897         sdmac->device_to_device = 0;
898         sdmac->pc_to_pc = 0;
899
900         switch (peripheral_type) {
901         case IMX_DMATYPE_MEMORY:
902                 emi_2_emi = sdma->script_addrs->ap_2_ap_addr;
903                 break;
904         case IMX_DMATYPE_DSP:
905                 emi_2_per = sdma->script_addrs->bp_2_ap_addr;
906                 per_2_emi = sdma->script_addrs->ap_2_bp_addr;
907                 break;
908         case IMX_DMATYPE_FIRI:
909                 per_2_emi = sdma->script_addrs->firi_2_mcu_addr;
910                 emi_2_per = sdma->script_addrs->mcu_2_firi_addr;
911                 break;
912         case IMX_DMATYPE_UART:
913                 per_2_emi = sdma->script_addrs->uart_2_mcu_addr;
914                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
915                 break;
916         case IMX_DMATYPE_UART_SP:
917                 per_2_emi = sdma->script_addrs->uartsh_2_mcu_addr;
918                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
919                 break;
920         case IMX_DMATYPE_ATA:
921                 per_2_emi = sdma->script_addrs->ata_2_mcu_addr;
922                 emi_2_per = sdma->script_addrs->mcu_2_ata_addr;
923                 break;
924         case IMX_DMATYPE_CSPI:
925         case IMX_DMATYPE_EXT:
926         case IMX_DMATYPE_SSI:
927         case IMX_DMATYPE_SAI:
928                 per_2_emi = sdma->script_addrs->app_2_mcu_addr;
929                 emi_2_per = sdma->script_addrs->mcu_2_app_addr;
930                 break;
931         case IMX_DMATYPE_SSI_DUAL:
932                 per_2_emi = sdma->script_addrs->ssish_2_mcu_addr;
933                 emi_2_per = sdma->script_addrs->mcu_2_ssish_addr;
934                 break;
935         case IMX_DMATYPE_SSI_SP:
936         case IMX_DMATYPE_MMC:
937         case IMX_DMATYPE_SDHC:
938         case IMX_DMATYPE_CSPI_SP:
939         case IMX_DMATYPE_ESAI:
940         case IMX_DMATYPE_MSHC_SP:
941                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
942                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
943                 break;
944         case IMX_DMATYPE_ASRC:
945                 per_2_emi = sdma->script_addrs->asrc_2_mcu_addr;
946                 emi_2_per = sdma->script_addrs->asrc_2_mcu_addr;
947                 per_2_per = sdma->script_addrs->per_2_per_addr;
948                 break;
949         case IMX_DMATYPE_ASRC_SP:
950                 per_2_emi = sdma->script_addrs->shp_2_mcu_addr;
951                 emi_2_per = sdma->script_addrs->mcu_2_shp_addr;
952                 per_2_per = sdma->script_addrs->per_2_per_addr;
953                 break;
954         case IMX_DMATYPE_MSHC:
955                 per_2_emi = sdma->script_addrs->mshc_2_mcu_addr;
956                 emi_2_per = sdma->script_addrs->mcu_2_mshc_addr;
957                 break;
958         case IMX_DMATYPE_CCM:
959                 per_2_emi = sdma->script_addrs->dptc_dvfs_addr;
960                 break;
961         case IMX_DMATYPE_SPDIF:
962                 per_2_emi = sdma->script_addrs->spdif_2_mcu_addr;
963                 emi_2_per = sdma->script_addrs->mcu_2_spdif_addr;
964                 break;
965         case IMX_DMATYPE_IPU_MEMORY:
966                 emi_2_per = sdma->script_addrs->ext_mem_2_ipu_addr;
967                 break;
968         default:
969                 break;
970         }
971
972         sdmac->pc_from_device = per_2_emi;
973         sdmac->pc_to_device = emi_2_per;
974         sdmac->device_to_device = per_2_per;
975         sdmac->pc_to_pc = emi_2_emi;
976 }
977
978 static int sdma_load_context(struct sdma_channel *sdmac)
979 {
980         struct sdma_engine *sdma = sdmac->sdma;
981         int channel = sdmac->channel;
982         int load_address;
983         struct sdma_context_data *context = sdma->context;
984         struct sdma_buffer_descriptor *bd0 = sdma->bd0;
985         int ret;
986         unsigned long flags;
987
988         if (sdmac->context_loaded)
989                 return 0;
990
991         if (sdmac->direction == DMA_DEV_TO_MEM)
992                 load_address = sdmac->pc_from_device;
993         else if (sdmac->direction == DMA_DEV_TO_DEV)
994                 load_address = sdmac->device_to_device;
995         else if (sdmac->direction == DMA_MEM_TO_MEM)
996                 load_address = sdmac->pc_to_pc;
997         else
998                 load_address = sdmac->pc_to_device;
999
1000         if (load_address < 0)
1001                 return load_address;
1002
1003         dev_dbg(sdma->dev, "load_address = %d\n", load_address);
1004         dev_dbg(sdma->dev, "wml = 0x%08x\n", (u32)sdmac->watermark_level);
1005         dev_dbg(sdma->dev, "shp_addr = 0x%08x\n", sdmac->shp_addr);
1006         dev_dbg(sdma->dev, "per_addr = 0x%08x\n", sdmac->per_addr);
1007         dev_dbg(sdma->dev, "event_mask0 = 0x%08x\n", (u32)sdmac->event_mask[0]);
1008         dev_dbg(sdma->dev, "event_mask1 = 0x%08x\n", (u32)sdmac->event_mask[1]);
1009
1010         spin_lock_irqsave(&sdma->channel_0_lock, flags);
1011
1012         memset(context, 0, sizeof(*context));
1013         context->channel_state.pc = load_address;
1014
1015         /* Send by context the event mask,base address for peripheral
1016          * and watermark level
1017          */
1018         context->gReg[0] = sdmac->event_mask[1];
1019         context->gReg[1] = sdmac->event_mask[0];
1020         context->gReg[2] = sdmac->per_addr;
1021         context->gReg[6] = sdmac->shp_addr;
1022         context->gReg[7] = sdmac->watermark_level;
1023
1024         bd0->mode.command = C0_SETDM;
1025         bd0->mode.status = BD_DONE | BD_WRAP | BD_EXTD;
1026         bd0->mode.count = sizeof(*context) / 4;
1027         bd0->buffer_addr = sdma->context_phys;
1028         bd0->ext_buffer_addr = 2048 + (sizeof(*context) / 4) * channel;
1029         ret = sdma_run_channel0(sdma);
1030
1031         spin_unlock_irqrestore(&sdma->channel_0_lock, flags);
1032
1033         sdmac->context_loaded = true;
1034
1035         return ret;
1036 }
1037
1038 static struct sdma_channel *to_sdma_chan(struct dma_chan *chan)
1039 {
1040         return container_of(chan, struct sdma_channel, vc.chan);
1041 }
1042
1043 static int sdma_disable_channel(struct dma_chan *chan)
1044 {
1045         struct sdma_channel *sdmac = to_sdma_chan(chan);
1046         struct sdma_engine *sdma = sdmac->sdma;
1047         int channel = sdmac->channel;
1048
1049         writel_relaxed(BIT(channel), sdma->regs + SDMA_H_STATSTOP);
1050         sdmac->status = DMA_ERROR;
1051
1052         return 0;
1053 }
1054 static void sdma_channel_terminate_work(struct work_struct *work)
1055 {
1056         struct sdma_channel *sdmac = container_of(work, struct sdma_channel,
1057                                                   terminate_worker);
1058         unsigned long flags;
1059         LIST_HEAD(head);
1060
1061         /*
1062          * According to NXP R&D team a delay of one BD SDMA cost time
1063          * (maximum is 1ms) should be added after disable of the channel
1064          * bit, to ensure SDMA core has really been stopped after SDMA
1065          * clients call .device_terminate_all.
1066          */
1067         usleep_range(1000, 2000);
1068
1069         spin_lock_irqsave(&sdmac->vc.lock, flags);
1070         vchan_get_all_descriptors(&sdmac->vc, &head);
1071         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1072         vchan_dma_desc_free_list(&sdmac->vc, &head);
1073         sdmac->context_loaded = false;
1074 }
1075
1076 static int sdma_terminate_all(struct dma_chan *chan)
1077 {
1078         struct sdma_channel *sdmac = to_sdma_chan(chan);
1079         unsigned long flags;
1080
1081         spin_lock_irqsave(&sdmac->vc.lock, flags);
1082
1083         sdma_disable_channel(chan);
1084
1085         if (sdmac->desc) {
1086                 vchan_terminate_vdesc(&sdmac->desc->vd);
1087                 sdmac->desc = NULL;
1088                 schedule_work(&sdmac->terminate_worker);
1089         }
1090
1091         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1092
1093         return 0;
1094 }
1095
1096 static void sdma_channel_synchronize(struct dma_chan *chan)
1097 {
1098         struct sdma_channel *sdmac = to_sdma_chan(chan);
1099
1100         vchan_synchronize(&sdmac->vc);
1101
1102         flush_work(&sdmac->terminate_worker);
1103 }
1104
1105 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel *sdmac)
1106 {
1107         struct sdma_engine *sdma = sdmac->sdma;
1108
1109         int lwml = sdmac->watermark_level & SDMA_WATERMARK_LEVEL_LWML;
1110         int hwml = (sdmac->watermark_level & SDMA_WATERMARK_LEVEL_HWML) >> 16;
1111
1112         set_bit(sdmac->event_id0 % 32, &sdmac->event_mask[1]);
1113         set_bit(sdmac->event_id1 % 32, &sdmac->event_mask[0]);
1114
1115         if (sdmac->event_id0 > 31)
1116                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_LWE;
1117
1118         if (sdmac->event_id1 > 31)
1119                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_HWE;
1120
1121         /*
1122          * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1123          * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1124          * r0(event_mask[1]) and r1(event_mask[0]).
1125          */
1126         if (lwml > hwml) {
1127                 sdmac->watermark_level &= ~(SDMA_WATERMARK_LEVEL_LWML |
1128                                                 SDMA_WATERMARK_LEVEL_HWML);
1129                 sdmac->watermark_level |= hwml;
1130                 sdmac->watermark_level |= lwml << 16;
1131                 swap(sdmac->event_mask[0], sdmac->event_mask[1]);
1132         }
1133
1134         if (sdmac->per_address2 >= sdma->spba_start_addr &&
1135                         sdmac->per_address2 <= sdma->spba_end_addr)
1136                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_SP;
1137
1138         if (sdmac->per_address >= sdma->spba_start_addr &&
1139                         sdmac->per_address <= sdma->spba_end_addr)
1140                 sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_DP;
1141
1142         sdmac->watermark_level |= SDMA_WATERMARK_LEVEL_CONT;
1143 }
1144
1145 static int sdma_config_channel(struct dma_chan *chan)
1146 {
1147         struct sdma_channel *sdmac = to_sdma_chan(chan);
1148         int ret;
1149
1150         sdma_disable_channel(chan);
1151
1152         sdmac->event_mask[0] = 0;
1153         sdmac->event_mask[1] = 0;
1154         sdmac->shp_addr = 0;
1155         sdmac->per_addr = 0;
1156
1157         switch (sdmac->peripheral_type) {
1158         case IMX_DMATYPE_DSP:
1159                 sdma_config_ownership(sdmac, false, true, true);
1160                 break;
1161         case IMX_DMATYPE_MEMORY:
1162                 sdma_config_ownership(sdmac, false, true, false);
1163                 break;
1164         default:
1165                 sdma_config_ownership(sdmac, true, true, false);
1166                 break;
1167         }
1168
1169         sdma_get_pc(sdmac, sdmac->peripheral_type);
1170
1171         if ((sdmac->peripheral_type != IMX_DMATYPE_MEMORY) &&
1172                         (sdmac->peripheral_type != IMX_DMATYPE_DSP)) {
1173                 /* Handle multiple event channels differently */
1174                 if (sdmac->event_id1) {
1175                         if (sdmac->peripheral_type == IMX_DMATYPE_ASRC_SP ||
1176                             sdmac->peripheral_type == IMX_DMATYPE_ASRC)
1177                                 sdma_set_watermarklevel_for_p2p(sdmac);
1178                 } else
1179                         __set_bit(sdmac->event_id0, sdmac->event_mask);
1180
1181                 /* Address */
1182                 sdmac->shp_addr = sdmac->per_address;
1183                 sdmac->per_addr = sdmac->per_address2;
1184         } else {
1185                 sdmac->watermark_level = 0; /* FIXME: M3_BASE_ADDRESS */
1186         }
1187
1188         ret = sdma_load_context(sdmac);
1189
1190         return ret;
1191 }
1192
1193 static int sdma_set_channel_priority(struct sdma_channel *sdmac,
1194                 unsigned int priority)
1195 {
1196         struct sdma_engine *sdma = sdmac->sdma;
1197         int channel = sdmac->channel;
1198
1199         if (priority < MXC_SDMA_MIN_PRIORITY
1200             || priority > MXC_SDMA_MAX_PRIORITY) {
1201                 return -EINVAL;
1202         }
1203
1204         writel_relaxed(priority, sdma->regs + SDMA_CHNPRI_0 + 4 * channel);
1205
1206         return 0;
1207 }
1208
1209 static int sdma_request_channel0(struct sdma_engine *sdma)
1210 {
1211         int ret = -EBUSY;
1212
1213         sdma->bd0 = dma_alloc_coherent(sdma->dev, PAGE_SIZE, &sdma->bd0_phys,
1214                                         GFP_NOWAIT);
1215         if (!sdma->bd0) {
1216                 ret = -ENOMEM;
1217                 goto out;
1218         }
1219
1220         sdma->channel_control[0].base_bd_ptr = sdma->bd0_phys;
1221         sdma->channel_control[0].current_bd_ptr = sdma->bd0_phys;
1222
1223         sdma_set_channel_priority(&sdma->channel[0], MXC_SDMA_DEFAULT_PRIORITY);
1224         return 0;
1225 out:
1226
1227         return ret;
1228 }
1229
1230
1231 static int sdma_alloc_bd(struct sdma_desc *desc)
1232 {
1233         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1234         int ret = 0;
1235
1236         desc->bd = dma_alloc_coherent(desc->sdmac->sdma->dev, bd_size,
1237                                        &desc->bd_phys, GFP_NOWAIT);
1238         if (!desc->bd) {
1239                 ret = -ENOMEM;
1240                 goto out;
1241         }
1242 out:
1243         return ret;
1244 }
1245
1246 static void sdma_free_bd(struct sdma_desc *desc)
1247 {
1248         u32 bd_size = desc->num_bd * sizeof(struct sdma_buffer_descriptor);
1249
1250         dma_free_coherent(desc->sdmac->sdma->dev, bd_size, desc->bd,
1251                           desc->bd_phys);
1252 }
1253
1254 static void sdma_desc_free(struct virt_dma_desc *vd)
1255 {
1256         struct sdma_desc *desc = container_of(vd, struct sdma_desc, vd);
1257
1258         sdma_free_bd(desc);
1259         kfree(desc);
1260 }
1261
1262 static int sdma_alloc_chan_resources(struct dma_chan *chan)
1263 {
1264         struct sdma_channel *sdmac = to_sdma_chan(chan);
1265         struct imx_dma_data *data = chan->private;
1266         struct imx_dma_data mem_data;
1267         int prio, ret;
1268
1269         /*
1270          * MEMCPY may never setup chan->private by filter function such as
1271          * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1272          * Please note in any other slave case, you have to setup chan->private
1273          * with 'struct imx_dma_data' in your own filter function if you want to
1274          * request dma channel by dma_request_channel() rather than
1275          * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1276          * to warn you to correct your filter function.
1277          */
1278         if (!data) {
1279                 dev_dbg(sdmac->sdma->dev, "MEMCPY in case?\n");
1280                 mem_data.priority = 2;
1281                 mem_data.peripheral_type = IMX_DMATYPE_MEMORY;
1282                 mem_data.dma_request = 0;
1283                 mem_data.dma_request2 = 0;
1284                 data = &mem_data;
1285
1286                 sdma_get_pc(sdmac, IMX_DMATYPE_MEMORY);
1287         }
1288
1289         switch (data->priority) {
1290         case DMA_PRIO_HIGH:
1291                 prio = 3;
1292                 break;
1293         case DMA_PRIO_MEDIUM:
1294                 prio = 2;
1295                 break;
1296         case DMA_PRIO_LOW:
1297         default:
1298                 prio = 1;
1299                 break;
1300         }
1301
1302         sdmac->peripheral_type = data->peripheral_type;
1303         sdmac->event_id0 = data->dma_request;
1304         sdmac->event_id1 = data->dma_request2;
1305
1306         ret = clk_enable(sdmac->sdma->clk_ipg);
1307         if (ret)
1308                 return ret;
1309         ret = clk_enable(sdmac->sdma->clk_ahb);
1310         if (ret)
1311                 goto disable_clk_ipg;
1312
1313         ret = sdma_set_channel_priority(sdmac, prio);
1314         if (ret)
1315                 goto disable_clk_ahb;
1316
1317         return 0;
1318
1319 disable_clk_ahb:
1320         clk_disable(sdmac->sdma->clk_ahb);
1321 disable_clk_ipg:
1322         clk_disable(sdmac->sdma->clk_ipg);
1323         return ret;
1324 }
1325
1326 static void sdma_free_chan_resources(struct dma_chan *chan)
1327 {
1328         struct sdma_channel *sdmac = to_sdma_chan(chan);
1329         struct sdma_engine *sdma = sdmac->sdma;
1330
1331         sdma_terminate_all(chan);
1332
1333         sdma_channel_synchronize(chan);
1334
1335         sdma_event_disable(sdmac, sdmac->event_id0);
1336         if (sdmac->event_id1)
1337                 sdma_event_disable(sdmac, sdmac->event_id1);
1338
1339         sdmac->event_id0 = 0;
1340         sdmac->event_id1 = 0;
1341         sdmac->context_loaded = false;
1342
1343         sdma_set_channel_priority(sdmac, 0);
1344
1345         clk_disable(sdma->clk_ipg);
1346         clk_disable(sdma->clk_ahb);
1347 }
1348
1349 static struct sdma_desc *sdma_transfer_init(struct sdma_channel *sdmac,
1350                                 enum dma_transfer_direction direction, u32 bds)
1351 {
1352         struct sdma_desc *desc;
1353
1354         desc = kzalloc((sizeof(*desc)), GFP_NOWAIT);
1355         if (!desc)
1356                 goto err_out;
1357
1358         sdmac->status = DMA_IN_PROGRESS;
1359         sdmac->direction = direction;
1360         sdmac->flags = 0;
1361
1362         desc->chn_count = 0;
1363         desc->chn_real_count = 0;
1364         desc->buf_tail = 0;
1365         desc->buf_ptail = 0;
1366         desc->sdmac = sdmac;
1367         desc->num_bd = bds;
1368
1369         if (sdma_alloc_bd(desc))
1370                 goto err_desc_out;
1371
1372         /* No slave_config called in MEMCPY case, so do here */
1373         if (direction == DMA_MEM_TO_MEM)
1374                 sdma_config_ownership(sdmac, false, true, false);
1375
1376         if (sdma_load_context(sdmac))
1377                 goto err_desc_out;
1378
1379         return desc;
1380
1381 err_desc_out:
1382         kfree(desc);
1383 err_out:
1384         return NULL;
1385 }
1386
1387 static struct dma_async_tx_descriptor *sdma_prep_memcpy(
1388                 struct dma_chan *chan, dma_addr_t dma_dst,
1389                 dma_addr_t dma_src, size_t len, unsigned long flags)
1390 {
1391         struct sdma_channel *sdmac = to_sdma_chan(chan);
1392         struct sdma_engine *sdma = sdmac->sdma;
1393         int channel = sdmac->channel;
1394         size_t count;
1395         int i = 0, param;
1396         struct sdma_buffer_descriptor *bd;
1397         struct sdma_desc *desc;
1398
1399         if (!chan || !len)
1400                 return NULL;
1401
1402         dev_dbg(sdma->dev, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1403                 &dma_src, &dma_dst, len, channel);
1404
1405         desc = sdma_transfer_init(sdmac, DMA_MEM_TO_MEM,
1406                                         len / SDMA_BD_MAX_CNT + 1);
1407         if (!desc)
1408                 return NULL;
1409
1410         do {
1411                 count = min_t(size_t, len, SDMA_BD_MAX_CNT);
1412                 bd = &desc->bd[i];
1413                 bd->buffer_addr = dma_src;
1414                 bd->ext_buffer_addr = dma_dst;
1415                 bd->mode.count = count;
1416                 desc->chn_count += count;
1417                 bd->mode.command = 0;
1418
1419                 dma_src += count;
1420                 dma_dst += count;
1421                 len -= count;
1422                 i++;
1423
1424                 param = BD_DONE | BD_EXTD | BD_CONT;
1425                 /* last bd */
1426                 if (!len) {
1427                         param |= BD_INTR;
1428                         param |= BD_LAST;
1429                         param &= ~BD_CONT;
1430                 }
1431
1432                 dev_dbg(sdma->dev, "entry %d: count: %zd dma: 0x%x %s%s\n",
1433                                 i, count, bd->buffer_addr,
1434                                 param & BD_WRAP ? "wrap" : "",
1435                                 param & BD_INTR ? " intr" : "");
1436
1437                 bd->mode.status = param;
1438         } while (len);
1439
1440         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1441 }
1442
1443 static struct dma_async_tx_descriptor *sdma_prep_slave_sg(
1444                 struct dma_chan *chan, struct scatterlist *sgl,
1445                 unsigned int sg_len, enum dma_transfer_direction direction,
1446                 unsigned long flags, void *context)
1447 {
1448         struct sdma_channel *sdmac = to_sdma_chan(chan);
1449         struct sdma_engine *sdma = sdmac->sdma;
1450         int i, count;
1451         int channel = sdmac->channel;
1452         struct scatterlist *sg;
1453         struct sdma_desc *desc;
1454
1455         sdma_config_write(chan, &sdmac->slave_config, direction);
1456
1457         desc = sdma_transfer_init(sdmac, direction, sg_len);
1458         if (!desc)
1459                 goto err_out;
1460
1461         dev_dbg(sdma->dev, "setting up %d entries for channel %d.\n",
1462                         sg_len, channel);
1463
1464         for_each_sg(sgl, sg, sg_len, i) {
1465                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1466                 int param;
1467
1468                 bd->buffer_addr = sg->dma_address;
1469
1470                 count = sg_dma_len(sg);
1471
1472                 if (count > SDMA_BD_MAX_CNT) {
1473                         dev_err(sdma->dev, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1474                                         channel, count, SDMA_BD_MAX_CNT);
1475                         goto err_bd_out;
1476                 }
1477
1478                 bd->mode.count = count;
1479                 desc->chn_count += count;
1480
1481                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1482                         goto err_bd_out;
1483
1484                 switch (sdmac->word_size) {
1485                 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1486                         bd->mode.command = 0;
1487                         if (count & 3 || sg->dma_address & 3)
1488                                 goto err_bd_out;
1489                         break;
1490                 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1491                         bd->mode.command = 2;
1492                         if (count & 1 || sg->dma_address & 1)
1493                                 goto err_bd_out;
1494                         break;
1495                 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1496                         bd->mode.command = 1;
1497                         break;
1498                 default:
1499                         goto err_bd_out;
1500                 }
1501
1502                 param = BD_DONE | BD_EXTD | BD_CONT;
1503
1504                 if (i + 1 == sg_len) {
1505                         param |= BD_INTR;
1506                         param |= BD_LAST;
1507                         param &= ~BD_CONT;
1508                 }
1509
1510                 dev_dbg(sdma->dev, "entry %d: count: %d dma: %#llx %s%s\n",
1511                                 i, count, (u64)sg->dma_address,
1512                                 param & BD_WRAP ? "wrap" : "",
1513                                 param & BD_INTR ? " intr" : "");
1514
1515                 bd->mode.status = param;
1516         }
1517
1518         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1519 err_bd_out:
1520         sdma_free_bd(desc);
1521         kfree(desc);
1522 err_out:
1523         sdmac->status = DMA_ERROR;
1524         return NULL;
1525 }
1526
1527 static struct dma_async_tx_descriptor *sdma_prep_dma_cyclic(
1528                 struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
1529                 size_t period_len, enum dma_transfer_direction direction,
1530                 unsigned long flags)
1531 {
1532         struct sdma_channel *sdmac = to_sdma_chan(chan);
1533         struct sdma_engine *sdma = sdmac->sdma;
1534         int num_periods = buf_len / period_len;
1535         int channel = sdmac->channel;
1536         int i = 0, buf = 0;
1537         struct sdma_desc *desc;
1538
1539         dev_dbg(sdma->dev, "%s channel: %d\n", __func__, channel);
1540
1541         sdma_config_write(chan, &sdmac->slave_config, direction);
1542
1543         desc = sdma_transfer_init(sdmac, direction, num_periods);
1544         if (!desc)
1545                 goto err_out;
1546
1547         desc->period_len = period_len;
1548
1549         sdmac->flags |= IMX_DMA_SG_LOOP;
1550
1551         if (period_len > SDMA_BD_MAX_CNT) {
1552                 dev_err(sdma->dev, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1553                                 channel, period_len, SDMA_BD_MAX_CNT);
1554                 goto err_bd_out;
1555         }
1556
1557         while (buf < buf_len) {
1558                 struct sdma_buffer_descriptor *bd = &desc->bd[i];
1559                 int param;
1560
1561                 bd->buffer_addr = dma_addr;
1562
1563                 bd->mode.count = period_len;
1564
1565                 if (sdmac->word_size > DMA_SLAVE_BUSWIDTH_4_BYTES)
1566                         goto err_bd_out;
1567                 if (sdmac->word_size == DMA_SLAVE_BUSWIDTH_4_BYTES)
1568                         bd->mode.command = 0;
1569                 else
1570                         bd->mode.command = sdmac->word_size;
1571
1572                 param = BD_DONE | BD_EXTD | BD_CONT | BD_INTR;
1573                 if (i + 1 == num_periods)
1574                         param |= BD_WRAP;
1575
1576                 dev_dbg(sdma->dev, "entry %d: count: %zu dma: %#llx %s%s\n",
1577                                 i, period_len, (u64)dma_addr,
1578                                 param & BD_WRAP ? "wrap" : "",
1579                                 param & BD_INTR ? " intr" : "");
1580
1581                 bd->mode.status = param;
1582
1583                 dma_addr += period_len;
1584                 buf += period_len;
1585
1586                 i++;
1587         }
1588
1589         return vchan_tx_prep(&sdmac->vc, &desc->vd, flags);
1590 err_bd_out:
1591         sdma_free_bd(desc);
1592         kfree(desc);
1593 err_out:
1594         sdmac->status = DMA_ERROR;
1595         return NULL;
1596 }
1597
1598 static int sdma_config_write(struct dma_chan *chan,
1599                        struct dma_slave_config *dmaengine_cfg,
1600                        enum dma_transfer_direction direction)
1601 {
1602         struct sdma_channel *sdmac = to_sdma_chan(chan);
1603
1604         if (direction == DMA_DEV_TO_MEM) {
1605                 sdmac->per_address = dmaengine_cfg->src_addr;
1606                 sdmac->watermark_level = dmaengine_cfg->src_maxburst *
1607                         dmaengine_cfg->src_addr_width;
1608                 sdmac->word_size = dmaengine_cfg->src_addr_width;
1609         } else if (direction == DMA_DEV_TO_DEV) {
1610                 sdmac->per_address2 = dmaengine_cfg->src_addr;
1611                 sdmac->per_address = dmaengine_cfg->dst_addr;
1612                 sdmac->watermark_level = dmaengine_cfg->src_maxburst &
1613                         SDMA_WATERMARK_LEVEL_LWML;
1614                 sdmac->watermark_level |= (dmaengine_cfg->dst_maxburst << 16) &
1615                         SDMA_WATERMARK_LEVEL_HWML;
1616                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1617         } else {
1618                 sdmac->per_address = dmaengine_cfg->dst_addr;
1619                 sdmac->watermark_level = dmaengine_cfg->dst_maxburst *
1620                         dmaengine_cfg->dst_addr_width;
1621                 sdmac->word_size = dmaengine_cfg->dst_addr_width;
1622         }
1623         sdmac->direction = direction;
1624         return sdma_config_channel(chan);
1625 }
1626
1627 static int sdma_config(struct dma_chan *chan,
1628                        struct dma_slave_config *dmaengine_cfg)
1629 {
1630         struct sdma_channel *sdmac = to_sdma_chan(chan);
1631
1632         memcpy(&sdmac->slave_config, dmaengine_cfg, sizeof(*dmaengine_cfg));
1633
1634         /* Set ENBLn earlier to make sure dma request triggered after that */
1635         if (sdmac->event_id0 >= sdmac->sdma->drvdata->num_events)
1636                 return -EINVAL;
1637         sdma_event_enable(sdmac, sdmac->event_id0);
1638
1639         if (sdmac->event_id1) {
1640                 if (sdmac->event_id1 >= sdmac->sdma->drvdata->num_events)
1641                         return -EINVAL;
1642                 sdma_event_enable(sdmac, sdmac->event_id1);
1643         }
1644
1645         return 0;
1646 }
1647
1648 static enum dma_status sdma_tx_status(struct dma_chan *chan,
1649                                       dma_cookie_t cookie,
1650                                       struct dma_tx_state *txstate)
1651 {
1652         struct sdma_channel *sdmac = to_sdma_chan(chan);
1653         struct sdma_desc *desc = NULL;
1654         u32 residue;
1655         struct virt_dma_desc *vd;
1656         enum dma_status ret;
1657         unsigned long flags;
1658
1659         ret = dma_cookie_status(chan, cookie, txstate);
1660         if (ret == DMA_COMPLETE || !txstate)
1661                 return ret;
1662
1663         spin_lock_irqsave(&sdmac->vc.lock, flags);
1664
1665         vd = vchan_find_desc(&sdmac->vc, cookie);
1666         if (vd)
1667                 desc = to_sdma_desc(&vd->tx);
1668         else if (sdmac->desc && sdmac->desc->vd.tx.cookie == cookie)
1669                 desc = sdmac->desc;
1670
1671         if (desc) {
1672                 if (sdmac->flags & IMX_DMA_SG_LOOP)
1673                         residue = (desc->num_bd - desc->buf_ptail) *
1674                                 desc->period_len - desc->chn_real_count;
1675                 else
1676                         residue = desc->chn_count - desc->chn_real_count;
1677         } else {
1678                 residue = 0;
1679         }
1680
1681         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1682
1683         dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
1684                          residue);
1685
1686         return sdmac->status;
1687 }
1688
1689 static void sdma_issue_pending(struct dma_chan *chan)
1690 {
1691         struct sdma_channel *sdmac = to_sdma_chan(chan);
1692         unsigned long flags;
1693
1694         spin_lock_irqsave(&sdmac->vc.lock, flags);
1695         if (vchan_issue_pending(&sdmac->vc) && !sdmac->desc)
1696                 sdma_start_desc(sdmac);
1697         spin_unlock_irqrestore(&sdmac->vc.lock, flags);
1698 }
1699
1700 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1701 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1702 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1703 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1704
1705 static void sdma_add_scripts(struct sdma_engine *sdma,
1706                 const struct sdma_script_start_addrs *addr)
1707 {
1708         s32 *addr_arr = (u32 *)addr;
1709         s32 *saddr_arr = (u32 *)sdma->script_addrs;
1710         int i;
1711
1712         /* use the default firmware in ROM if missing external firmware */
1713         if (!sdma->script_number)
1714                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1715
1716         if (sdma->script_number > sizeof(struct sdma_script_start_addrs)
1717                                   / sizeof(s32)) {
1718                 dev_err(sdma->dev,
1719                         "SDMA script number %d not match with firmware.\n",
1720                         sdma->script_number);
1721                 return;
1722         }
1723
1724         for (i = 0; i < sdma->script_number; i++)
1725                 if (addr_arr[i] > 0)
1726                         saddr_arr[i] = addr_arr[i];
1727 }
1728
1729 static void sdma_load_firmware(const struct firmware *fw, void *context)
1730 {
1731         struct sdma_engine *sdma = context;
1732         const struct sdma_firmware_header *header;
1733         const struct sdma_script_start_addrs *addr;
1734         unsigned short *ram_code;
1735
1736         if (!fw) {
1737                 dev_info(sdma->dev, "external firmware not found, using ROM firmware\n");
1738                 /* In this case we just use the ROM firmware. */
1739                 return;
1740         }
1741
1742         if (fw->size < sizeof(*header))
1743                 goto err_firmware;
1744
1745         header = (struct sdma_firmware_header *)fw->data;
1746
1747         if (header->magic != SDMA_FIRMWARE_MAGIC)
1748                 goto err_firmware;
1749         if (header->ram_code_start + header->ram_code_size > fw->size)
1750                 goto err_firmware;
1751         switch (header->version_major) {
1752         case 1:
1753                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1;
1754                 break;
1755         case 2:
1756                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2;
1757                 break;
1758         case 3:
1759                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3;
1760                 break;
1761         case 4:
1762                 sdma->script_number = SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4;
1763                 break;
1764         default:
1765                 dev_err(sdma->dev, "unknown firmware version\n");
1766                 goto err_firmware;
1767         }
1768
1769         addr = (void *)header + header->script_addrs_start;
1770         ram_code = (void *)header + header->ram_code_start;
1771
1772         clk_enable(sdma->clk_ipg);
1773         clk_enable(sdma->clk_ahb);
1774         /* download the RAM image for SDMA */
1775         sdma_load_script(sdma, ram_code,
1776                         header->ram_code_size,
1777                         addr->ram_code_start_addr);
1778         clk_disable(sdma->clk_ipg);
1779         clk_disable(sdma->clk_ahb);
1780
1781         sdma_add_scripts(sdma, addr);
1782
1783         dev_info(sdma->dev, "loaded firmware %d.%d\n",
1784                         header->version_major,
1785                         header->version_minor);
1786
1787 err_firmware:
1788         release_firmware(fw);
1789 }
1790
1791 #define EVENT_REMAP_CELLS 3
1792
1793 static int sdma_event_remap(struct sdma_engine *sdma)
1794 {
1795         struct device_node *np = sdma->dev->of_node;
1796         struct device_node *gpr_np = of_parse_phandle(np, "gpr", 0);
1797         struct property *event_remap;
1798         struct regmap *gpr;
1799         char propname[] = "fsl,sdma-event-remap";
1800         u32 reg, val, shift, num_map, i;
1801         int ret = 0;
1802
1803         if (IS_ERR(np) || IS_ERR(gpr_np))
1804                 goto out;
1805
1806         event_remap = of_find_property(np, propname, NULL);
1807         num_map = event_remap ? (event_remap->length / sizeof(u32)) : 0;
1808         if (!num_map) {
1809                 dev_dbg(sdma->dev, "no event needs to be remapped\n");
1810                 goto out;
1811         } else if (num_map % EVENT_REMAP_CELLS) {
1812                 dev_err(sdma->dev, "the property %s must modulo %d\n",
1813                                 propname, EVENT_REMAP_CELLS);
1814                 ret = -EINVAL;
1815                 goto out;
1816         }
1817
1818         gpr = syscon_node_to_regmap(gpr_np);
1819         if (IS_ERR(gpr)) {
1820                 dev_err(sdma->dev, "failed to get gpr regmap\n");
1821                 ret = PTR_ERR(gpr);
1822                 goto out;
1823         }
1824
1825         for (i = 0; i < num_map; i += EVENT_REMAP_CELLS) {
1826                 ret = of_property_read_u32_index(np, propname, i, &reg);
1827                 if (ret) {
1828                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1829                                         propname, i);
1830                         goto out;
1831                 }
1832
1833                 ret = of_property_read_u32_index(np, propname, i + 1, &shift);
1834                 if (ret) {
1835                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1836                                         propname, i + 1);
1837                         goto out;
1838                 }
1839
1840                 ret = of_property_read_u32_index(np, propname, i + 2, &val);
1841                 if (ret) {
1842                         dev_err(sdma->dev, "failed to read property %s index %d\n",
1843                                         propname, i + 2);
1844                         goto out;
1845                 }
1846
1847                 regmap_update_bits(gpr, reg, BIT(shift), val << shift);
1848         }
1849
1850 out:
1851         if (!IS_ERR(gpr_np))
1852                 of_node_put(gpr_np);
1853
1854         return ret;
1855 }
1856
1857 static int sdma_get_firmware(struct sdma_engine *sdma,
1858                 const char *fw_name)
1859 {
1860         int ret;
1861
1862         ret = request_firmware_nowait(THIS_MODULE,
1863                         FW_ACTION_HOTPLUG, fw_name, sdma->dev,
1864                         GFP_KERNEL, sdma, sdma_load_firmware);
1865
1866         return ret;
1867 }
1868
1869 static int sdma_init(struct sdma_engine *sdma)
1870 {
1871         int i, ret;
1872         dma_addr_t ccb_phys;
1873
1874         ret = clk_enable(sdma->clk_ipg);
1875         if (ret)
1876                 return ret;
1877         ret = clk_enable(sdma->clk_ahb);
1878         if (ret)
1879                 goto disable_clk_ipg;
1880
1881         if (sdma->drvdata->check_ratio &&
1882             (clk_get_rate(sdma->clk_ahb) == clk_get_rate(sdma->clk_ipg)))
1883                 sdma->clk_ratio = 1;
1884
1885         /* Be sure SDMA has not started yet */
1886         writel_relaxed(0, sdma->regs + SDMA_H_C0PTR);
1887
1888         sdma->channel_control = dma_alloc_coherent(sdma->dev,
1889                         MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control) +
1890                         sizeof(struct sdma_context_data),
1891                         &ccb_phys, GFP_KERNEL);
1892
1893         if (!sdma->channel_control) {
1894                 ret = -ENOMEM;
1895                 goto err_dma_alloc;
1896         }
1897
1898         sdma->context = (void *)sdma->channel_control +
1899                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1900         sdma->context_phys = ccb_phys +
1901                 MAX_DMA_CHANNELS * sizeof (struct sdma_channel_control);
1902
1903         /* disable all channels */
1904         for (i = 0; i < sdma->drvdata->num_events; i++)
1905                 writel_relaxed(0, sdma->regs + chnenbl_ofs(sdma, i));
1906
1907         /* All channels have priority 0 */
1908         for (i = 0; i < MAX_DMA_CHANNELS; i++)
1909                 writel_relaxed(0, sdma->regs + SDMA_CHNPRI_0 + i * 4);
1910
1911         ret = sdma_request_channel0(sdma);
1912         if (ret)
1913                 goto err_dma_alloc;
1914
1915         sdma_config_ownership(&sdma->channel[0], false, true, false);
1916
1917         /* Set Command Channel (Channel Zero) */
1918         writel_relaxed(0x4050, sdma->regs + SDMA_CHN0ADDR);
1919
1920         /* Set bits of CONFIG register but with static context switching */
1921         if (sdma->clk_ratio)
1922                 writel_relaxed(SDMA_H_CONFIG_ACR, sdma->regs + SDMA_H_CONFIG);
1923         else
1924                 writel_relaxed(0, sdma->regs + SDMA_H_CONFIG);
1925
1926         writel_relaxed(ccb_phys, sdma->regs + SDMA_H_C0PTR);
1927
1928         /* Initializes channel's priorities */
1929         sdma_set_channel_priority(&sdma->channel[0], 7);
1930
1931         clk_disable(sdma->clk_ipg);
1932         clk_disable(sdma->clk_ahb);
1933
1934         return 0;
1935
1936 err_dma_alloc:
1937         clk_disable(sdma->clk_ahb);
1938 disable_clk_ipg:
1939         clk_disable(sdma->clk_ipg);
1940         dev_err(sdma->dev, "initialisation failed with %d\n", ret);
1941         return ret;
1942 }
1943
1944 static bool sdma_filter_fn(struct dma_chan *chan, void *fn_param)
1945 {
1946         struct sdma_channel *sdmac = to_sdma_chan(chan);
1947         struct imx_dma_data *data = fn_param;
1948
1949         if (!imx_dma_is_general_purpose(chan))
1950                 return false;
1951
1952         sdmac->data = *data;
1953         chan->private = &sdmac->data;
1954
1955         return true;
1956 }
1957
1958 static struct dma_chan *sdma_xlate(struct of_phandle_args *dma_spec,
1959                                    struct of_dma *ofdma)
1960 {
1961         struct sdma_engine *sdma = ofdma->of_dma_data;
1962         dma_cap_mask_t mask = sdma->dma_device.cap_mask;
1963         struct imx_dma_data data;
1964
1965         if (dma_spec->args_count != 3)
1966                 return NULL;
1967
1968         data.dma_request = dma_spec->args[0];
1969         data.peripheral_type = dma_spec->args[1];
1970         data.priority = dma_spec->args[2];
1971         /*
1972          * init dma_request2 to zero, which is not used by the dts.
1973          * For P2P, dma_request2 is init from dma_request_channel(),
1974          * chan->private will point to the imx_dma_data, and in
1975          * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1976          * be set to sdmac->event_id1.
1977          */
1978         data.dma_request2 = 0;
1979
1980         return __dma_request_channel(&mask, sdma_filter_fn, &data,
1981                                      ofdma->of_node);
1982 }
1983
1984 static int sdma_probe(struct platform_device *pdev)
1985 {
1986         const struct of_device_id *of_id =
1987                         of_match_device(sdma_dt_ids, &pdev->dev);
1988         struct device_node *np = pdev->dev.of_node;
1989         struct device_node *spba_bus;
1990         const char *fw_name;
1991         int ret;
1992         int irq;
1993         struct resource *iores;
1994         struct resource spba_res;
1995         struct sdma_platform_data *pdata = dev_get_platdata(&pdev->dev);
1996         int i;
1997         struct sdma_engine *sdma;
1998         s32 *saddr_arr;
1999         const struct sdma_driver_data *drvdata = NULL;
2000
2001         if (of_id)
2002                 drvdata = of_id->data;
2003         else if (pdev->id_entry)
2004                 drvdata = (void *)pdev->id_entry->driver_data;
2005
2006         if (!drvdata) {
2007                 dev_err(&pdev->dev, "unable to find driver data\n");
2008                 return -EINVAL;
2009         }
2010
2011         ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2012         if (ret)
2013                 return ret;
2014
2015         sdma = devm_kzalloc(&pdev->dev, sizeof(*sdma), GFP_KERNEL);
2016         if (!sdma)
2017                 return -ENOMEM;
2018
2019         spin_lock_init(&sdma->channel_0_lock);
2020
2021         sdma->dev = &pdev->dev;
2022         sdma->drvdata = drvdata;
2023
2024         irq = platform_get_irq(pdev, 0);
2025         if (irq < 0)
2026                 return irq;
2027
2028         iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2029         sdma->regs = devm_ioremap_resource(&pdev->dev, iores);
2030         if (IS_ERR(sdma->regs))
2031                 return PTR_ERR(sdma->regs);
2032
2033         sdma->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2034         if (IS_ERR(sdma->clk_ipg))
2035                 return PTR_ERR(sdma->clk_ipg);
2036
2037         sdma->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2038         if (IS_ERR(sdma->clk_ahb))
2039                 return PTR_ERR(sdma->clk_ahb);
2040
2041         ret = clk_prepare(sdma->clk_ipg);
2042         if (ret)
2043                 return ret;
2044
2045         ret = clk_prepare(sdma->clk_ahb);
2046         if (ret)
2047                 goto err_clk;
2048
2049         ret = devm_request_irq(&pdev->dev, irq, sdma_int_handler, 0, "sdma",
2050                                sdma);
2051         if (ret)
2052                 goto err_irq;
2053
2054         sdma->irq = irq;
2055
2056         sdma->script_addrs = kzalloc(sizeof(*sdma->script_addrs), GFP_KERNEL);
2057         if (!sdma->script_addrs) {
2058                 ret = -ENOMEM;
2059                 goto err_irq;
2060         }
2061
2062         /* initially no scripts available */
2063         saddr_arr = (s32 *)sdma->script_addrs;
2064         for (i = 0; i < sizeof(*sdma->script_addrs) / sizeof(s32); i++)
2065                 saddr_arr[i] = -EINVAL;
2066
2067         dma_cap_set(DMA_SLAVE, sdma->dma_device.cap_mask);
2068         dma_cap_set(DMA_CYCLIC, sdma->dma_device.cap_mask);
2069         dma_cap_set(DMA_MEMCPY, sdma->dma_device.cap_mask);
2070
2071         INIT_LIST_HEAD(&sdma->dma_device.channels);
2072         /* Initialize channel parameters */
2073         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2074                 struct sdma_channel *sdmac = &sdma->channel[i];
2075
2076                 sdmac->sdma = sdma;
2077
2078                 sdmac->channel = i;
2079                 sdmac->vc.desc_free = sdma_desc_free;
2080                 INIT_WORK(&sdmac->terminate_worker,
2081                                 sdma_channel_terminate_work);
2082                 /*
2083                  * Add the channel to the DMAC list. Do not add channel 0 though
2084                  * because we need it internally in the SDMA driver. This also means
2085                  * that channel 0 in dmaengine counting matches sdma channel 1.
2086                  */
2087                 if (i)
2088                         vchan_init(&sdmac->vc, &sdma->dma_device);
2089         }
2090
2091         ret = sdma_init(sdma);
2092         if (ret)
2093                 goto err_init;
2094
2095         ret = sdma_event_remap(sdma);
2096         if (ret)
2097                 goto err_init;
2098
2099         if (sdma->drvdata->script_addrs)
2100                 sdma_add_scripts(sdma, sdma->drvdata->script_addrs);
2101         if (pdata && pdata->script_addrs)
2102                 sdma_add_scripts(sdma, pdata->script_addrs);
2103
2104         sdma->dma_device.dev = &pdev->dev;
2105
2106         sdma->dma_device.device_alloc_chan_resources = sdma_alloc_chan_resources;
2107         sdma->dma_device.device_free_chan_resources = sdma_free_chan_resources;
2108         sdma->dma_device.device_tx_status = sdma_tx_status;
2109         sdma->dma_device.device_prep_slave_sg = sdma_prep_slave_sg;
2110         sdma->dma_device.device_prep_dma_cyclic = sdma_prep_dma_cyclic;
2111         sdma->dma_device.device_config = sdma_config;
2112         sdma->dma_device.device_terminate_all = sdma_terminate_all;
2113         sdma->dma_device.device_synchronize = sdma_channel_synchronize;
2114         sdma->dma_device.src_addr_widths = SDMA_DMA_BUSWIDTHS;
2115         sdma->dma_device.dst_addr_widths = SDMA_DMA_BUSWIDTHS;
2116         sdma->dma_device.directions = SDMA_DMA_DIRECTIONS;
2117         sdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2118         sdma->dma_device.device_prep_dma_memcpy = sdma_prep_memcpy;
2119         sdma->dma_device.device_issue_pending = sdma_issue_pending;
2120         sdma->dma_device.copy_align = 2;
2121         dma_set_max_seg_size(sdma->dma_device.dev, SDMA_BD_MAX_CNT);
2122
2123         platform_set_drvdata(pdev, sdma);
2124
2125         ret = dma_async_device_register(&sdma->dma_device);
2126         if (ret) {
2127                 dev_err(&pdev->dev, "unable to register\n");
2128                 goto err_init;
2129         }
2130
2131         if (np) {
2132                 ret = of_dma_controller_register(np, sdma_xlate, sdma);
2133                 if (ret) {
2134                         dev_err(&pdev->dev, "failed to register controller\n");
2135                         goto err_register;
2136                 }
2137
2138                 spba_bus = of_find_compatible_node(NULL, NULL, "fsl,spba-bus");
2139                 ret = of_address_to_resource(spba_bus, 0, &spba_res);
2140                 if (!ret) {
2141                         sdma->spba_start_addr = spba_res.start;
2142                         sdma->spba_end_addr = spba_res.end;
2143                 }
2144                 of_node_put(spba_bus);
2145         }
2146
2147         /*
2148          * Kick off firmware loading as the very last step:
2149          * attempt to load firmware only if we're not on the error path, because
2150          * the firmware callback requires a fully functional and allocated sdma
2151          * instance.
2152          */
2153         if (pdata) {
2154                 ret = sdma_get_firmware(sdma, pdata->fw_name);
2155                 if (ret)
2156                         dev_warn(&pdev->dev, "failed to get firmware from platform data\n");
2157         } else {
2158                 /*
2159                  * Because that device tree does not encode ROM script address,
2160                  * the RAM script in firmware is mandatory for device tree
2161                  * probe, otherwise it fails.
2162                  */
2163                 ret = of_property_read_string(np, "fsl,sdma-ram-script-name",
2164                                               &fw_name);
2165                 if (ret) {
2166                         dev_warn(&pdev->dev, "failed to get firmware name\n");
2167                 } else {
2168                         ret = sdma_get_firmware(sdma, fw_name);
2169                         if (ret)
2170                                 dev_warn(&pdev->dev, "failed to get firmware from device tree\n");
2171                 }
2172         }
2173
2174         return 0;
2175
2176 err_register:
2177         dma_async_device_unregister(&sdma->dma_device);
2178 err_init:
2179         kfree(sdma->script_addrs);
2180 err_irq:
2181         clk_unprepare(sdma->clk_ahb);
2182 err_clk:
2183         clk_unprepare(sdma->clk_ipg);
2184         return ret;
2185 }
2186
2187 static int sdma_remove(struct platform_device *pdev)
2188 {
2189         struct sdma_engine *sdma = platform_get_drvdata(pdev);
2190         int i;
2191
2192         devm_free_irq(&pdev->dev, sdma->irq, sdma);
2193         dma_async_device_unregister(&sdma->dma_device);
2194         kfree(sdma->script_addrs);
2195         clk_unprepare(sdma->clk_ahb);
2196         clk_unprepare(sdma->clk_ipg);
2197         /* Kill the tasklet */
2198         for (i = 0; i < MAX_DMA_CHANNELS; i++) {
2199                 struct sdma_channel *sdmac = &sdma->channel[i];
2200
2201                 tasklet_kill(&sdmac->vc.task);
2202                 sdma_free_chan_resources(&sdmac->vc.chan);
2203         }
2204
2205         platform_set_drvdata(pdev, NULL);
2206         return 0;
2207 }
2208
2209 static struct platform_driver sdma_driver = {
2210         .driver         = {
2211                 .name   = "imx-sdma",
2212                 .of_match_table = sdma_dt_ids,
2213         },
2214         .id_table       = sdma_devtypes,
2215         .remove         = sdma_remove,
2216         .probe          = sdma_probe,
2217 };
2218
2219 module_platform_driver(sdma_driver);
2220
2221 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2222 MODULE_DESCRIPTION("i.MX SDMA driver");
2223 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2224 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2225 #endif
2226 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2227 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2228 #endif
2229 MODULE_LICENSE("GPL");