Merge tag 'for-linus-6.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw...
[linux-2.6-microblaze.git] / drivers / dma / hsu / hsu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the High Speed UART DMA
4  *
5  * Copyright (C) 2015 Intel Corporation
6  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
7  *
8  * Partially based on the bits found in drivers/tty/serial/mfd.c.
9  */
10
11 /*
12  * DMA channel allocation:
13  * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
14  *    Write (UART RX).
15  * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
16  *    port 3, and so on.
17  */
18
19 #include <linux/bits.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/init.h>
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/percpu-defs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/string.h>
32 #include <linux/spinlock.h>
33
34 #include "hsu.h"
35
36 #define HSU_DMA_BUSWIDTHS                               \
37         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)       |       \
38         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)          |       \
39         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)         |       \
40         BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)         |       \
41         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)         |       \
42         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)         |       \
43         BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
44
45 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
46 {
47         hsu_chan_writel(hsuc, HSU_CH_CR, 0);
48 }
49
50 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
51 {
52         u32 cr = HSU_CH_CR_CHA;
53
54         if (hsuc->direction == DMA_MEM_TO_DEV)
55                 cr &= ~HSU_CH_CR_CHD;
56         else if (hsuc->direction == DMA_DEV_TO_MEM)
57                 cr |= HSU_CH_CR_CHD;
58
59         hsu_chan_writel(hsuc, HSU_CH_CR, cr);
60 }
61
62 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
63 {
64         struct dma_slave_config *config = &hsuc->config;
65         struct hsu_dma_desc *desc = hsuc->desc;
66         u32 bsr = 0, mtsr = 0;  /* to shut the compiler up */
67         u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
68         unsigned int i, count;
69
70         if (hsuc->direction == DMA_MEM_TO_DEV) {
71                 bsr = config->dst_maxburst;
72                 mtsr = config->dst_addr_width;
73         } else if (hsuc->direction == DMA_DEV_TO_MEM) {
74                 bsr = config->src_maxburst;
75                 mtsr = config->src_addr_width;
76         }
77
78         hsu_chan_disable(hsuc);
79
80         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
81         hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
82         hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
83
84         /* Set descriptors */
85         count = desc->nents - desc->active;
86         for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
87                 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
88                 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
89
90                 /* Prepare value for DCR */
91                 dcr |= HSU_CH_DCR_DESCA(i);
92                 dcr |= HSU_CH_DCR_CHTOI(i);     /* timeout bit, see HSU Errata 1 */
93
94                 desc->active++;
95         }
96         /* Only for the last descriptor in the chain */
97         dcr |= HSU_CH_DCR_CHSOD(count - 1);
98         dcr |= HSU_CH_DCR_CHDI(count - 1);
99
100         hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
101
102         hsu_chan_enable(hsuc);
103 }
104
105 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
106 {
107         hsu_chan_disable(hsuc);
108         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
109 }
110
111 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
112 {
113         hsu_dma_chan_start(hsuc);
114 }
115
116 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
117 {
118         struct virt_dma_desc *vdesc;
119
120         /* Get the next descriptor */
121         vdesc = vchan_next_desc(&hsuc->vchan);
122         if (!vdesc) {
123                 hsuc->desc = NULL;
124                 return;
125         }
126
127         list_del(&vdesc->node);
128         hsuc->desc = to_hsu_dma_desc(vdesc);
129
130         /* Start the channel with a new descriptor */
131         hsu_dma_start_channel(hsuc);
132 }
133
134 /*
135  *      hsu_dma_get_status() - get DMA channel status
136  *      @chip: HSUART DMA chip
137  *      @nr: DMA channel number
138  *      @status: pointer for DMA Channel Status Register value
139  *
140  *      Description:
141  *      The function reads and clears the DMA Channel Status Register, checks
142  *      if it was a timeout interrupt and returns a corresponding value.
143  *
144  *      Caller should provide a valid pointer for the DMA Channel Status
145  *      Register value that will be returned in @status.
146  *
147  *      Return:
148  *      1 for DMA timeout status, 0 for other DMA status, or error code for
149  *      invalid parameters or no interrupt pending.
150  */
151 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
152                        u32 *status)
153 {
154         struct hsu_dma_chan *hsuc;
155         unsigned long flags;
156         u32 sr;
157
158         /* Sanity check */
159         if (nr >= chip->hsu->nr_channels)
160                 return -EINVAL;
161
162         hsuc = &chip->hsu->chan[nr];
163
164         /*
165          * No matter what situation, need read clear the IRQ status
166          * There is a bug, see Errata 5, HSD 2900918
167          */
168         spin_lock_irqsave(&hsuc->vchan.lock, flags);
169         sr = hsu_chan_readl(hsuc, HSU_CH_SR);
170         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
171
172         /* Check if any interrupt is pending */
173         sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
174         if (!sr)
175                 return -EIO;
176
177         /* Timeout IRQ, need wait some time, see Errata 2 */
178         if (sr & HSU_CH_SR_DESCTO_ANY)
179                 udelay(2);
180
181         /*
182          * At this point, at least one of Descriptor Time Out, Channel Error
183          * or Descriptor Done bits must be set. Clear the Descriptor Time Out
184          * bits and if sr is still non-zero, it must be channel error or
185          * descriptor done which are higher priority than timeout and handled
186          * in hsu_dma_do_irq(). Else, it must be a timeout.
187          */
188         sr &= ~HSU_CH_SR_DESCTO_ANY;
189
190         *status = sr;
191
192         return sr ? 0 : 1;
193 }
194 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
195
196 /*
197  *      hsu_dma_do_irq() - DMA interrupt handler
198  *      @chip: HSUART DMA chip
199  *      @nr: DMA channel number
200  *      @status: Channel Status Register value
201  *
202  *      Description:
203  *      This function handles Channel Error and Descriptor Done interrupts.
204  *      This function should be called after determining that the DMA interrupt
205  *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
206  *
207  *      Return:
208  *      0 for invalid channel number, 1 otherwise.
209  */
210 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
211 {
212         struct dma_chan_percpu *stat;
213         struct hsu_dma_chan *hsuc;
214         struct hsu_dma_desc *desc;
215         unsigned long flags;
216
217         /* Sanity check */
218         if (nr >= chip->hsu->nr_channels)
219                 return 0;
220
221         hsuc = &chip->hsu->chan[nr];
222         stat = this_cpu_ptr(hsuc->vchan.chan.local);
223
224         spin_lock_irqsave(&hsuc->vchan.lock, flags);
225         desc = hsuc->desc;
226         if (desc) {
227                 if (status & HSU_CH_SR_CHE) {
228                         desc->status = DMA_ERROR;
229                 } else if (desc->active < desc->nents) {
230                         hsu_dma_start_channel(hsuc);
231                 } else {
232                         vchan_cookie_complete(&desc->vdesc);
233                         desc->status = DMA_COMPLETE;
234                         stat->bytes_transferred += desc->length;
235                         hsu_dma_start_transfer(hsuc);
236                 }
237         }
238         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
239
240         return 1;
241 }
242 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
243
244 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
245 {
246         struct hsu_dma_desc *desc;
247
248         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
249         if (!desc)
250                 return NULL;
251
252         desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
253         if (!desc->sg) {
254                 kfree(desc);
255                 return NULL;
256         }
257
258         return desc;
259 }
260
261 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
262 {
263         struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
264
265         kfree(desc->sg);
266         kfree(desc);
267 }
268
269 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
270                 struct dma_chan *chan, struct scatterlist *sgl,
271                 unsigned int sg_len, enum dma_transfer_direction direction,
272                 unsigned long flags, void *context)
273 {
274         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
275         struct hsu_dma_desc *desc;
276         struct scatterlist *sg;
277         unsigned int i;
278
279         desc = hsu_dma_alloc_desc(sg_len);
280         if (!desc)
281                 return NULL;
282
283         for_each_sg(sgl, sg, sg_len, i) {
284                 desc->sg[i].addr = sg_dma_address(sg);
285                 desc->sg[i].len = sg_dma_len(sg);
286
287                 desc->length += sg_dma_len(sg);
288         }
289
290         desc->nents = sg_len;
291         desc->direction = direction;
292         /* desc->active = 0 by kzalloc */
293         desc->status = DMA_IN_PROGRESS;
294
295         return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
296 }
297
298 static void hsu_dma_issue_pending(struct dma_chan *chan)
299 {
300         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
301         unsigned long flags;
302
303         spin_lock_irqsave(&hsuc->vchan.lock, flags);
304         if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
305                 hsu_dma_start_transfer(hsuc);
306         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
307 }
308
309 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
310 {
311         struct hsu_dma_desc *desc = hsuc->desc;
312         size_t bytes = 0;
313         int i;
314
315         for (i = desc->active; i < desc->nents; i++)
316                 bytes += desc->sg[i].len;
317
318         i = HSU_DMA_CHAN_NR_DESC - 1;
319         do {
320                 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
321         } while (--i >= 0);
322
323         return bytes;
324 }
325
326 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
327         dma_cookie_t cookie, struct dma_tx_state *state)
328 {
329         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
330         struct virt_dma_desc *vdesc;
331         enum dma_status status;
332         size_t bytes;
333         unsigned long flags;
334
335         status = dma_cookie_status(chan, cookie, state);
336         if (status == DMA_COMPLETE)
337                 return status;
338
339         spin_lock_irqsave(&hsuc->vchan.lock, flags);
340         vdesc = vchan_find_desc(&hsuc->vchan, cookie);
341         if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
342                 bytes = hsu_dma_active_desc_size(hsuc);
343                 dma_set_residue(state, bytes);
344                 status = hsuc->desc->status;
345         } else if (vdesc) {
346                 bytes = to_hsu_dma_desc(vdesc)->length;
347                 dma_set_residue(state, bytes);
348         }
349         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
350
351         return status;
352 }
353
354 static int hsu_dma_slave_config(struct dma_chan *chan,
355                                 struct dma_slave_config *config)
356 {
357         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
358
359         memcpy(&hsuc->config, config, sizeof(hsuc->config));
360
361         return 0;
362 }
363
364 static int hsu_dma_pause(struct dma_chan *chan)
365 {
366         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
367         unsigned long flags;
368
369         spin_lock_irqsave(&hsuc->vchan.lock, flags);
370         if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
371                 hsu_chan_disable(hsuc);
372                 hsuc->desc->status = DMA_PAUSED;
373         }
374         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
375
376         return 0;
377 }
378
379 static int hsu_dma_resume(struct dma_chan *chan)
380 {
381         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
382         unsigned long flags;
383
384         spin_lock_irqsave(&hsuc->vchan.lock, flags);
385         if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
386                 hsuc->desc->status = DMA_IN_PROGRESS;
387                 hsu_chan_enable(hsuc);
388         }
389         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
390
391         return 0;
392 }
393
394 static int hsu_dma_terminate_all(struct dma_chan *chan)
395 {
396         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
397         unsigned long flags;
398         LIST_HEAD(head);
399
400         spin_lock_irqsave(&hsuc->vchan.lock, flags);
401
402         hsu_dma_stop_channel(hsuc);
403         if (hsuc->desc) {
404                 hsu_dma_desc_free(&hsuc->desc->vdesc);
405                 hsuc->desc = NULL;
406         }
407
408         vchan_get_all_descriptors(&hsuc->vchan, &head);
409         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
410         vchan_dma_desc_free_list(&hsuc->vchan, &head);
411
412         return 0;
413 }
414
415 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
416 {
417         vchan_free_chan_resources(to_virt_chan(chan));
418 }
419
420 static void hsu_dma_synchronize(struct dma_chan *chan)
421 {
422         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
423
424         vchan_synchronize(&hsuc->vchan);
425 }
426
427 int hsu_dma_probe(struct hsu_dma_chip *chip)
428 {
429         struct hsu_dma *hsu;
430         void __iomem *addr = chip->regs + chip->offset;
431         unsigned short i;
432         int ret;
433
434         hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
435         if (!hsu)
436                 return -ENOMEM;
437
438         chip->hsu = hsu;
439
440         /* Calculate nr_channels from the IO space length */
441         hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
442
443         hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
444                                  sizeof(*hsu->chan), GFP_KERNEL);
445         if (!hsu->chan)
446                 return -ENOMEM;
447
448         INIT_LIST_HEAD(&hsu->dma.channels);
449         for (i = 0; i < hsu->nr_channels; i++) {
450                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
451
452                 hsuc->vchan.desc_free = hsu_dma_desc_free;
453                 vchan_init(&hsuc->vchan, &hsu->dma);
454
455                 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
456                 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
457         }
458
459         dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
460         dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
461
462         hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
463
464         hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
465
466         hsu->dma.device_issue_pending = hsu_dma_issue_pending;
467         hsu->dma.device_tx_status = hsu_dma_tx_status;
468
469         hsu->dma.device_config = hsu_dma_slave_config;
470         hsu->dma.device_pause = hsu_dma_pause;
471         hsu->dma.device_resume = hsu_dma_resume;
472         hsu->dma.device_terminate_all = hsu_dma_terminate_all;
473         hsu->dma.device_synchronize = hsu_dma_synchronize;
474
475         hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
476         hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
477         hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
478         hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
479
480         hsu->dma.dev = chip->dev;
481
482         dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
483
484         ret = dma_async_device_register(&hsu->dma);
485         if (ret)
486                 return ret;
487
488         dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
489         return 0;
490 }
491 EXPORT_SYMBOL_GPL(hsu_dma_probe);
492
493 int hsu_dma_remove(struct hsu_dma_chip *chip)
494 {
495         struct hsu_dma *hsu = chip->hsu;
496         unsigned short i;
497
498         dma_async_device_unregister(&hsu->dma);
499
500         for (i = 0; i < hsu->nr_channels; i++) {
501                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
502
503                 tasklet_kill(&hsuc->vchan.task);
504         }
505
506         return 0;
507 }
508 EXPORT_SYMBOL_GPL(hsu_dma_remove);
509
510 MODULE_LICENSE("GPL v2");
511 MODULE_DESCRIPTION("High Speed UART DMA core driver");
512 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");