Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux-2.6-microblaze.git] / drivers / dma / dw-axi-dmac / dw-axi-dmac-platform.c
1 // SPDX-License-Identifier:  GPL-2.0
2 // (C) 2017-2018 Synopsys, Inc. (www.synopsys.com)
3
4 /*
5  * Synopsys DesignWare AXI DMA Controller driver.
6  *
7  * Author: Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>
8  */
9
10 #include <linux/bitops.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/err.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/iopoll.h>
20 #include <linux/io-64-nonatomic-lo-hi.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/of.h>
24 #include <linux/of_dma.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30
31 #include "dw-axi-dmac.h"
32 #include "../dmaengine.h"
33 #include "../virt-dma.h"
34
35 /*
36  * The set of bus widths supported by the DMA controller. DW AXI DMAC supports
37  * master data bus width up to 512 bits (for both AXI master interfaces), but
38  * it depends on IP block configurarion.
39  */
40 #define AXI_DMA_BUSWIDTHS                 \
41         (DMA_SLAVE_BUSWIDTH_1_BYTE      | \
42         DMA_SLAVE_BUSWIDTH_2_BYTES      | \
43         DMA_SLAVE_BUSWIDTH_4_BYTES      | \
44         DMA_SLAVE_BUSWIDTH_8_BYTES      | \
45         DMA_SLAVE_BUSWIDTH_16_BYTES     | \
46         DMA_SLAVE_BUSWIDTH_32_BYTES     | \
47         DMA_SLAVE_BUSWIDTH_64_BYTES)
48
49 static inline void
50 axi_dma_iowrite32(struct axi_dma_chip *chip, u32 reg, u32 val)
51 {
52         iowrite32(val, chip->regs + reg);
53 }
54
55 static inline u32 axi_dma_ioread32(struct axi_dma_chip *chip, u32 reg)
56 {
57         return ioread32(chip->regs + reg);
58 }
59
60 static inline void
61 axi_chan_iowrite32(struct axi_dma_chan *chan, u32 reg, u32 val)
62 {
63         iowrite32(val, chan->chan_regs + reg);
64 }
65
66 static inline u32 axi_chan_ioread32(struct axi_dma_chan *chan, u32 reg)
67 {
68         return ioread32(chan->chan_regs + reg);
69 }
70
71 static inline void
72 axi_chan_iowrite64(struct axi_dma_chan *chan, u32 reg, u64 val)
73 {
74         /*
75          * We split one 64 bit write for two 32 bit write as some HW doesn't
76          * support 64 bit access.
77          */
78         iowrite32(lower_32_bits(val), chan->chan_regs + reg);
79         iowrite32(upper_32_bits(val), chan->chan_regs + reg + 4);
80 }
81
82 static inline void axi_chan_config_write(struct axi_dma_chan *chan,
83                                          struct axi_dma_chan_config *config)
84 {
85         u32 cfg_lo, cfg_hi;
86
87         cfg_lo = (config->dst_multblk_type << CH_CFG_L_DST_MULTBLK_TYPE_POS |
88                   config->src_multblk_type << CH_CFG_L_SRC_MULTBLK_TYPE_POS);
89         if (chan->chip->dw->hdata->reg_map_8_channels) {
90                 cfg_hi = config->tt_fc << CH_CFG_H_TT_FC_POS |
91                          config->hs_sel_src << CH_CFG_H_HS_SEL_SRC_POS |
92                          config->hs_sel_dst << CH_CFG_H_HS_SEL_DST_POS |
93                          config->src_per << CH_CFG_H_SRC_PER_POS |
94                          config->dst_per << CH_CFG_H_DST_PER_POS |
95                          config->prior << CH_CFG_H_PRIORITY_POS;
96         } else {
97                 cfg_lo |= config->src_per << CH_CFG2_L_SRC_PER_POS |
98                           config->dst_per << CH_CFG2_L_DST_PER_POS;
99                 cfg_hi = config->tt_fc << CH_CFG2_H_TT_FC_POS |
100                          config->hs_sel_src << CH_CFG2_H_HS_SEL_SRC_POS |
101                          config->hs_sel_dst << CH_CFG2_H_HS_SEL_DST_POS |
102                          config->prior << CH_CFG2_H_PRIORITY_POS;
103         }
104         axi_chan_iowrite32(chan, CH_CFG_L, cfg_lo);
105         axi_chan_iowrite32(chan, CH_CFG_H, cfg_hi);
106 }
107
108 static inline void axi_dma_disable(struct axi_dma_chip *chip)
109 {
110         u32 val;
111
112         val = axi_dma_ioread32(chip, DMAC_CFG);
113         val &= ~DMAC_EN_MASK;
114         axi_dma_iowrite32(chip, DMAC_CFG, val);
115 }
116
117 static inline void axi_dma_enable(struct axi_dma_chip *chip)
118 {
119         u32 val;
120
121         val = axi_dma_ioread32(chip, DMAC_CFG);
122         val |= DMAC_EN_MASK;
123         axi_dma_iowrite32(chip, DMAC_CFG, val);
124 }
125
126 static inline void axi_dma_irq_disable(struct axi_dma_chip *chip)
127 {
128         u32 val;
129
130         val = axi_dma_ioread32(chip, DMAC_CFG);
131         val &= ~INT_EN_MASK;
132         axi_dma_iowrite32(chip, DMAC_CFG, val);
133 }
134
135 static inline void axi_dma_irq_enable(struct axi_dma_chip *chip)
136 {
137         u32 val;
138
139         val = axi_dma_ioread32(chip, DMAC_CFG);
140         val |= INT_EN_MASK;
141         axi_dma_iowrite32(chip, DMAC_CFG, val);
142 }
143
144 static inline void axi_chan_irq_disable(struct axi_dma_chan *chan, u32 irq_mask)
145 {
146         u32 val;
147
148         if (likely(irq_mask == DWAXIDMAC_IRQ_ALL)) {
149                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, DWAXIDMAC_IRQ_NONE);
150         } else {
151                 val = axi_chan_ioread32(chan, CH_INTSTATUS_ENA);
152                 val &= ~irq_mask;
153                 axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, val);
154         }
155 }
156
157 static inline void axi_chan_irq_set(struct axi_dma_chan *chan, u32 irq_mask)
158 {
159         axi_chan_iowrite32(chan, CH_INTSTATUS_ENA, irq_mask);
160 }
161
162 static inline void axi_chan_irq_sig_set(struct axi_dma_chan *chan, u32 irq_mask)
163 {
164         axi_chan_iowrite32(chan, CH_INTSIGNAL_ENA, irq_mask);
165 }
166
167 static inline void axi_chan_irq_clear(struct axi_dma_chan *chan, u32 irq_mask)
168 {
169         axi_chan_iowrite32(chan, CH_INTCLEAR, irq_mask);
170 }
171
172 static inline u32 axi_chan_irq_read(struct axi_dma_chan *chan)
173 {
174         return axi_chan_ioread32(chan, CH_INTSTATUS);
175 }
176
177 static inline void axi_chan_disable(struct axi_dma_chan *chan)
178 {
179         u32 val;
180
181         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
182         val &= ~(BIT(chan->id) << DMAC_CHAN_EN_SHIFT);
183         if (chan->chip->dw->hdata->reg_map_8_channels)
184                 val |=   BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
185         else
186                 val |=   BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
187         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
188 }
189
190 static inline void axi_chan_enable(struct axi_dma_chan *chan)
191 {
192         u32 val;
193
194         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
195         if (chan->chip->dw->hdata->reg_map_8_channels)
196                 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
197                         BIT(chan->id) << DMAC_CHAN_EN_WE_SHIFT;
198         else
199                 val |= BIT(chan->id) << DMAC_CHAN_EN_SHIFT |
200                         BIT(chan->id) << DMAC_CHAN_EN2_WE_SHIFT;
201         axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
202 }
203
204 static inline bool axi_chan_is_hw_enable(struct axi_dma_chan *chan)
205 {
206         u32 val;
207
208         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
209
210         return !!(val & (BIT(chan->id) << DMAC_CHAN_EN_SHIFT));
211 }
212
213 static void axi_dma_hw_init(struct axi_dma_chip *chip)
214 {
215         int ret;
216         u32 i;
217
218         for (i = 0; i < chip->dw->hdata->nr_channels; i++) {
219                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
220                 axi_chan_disable(&chip->dw->chan[i]);
221         }
222         ret = dma_set_mask_and_coherent(chip->dev, DMA_BIT_MASK(64));
223         if (ret)
224                 dev_warn(chip->dev, "Unable to set coherent mask\n");
225 }
226
227 static u32 axi_chan_get_xfer_width(struct axi_dma_chan *chan, dma_addr_t src,
228                                    dma_addr_t dst, size_t len)
229 {
230         u32 max_width = chan->chip->dw->hdata->m_data_width;
231
232         return __ffs(src | dst | len | BIT(max_width));
233 }
234
235 static inline const char *axi_chan_name(struct axi_dma_chan *chan)
236 {
237         return dma_chan_name(&chan->vc.chan);
238 }
239
240 static struct axi_dma_desc *axi_desc_alloc(u32 num)
241 {
242         struct axi_dma_desc *desc;
243
244         desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
245         if (!desc)
246                 return NULL;
247
248         desc->hw_desc = kcalloc(num, sizeof(*desc->hw_desc), GFP_NOWAIT);
249         if (!desc->hw_desc) {
250                 kfree(desc);
251                 return NULL;
252         }
253
254         return desc;
255 }
256
257 static struct axi_dma_lli *axi_desc_get(struct axi_dma_chan *chan,
258                                         dma_addr_t *addr)
259 {
260         struct axi_dma_lli *lli;
261         dma_addr_t phys;
262
263         lli = dma_pool_zalloc(chan->desc_pool, GFP_NOWAIT, &phys);
264         if (unlikely(!lli)) {
265                 dev_err(chan2dev(chan), "%s: not enough descriptors available\n",
266                         axi_chan_name(chan));
267                 return NULL;
268         }
269
270         atomic_inc(&chan->descs_allocated);
271         *addr = phys;
272
273         return lli;
274 }
275
276 static void axi_desc_put(struct axi_dma_desc *desc)
277 {
278         struct axi_dma_chan *chan = desc->chan;
279         int count = atomic_read(&chan->descs_allocated);
280         struct axi_dma_hw_desc *hw_desc;
281         int descs_put;
282
283         for (descs_put = 0; descs_put < count; descs_put++) {
284                 hw_desc = &desc->hw_desc[descs_put];
285                 dma_pool_free(chan->desc_pool, hw_desc->lli, hw_desc->llp);
286         }
287
288         kfree(desc->hw_desc);
289         kfree(desc);
290         atomic_sub(descs_put, &chan->descs_allocated);
291         dev_vdbg(chan2dev(chan), "%s: %d descs put, %d still allocated\n",
292                 axi_chan_name(chan), descs_put,
293                 atomic_read(&chan->descs_allocated));
294 }
295
296 static void vchan_desc_put(struct virt_dma_desc *vdesc)
297 {
298         axi_desc_put(vd_to_axi_desc(vdesc));
299 }
300
301 static enum dma_status
302 dma_chan_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
303                   struct dma_tx_state *txstate)
304 {
305         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
306         struct virt_dma_desc *vdesc;
307         enum dma_status status;
308         u32 completed_length;
309         unsigned long flags;
310         u32 completed_blocks;
311         size_t bytes = 0;
312         u32 length;
313         u32 len;
314
315         status = dma_cookie_status(dchan, cookie, txstate);
316         if (status == DMA_COMPLETE || !txstate)
317                 return status;
318
319         spin_lock_irqsave(&chan->vc.lock, flags);
320
321         vdesc = vchan_find_desc(&chan->vc, cookie);
322         if (vdesc) {
323                 length = vd_to_axi_desc(vdesc)->length;
324                 completed_blocks = vd_to_axi_desc(vdesc)->completed_blocks;
325                 len = vd_to_axi_desc(vdesc)->hw_desc[0].len;
326                 completed_length = completed_blocks * len;
327                 bytes = length - completed_length;
328         } else {
329                 bytes = vd_to_axi_desc(vdesc)->length;
330         }
331
332         spin_unlock_irqrestore(&chan->vc.lock, flags);
333         dma_set_residue(txstate, bytes);
334
335         return status;
336 }
337
338 static void write_desc_llp(struct axi_dma_hw_desc *desc, dma_addr_t adr)
339 {
340         desc->lli->llp = cpu_to_le64(adr);
341 }
342
343 static void write_chan_llp(struct axi_dma_chan *chan, dma_addr_t adr)
344 {
345         axi_chan_iowrite64(chan, CH_LLP, adr);
346 }
347
348 static void dw_axi_dma_set_byte_halfword(struct axi_dma_chan *chan, bool set)
349 {
350         u32 offset = DMAC_APB_BYTE_WR_CH_EN;
351         u32 reg_width, val;
352
353         if (!chan->chip->apb_regs) {
354                 dev_dbg(chan->chip->dev, "apb_regs not initialized\n");
355                 return;
356         }
357
358         reg_width = __ffs(chan->config.dst_addr_width);
359         if (reg_width == DWAXIDMAC_TRANS_WIDTH_16)
360                 offset = DMAC_APB_HALFWORD_WR_CH_EN;
361
362         val = ioread32(chan->chip->apb_regs + offset);
363
364         if (set)
365                 val |= BIT(chan->id);
366         else
367                 val &= ~BIT(chan->id);
368
369         iowrite32(val, chan->chip->apb_regs + offset);
370 }
371 /* Called in chan locked context */
372 static void axi_chan_block_xfer_start(struct axi_dma_chan *chan,
373                                       struct axi_dma_desc *first)
374 {
375         u32 priority = chan->chip->dw->hdata->priority[chan->id];
376         struct axi_dma_chan_config config = {};
377         u32 irq_mask;
378         u8 lms = 0; /* Select AXI0 master for LLI fetching */
379
380         if (unlikely(axi_chan_is_hw_enable(chan))) {
381                 dev_err(chan2dev(chan), "%s is non-idle!\n",
382                         axi_chan_name(chan));
383
384                 return;
385         }
386
387         axi_dma_enable(chan->chip);
388
389         config.dst_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
390         config.src_multblk_type = DWAXIDMAC_MBLK_TYPE_LL;
391         config.tt_fc = DWAXIDMAC_TT_FC_MEM_TO_MEM_DMAC;
392         config.prior = priority;
393         config.hs_sel_dst = DWAXIDMAC_HS_SEL_HW;
394         config.hs_sel_src = DWAXIDMAC_HS_SEL_HW;
395         switch (chan->direction) {
396         case DMA_MEM_TO_DEV:
397                 dw_axi_dma_set_byte_halfword(chan, true);
398                 config.tt_fc = chan->config.device_fc ?
399                                 DWAXIDMAC_TT_FC_MEM_TO_PER_DST :
400                                 DWAXIDMAC_TT_FC_MEM_TO_PER_DMAC;
401                 if (chan->chip->apb_regs)
402                         config.dst_per = chan->id;
403                 else
404                         config.dst_per = chan->hw_handshake_num;
405                 break;
406         case DMA_DEV_TO_MEM:
407                 config.tt_fc = chan->config.device_fc ?
408                                 DWAXIDMAC_TT_FC_PER_TO_MEM_SRC :
409                                 DWAXIDMAC_TT_FC_PER_TO_MEM_DMAC;
410                 if (chan->chip->apb_regs)
411                         config.src_per = chan->id;
412                 else
413                         config.src_per = chan->hw_handshake_num;
414                 break;
415         default:
416                 break;
417         }
418         axi_chan_config_write(chan, &config);
419
420         write_chan_llp(chan, first->hw_desc[0].llp | lms);
421
422         irq_mask = DWAXIDMAC_IRQ_DMA_TRF | DWAXIDMAC_IRQ_ALL_ERR;
423         axi_chan_irq_sig_set(chan, irq_mask);
424
425         /* Generate 'suspend' status but don't generate interrupt */
426         irq_mask |= DWAXIDMAC_IRQ_SUSPENDED;
427         axi_chan_irq_set(chan, irq_mask);
428
429         axi_chan_enable(chan);
430 }
431
432 static void axi_chan_start_first_queued(struct axi_dma_chan *chan)
433 {
434         struct axi_dma_desc *desc;
435         struct virt_dma_desc *vd;
436
437         vd = vchan_next_desc(&chan->vc);
438         if (!vd)
439                 return;
440
441         desc = vd_to_axi_desc(vd);
442         dev_vdbg(chan2dev(chan), "%s: started %u\n", axi_chan_name(chan),
443                 vd->tx.cookie);
444         axi_chan_block_xfer_start(chan, desc);
445 }
446
447 static void dma_chan_issue_pending(struct dma_chan *dchan)
448 {
449         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
450         unsigned long flags;
451
452         spin_lock_irqsave(&chan->vc.lock, flags);
453         if (vchan_issue_pending(&chan->vc))
454                 axi_chan_start_first_queued(chan);
455         spin_unlock_irqrestore(&chan->vc.lock, flags);
456 }
457
458 static void dw_axi_dma_synchronize(struct dma_chan *dchan)
459 {
460         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
461
462         vchan_synchronize(&chan->vc);
463 }
464
465 static int dma_chan_alloc_chan_resources(struct dma_chan *dchan)
466 {
467         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
468
469         /* ASSERT: channel is idle */
470         if (axi_chan_is_hw_enable(chan)) {
471                 dev_err(chan2dev(chan), "%s is non-idle!\n",
472                         axi_chan_name(chan));
473                 return -EBUSY;
474         }
475
476         /* LLI address must be aligned to a 64-byte boundary */
477         chan->desc_pool = dma_pool_create(dev_name(chan2dev(chan)),
478                                           chan->chip->dev,
479                                           sizeof(struct axi_dma_lli),
480                                           64, 0);
481         if (!chan->desc_pool) {
482                 dev_err(chan2dev(chan), "No memory for descriptors\n");
483                 return -ENOMEM;
484         }
485         dev_vdbg(dchan2dev(dchan), "%s: allocating\n", axi_chan_name(chan));
486
487         pm_runtime_get(chan->chip->dev);
488
489         return 0;
490 }
491
492 static void dma_chan_free_chan_resources(struct dma_chan *dchan)
493 {
494         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
495
496         /* ASSERT: channel is idle */
497         if (axi_chan_is_hw_enable(chan))
498                 dev_err(dchan2dev(dchan), "%s is non-idle!\n",
499                         axi_chan_name(chan));
500
501         axi_chan_disable(chan);
502         axi_chan_irq_disable(chan, DWAXIDMAC_IRQ_ALL);
503
504         vchan_free_chan_resources(&chan->vc);
505
506         dma_pool_destroy(chan->desc_pool);
507         chan->desc_pool = NULL;
508         dev_vdbg(dchan2dev(dchan),
509                  "%s: free resources, descriptor still allocated: %u\n",
510                  axi_chan_name(chan), atomic_read(&chan->descs_allocated));
511
512         pm_runtime_put(chan->chip->dev);
513 }
514
515 static void dw_axi_dma_set_hw_channel(struct axi_dma_chan *chan, bool set)
516 {
517         struct axi_dma_chip *chip = chan->chip;
518         unsigned long reg_value, val;
519
520         if (!chip->apb_regs) {
521                 dev_err(chip->dev, "apb_regs not initialized\n");
522                 return;
523         }
524
525         /*
526          * An unused DMA channel has a default value of 0x3F.
527          * Lock the DMA channel by assign a handshake number to the channel.
528          * Unlock the DMA channel by assign 0x3F to the channel.
529          */
530         if (set)
531                 val = chan->hw_handshake_num;
532         else
533                 val = UNUSED_CHANNEL;
534
535         reg_value = lo_hi_readq(chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
536
537         /* Channel is already allocated, set handshake as per channel ID */
538         /* 64 bit write should handle for 8 channels */
539
540         reg_value &= ~(DMA_APB_HS_SEL_MASK <<
541                         (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
542         reg_value |= (val << (chan->id * DMA_APB_HS_SEL_BIT_SIZE));
543         lo_hi_writeq(reg_value, chip->apb_regs + DMAC_APB_HW_HS_SEL_0);
544
545         return;
546 }
547
548 /*
549  * If DW_axi_dmac sees CHx_CTL.ShadowReg_Or_LLI_Last bit of the fetched LLI
550  * as 1, it understands that the current block is the final block in the
551  * transfer and completes the DMA transfer operation at the end of current
552  * block transfer.
553  */
554 static void set_desc_last(struct axi_dma_hw_desc *desc)
555 {
556         u32 val;
557
558         val = le32_to_cpu(desc->lli->ctl_hi);
559         val |= CH_CTL_H_LLI_LAST;
560         desc->lli->ctl_hi = cpu_to_le32(val);
561 }
562
563 static void write_desc_sar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
564 {
565         desc->lli->sar = cpu_to_le64(adr);
566 }
567
568 static void write_desc_dar(struct axi_dma_hw_desc *desc, dma_addr_t adr)
569 {
570         desc->lli->dar = cpu_to_le64(adr);
571 }
572
573 static void set_desc_src_master(struct axi_dma_hw_desc *desc)
574 {
575         u32 val;
576
577         /* Select AXI0 for source master */
578         val = le32_to_cpu(desc->lli->ctl_lo);
579         val &= ~CH_CTL_L_SRC_MAST;
580         desc->lli->ctl_lo = cpu_to_le32(val);
581 }
582
583 static void set_desc_dest_master(struct axi_dma_hw_desc *hw_desc,
584                                  struct axi_dma_desc *desc)
585 {
586         u32 val;
587
588         /* Select AXI1 for source master if available */
589         val = le32_to_cpu(hw_desc->lli->ctl_lo);
590         if (desc->chan->chip->dw->hdata->nr_masters > 1)
591                 val |= CH_CTL_L_DST_MAST;
592         else
593                 val &= ~CH_CTL_L_DST_MAST;
594
595         hw_desc->lli->ctl_lo = cpu_to_le32(val);
596 }
597
598 static int dw_axi_dma_set_hw_desc(struct axi_dma_chan *chan,
599                                   struct axi_dma_hw_desc *hw_desc,
600                                   dma_addr_t mem_addr, size_t len)
601 {
602         unsigned int data_width = BIT(chan->chip->dw->hdata->m_data_width);
603         unsigned int reg_width;
604         unsigned int mem_width;
605         dma_addr_t device_addr;
606         size_t axi_block_ts;
607         size_t block_ts;
608         u32 ctllo, ctlhi;
609         u32 burst_len;
610
611         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
612
613         mem_width = __ffs(data_width | mem_addr | len);
614         if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
615                 mem_width = DWAXIDMAC_TRANS_WIDTH_32;
616
617         if (!IS_ALIGNED(mem_addr, 4)) {
618                 dev_err(chan->chip->dev, "invalid buffer alignment\n");
619                 return -EINVAL;
620         }
621
622         switch (chan->direction) {
623         case DMA_MEM_TO_DEV:
624                 reg_width = __ffs(chan->config.dst_addr_width);
625                 device_addr = chan->config.dst_addr;
626                 ctllo = reg_width << CH_CTL_L_DST_WIDTH_POS |
627                         mem_width << CH_CTL_L_SRC_WIDTH_POS |
628                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_DST_INC_POS |
629                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS;
630                 block_ts = len >> mem_width;
631                 break;
632         case DMA_DEV_TO_MEM:
633                 reg_width = __ffs(chan->config.src_addr_width);
634                 device_addr = chan->config.src_addr;
635                 ctllo = reg_width << CH_CTL_L_SRC_WIDTH_POS |
636                         mem_width << CH_CTL_L_DST_WIDTH_POS |
637                         DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
638                         DWAXIDMAC_CH_CTL_L_NOINC << CH_CTL_L_SRC_INC_POS;
639                 block_ts = len >> reg_width;
640                 break;
641         default:
642                 return -EINVAL;
643         }
644
645         if (block_ts > axi_block_ts)
646                 return -EINVAL;
647
648         hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
649         if (unlikely(!hw_desc->lli))
650                 return -ENOMEM;
651
652         ctlhi = CH_CTL_H_LLI_VALID;
653
654         if (chan->chip->dw->hdata->restrict_axi_burst_len) {
655                 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
656                 ctlhi |= CH_CTL_H_ARLEN_EN | CH_CTL_H_AWLEN_EN |
657                          burst_len << CH_CTL_H_ARLEN_POS |
658                          burst_len << CH_CTL_H_AWLEN_POS;
659         }
660
661         hw_desc->lli->ctl_hi = cpu_to_le32(ctlhi);
662
663         if (chan->direction == DMA_MEM_TO_DEV) {
664                 write_desc_sar(hw_desc, mem_addr);
665                 write_desc_dar(hw_desc, device_addr);
666         } else {
667                 write_desc_sar(hw_desc, device_addr);
668                 write_desc_dar(hw_desc, mem_addr);
669         }
670
671         hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
672
673         ctllo |= DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
674                  DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS;
675         hw_desc->lli->ctl_lo = cpu_to_le32(ctllo);
676
677         set_desc_src_master(hw_desc);
678
679         hw_desc->len = len;
680         return 0;
681 }
682
683 static size_t calculate_block_len(struct axi_dma_chan *chan,
684                                   dma_addr_t dma_addr, size_t buf_len,
685                                   enum dma_transfer_direction direction)
686 {
687         u32 data_width, reg_width, mem_width;
688         size_t axi_block_ts, block_len;
689
690         axi_block_ts = chan->chip->dw->hdata->block_size[chan->id];
691
692         switch (direction) {
693         case DMA_MEM_TO_DEV:
694                 data_width = BIT(chan->chip->dw->hdata->m_data_width);
695                 mem_width = __ffs(data_width | dma_addr | buf_len);
696                 if (mem_width > DWAXIDMAC_TRANS_WIDTH_32)
697                         mem_width = DWAXIDMAC_TRANS_WIDTH_32;
698
699                 block_len = axi_block_ts << mem_width;
700                 break;
701         case DMA_DEV_TO_MEM:
702                 reg_width = __ffs(chan->config.src_addr_width);
703                 block_len = axi_block_ts << reg_width;
704                 break;
705         default:
706                 block_len = 0;
707         }
708
709         return block_len;
710 }
711
712 static struct dma_async_tx_descriptor *
713 dw_axi_dma_chan_prep_cyclic(struct dma_chan *dchan, dma_addr_t dma_addr,
714                             size_t buf_len, size_t period_len,
715                             enum dma_transfer_direction direction,
716                             unsigned long flags)
717 {
718         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
719         struct axi_dma_hw_desc *hw_desc = NULL;
720         struct axi_dma_desc *desc = NULL;
721         dma_addr_t src_addr = dma_addr;
722         u32 num_periods, num_segments;
723         size_t axi_block_len;
724         u32 total_segments;
725         u32 segment_len;
726         unsigned int i;
727         int status;
728         u64 llp = 0;
729         u8 lms = 0; /* Select AXI0 master for LLI fetching */
730
731         num_periods = buf_len / period_len;
732
733         axi_block_len = calculate_block_len(chan, dma_addr, buf_len, direction);
734         if (axi_block_len == 0)
735                 return NULL;
736
737         num_segments = DIV_ROUND_UP(period_len, axi_block_len);
738         segment_len = DIV_ROUND_UP(period_len, num_segments);
739
740         total_segments = num_periods * num_segments;
741
742         desc = axi_desc_alloc(total_segments);
743         if (unlikely(!desc))
744                 goto err_desc_get;
745
746         chan->direction = direction;
747         desc->chan = chan;
748         chan->cyclic = true;
749         desc->length = 0;
750         desc->period_len = period_len;
751
752         for (i = 0; i < total_segments; i++) {
753                 hw_desc = &desc->hw_desc[i];
754
755                 status = dw_axi_dma_set_hw_desc(chan, hw_desc, src_addr,
756                                                 segment_len);
757                 if (status < 0)
758                         goto err_desc_get;
759
760                 desc->length += hw_desc->len;
761                 /* Set end-of-link to the linked descriptor, so that cyclic
762                  * callback function can be triggered during interrupt.
763                  */
764                 set_desc_last(hw_desc);
765
766                 src_addr += segment_len;
767         }
768
769         llp = desc->hw_desc[0].llp;
770
771         /* Managed transfer list */
772         do {
773                 hw_desc = &desc->hw_desc[--total_segments];
774                 write_desc_llp(hw_desc, llp | lms);
775                 llp = hw_desc->llp;
776         } while (total_segments);
777
778         dw_axi_dma_set_hw_channel(chan, true);
779
780         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
781
782 err_desc_get:
783         if (desc)
784                 axi_desc_put(desc);
785
786         return NULL;
787 }
788
789 static struct dma_async_tx_descriptor *
790 dw_axi_dma_chan_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
791                               unsigned int sg_len,
792                               enum dma_transfer_direction direction,
793                               unsigned long flags, void *context)
794 {
795         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
796         struct axi_dma_hw_desc *hw_desc = NULL;
797         struct axi_dma_desc *desc = NULL;
798         u32 num_segments, segment_len;
799         unsigned int loop = 0;
800         struct scatterlist *sg;
801         size_t axi_block_len;
802         u32 len, num_sgs = 0;
803         unsigned int i;
804         dma_addr_t mem;
805         int status;
806         u64 llp = 0;
807         u8 lms = 0; /* Select AXI0 master for LLI fetching */
808
809         if (unlikely(!is_slave_direction(direction) || !sg_len))
810                 return NULL;
811
812         mem = sg_dma_address(sgl);
813         len = sg_dma_len(sgl);
814
815         axi_block_len = calculate_block_len(chan, mem, len, direction);
816         if (axi_block_len == 0)
817                 return NULL;
818
819         for_each_sg(sgl, sg, sg_len, i)
820                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
821
822         desc = axi_desc_alloc(num_sgs);
823         if (unlikely(!desc))
824                 goto err_desc_get;
825
826         desc->chan = chan;
827         desc->length = 0;
828         chan->direction = direction;
829
830         for_each_sg(sgl, sg, sg_len, i) {
831                 mem = sg_dma_address(sg);
832                 len = sg_dma_len(sg);
833                 num_segments = DIV_ROUND_UP(sg_dma_len(sg), axi_block_len);
834                 segment_len = DIV_ROUND_UP(sg_dma_len(sg), num_segments);
835
836                 do {
837                         hw_desc = &desc->hw_desc[loop++];
838                         status = dw_axi_dma_set_hw_desc(chan, hw_desc, mem, segment_len);
839                         if (status < 0)
840                                 goto err_desc_get;
841
842                         desc->length += hw_desc->len;
843                         len -= segment_len;
844                         mem += segment_len;
845                 } while (len >= segment_len);
846         }
847
848         /* Set end-of-link to the last link descriptor of list */
849         set_desc_last(&desc->hw_desc[num_sgs - 1]);
850
851         /* Managed transfer list */
852         do {
853                 hw_desc = &desc->hw_desc[--num_sgs];
854                 write_desc_llp(hw_desc, llp | lms);
855                 llp = hw_desc->llp;
856         } while (num_sgs);
857
858         dw_axi_dma_set_hw_channel(chan, true);
859
860         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
861
862 err_desc_get:
863         if (desc)
864                 axi_desc_put(desc);
865
866         return NULL;
867 }
868
869 static struct dma_async_tx_descriptor *
870 dma_chan_prep_dma_memcpy(struct dma_chan *dchan, dma_addr_t dst_adr,
871                          dma_addr_t src_adr, size_t len, unsigned long flags)
872 {
873         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
874         size_t block_ts, max_block_ts, xfer_len;
875         struct axi_dma_hw_desc *hw_desc = NULL;
876         struct axi_dma_desc *desc = NULL;
877         u32 xfer_width, reg, num;
878         u64 llp = 0;
879         u8 lms = 0; /* Select AXI0 master for LLI fetching */
880
881         dev_dbg(chan2dev(chan), "%s: memcpy: src: %pad dst: %pad length: %zd flags: %#lx",
882                 axi_chan_name(chan), &src_adr, &dst_adr, len, flags);
883
884         max_block_ts = chan->chip->dw->hdata->block_size[chan->id];
885         xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, len);
886         num = DIV_ROUND_UP(len, max_block_ts << xfer_width);
887         desc = axi_desc_alloc(num);
888         if (unlikely(!desc))
889                 goto err_desc_get;
890
891         desc->chan = chan;
892         num = 0;
893         desc->length = 0;
894         while (len) {
895                 xfer_len = len;
896
897                 hw_desc = &desc->hw_desc[num];
898                 /*
899                  * Take care for the alignment.
900                  * Actually source and destination widths can be different, but
901                  * make them same to be simpler.
902                  */
903                 xfer_width = axi_chan_get_xfer_width(chan, src_adr, dst_adr, xfer_len);
904
905                 /*
906                  * block_ts indicates the total number of data of width
907                  * to be transferred in a DMA block transfer.
908                  * BLOCK_TS register should be set to block_ts - 1
909                  */
910                 block_ts = xfer_len >> xfer_width;
911                 if (block_ts > max_block_ts) {
912                         block_ts = max_block_ts;
913                         xfer_len = max_block_ts << xfer_width;
914                 }
915
916                 hw_desc->lli = axi_desc_get(chan, &hw_desc->llp);
917                 if (unlikely(!hw_desc->lli))
918                         goto err_desc_get;
919
920                 write_desc_sar(hw_desc, src_adr);
921                 write_desc_dar(hw_desc, dst_adr);
922                 hw_desc->lli->block_ts_lo = cpu_to_le32(block_ts - 1);
923
924                 reg = CH_CTL_H_LLI_VALID;
925                 if (chan->chip->dw->hdata->restrict_axi_burst_len) {
926                         u32 burst_len = chan->chip->dw->hdata->axi_rw_burst_len;
927
928                         reg |= (CH_CTL_H_ARLEN_EN |
929                                 burst_len << CH_CTL_H_ARLEN_POS |
930                                 CH_CTL_H_AWLEN_EN |
931                                 burst_len << CH_CTL_H_AWLEN_POS);
932                 }
933                 hw_desc->lli->ctl_hi = cpu_to_le32(reg);
934
935                 reg = (DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_DST_MSIZE_POS |
936                        DWAXIDMAC_BURST_TRANS_LEN_4 << CH_CTL_L_SRC_MSIZE_POS |
937                        xfer_width << CH_CTL_L_DST_WIDTH_POS |
938                        xfer_width << CH_CTL_L_SRC_WIDTH_POS |
939                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_DST_INC_POS |
940                        DWAXIDMAC_CH_CTL_L_INC << CH_CTL_L_SRC_INC_POS);
941                 hw_desc->lli->ctl_lo = cpu_to_le32(reg);
942
943                 set_desc_src_master(hw_desc);
944                 set_desc_dest_master(hw_desc, desc);
945
946                 hw_desc->len = xfer_len;
947                 desc->length += hw_desc->len;
948                 /* update the length and addresses for the next loop cycle */
949                 len -= xfer_len;
950                 dst_adr += xfer_len;
951                 src_adr += xfer_len;
952                 num++;
953         }
954
955         /* Set end-of-link to the last link descriptor of list */
956         set_desc_last(&desc->hw_desc[num - 1]);
957         /* Managed transfer list */
958         do {
959                 hw_desc = &desc->hw_desc[--num];
960                 write_desc_llp(hw_desc, llp | lms);
961                 llp = hw_desc->llp;
962         } while (num);
963
964         return vchan_tx_prep(&chan->vc, &desc->vd, flags);
965
966 err_desc_get:
967         if (desc)
968                 axi_desc_put(desc);
969         return NULL;
970 }
971
972 static int dw_axi_dma_chan_slave_config(struct dma_chan *dchan,
973                                         struct dma_slave_config *config)
974 {
975         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
976
977         memcpy(&chan->config, config, sizeof(*config));
978
979         return 0;
980 }
981
982 static void axi_chan_dump_lli(struct axi_dma_chan *chan,
983                               struct axi_dma_hw_desc *desc)
984 {
985         dev_err(dchan2dev(&chan->vc.chan),
986                 "SAR: 0x%llx DAR: 0x%llx LLP: 0x%llx BTS 0x%x CTL: 0x%x:%08x",
987                 le64_to_cpu(desc->lli->sar),
988                 le64_to_cpu(desc->lli->dar),
989                 le64_to_cpu(desc->lli->llp),
990                 le32_to_cpu(desc->lli->block_ts_lo),
991                 le32_to_cpu(desc->lli->ctl_hi),
992                 le32_to_cpu(desc->lli->ctl_lo));
993 }
994
995 static void axi_chan_list_dump_lli(struct axi_dma_chan *chan,
996                                    struct axi_dma_desc *desc_head)
997 {
998         int count = atomic_read(&chan->descs_allocated);
999         int i;
1000
1001         for (i = 0; i < count; i++)
1002                 axi_chan_dump_lli(chan, &desc_head->hw_desc[i]);
1003 }
1004
1005 static noinline void axi_chan_handle_err(struct axi_dma_chan *chan, u32 status)
1006 {
1007         struct virt_dma_desc *vd;
1008         unsigned long flags;
1009
1010         spin_lock_irqsave(&chan->vc.lock, flags);
1011
1012         axi_chan_disable(chan);
1013
1014         /* The bad descriptor currently is in the head of vc list */
1015         vd = vchan_next_desc(&chan->vc);
1016         /* Remove the completed descriptor from issued list */
1017         list_del(&vd->node);
1018
1019         /* WARN about bad descriptor */
1020         dev_err(chan2dev(chan),
1021                 "Bad descriptor submitted for %s, cookie: %d, irq: 0x%08x\n",
1022                 axi_chan_name(chan), vd->tx.cookie, status);
1023         axi_chan_list_dump_lli(chan, vd_to_axi_desc(vd));
1024
1025         vchan_cookie_complete(vd);
1026
1027         /* Try to restart the controller */
1028         axi_chan_start_first_queued(chan);
1029
1030         spin_unlock_irqrestore(&chan->vc.lock, flags);
1031 }
1032
1033 static void axi_chan_block_xfer_complete(struct axi_dma_chan *chan)
1034 {
1035         int count = atomic_read(&chan->descs_allocated);
1036         struct axi_dma_hw_desc *hw_desc;
1037         struct axi_dma_desc *desc;
1038         struct virt_dma_desc *vd;
1039         unsigned long flags;
1040         u64 llp;
1041         int i;
1042
1043         spin_lock_irqsave(&chan->vc.lock, flags);
1044         if (unlikely(axi_chan_is_hw_enable(chan))) {
1045                 dev_err(chan2dev(chan), "BUG: %s caught DWAXIDMAC_IRQ_DMA_TRF, but channel not idle!\n",
1046                         axi_chan_name(chan));
1047                 axi_chan_disable(chan);
1048         }
1049
1050         /* The completed descriptor currently is in the head of vc list */
1051         vd = vchan_next_desc(&chan->vc);
1052
1053         if (chan->cyclic) {
1054                 desc = vd_to_axi_desc(vd);
1055                 if (desc) {
1056                         llp = lo_hi_readq(chan->chan_regs + CH_LLP);
1057                         for (i = 0; i < count; i++) {
1058                                 hw_desc = &desc->hw_desc[i];
1059                                 if (hw_desc->llp == llp) {
1060                                         axi_chan_irq_clear(chan, hw_desc->lli->status_lo);
1061                                         hw_desc->lli->ctl_hi |= CH_CTL_H_LLI_VALID;
1062                                         desc->completed_blocks = i;
1063
1064                                         if (((hw_desc->len * (i + 1)) % desc->period_len) == 0)
1065                                                 vchan_cyclic_callback(vd);
1066                                         break;
1067                                 }
1068                         }
1069
1070                         axi_chan_enable(chan);
1071                 }
1072         } else {
1073                 /* Remove the completed descriptor from issued list before completing */
1074                 list_del(&vd->node);
1075                 vchan_cookie_complete(vd);
1076
1077                 /* Submit queued descriptors after processing the completed ones */
1078                 axi_chan_start_first_queued(chan);
1079         }
1080
1081         spin_unlock_irqrestore(&chan->vc.lock, flags);
1082 }
1083
1084 static irqreturn_t dw_axi_dma_interrupt(int irq, void *dev_id)
1085 {
1086         struct axi_dma_chip *chip = dev_id;
1087         struct dw_axi_dma *dw = chip->dw;
1088         struct axi_dma_chan *chan;
1089
1090         u32 status, i;
1091
1092         /* Disable DMAC inerrupts. We'll enable them after processing chanels */
1093         axi_dma_irq_disable(chip);
1094
1095         /* Poll, clear and process every chanel interrupt status */
1096         for (i = 0; i < dw->hdata->nr_channels; i++) {
1097                 chan = &dw->chan[i];
1098                 status = axi_chan_irq_read(chan);
1099                 axi_chan_irq_clear(chan, status);
1100
1101                 dev_vdbg(chip->dev, "%s %u IRQ status: 0x%08x\n",
1102                         axi_chan_name(chan), i, status);
1103
1104                 if (status & DWAXIDMAC_IRQ_ALL_ERR)
1105                         axi_chan_handle_err(chan, status);
1106                 else if (status & DWAXIDMAC_IRQ_DMA_TRF)
1107                         axi_chan_block_xfer_complete(chan);
1108         }
1109
1110         /* Re-enable interrupts */
1111         axi_dma_irq_enable(chip);
1112
1113         return IRQ_HANDLED;
1114 }
1115
1116 static int dma_chan_terminate_all(struct dma_chan *dchan)
1117 {
1118         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1119         u32 chan_active = BIT(chan->id) << DMAC_CHAN_EN_SHIFT;
1120         unsigned long flags;
1121         u32 val;
1122         int ret;
1123         LIST_HEAD(head);
1124
1125         axi_chan_disable(chan);
1126
1127         ret = readl_poll_timeout_atomic(chan->chip->regs + DMAC_CHEN, val,
1128                                         !(val & chan_active), 1000, 10000);
1129         if (ret == -ETIMEDOUT)
1130                 dev_warn(dchan2dev(dchan),
1131                          "%s failed to stop\n", axi_chan_name(chan));
1132
1133         if (chan->direction != DMA_MEM_TO_MEM)
1134                 dw_axi_dma_set_hw_channel(chan, false);
1135         if (chan->direction == DMA_MEM_TO_DEV)
1136                 dw_axi_dma_set_byte_halfword(chan, false);
1137
1138         spin_lock_irqsave(&chan->vc.lock, flags);
1139
1140         vchan_get_all_descriptors(&chan->vc, &head);
1141
1142         chan->cyclic = false;
1143         spin_unlock_irqrestore(&chan->vc.lock, flags);
1144
1145         vchan_dma_desc_free_list(&chan->vc, &head);
1146
1147         dev_vdbg(dchan2dev(dchan), "terminated: %s\n", axi_chan_name(chan));
1148
1149         return 0;
1150 }
1151
1152 static int dma_chan_pause(struct dma_chan *dchan)
1153 {
1154         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1155         unsigned long flags;
1156         unsigned int timeout = 20; /* timeout iterations */
1157         u32 val;
1158
1159         spin_lock_irqsave(&chan->vc.lock, flags);
1160
1161         if (chan->chip->dw->hdata->reg_map_8_channels) {
1162                 val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1163                 val |= BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT |
1164                         BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT;
1165                 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1166         } else {
1167                 val = BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT |
1168                       BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT;
1169                 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1170         }
1171
1172         do  {
1173                 if (axi_chan_irq_read(chan) & DWAXIDMAC_IRQ_SUSPENDED)
1174                         break;
1175
1176                 udelay(2);
1177         } while (--timeout);
1178
1179         axi_chan_irq_clear(chan, DWAXIDMAC_IRQ_SUSPENDED);
1180
1181         chan->is_paused = true;
1182
1183         spin_unlock_irqrestore(&chan->vc.lock, flags);
1184
1185         return timeout ? 0 : -EAGAIN;
1186 }
1187
1188 /* Called in chan locked context */
1189 static inline void axi_chan_resume(struct axi_dma_chan *chan)
1190 {
1191         u32 val;
1192
1193         val = axi_dma_ioread32(chan->chip, DMAC_CHEN);
1194         if (chan->chip->dw->hdata->reg_map_8_channels) {
1195                 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP_SHIFT);
1196                 val |=  (BIT(chan->id) << DMAC_CHAN_SUSP_WE_SHIFT);
1197                 axi_dma_iowrite32(chan->chip, DMAC_CHEN, val);
1198         } else {
1199                 val &= ~(BIT(chan->id) << DMAC_CHAN_SUSP2_SHIFT);
1200                 val |=  (BIT(chan->id) << DMAC_CHAN_SUSP2_WE_SHIFT);
1201                 axi_dma_iowrite32(chan->chip, DMAC_CHSUSPREG, val);
1202         }
1203
1204         chan->is_paused = false;
1205 }
1206
1207 static int dma_chan_resume(struct dma_chan *dchan)
1208 {
1209         struct axi_dma_chan *chan = dchan_to_axi_dma_chan(dchan);
1210         unsigned long flags;
1211
1212         spin_lock_irqsave(&chan->vc.lock, flags);
1213
1214         if (chan->is_paused)
1215                 axi_chan_resume(chan);
1216
1217         spin_unlock_irqrestore(&chan->vc.lock, flags);
1218
1219         return 0;
1220 }
1221
1222 static int axi_dma_suspend(struct axi_dma_chip *chip)
1223 {
1224         axi_dma_irq_disable(chip);
1225         axi_dma_disable(chip);
1226
1227         clk_disable_unprepare(chip->core_clk);
1228         clk_disable_unprepare(chip->cfgr_clk);
1229
1230         return 0;
1231 }
1232
1233 static int axi_dma_resume(struct axi_dma_chip *chip)
1234 {
1235         int ret;
1236
1237         ret = clk_prepare_enable(chip->cfgr_clk);
1238         if (ret < 0)
1239                 return ret;
1240
1241         ret = clk_prepare_enable(chip->core_clk);
1242         if (ret < 0)
1243                 return ret;
1244
1245         axi_dma_enable(chip);
1246         axi_dma_irq_enable(chip);
1247
1248         return 0;
1249 }
1250
1251 static int __maybe_unused axi_dma_runtime_suspend(struct device *dev)
1252 {
1253         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1254
1255         return axi_dma_suspend(chip);
1256 }
1257
1258 static int __maybe_unused axi_dma_runtime_resume(struct device *dev)
1259 {
1260         struct axi_dma_chip *chip = dev_get_drvdata(dev);
1261
1262         return axi_dma_resume(chip);
1263 }
1264
1265 static struct dma_chan *dw_axi_dma_of_xlate(struct of_phandle_args *dma_spec,
1266                                             struct of_dma *ofdma)
1267 {
1268         struct dw_axi_dma *dw = ofdma->of_dma_data;
1269         struct axi_dma_chan *chan;
1270         struct dma_chan *dchan;
1271
1272         dchan = dma_get_any_slave_channel(&dw->dma);
1273         if (!dchan)
1274                 return NULL;
1275
1276         chan = dchan_to_axi_dma_chan(dchan);
1277         chan->hw_handshake_num = dma_spec->args[0];
1278         return dchan;
1279 }
1280
1281 static int parse_device_properties(struct axi_dma_chip *chip)
1282 {
1283         struct device *dev = chip->dev;
1284         u32 tmp, carr[DMAC_MAX_CHANNELS];
1285         int ret;
1286
1287         ret = device_property_read_u32(dev, "dma-channels", &tmp);
1288         if (ret)
1289                 return ret;
1290         if (tmp == 0 || tmp > DMAC_MAX_CHANNELS)
1291                 return -EINVAL;
1292
1293         chip->dw->hdata->nr_channels = tmp;
1294         if (tmp <= DMA_REG_MAP_CH_REF)
1295                 chip->dw->hdata->reg_map_8_channels = true;
1296
1297         ret = device_property_read_u32(dev, "snps,dma-masters", &tmp);
1298         if (ret)
1299                 return ret;
1300         if (tmp == 0 || tmp > DMAC_MAX_MASTERS)
1301                 return -EINVAL;
1302
1303         chip->dw->hdata->nr_masters = tmp;
1304
1305         ret = device_property_read_u32(dev, "snps,data-width", &tmp);
1306         if (ret)
1307                 return ret;
1308         if (tmp > DWAXIDMAC_TRANS_WIDTH_MAX)
1309                 return -EINVAL;
1310
1311         chip->dw->hdata->m_data_width = tmp;
1312
1313         ret = device_property_read_u32_array(dev, "snps,block-size", carr,
1314                                              chip->dw->hdata->nr_channels);
1315         if (ret)
1316                 return ret;
1317         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1318                 if (carr[tmp] == 0 || carr[tmp] > DMAC_MAX_BLK_SIZE)
1319                         return -EINVAL;
1320
1321                 chip->dw->hdata->block_size[tmp] = carr[tmp];
1322         }
1323
1324         ret = device_property_read_u32_array(dev, "snps,priority", carr,
1325                                              chip->dw->hdata->nr_channels);
1326         if (ret)
1327                 return ret;
1328         /* Priority value must be programmed within [0:nr_channels-1] range */
1329         for (tmp = 0; tmp < chip->dw->hdata->nr_channels; tmp++) {
1330                 if (carr[tmp] >= chip->dw->hdata->nr_channels)
1331                         return -EINVAL;
1332
1333                 chip->dw->hdata->priority[tmp] = carr[tmp];
1334         }
1335
1336         /* axi-max-burst-len is optional property */
1337         ret = device_property_read_u32(dev, "snps,axi-max-burst-len", &tmp);
1338         if (!ret) {
1339                 if (tmp > DWAXIDMAC_ARWLEN_MAX + 1)
1340                         return -EINVAL;
1341                 if (tmp < DWAXIDMAC_ARWLEN_MIN + 1)
1342                         return -EINVAL;
1343
1344                 chip->dw->hdata->restrict_axi_burst_len = true;
1345                 chip->dw->hdata->axi_rw_burst_len = tmp;
1346         }
1347
1348         return 0;
1349 }
1350
1351 static int dw_probe(struct platform_device *pdev)
1352 {
1353         struct device_node *node = pdev->dev.of_node;
1354         struct axi_dma_chip *chip;
1355         struct resource *mem;
1356         struct dw_axi_dma *dw;
1357         struct dw_axi_dma_hcfg *hdata;
1358         u32 i;
1359         int ret;
1360
1361         chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
1362         if (!chip)
1363                 return -ENOMEM;
1364
1365         dw = devm_kzalloc(&pdev->dev, sizeof(*dw), GFP_KERNEL);
1366         if (!dw)
1367                 return -ENOMEM;
1368
1369         hdata = devm_kzalloc(&pdev->dev, sizeof(*hdata), GFP_KERNEL);
1370         if (!hdata)
1371                 return -ENOMEM;
1372
1373         chip->dw = dw;
1374         chip->dev = &pdev->dev;
1375         chip->dw->hdata = hdata;
1376
1377         chip->irq = platform_get_irq(pdev, 0);
1378         if (chip->irq < 0)
1379                 return chip->irq;
1380
1381         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1382         chip->regs = devm_ioremap_resource(chip->dev, mem);
1383         if (IS_ERR(chip->regs))
1384                 return PTR_ERR(chip->regs);
1385
1386         if (of_device_is_compatible(node, "intel,kmb-axi-dma")) {
1387                 chip->apb_regs = devm_platform_ioremap_resource(pdev, 1);
1388                 if (IS_ERR(chip->apb_regs))
1389                         return PTR_ERR(chip->apb_regs);
1390         }
1391
1392         chip->core_clk = devm_clk_get(chip->dev, "core-clk");
1393         if (IS_ERR(chip->core_clk))
1394                 return PTR_ERR(chip->core_clk);
1395
1396         chip->cfgr_clk = devm_clk_get(chip->dev, "cfgr-clk");
1397         if (IS_ERR(chip->cfgr_clk))
1398                 return PTR_ERR(chip->cfgr_clk);
1399
1400         ret = parse_device_properties(chip);
1401         if (ret)
1402                 return ret;
1403
1404         dw->chan = devm_kcalloc(chip->dev, hdata->nr_channels,
1405                                 sizeof(*dw->chan), GFP_KERNEL);
1406         if (!dw->chan)
1407                 return -ENOMEM;
1408
1409         ret = devm_request_irq(chip->dev, chip->irq, dw_axi_dma_interrupt,
1410                                IRQF_SHARED, KBUILD_MODNAME, chip);
1411         if (ret)
1412                 return ret;
1413
1414         INIT_LIST_HEAD(&dw->dma.channels);
1415         for (i = 0; i < hdata->nr_channels; i++) {
1416                 struct axi_dma_chan *chan = &dw->chan[i];
1417
1418                 chan->chip = chip;
1419                 chan->id = i;
1420                 chan->chan_regs = chip->regs + COMMON_REG_LEN + i * CHAN_REG_LEN;
1421                 atomic_set(&chan->descs_allocated, 0);
1422
1423                 chan->vc.desc_free = vchan_desc_put;
1424                 vchan_init(&chan->vc, &dw->dma);
1425         }
1426
1427         /* Set capabilities */
1428         dma_cap_set(DMA_MEMCPY, dw->dma.cap_mask);
1429         dma_cap_set(DMA_SLAVE, dw->dma.cap_mask);
1430         dma_cap_set(DMA_CYCLIC, dw->dma.cap_mask);
1431
1432         /* DMA capabilities */
1433         dw->dma.chancnt = hdata->nr_channels;
1434         dw->dma.max_burst = hdata->axi_rw_burst_len;
1435         dw->dma.src_addr_widths = AXI_DMA_BUSWIDTHS;
1436         dw->dma.dst_addr_widths = AXI_DMA_BUSWIDTHS;
1437         dw->dma.directions = BIT(DMA_MEM_TO_MEM);
1438         dw->dma.directions |= BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1439         dw->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1440
1441         dw->dma.dev = chip->dev;
1442         dw->dma.device_tx_status = dma_chan_tx_status;
1443         dw->dma.device_issue_pending = dma_chan_issue_pending;
1444         dw->dma.device_terminate_all = dma_chan_terminate_all;
1445         dw->dma.device_pause = dma_chan_pause;
1446         dw->dma.device_resume = dma_chan_resume;
1447
1448         dw->dma.device_alloc_chan_resources = dma_chan_alloc_chan_resources;
1449         dw->dma.device_free_chan_resources = dma_chan_free_chan_resources;
1450
1451         dw->dma.device_prep_dma_memcpy = dma_chan_prep_dma_memcpy;
1452         dw->dma.device_synchronize = dw_axi_dma_synchronize;
1453         dw->dma.device_config = dw_axi_dma_chan_slave_config;
1454         dw->dma.device_prep_slave_sg = dw_axi_dma_chan_prep_slave_sg;
1455         dw->dma.device_prep_dma_cyclic = dw_axi_dma_chan_prep_cyclic;
1456
1457         /*
1458          * Synopsis DesignWare AxiDMA datasheet mentioned Maximum
1459          * supported blocks is 1024. Device register width is 4 bytes.
1460          * Therefore, set constraint to 1024 * 4.
1461          */
1462         dw->dma.dev->dma_parms = &dw->dma_parms;
1463         dma_set_max_seg_size(&pdev->dev, MAX_BLOCK_SIZE);
1464         platform_set_drvdata(pdev, chip);
1465
1466         pm_runtime_enable(chip->dev);
1467
1468         /*
1469          * We can't just call pm_runtime_get here instead of
1470          * pm_runtime_get_noresume + axi_dma_resume because we need
1471          * driver to work also without Runtime PM.
1472          */
1473         pm_runtime_get_noresume(chip->dev);
1474         ret = axi_dma_resume(chip);
1475         if (ret < 0)
1476                 goto err_pm_disable;
1477
1478         axi_dma_hw_init(chip);
1479
1480         pm_runtime_put(chip->dev);
1481
1482         ret = dmaenginem_async_device_register(&dw->dma);
1483         if (ret)
1484                 goto err_pm_disable;
1485
1486         /* Register with OF helpers for DMA lookups */
1487         ret = of_dma_controller_register(pdev->dev.of_node,
1488                                          dw_axi_dma_of_xlate, dw);
1489         if (ret < 0)
1490                 dev_warn(&pdev->dev,
1491                          "Failed to register OF DMA controller, fallback to MEM_TO_MEM mode\n");
1492
1493         dev_info(chip->dev, "DesignWare AXI DMA Controller, %d channels\n",
1494                  dw->hdata->nr_channels);
1495
1496         return 0;
1497
1498 err_pm_disable:
1499         pm_runtime_disable(chip->dev);
1500
1501         return ret;
1502 }
1503
1504 static int dw_remove(struct platform_device *pdev)
1505 {
1506         struct axi_dma_chip *chip = platform_get_drvdata(pdev);
1507         struct dw_axi_dma *dw = chip->dw;
1508         struct axi_dma_chan *chan, *_chan;
1509         u32 i;
1510
1511         /* Enable clk before accessing to registers */
1512         clk_prepare_enable(chip->cfgr_clk);
1513         clk_prepare_enable(chip->core_clk);
1514         axi_dma_irq_disable(chip);
1515         for (i = 0; i < dw->hdata->nr_channels; i++) {
1516                 axi_chan_disable(&chip->dw->chan[i]);
1517                 axi_chan_irq_disable(&chip->dw->chan[i], DWAXIDMAC_IRQ_ALL);
1518         }
1519         axi_dma_disable(chip);
1520
1521         pm_runtime_disable(chip->dev);
1522         axi_dma_suspend(chip);
1523
1524         devm_free_irq(chip->dev, chip->irq, chip);
1525
1526         of_dma_controller_free(chip->dev->of_node);
1527
1528         list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
1529                         vc.chan.device_node) {
1530                 list_del(&chan->vc.chan.device_node);
1531                 tasklet_kill(&chan->vc.task);
1532         }
1533
1534         return 0;
1535 }
1536
1537 static const struct dev_pm_ops dw_axi_dma_pm_ops = {
1538         SET_RUNTIME_PM_OPS(axi_dma_runtime_suspend, axi_dma_runtime_resume, NULL)
1539 };
1540
1541 static const struct of_device_id dw_dma_of_id_table[] = {
1542         { .compatible = "snps,axi-dma-1.01a" },
1543         { .compatible = "intel,kmb-axi-dma" },
1544         {}
1545 };
1546 MODULE_DEVICE_TABLE(of, dw_dma_of_id_table);
1547
1548 static struct platform_driver dw_driver = {
1549         .probe          = dw_probe,
1550         .remove         = dw_remove,
1551         .driver = {
1552                 .name   = KBUILD_MODNAME,
1553                 .of_match_table = dw_dma_of_id_table,
1554                 .pm = &dw_axi_dma_pm_ops,
1555         },
1556 };
1557 module_platform_driver(dw_driver);
1558
1559 MODULE_LICENSE("GPL v2");
1560 MODULE_DESCRIPTION("Synopsys DesignWare AXI DMA Controller platform driver");
1561 MODULE_AUTHOR("Eugeniy Paltsev <Eugeniy.Paltsev@synopsys.com>");