drm/amd/display: gradually ramp ABM intensity
[linux-2.6-microblaze.git] / drivers / dma / hsu / hsu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the High Speed UART DMA
4  *
5  * Copyright (C) 2015 Intel Corporation
6  * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
7  *
8  * Partially based on the bits found in drivers/tty/serial/mfd.c.
9  */
10
11 /*
12  * DMA channel allocation:
13  * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
14  *    Write (UART RX).
15  * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
16  *    port 3, and so on.
17  */
18
19 #include <linux/delay.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/slab.h>
25
26 #include "hsu.h"
27
28 #define HSU_DMA_BUSWIDTHS                               \
29         BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)       |       \
30         BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)          |       \
31         BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)         |       \
32         BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)         |       \
33         BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)         |       \
34         BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)         |       \
35         BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)
36
37 static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
38 {
39         hsu_chan_writel(hsuc, HSU_CH_CR, 0);
40 }
41
42 static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
43 {
44         u32 cr = HSU_CH_CR_CHA;
45
46         if (hsuc->direction == DMA_MEM_TO_DEV)
47                 cr &= ~HSU_CH_CR_CHD;
48         else if (hsuc->direction == DMA_DEV_TO_MEM)
49                 cr |= HSU_CH_CR_CHD;
50
51         hsu_chan_writel(hsuc, HSU_CH_CR, cr);
52 }
53
54 static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
55 {
56         struct dma_slave_config *config = &hsuc->config;
57         struct hsu_dma_desc *desc = hsuc->desc;
58         u32 bsr = 0, mtsr = 0;  /* to shut the compiler up */
59         u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
60         unsigned int i, count;
61
62         if (hsuc->direction == DMA_MEM_TO_DEV) {
63                 bsr = config->dst_maxburst;
64                 mtsr = config->dst_addr_width;
65         } else if (hsuc->direction == DMA_DEV_TO_MEM) {
66                 bsr = config->src_maxburst;
67                 mtsr = config->src_addr_width;
68         }
69
70         hsu_chan_disable(hsuc);
71
72         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
73         hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
74         hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);
75
76         /* Set descriptors */
77         count = desc->nents - desc->active;
78         for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
79                 hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
80                 hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);
81
82                 /* Prepare value for DCR */
83                 dcr |= HSU_CH_DCR_DESCA(i);
84                 dcr |= HSU_CH_DCR_CHTOI(i);     /* timeout bit, see HSU Errata 1 */
85
86                 desc->active++;
87         }
88         /* Only for the last descriptor in the chain */
89         dcr |= HSU_CH_DCR_CHSOD(count - 1);
90         dcr |= HSU_CH_DCR_CHDI(count - 1);
91
92         hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);
93
94         hsu_chan_enable(hsuc);
95 }
96
97 static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
98 {
99         hsu_chan_disable(hsuc);
100         hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
101 }
102
103 static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
104 {
105         hsu_dma_chan_start(hsuc);
106 }
107
108 static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
109 {
110         struct virt_dma_desc *vdesc;
111
112         /* Get the next descriptor */
113         vdesc = vchan_next_desc(&hsuc->vchan);
114         if (!vdesc) {
115                 hsuc->desc = NULL;
116                 return;
117         }
118
119         list_del(&vdesc->node);
120         hsuc->desc = to_hsu_dma_desc(vdesc);
121
122         /* Start the channel with a new descriptor */
123         hsu_dma_start_channel(hsuc);
124 }
125
126 /*
127  *      hsu_dma_get_status() - get DMA channel status
128  *      @chip: HSUART DMA chip
129  *      @nr: DMA channel number
130  *      @status: pointer for DMA Channel Status Register value
131  *
132  *      Description:
133  *      The function reads and clears the DMA Channel Status Register, checks
134  *      if it was a timeout interrupt and returns a corresponding value.
135  *
136  *      Caller should provide a valid pointer for the DMA Channel Status
137  *      Register value that will be returned in @status.
138  *
139  *      Return:
140  *      1 for DMA timeout status, 0 for other DMA status, or error code for
141  *      invalid parameters or no interrupt pending.
142  */
143 int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
144                        u32 *status)
145 {
146         struct hsu_dma_chan *hsuc;
147         unsigned long flags;
148         u32 sr;
149
150         /* Sanity check */
151         if (nr >= chip->hsu->nr_channels)
152                 return -EINVAL;
153
154         hsuc = &chip->hsu->chan[nr];
155
156         /*
157          * No matter what situation, need read clear the IRQ status
158          * There is a bug, see Errata 5, HSD 2900918
159          */
160         spin_lock_irqsave(&hsuc->vchan.lock, flags);
161         sr = hsu_chan_readl(hsuc, HSU_CH_SR);
162         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
163
164         /* Check if any interrupt is pending */
165         sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
166         if (!sr)
167                 return -EIO;
168
169         /* Timeout IRQ, need wait some time, see Errata 2 */
170         if (sr & HSU_CH_SR_DESCTO_ANY)
171                 udelay(2);
172
173         /*
174          * At this point, at least one of Descriptor Time Out, Channel Error
175          * or Descriptor Done bits must be set. Clear the Descriptor Time Out
176          * bits and if sr is still non-zero, it must be channel error or
177          * descriptor done which are higher priority than timeout and handled
178          * in hsu_dma_do_irq(). Else, it must be a timeout.
179          */
180         sr &= ~HSU_CH_SR_DESCTO_ANY;
181
182         *status = sr;
183
184         return sr ? 0 : 1;
185 }
186 EXPORT_SYMBOL_GPL(hsu_dma_get_status);
187
188 /*
189  *      hsu_dma_do_irq() - DMA interrupt handler
190  *      @chip: HSUART DMA chip
191  *      @nr: DMA channel number
192  *      @status: Channel Status Register value
193  *
194  *      Description:
195  *      This function handles Channel Error and Descriptor Done interrupts.
196  *      This function should be called after determining that the DMA interrupt
197  *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
198  *
199  *      Return:
200  *      0 for invalid channel number, 1 otherwise.
201  */
202 int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
203 {
204         struct hsu_dma_chan *hsuc;
205         struct hsu_dma_desc *desc;
206         unsigned long flags;
207
208         /* Sanity check */
209         if (nr >= chip->hsu->nr_channels)
210                 return 0;
211
212         hsuc = &chip->hsu->chan[nr];
213
214         spin_lock_irqsave(&hsuc->vchan.lock, flags);
215         desc = hsuc->desc;
216         if (desc) {
217                 if (status & HSU_CH_SR_CHE) {
218                         desc->status = DMA_ERROR;
219                 } else if (desc->active < desc->nents) {
220                         hsu_dma_start_channel(hsuc);
221                 } else {
222                         vchan_cookie_complete(&desc->vdesc);
223                         desc->status = DMA_COMPLETE;
224                         hsu_dma_start_transfer(hsuc);
225                 }
226         }
227         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
228
229         return 1;
230 }
231 EXPORT_SYMBOL_GPL(hsu_dma_do_irq);
232
233 static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
234 {
235         struct hsu_dma_desc *desc;
236
237         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
238         if (!desc)
239                 return NULL;
240
241         desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
242         if (!desc->sg) {
243                 kfree(desc);
244                 return NULL;
245         }
246
247         return desc;
248 }
249
250 static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
251 {
252         struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);
253
254         kfree(desc->sg);
255         kfree(desc);
256 }
257
258 static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
259                 struct dma_chan *chan, struct scatterlist *sgl,
260                 unsigned int sg_len, enum dma_transfer_direction direction,
261                 unsigned long flags, void *context)
262 {
263         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
264         struct hsu_dma_desc *desc;
265         struct scatterlist *sg;
266         unsigned int i;
267
268         desc = hsu_dma_alloc_desc(sg_len);
269         if (!desc)
270                 return NULL;
271
272         for_each_sg(sgl, sg, sg_len, i) {
273                 desc->sg[i].addr = sg_dma_address(sg);
274                 desc->sg[i].len = sg_dma_len(sg);
275
276                 desc->length += sg_dma_len(sg);
277         }
278
279         desc->nents = sg_len;
280         desc->direction = direction;
281         /* desc->active = 0 by kzalloc */
282         desc->status = DMA_IN_PROGRESS;
283
284         return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
285 }
286
287 static void hsu_dma_issue_pending(struct dma_chan *chan)
288 {
289         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
290         unsigned long flags;
291
292         spin_lock_irqsave(&hsuc->vchan.lock, flags);
293         if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
294                 hsu_dma_start_transfer(hsuc);
295         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
296 }
297
298 static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
299 {
300         struct hsu_dma_desc *desc = hsuc->desc;
301         size_t bytes = 0;
302         int i;
303
304         for (i = desc->active; i < desc->nents; i++)
305                 bytes += desc->sg[i].len;
306
307         i = HSU_DMA_CHAN_NR_DESC - 1;
308         do {
309                 bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
310         } while (--i >= 0);
311
312         return bytes;
313 }
314
315 static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
316         dma_cookie_t cookie, struct dma_tx_state *state)
317 {
318         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
319         struct virt_dma_desc *vdesc;
320         enum dma_status status;
321         size_t bytes;
322         unsigned long flags;
323
324         status = dma_cookie_status(chan, cookie, state);
325         if (status == DMA_COMPLETE)
326                 return status;
327
328         spin_lock_irqsave(&hsuc->vchan.lock, flags);
329         vdesc = vchan_find_desc(&hsuc->vchan, cookie);
330         if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
331                 bytes = hsu_dma_active_desc_size(hsuc);
332                 dma_set_residue(state, bytes);
333                 status = hsuc->desc->status;
334         } else if (vdesc) {
335                 bytes = to_hsu_dma_desc(vdesc)->length;
336                 dma_set_residue(state, bytes);
337         }
338         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
339
340         return status;
341 }
342
343 static int hsu_dma_slave_config(struct dma_chan *chan,
344                                 struct dma_slave_config *config)
345 {
346         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
347
348         memcpy(&hsuc->config, config, sizeof(hsuc->config));
349
350         return 0;
351 }
352
353 static int hsu_dma_pause(struct dma_chan *chan)
354 {
355         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
356         unsigned long flags;
357
358         spin_lock_irqsave(&hsuc->vchan.lock, flags);
359         if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
360                 hsu_chan_disable(hsuc);
361                 hsuc->desc->status = DMA_PAUSED;
362         }
363         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
364
365         return 0;
366 }
367
368 static int hsu_dma_resume(struct dma_chan *chan)
369 {
370         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
371         unsigned long flags;
372
373         spin_lock_irqsave(&hsuc->vchan.lock, flags);
374         if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
375                 hsuc->desc->status = DMA_IN_PROGRESS;
376                 hsu_chan_enable(hsuc);
377         }
378         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
379
380         return 0;
381 }
382
383 static int hsu_dma_terminate_all(struct dma_chan *chan)
384 {
385         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
386         unsigned long flags;
387         LIST_HEAD(head);
388
389         spin_lock_irqsave(&hsuc->vchan.lock, flags);
390
391         hsu_dma_stop_channel(hsuc);
392         if (hsuc->desc) {
393                 hsu_dma_desc_free(&hsuc->desc->vdesc);
394                 hsuc->desc = NULL;
395         }
396
397         vchan_get_all_descriptors(&hsuc->vchan, &head);
398         spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
399         vchan_dma_desc_free_list(&hsuc->vchan, &head);
400
401         return 0;
402 }
403
404 static void hsu_dma_free_chan_resources(struct dma_chan *chan)
405 {
406         vchan_free_chan_resources(to_virt_chan(chan));
407 }
408
409 static void hsu_dma_synchronize(struct dma_chan *chan)
410 {
411         struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
412
413         vchan_synchronize(&hsuc->vchan);
414 }
415
416 int hsu_dma_probe(struct hsu_dma_chip *chip)
417 {
418         struct hsu_dma *hsu;
419         void __iomem *addr = chip->regs + chip->offset;
420         unsigned short i;
421         int ret;
422
423         hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
424         if (!hsu)
425                 return -ENOMEM;
426
427         chip->hsu = hsu;
428
429         /* Calculate nr_channels from the IO space length */
430         hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;
431
432         hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
433                                  sizeof(*hsu->chan), GFP_KERNEL);
434         if (!hsu->chan)
435                 return -ENOMEM;
436
437         INIT_LIST_HEAD(&hsu->dma.channels);
438         for (i = 0; i < hsu->nr_channels; i++) {
439                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
440
441                 hsuc->vchan.desc_free = hsu_dma_desc_free;
442                 vchan_init(&hsuc->vchan, &hsu->dma);
443
444                 hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
445                 hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
446         }
447
448         dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
449         dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);
450
451         hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;
452
453         hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;
454
455         hsu->dma.device_issue_pending = hsu_dma_issue_pending;
456         hsu->dma.device_tx_status = hsu_dma_tx_status;
457
458         hsu->dma.device_config = hsu_dma_slave_config;
459         hsu->dma.device_pause = hsu_dma_pause;
460         hsu->dma.device_resume = hsu_dma_resume;
461         hsu->dma.device_terminate_all = hsu_dma_terminate_all;
462         hsu->dma.device_synchronize = hsu_dma_synchronize;
463
464         hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
465         hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
466         hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
467         hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
468
469         hsu->dma.dev = chip->dev;
470
471         dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);
472
473         ret = dma_async_device_register(&hsu->dma);
474         if (ret)
475                 return ret;
476
477         dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
478         return 0;
479 }
480 EXPORT_SYMBOL_GPL(hsu_dma_probe);
481
482 int hsu_dma_remove(struct hsu_dma_chip *chip)
483 {
484         struct hsu_dma *hsu = chip->hsu;
485         unsigned short i;
486
487         dma_async_device_unregister(&hsu->dma);
488
489         for (i = 0; i < hsu->nr_channels; i++) {
490                 struct hsu_dma_chan *hsuc = &hsu->chan[i];
491
492                 tasklet_kill(&hsuc->vchan.task);
493         }
494
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(hsu_dma_remove);
498
499 MODULE_LICENSE("GPL v2");
500 MODULE_DESCRIPTION("High Speed UART DMA core driver");
501 MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");