c24f2db8d5e83d3c02e6e69e33cb215c20c6da7f
[linux-2.6-microblaze.git] / drivers / crypto / ux500 / hash / hash_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  * Support for Nomadik hardware crypto engine.
5
6  * Copyright (C) ST-Ericsson SA 2010
7  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12  */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/platform_device.h>
26 #include <linux/crypto.h>
27
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/bitops.h>
31
32 #include <crypto/internal/hash.h>
33 #include <crypto/sha.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36
37 #include <linux/platform_data/crypto-ux500.h>
38
39 #include "hash_alg.h"
40
41 static int hash_mode;
42 module_param(hash_mode, int, 0);
43 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45 /* HMAC-SHA1, no key */
46 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
47         0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
48         0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
49         0x70, 0x69, 0x0e, 0x1d
50 };
51
52 /* HMAC-SHA256, no key */
53 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
54         0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
55         0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
56         0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
57         0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
58 };
59
60 /**
61  * struct hash_driver_data - data specific to the driver.
62  *
63  * @device_list:        A list of registered devices to choose from.
64  * @device_allocation:  A semaphore initialized with number of devices.
65  */
66 struct hash_driver_data {
67         struct klist            device_list;
68         struct semaphore        device_allocation;
69 };
70
71 static struct hash_driver_data  driver_data;
72
73 /* Declaration of functions */
74 /**
75  * hash_messagepad - Pads a message and write the nblw bits.
76  * @device_data:        Structure for the hash device.
77  * @message:            Last word of a message
78  * @index_bytes:        The number of bytes in the last message
79  *
80  * This function manages the final part of the digest calculation, when less
81  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
82  *
83  */
84 static void hash_messagepad(struct hash_device_data *device_data,
85                             const u32 *message, u8 index_bytes);
86
87 /**
88  * release_hash_device - Releases a previously allocated hash device.
89  * @device_data:        Structure for the hash device.
90  *
91  */
92 static void release_hash_device(struct hash_device_data *device_data)
93 {
94         spin_lock(&device_data->ctx_lock);
95         device_data->current_ctx->device = NULL;
96         device_data->current_ctx = NULL;
97         spin_unlock(&device_data->ctx_lock);
98
99         /*
100          * The down_interruptible part for this semaphore is called in
101          * cryp_get_device_data.
102          */
103         up(&driver_data.device_allocation);
104 }
105
106 static void hash_dma_setup_channel(struct hash_device_data *device_data,
107                                    struct device *dev)
108 {
109         struct hash_platform_data *platform_data = dev->platform_data;
110         struct dma_slave_config conf = {
111                 .direction = DMA_MEM_TO_DEV,
112                 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
113                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
114                 .dst_maxburst = 16,
115         };
116
117         dma_cap_zero(device_data->dma.mask);
118         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
119
120         device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
121         device_data->dma.chan_mem2hash =
122                 dma_request_channel(device_data->dma.mask,
123                                     platform_data->dma_filter,
124                                     device_data->dma.cfg_mem2hash);
125
126         dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
127
128         init_completion(&device_data->dma.complete);
129 }
130
131 static void hash_dma_callback(void *data)
132 {
133         struct hash_ctx *ctx = data;
134
135         complete(&ctx->device->dma.complete);
136 }
137
138 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
139                                  int len, enum dma_data_direction direction)
140 {
141         struct dma_async_tx_descriptor *desc = NULL;
142         struct dma_chan *channel = NULL;
143
144         if (direction != DMA_TO_DEVICE) {
145                 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
146                         __func__);
147                 return -EFAULT;
148         }
149
150         sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
151
152         channel = ctx->device->dma.chan_mem2hash;
153         ctx->device->dma.sg = sg;
154         ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
155                         ctx->device->dma.sg, ctx->device->dma.nents,
156                         direction);
157
158         if (!ctx->device->dma.sg_len) {
159                 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
160                         __func__);
161                 return -EFAULT;
162         }
163
164         dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
165                 __func__);
166         desc = dmaengine_prep_slave_sg(channel,
167                         ctx->device->dma.sg, ctx->device->dma.sg_len,
168                         DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
169         if (!desc) {
170                 dev_err(ctx->device->dev,
171                         "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
172                 return -EFAULT;
173         }
174
175         desc->callback = hash_dma_callback;
176         desc->callback_param = ctx;
177
178         dmaengine_submit(desc);
179         dma_async_issue_pending(channel);
180
181         return 0;
182 }
183
184 static void hash_dma_done(struct hash_ctx *ctx)
185 {
186         struct dma_chan *chan;
187
188         chan = ctx->device->dma.chan_mem2hash;
189         dmaengine_terminate_all(chan);
190         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
191                      ctx->device->dma.sg_len, DMA_TO_DEVICE);
192 }
193
194 static int hash_dma_write(struct hash_ctx *ctx,
195                           struct scatterlist *sg, int len)
196 {
197         int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
198         if (error) {
199                 dev_dbg(ctx->device->dev,
200                         "%s: hash_set_dma_transfer() failed\n", __func__);
201                 return error;
202         }
203
204         return len;
205 }
206
207 /**
208  * get_empty_message_digest - Returns a pre-calculated digest for
209  * the empty message.
210  * @device_data:        Structure for the hash device.
211  * @zero_hash:          Buffer to return the empty message digest.
212  * @zero_hash_size:     Hash size of the empty message digest.
213  * @zero_digest:        True if zero_digest returned.
214  */
215 static int get_empty_message_digest(
216                 struct hash_device_data *device_data,
217                 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
218 {
219         int ret = 0;
220         struct hash_ctx *ctx = device_data->current_ctx;
221         *zero_digest = false;
222
223         /**
224          * Caller responsible for ctx != NULL.
225          */
226
227         if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
228                 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
229                         memcpy(zero_hash, &sha1_zero_message_hash[0],
230                                SHA1_DIGEST_SIZE);
231                         *zero_hash_size = SHA1_DIGEST_SIZE;
232                         *zero_digest = true;
233                 } else if (HASH_ALGO_SHA256 ==
234                                 ctx->config.algorithm) {
235                         memcpy(zero_hash, &sha256_zero_message_hash[0],
236                                SHA256_DIGEST_SIZE);
237                         *zero_hash_size = SHA256_DIGEST_SIZE;
238                         *zero_digest = true;
239                 } else {
240                         dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
241                                 __func__);
242                         ret = -EINVAL;
243                         goto out;
244                 }
245         } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
246                 if (!ctx->keylen) {
247                         if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
248                                 memcpy(zero_hash, &zero_message_hmac_sha1[0],
249                                        SHA1_DIGEST_SIZE);
250                                 *zero_hash_size = SHA1_DIGEST_SIZE;
251                                 *zero_digest = true;
252                         } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
253                                 memcpy(zero_hash, &zero_message_hmac_sha256[0],
254                                        SHA256_DIGEST_SIZE);
255                                 *zero_hash_size = SHA256_DIGEST_SIZE;
256                                 *zero_digest = true;
257                         } else {
258                                 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
259                                         __func__);
260                                 ret = -EINVAL;
261                                 goto out;
262                         }
263                 } else {
264                         dev_dbg(device_data->dev,
265                                 "%s: Continue hash calculation, since hmac key available\n",
266                                 __func__);
267                 }
268         }
269 out:
270
271         return ret;
272 }
273
274 /**
275  * hash_disable_power - Request to disable power and clock.
276  * @device_data:        Structure for the hash device.
277  * @save_device_state:  If true, saves the current hw state.
278  *
279  * This function request for disabling power (regulator) and clock,
280  * and could also save current hw state.
281  */
282 static int hash_disable_power(struct hash_device_data *device_data,
283                               bool save_device_state)
284 {
285         int ret = 0;
286         struct device *dev = device_data->dev;
287
288         spin_lock(&device_data->power_state_lock);
289         if (!device_data->power_state)
290                 goto out;
291
292         if (save_device_state) {
293                 hash_save_state(device_data,
294                                 &device_data->state);
295                 device_data->restore_dev_state = true;
296         }
297
298         clk_disable(device_data->clk);
299         ret = regulator_disable(device_data->regulator);
300         if (ret)
301                 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
302
303         device_data->power_state = false;
304
305 out:
306         spin_unlock(&device_data->power_state_lock);
307
308         return ret;
309 }
310
311 /**
312  * hash_enable_power - Request to enable power and clock.
313  * @device_data:                Structure for the hash device.
314  * @restore_device_state:       If true, restores a previous saved hw state.
315  *
316  * This function request for enabling power (regulator) and clock,
317  * and could also restore a previously saved hw state.
318  */
319 static int hash_enable_power(struct hash_device_data *device_data,
320                              bool restore_device_state)
321 {
322         int ret = 0;
323         struct device *dev = device_data->dev;
324
325         spin_lock(&device_data->power_state_lock);
326         if (!device_data->power_state) {
327                 ret = regulator_enable(device_data->regulator);
328                 if (ret) {
329                         dev_err(dev, "%s: regulator_enable() failed!\n",
330                                 __func__);
331                         goto out;
332                 }
333                 ret = clk_enable(device_data->clk);
334                 if (ret) {
335                         dev_err(dev, "%s: clk_enable() failed!\n", __func__);
336                         ret = regulator_disable(
337                                         device_data->regulator);
338                         goto out;
339                 }
340                 device_data->power_state = true;
341         }
342
343         if (device_data->restore_dev_state) {
344                 if (restore_device_state) {
345                         device_data->restore_dev_state = false;
346                         hash_resume_state(device_data, &device_data->state);
347                 }
348         }
349 out:
350         spin_unlock(&device_data->power_state_lock);
351
352         return ret;
353 }
354
355 /**
356  * hash_get_device_data - Checks for an available hash device and return it.
357  * @hash_ctx:           Structure for the hash context.
358  * @device_data:        Structure for the hash device.
359  *
360  * This function check for an available hash device and return it to
361  * the caller.
362  * Note! Caller need to release the device, calling up().
363  */
364 static int hash_get_device_data(struct hash_ctx *ctx,
365                                 struct hash_device_data **device_data)
366 {
367         int                     ret;
368         struct klist_iter       device_iterator;
369         struct klist_node       *device_node;
370         struct hash_device_data *local_device_data = NULL;
371
372         /* Wait until a device is available */
373         ret = down_interruptible(&driver_data.device_allocation);
374         if (ret)
375                 return ret;  /* Interrupted */
376
377         /* Select a device */
378         klist_iter_init(&driver_data.device_list, &device_iterator);
379         device_node = klist_next(&device_iterator);
380         while (device_node) {
381                 local_device_data = container_of(device_node,
382                                            struct hash_device_data, list_node);
383                 spin_lock(&local_device_data->ctx_lock);
384                 /* current_ctx allocates a device, NULL = unallocated */
385                 if (local_device_data->current_ctx) {
386                         device_node = klist_next(&device_iterator);
387                 } else {
388                         local_device_data->current_ctx = ctx;
389                         ctx->device = local_device_data;
390                         spin_unlock(&local_device_data->ctx_lock);
391                         break;
392                 }
393                 spin_unlock(&local_device_data->ctx_lock);
394         }
395         klist_iter_exit(&device_iterator);
396
397         if (!device_node) {
398                 /**
399                  * No free device found.
400                  * Since we allocated a device with down_interruptible, this
401                  * should not be able to happen.
402                  * Number of available devices, which are contained in
403                  * device_allocation, is therefore decremented by not doing
404                  * an up(device_allocation).
405                  */
406                 return -EBUSY;
407         }
408
409         *device_data = local_device_data;
410
411         return 0;
412 }
413
414 /**
415  * hash_hw_write_key - Writes the key to the hardware registries.
416  *
417  * @device_data:        Structure for the hash device.
418  * @key:                Key to be written.
419  * @keylen:             The lengt of the key.
420  *
421  * Note! This function DOES NOT write to the NBLW registry, even though
422  * specified in the the hw design spec. Either due to incorrect info in the
423  * spec or due to a bug in the hw.
424  */
425 static void hash_hw_write_key(struct hash_device_data *device_data,
426                               const u8 *key, unsigned int keylen)
427 {
428         u32 word = 0;
429         int nwords = 1;
430
431         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
432
433         while (keylen >= 4) {
434                 u32 *key_word = (u32 *)key;
435
436                 HASH_SET_DIN(key_word, nwords);
437                 keylen -= 4;
438                 key += 4;
439         }
440
441         /* Take care of the remaining bytes in the last word */
442         if (keylen) {
443                 word = 0;
444                 while (keylen) {
445                         word |= (key[keylen - 1] << (8 * (keylen - 1)));
446                         keylen--;
447                 }
448
449                 HASH_SET_DIN(&word, nwords);
450         }
451
452         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
453                 cpu_relax();
454
455         HASH_SET_DCAL;
456
457         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
458                 cpu_relax();
459 }
460
461 /**
462  * init_hash_hw - Initialise the hash hardware for a new calculation.
463  * @device_data:        Structure for the hash device.
464  * @ctx:                The hash context.
465  *
466  * This function will enable the bits needed to clear and start a new
467  * calculation.
468  */
469 static int init_hash_hw(struct hash_device_data *device_data,
470                         struct hash_ctx *ctx)
471 {
472         int ret = 0;
473
474         ret = hash_setconfiguration(device_data, &ctx->config);
475         if (ret) {
476                 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
477                         __func__);
478                 return ret;
479         }
480
481         hash_begin(device_data, ctx);
482
483         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
484                 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
485
486         return ret;
487 }
488
489 /**
490  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
491  *
492  * @sg:         Scatterlist.
493  * @size:       Size in bytes.
494  * @aligned:    True if sg data aligned to work in DMA mode.
495  *
496  */
497 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
498 {
499         int nents = 0;
500         bool aligned_data = true;
501
502         while (size > 0 && sg) {
503                 nents++;
504                 size -= sg->length;
505
506                 /* hash_set_dma_transfer will align last nent */
507                 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
508                     (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
509                         aligned_data = false;
510
511                 sg = sg_next(sg);
512         }
513
514         if (aligned)
515                 *aligned = aligned_data;
516
517         if (size != 0)
518                 return -EFAULT;
519
520         return nents;
521 }
522
523 /**
524  * hash_dma_valid_data - checks for dma valid sg data.
525  * @sg:         Scatterlist.
526  * @datasize:   Datasize in bytes.
527  *
528  * NOTE! This function checks for dma valid sg data, since dma
529  * only accept datasizes of even wordsize.
530  */
531 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
532 {
533         bool aligned;
534
535         /* Need to include at least one nent, else error */
536         if (hash_get_nents(sg, datasize, &aligned) < 1)
537                 return false;
538
539         return aligned;
540 }
541
542 /**
543  * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
544  * @req: The hash request for the job.
545  *
546  * Initialize structures.
547  */
548 static int hash_init(struct ahash_request *req)
549 {
550         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
552         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
553
554         if (!ctx->key)
555                 ctx->keylen = 0;
556
557         memset(&req_ctx->state, 0, sizeof(struct hash_state));
558         req_ctx->updated = 0;
559         if (hash_mode == HASH_MODE_DMA) {
560                 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
561                         req_ctx->dma_mode = false; /* Don't use DMA */
562
563                         pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
564                                  __func__, HASH_DMA_ALIGN_SIZE);
565                 } else {
566                         if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
567                             hash_dma_valid_data(req->src, req->nbytes)) {
568                                 req_ctx->dma_mode = true;
569                         } else {
570                                 req_ctx->dma_mode = false;
571                                 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
572                                          __func__,
573                                          HASH_DMA_PERFORMANCE_MIN_SIZE);
574                         }
575                 }
576         }
577         return 0;
578 }
579
580 /**
581  * hash_processblock - This function processes a single block of 512 bits (64
582  *                     bytes), word aligned, starting at message.
583  * @device_data:        Structure for the hash device.
584  * @message:            Block (512 bits) of message to be written to
585  *                      the HASH hardware.
586  *
587  */
588 static void hash_processblock(struct hash_device_data *device_data,
589                               const u32 *message, int length)
590 {
591         int len = length / HASH_BYTES_PER_WORD;
592         /*
593          * NBLW bits. Reset the number of bits in last word (NBLW).
594          */
595         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
596
597         /*
598          * Write message data to the HASH_DIN register.
599          */
600         HASH_SET_DIN(message, len);
601 }
602
603 /**
604  * hash_messagepad - Pads a message and write the nblw bits.
605  * @device_data:        Structure for the hash device.
606  * @message:            Last word of a message.
607  * @index_bytes:        The number of bytes in the last message.
608  *
609  * This function manages the final part of the digest calculation, when less
610  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
611  *
612  */
613 static void hash_messagepad(struct hash_device_data *device_data,
614                             const u32 *message, u8 index_bytes)
615 {
616         int nwords = 1;
617
618         /*
619          * Clear hash str register, only clear NBLW
620          * since DCAL will be reset by hardware.
621          */
622         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
623
624         /* Main loop */
625         while (index_bytes >= 4) {
626                 HASH_SET_DIN(message, nwords);
627                 index_bytes -= 4;
628                 message++;
629         }
630
631         if (index_bytes)
632                 HASH_SET_DIN(message, nwords);
633
634         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
635                 cpu_relax();
636
637         /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
638         HASH_SET_NBLW(index_bytes * 8);
639         dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
640                 __func__, readl_relaxed(&device_data->base->din),
641                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
642         HASH_SET_DCAL;
643         dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
644                 __func__, readl_relaxed(&device_data->base->din),
645                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
646
647         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
648                 cpu_relax();
649 }
650
651 /**
652  * hash_incrementlength - Increments the length of the current message.
653  * @ctx: Hash context
654  * @incr: Length of message processed already
655  *
656  * Overflow cannot occur, because conditions for overflow are checked in
657  * hash_hw_update.
658  */
659 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
660 {
661         ctx->state.length.low_word += incr;
662
663         /* Check for wrap-around */
664         if (ctx->state.length.low_word < incr)
665                 ctx->state.length.high_word++;
666 }
667
668 /**
669  * hash_setconfiguration - Sets the required configuration for the hash
670  *                         hardware.
671  * @device_data:        Structure for the hash device.
672  * @config:             Pointer to a configuration structure.
673  */
674 int hash_setconfiguration(struct hash_device_data *device_data,
675                           struct hash_config *config)
676 {
677         int ret = 0;
678
679         if (config->algorithm != HASH_ALGO_SHA1 &&
680             config->algorithm != HASH_ALGO_SHA256)
681                 return -EPERM;
682
683         /*
684          * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
685          * to be written to HASH_DIN is considered as 32 bits.
686          */
687         HASH_SET_DATA_FORMAT(config->data_format);
688
689         /*
690          * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
691          */
692         switch (config->algorithm) {
693         case HASH_ALGO_SHA1:
694                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
695                 break;
696
697         case HASH_ALGO_SHA256:
698                 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
699                 break;
700
701         default:
702                 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
703                         __func__);
704                 return -EPERM;
705         }
706
707         /*
708          * MODE bit. This bit selects between HASH or HMAC mode for the
709          * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
710          */
711         if (HASH_OPER_MODE_HASH == config->oper_mode)
712                 HASH_CLEAR_BITS(&device_data->base->cr,
713                                 HASH_CR_MODE_MASK);
714         else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
715                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
716                 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
717                         /* Truncate key to blocksize */
718                         dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
719                         HASH_SET_BITS(&device_data->base->cr,
720                                       HASH_CR_LKEY_MASK);
721                 } else {
722                         dev_dbg(device_data->dev, "%s: LKEY cleared\n",
723                                 __func__);
724                         HASH_CLEAR_BITS(&device_data->base->cr,
725                                         HASH_CR_LKEY_MASK);
726                 }
727         } else {        /* Wrong hash mode */
728                 ret = -EPERM;
729                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
730                         __func__);
731         }
732         return ret;
733 }
734
735 /**
736  * hash_begin - This routine resets some globals and initializes the hash
737  *              hardware.
738  * @device_data:        Structure for the hash device.
739  * @ctx:                Hash context.
740  */
741 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
742 {
743         /* HW and SW initializations */
744         /* Note: there is no need to initialize buffer and digest members */
745
746         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
747                 cpu_relax();
748
749         /*
750          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
751          * prepare the initialize the HASH accelerator to compute the message
752          * digest of a new message.
753          */
754         HASH_INITIALIZE;
755
756         /*
757          * NBLW bits. Reset the number of bits in last word (NBLW).
758          */
759         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
760 }
761
762 static int hash_process_data(struct hash_device_data *device_data,
763                              struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
764                              int msg_length, u8 *data_buffer, u8 *buffer,
765                              u8 *index)
766 {
767         int ret = 0;
768         u32 count;
769
770         do {
771                 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
772                         for (count = 0; count < msg_length; count++) {
773                                 buffer[*index + count] =
774                                         *(data_buffer + count);
775                         }
776                         *index += msg_length;
777                         msg_length = 0;
778                 } else {
779                         if (req_ctx->updated) {
780                                 ret = hash_resume_state(device_data,
781                                                 &device_data->state);
782                                 memmove(req_ctx->state.buffer,
783                                         device_data->state.buffer,
784                                         HASH_BLOCK_SIZE);
785                                 if (ret) {
786                                         dev_err(device_data->dev,
787                                                 "%s: hash_resume_state() failed!\n",
788                                                 __func__);
789                                         goto out;
790                                 }
791                         } else {
792                                 ret = init_hash_hw(device_data, ctx);
793                                 if (ret) {
794                                         dev_err(device_data->dev,
795                                                 "%s: init_hash_hw() failed!\n",
796                                                 __func__);
797                                         goto out;
798                                 }
799                                 req_ctx->updated = 1;
800                         }
801                         /*
802                          * If 'data_buffer' is four byte aligned and
803                          * local buffer does not have any data, we can
804                          * write data directly from 'data_buffer' to
805                          * HW peripheral, otherwise we first copy data
806                          * to a local buffer
807                          */
808                         if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
809                             (0 == *index))
810                                 hash_processblock(device_data,
811                                                   (const u32 *)data_buffer,
812                                                   HASH_BLOCK_SIZE);
813                         else {
814                                 for (count = 0;
815                                      count < (u32)(HASH_BLOCK_SIZE - *index);
816                                      count++) {
817                                         buffer[*index + count] =
818                                                 *(data_buffer + count);
819                                 }
820                                 hash_processblock(device_data,
821                                                   (const u32 *)buffer,
822                                                   HASH_BLOCK_SIZE);
823                         }
824                         hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
825                         data_buffer += (HASH_BLOCK_SIZE - *index);
826
827                         msg_length -= (HASH_BLOCK_SIZE - *index);
828                         *index = 0;
829
830                         ret = hash_save_state(device_data,
831                                         &device_data->state);
832
833                         memmove(device_data->state.buffer,
834                                 req_ctx->state.buffer,
835                                 HASH_BLOCK_SIZE);
836                         if (ret) {
837                                 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
838                                         __func__);
839                                 goto out;
840                         }
841                 }
842         } while (msg_length != 0);
843 out:
844
845         return ret;
846 }
847
848 /**
849  * hash_dma_final - The hash dma final function for SHA1/SHA256.
850  * @req:        The hash request for the job.
851  */
852 static int hash_dma_final(struct ahash_request *req)
853 {
854         int ret = 0;
855         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
856         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
857         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
858         struct hash_device_data *device_data;
859         u8 digest[SHA256_DIGEST_SIZE];
860         int bytes_written = 0;
861
862         ret = hash_get_device_data(ctx, &device_data);
863         if (ret)
864                 return ret;
865
866         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
867                 (unsigned long)ctx);
868
869         if (req_ctx->updated) {
870                 ret = hash_resume_state(device_data, &device_data->state);
871
872                 if (ret) {
873                         dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
874                                 __func__);
875                         goto out;
876                 }
877         }
878
879         if (!req_ctx->updated) {
880                 ret = hash_setconfiguration(device_data, &ctx->config);
881                 if (ret) {
882                         dev_err(device_data->dev,
883                                 "%s: hash_setconfiguration() failed!\n",
884                                 __func__);
885                         goto out;
886                 }
887
888                 /* Enable DMA input */
889                 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
890                         HASH_CLEAR_BITS(&device_data->base->cr,
891                                         HASH_CR_DMAE_MASK);
892                 } else {
893                         HASH_SET_BITS(&device_data->base->cr,
894                                       HASH_CR_DMAE_MASK);
895                         HASH_SET_BITS(&device_data->base->cr,
896                                       HASH_CR_PRIVN_MASK);
897                 }
898
899                 HASH_INITIALIZE;
900
901                 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
902                         hash_hw_write_key(device_data, ctx->key, ctx->keylen);
903
904                 /* Number of bits in last word = (nbytes * 8) % 32 */
905                 HASH_SET_NBLW((req->nbytes * 8) % 32);
906                 req_ctx->updated = 1;
907         }
908
909         /* Store the nents in the dma struct. */
910         ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
911         if (!ctx->device->dma.nents) {
912                 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
913                         __func__);
914                 ret = ctx->device->dma.nents;
915                 goto out;
916         }
917
918         bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
919         if (bytes_written != req->nbytes) {
920                 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
921                         __func__);
922                 ret = bytes_written;
923                 goto out;
924         }
925
926         wait_for_completion(&ctx->device->dma.complete);
927         hash_dma_done(ctx);
928
929         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
930                 cpu_relax();
931
932         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
933                 unsigned int keylen = ctx->keylen;
934                 u8 *key = ctx->key;
935
936                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
937                         __func__, ctx->keylen);
938                 hash_hw_write_key(device_data, key, keylen);
939         }
940
941         hash_get_digest(device_data, digest, ctx->config.algorithm);
942         memcpy(req->result, digest, ctx->digestsize);
943
944 out:
945         release_hash_device(device_data);
946
947         /**
948          * Allocated in setkey, and only used in HMAC.
949          */
950         kfree(ctx->key);
951
952         return ret;
953 }
954
955 /**
956  * hash_hw_final - The final hash calculation function
957  * @req:        The hash request for the job.
958  */
959 static int hash_hw_final(struct ahash_request *req)
960 {
961         int ret = 0;
962         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
963         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
964         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
965         struct hash_device_data *device_data;
966         u8 digest[SHA256_DIGEST_SIZE];
967
968         ret = hash_get_device_data(ctx, &device_data);
969         if (ret)
970                 return ret;
971
972         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
973                 (unsigned long)ctx);
974
975         if (req_ctx->updated) {
976                 ret = hash_resume_state(device_data, &device_data->state);
977
978                 if (ret) {
979                         dev_err(device_data->dev,
980                                 "%s: hash_resume_state() failed!\n", __func__);
981                         goto out;
982                 }
983         } else if (req->nbytes == 0 && ctx->keylen == 0) {
984                 u8 zero_hash[SHA256_DIGEST_SIZE];
985                 u32 zero_hash_size = 0;
986                 bool zero_digest = false;
987                 /**
988                  * Use a pre-calculated empty message digest
989                  * (workaround since hw return zeroes, hw bug!?)
990                  */
991                 ret = get_empty_message_digest(device_data, &zero_hash[0],
992                                 &zero_hash_size, &zero_digest);
993                 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
994                     zero_digest) {
995                         memcpy(req->result, &zero_hash[0], ctx->digestsize);
996                         goto out;
997                 } else if (!ret && !zero_digest) {
998                         dev_dbg(device_data->dev,
999                                 "%s: HMAC zero msg with key, continue...\n",
1000                                 __func__);
1001                 } else {
1002                         dev_err(device_data->dev,
1003                                 "%s: ret=%d, or wrong digest size? %s\n",
1004                                 __func__, ret,
1005                                 zero_hash_size == ctx->digestsize ?
1006                                 "true" : "false");
1007                         /* Return error */
1008                         goto out;
1009                 }
1010         } else if (req->nbytes == 0 && ctx->keylen > 0) {
1011                 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1012                         __func__);
1013                 goto out;
1014         }
1015
1016         if (!req_ctx->updated) {
1017                 ret = init_hash_hw(device_data, ctx);
1018                 if (ret) {
1019                         dev_err(device_data->dev,
1020                                 "%s: init_hash_hw() failed!\n", __func__);
1021                         goto out;
1022                 }
1023         }
1024
1025         if (req_ctx->state.index) {
1026                 hash_messagepad(device_data, req_ctx->state.buffer,
1027                                 req_ctx->state.index);
1028         } else {
1029                 HASH_SET_DCAL;
1030                 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1031                         cpu_relax();
1032         }
1033
1034         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1035                 unsigned int keylen = ctx->keylen;
1036                 u8 *key = ctx->key;
1037
1038                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1039                         __func__, ctx->keylen);
1040                 hash_hw_write_key(device_data, key, keylen);
1041         }
1042
1043         hash_get_digest(device_data, digest, ctx->config.algorithm);
1044         memcpy(req->result, digest, ctx->digestsize);
1045
1046 out:
1047         release_hash_device(device_data);
1048
1049         /**
1050          * Allocated in setkey, and only used in HMAC.
1051          */
1052         kfree(ctx->key);
1053
1054         return ret;
1055 }
1056
1057 /**
1058  * hash_hw_update - Updates current HASH computation hashing another part of
1059  *                  the message.
1060  * @req:        Byte array containing the message to be hashed (caller
1061  *              allocated).
1062  */
1063 int hash_hw_update(struct ahash_request *req)
1064 {
1065         int ret = 0;
1066         u8 index = 0;
1067         u8 *buffer;
1068         struct hash_device_data *device_data;
1069         u8 *data_buffer;
1070         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1071         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1072         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1073         struct crypto_hash_walk walk;
1074         int msg_length = crypto_hash_walk_first(req, &walk);
1075
1076         /* Empty message ("") is correct indata */
1077         if (msg_length == 0)
1078                 return ret;
1079
1080         index = req_ctx->state.index;
1081         buffer = (u8 *)req_ctx->state.buffer;
1082
1083         /* Check if ctx->state.length + msg_length
1084            overflows */
1085         if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1086             HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1087                 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1088                 return -EPERM;
1089         }
1090
1091         ret = hash_get_device_data(ctx, &device_data);
1092         if (ret)
1093                 return ret;
1094
1095         /* Main loop */
1096         while (0 != msg_length) {
1097                 data_buffer = walk.data;
1098                 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1099                                 data_buffer, buffer, &index);
1100
1101                 if (ret) {
1102                         dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1103                                 __func__);
1104                         goto out;
1105                 }
1106
1107                 msg_length = crypto_hash_walk_done(&walk, 0);
1108         }
1109
1110         req_ctx->state.index = index;
1111         dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1112                 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1113
1114 out:
1115         release_hash_device(device_data);
1116
1117         return ret;
1118 }
1119
1120 /**
1121  * hash_resume_state - Function that resumes the state of an calculation.
1122  * @device_data:        Pointer to the device structure.
1123  * @device_state:       The state to be restored in the hash hardware
1124  */
1125 int hash_resume_state(struct hash_device_data *device_data,
1126                       const struct hash_state *device_state)
1127 {
1128         u32 temp_cr;
1129         s32 count;
1130         int hash_mode = HASH_OPER_MODE_HASH;
1131
1132         if (NULL == device_state) {
1133                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1134                         __func__);
1135                 return -EPERM;
1136         }
1137
1138         /* Check correctness of index and length members */
1139         if (device_state->index > HASH_BLOCK_SIZE ||
1140             (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1141                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1142                         __func__);
1143                 return -EPERM;
1144         }
1145
1146         /*
1147          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1148          * prepare the initialize the HASH accelerator to compute the message
1149          * digest of a new message.
1150          */
1151         HASH_INITIALIZE;
1152
1153         temp_cr = device_state->temp_cr;
1154         writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1155
1156         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1157                 hash_mode = HASH_OPER_MODE_HMAC;
1158         else
1159                 hash_mode = HASH_OPER_MODE_HASH;
1160
1161         for (count = 0; count < HASH_CSR_COUNT; count++) {
1162                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1163                         break;
1164
1165                 writel_relaxed(device_state->csr[count],
1166                                &device_data->base->csrx[count]);
1167         }
1168
1169         writel_relaxed(device_state->csfull, &device_data->base->csfull);
1170         writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1171
1172         writel_relaxed(device_state->str_reg, &device_data->base->str);
1173         writel_relaxed(temp_cr, &device_data->base->cr);
1174
1175         return 0;
1176 }
1177
1178 /**
1179  * hash_save_state - Function that saves the state of hardware.
1180  * @device_data:        Pointer to the device structure.
1181  * @device_state:       The strucure where the hardware state should be saved.
1182  */
1183 int hash_save_state(struct hash_device_data *device_data,
1184                     struct hash_state *device_state)
1185 {
1186         u32 temp_cr;
1187         u32 count;
1188         int hash_mode = HASH_OPER_MODE_HASH;
1189
1190         if (NULL == device_state) {
1191                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1192                         __func__);
1193                 return -ENOTSUPP;
1194         }
1195
1196         /* Write dummy value to force digest intermediate calculation. This
1197          * actually makes sure that there isn't any ongoing calculation in the
1198          * hardware.
1199          */
1200         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1201                 cpu_relax();
1202
1203         temp_cr = readl_relaxed(&device_data->base->cr);
1204
1205         device_state->str_reg = readl_relaxed(&device_data->base->str);
1206
1207         device_state->din_reg = readl_relaxed(&device_data->base->din);
1208
1209         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1210                 hash_mode = HASH_OPER_MODE_HMAC;
1211         else
1212                 hash_mode = HASH_OPER_MODE_HASH;
1213
1214         for (count = 0; count < HASH_CSR_COUNT; count++) {
1215                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1216                         break;
1217
1218                 device_state->csr[count] =
1219                         readl_relaxed(&device_data->base->csrx[count]);
1220         }
1221
1222         device_state->csfull = readl_relaxed(&device_data->base->csfull);
1223         device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1224
1225         device_state->temp_cr = temp_cr;
1226
1227         return 0;
1228 }
1229
1230 /**
1231  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1232  * @device_data:
1233  *
1234  */
1235 int hash_check_hw(struct hash_device_data *device_data)
1236 {
1237         /* Checking Peripheral Ids  */
1238         if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1239             HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1240             HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1241             HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1242             HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1243             HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1244             HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1245             HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1246                 return 0;
1247         }
1248
1249         dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1250         return -ENOTSUPP;
1251 }
1252
1253 /**
1254  * hash_get_digest - Gets the digest.
1255  * @device_data:        Pointer to the device structure.
1256  * @digest:             User allocated byte array for the calculated digest.
1257  * @algorithm:          The algorithm in use.
1258  */
1259 void hash_get_digest(struct hash_device_data *device_data,
1260                      u8 *digest, int algorithm)
1261 {
1262         u32 temp_hx_val, count;
1263         int loop_ctr;
1264
1265         if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1266                 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1267                         __func__, algorithm);
1268                 return;
1269         }
1270
1271         if (algorithm == HASH_ALGO_SHA1)
1272                 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1273         else
1274                 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1275
1276         dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1277                 __func__, (unsigned long)digest);
1278
1279         /* Copy result into digest array */
1280         for (count = 0; count < loop_ctr; count++) {
1281                 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1282                 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1283                 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1284                 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1285                 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1286         }
1287 }
1288
1289 /**
1290  * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1291  * @req: The hash request for the job.
1292  */
1293 static int ahash_update(struct ahash_request *req)
1294 {
1295         int ret = 0;
1296         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1297
1298         if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1299                 ret = hash_hw_update(req);
1300         /* Skip update for DMA, all data will be passed to DMA in final */
1301
1302         if (ret) {
1303                 pr_err("%s: hash_hw_update() failed!\n", __func__);
1304         }
1305
1306         return ret;
1307 }
1308
1309 /**
1310  * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1311  * @req:        The hash request for the job.
1312  */
1313 static int ahash_final(struct ahash_request *req)
1314 {
1315         int ret = 0;
1316         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1317
1318         pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1319
1320         if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1321                 ret = hash_dma_final(req);
1322         else
1323                 ret = hash_hw_final(req);
1324
1325         if (ret) {
1326                 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1327         }
1328
1329         return ret;
1330 }
1331
1332 static int hash_setkey(struct crypto_ahash *tfm,
1333                        const u8 *key, unsigned int keylen, int alg)
1334 {
1335         int ret = 0;
1336         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1337
1338         /**
1339          * Freed in final.
1340          */
1341         ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1342         if (!ctx->key) {
1343                 pr_err("%s: Failed to allocate ctx->key for %d\n",
1344                        __func__, alg);
1345                 return -ENOMEM;
1346         }
1347         ctx->keylen = keylen;
1348
1349         return ret;
1350 }
1351
1352 static int ahash_sha1_init(struct ahash_request *req)
1353 {
1354         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1355         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1356
1357         ctx->config.data_format = HASH_DATA_8_BITS;
1358         ctx->config.algorithm = HASH_ALGO_SHA1;
1359         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1360         ctx->digestsize = SHA1_DIGEST_SIZE;
1361
1362         return hash_init(req);
1363 }
1364
1365 static int ahash_sha256_init(struct ahash_request *req)
1366 {
1367         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1368         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1369
1370         ctx->config.data_format = HASH_DATA_8_BITS;
1371         ctx->config.algorithm = HASH_ALGO_SHA256;
1372         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1373         ctx->digestsize = SHA256_DIGEST_SIZE;
1374
1375         return hash_init(req);
1376 }
1377
1378 static int ahash_sha1_digest(struct ahash_request *req)
1379 {
1380         int ret2, ret1;
1381
1382         ret1 = ahash_sha1_init(req);
1383         if (ret1)
1384                 goto out;
1385
1386         ret1 = ahash_update(req);
1387         ret2 = ahash_final(req);
1388
1389 out:
1390         return ret1 ? ret1 : ret2;
1391 }
1392
1393 static int ahash_sha256_digest(struct ahash_request *req)
1394 {
1395         int ret2, ret1;
1396
1397         ret1 = ahash_sha256_init(req);
1398         if (ret1)
1399                 goto out;
1400
1401         ret1 = ahash_update(req);
1402         ret2 = ahash_final(req);
1403
1404 out:
1405         return ret1 ? ret1 : ret2;
1406 }
1407
1408 static int ahash_noimport(struct ahash_request *req, const void *in)
1409 {
1410         return -ENOSYS;
1411 }
1412
1413 static int ahash_noexport(struct ahash_request *req, void *out)
1414 {
1415         return -ENOSYS;
1416 }
1417
1418 static int hmac_sha1_init(struct ahash_request *req)
1419 {
1420         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1421         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1422
1423         ctx->config.data_format = HASH_DATA_8_BITS;
1424         ctx->config.algorithm   = HASH_ALGO_SHA1;
1425         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1426         ctx->digestsize         = SHA1_DIGEST_SIZE;
1427
1428         return hash_init(req);
1429 }
1430
1431 static int hmac_sha256_init(struct ahash_request *req)
1432 {
1433         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1434         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1435
1436         ctx->config.data_format = HASH_DATA_8_BITS;
1437         ctx->config.algorithm   = HASH_ALGO_SHA256;
1438         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1439         ctx->digestsize         = SHA256_DIGEST_SIZE;
1440
1441         return hash_init(req);
1442 }
1443
1444 static int hmac_sha1_digest(struct ahash_request *req)
1445 {
1446         int ret2, ret1;
1447
1448         ret1 = hmac_sha1_init(req);
1449         if (ret1)
1450                 goto out;
1451
1452         ret1 = ahash_update(req);
1453         ret2 = ahash_final(req);
1454
1455 out:
1456         return ret1 ? ret1 : ret2;
1457 }
1458
1459 static int hmac_sha256_digest(struct ahash_request *req)
1460 {
1461         int ret2, ret1;
1462
1463         ret1 = hmac_sha256_init(req);
1464         if (ret1)
1465                 goto out;
1466
1467         ret1 = ahash_update(req);
1468         ret2 = ahash_final(req);
1469
1470 out:
1471         return ret1 ? ret1 : ret2;
1472 }
1473
1474 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1475                             const u8 *key, unsigned int keylen)
1476 {
1477         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1478 }
1479
1480 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1481                               const u8 *key, unsigned int keylen)
1482 {
1483         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1484 }
1485
1486 struct hash_algo_template {
1487         struct hash_config conf;
1488         struct ahash_alg hash;
1489 };
1490
1491 static int hash_cra_init(struct crypto_tfm *tfm)
1492 {
1493         struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1494         struct crypto_alg *alg = tfm->__crt_alg;
1495         struct hash_algo_template *hash_alg;
1496
1497         hash_alg = container_of(__crypto_ahash_alg(alg),
1498                         struct hash_algo_template,
1499                         hash);
1500
1501         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1502                                  sizeof(struct hash_req_ctx));
1503
1504         ctx->config.data_format = HASH_DATA_8_BITS;
1505         ctx->config.algorithm = hash_alg->conf.algorithm;
1506         ctx->config.oper_mode = hash_alg->conf.oper_mode;
1507
1508         ctx->digestsize = hash_alg->hash.halg.digestsize;
1509
1510         return 0;
1511 }
1512
1513 static struct hash_algo_template hash_algs[] = {
1514         {
1515                 .conf.algorithm = HASH_ALGO_SHA1,
1516                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1517                 .hash = {
1518                         .init = hash_init,
1519                         .update = ahash_update,
1520                         .final = ahash_final,
1521                         .digest = ahash_sha1_digest,
1522                         .export = ahash_noexport,
1523                         .import = ahash_noimport,
1524                         .halg.digestsize = SHA1_DIGEST_SIZE,
1525                         .halg.statesize = sizeof(struct hash_ctx),
1526                         .halg.base = {
1527                                 .cra_name = "sha1",
1528                                 .cra_driver_name = "sha1-ux500",
1529                                 .cra_flags = CRYPTO_ALG_ASYNC,
1530                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1531                                 .cra_ctxsize = sizeof(struct hash_ctx),
1532                                 .cra_init = hash_cra_init,
1533                                 .cra_module = THIS_MODULE,
1534                         }
1535                 }
1536         },
1537         {
1538                 .conf.algorithm = HASH_ALGO_SHA256,
1539                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1540                 .hash = {
1541                         .init = hash_init,
1542                         .update = ahash_update,
1543                         .final = ahash_final,
1544                         .digest = ahash_sha256_digest,
1545                         .export = ahash_noexport,
1546                         .import = ahash_noimport,
1547                         .halg.digestsize = SHA256_DIGEST_SIZE,
1548                         .halg.statesize = sizeof(struct hash_ctx),
1549                         .halg.base = {
1550                                 .cra_name = "sha256",
1551                                 .cra_driver_name = "sha256-ux500",
1552                                 .cra_flags = CRYPTO_ALG_ASYNC,
1553                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1554                                 .cra_ctxsize = sizeof(struct hash_ctx),
1555                                 .cra_init = hash_cra_init,
1556                                 .cra_module = THIS_MODULE,
1557                         }
1558                 }
1559         },
1560         {
1561                 .conf.algorithm = HASH_ALGO_SHA1,
1562                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1563                         .hash = {
1564                         .init = hash_init,
1565                         .update = ahash_update,
1566                         .final = ahash_final,
1567                         .digest = hmac_sha1_digest,
1568                         .setkey = hmac_sha1_setkey,
1569                         .export = ahash_noexport,
1570                         .import = ahash_noimport,
1571                         .halg.digestsize = SHA1_DIGEST_SIZE,
1572                         .halg.statesize = sizeof(struct hash_ctx),
1573                         .halg.base = {
1574                                 .cra_name = "hmac(sha1)",
1575                                 .cra_driver_name = "hmac-sha1-ux500",
1576                                 .cra_flags = CRYPTO_ALG_ASYNC,
1577                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1578                                 .cra_ctxsize = sizeof(struct hash_ctx),
1579                                 .cra_init = hash_cra_init,
1580                                 .cra_module = THIS_MODULE,
1581                         }
1582                 }
1583         },
1584         {
1585                 .conf.algorithm = HASH_ALGO_SHA256,
1586                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1587                 .hash = {
1588                         .init = hash_init,
1589                         .update = ahash_update,
1590                         .final = ahash_final,
1591                         .digest = hmac_sha256_digest,
1592                         .setkey = hmac_sha256_setkey,
1593                         .export = ahash_noexport,
1594                         .import = ahash_noimport,
1595                         .halg.digestsize = SHA256_DIGEST_SIZE,
1596                         .halg.statesize = sizeof(struct hash_ctx),
1597                         .halg.base = {
1598                                 .cra_name = "hmac(sha256)",
1599                                 .cra_driver_name = "hmac-sha256-ux500",
1600                                 .cra_flags = CRYPTO_ALG_ASYNC,
1601                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1602                                 .cra_ctxsize = sizeof(struct hash_ctx),
1603                                 .cra_init = hash_cra_init,
1604                                 .cra_module = THIS_MODULE,
1605                         }
1606                 }
1607         }
1608 };
1609
1610 /**
1611  * hash_algs_register_all -
1612  */
1613 static int ahash_algs_register_all(struct hash_device_data *device_data)
1614 {
1615         int ret;
1616         int i;
1617         int count;
1618
1619         for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1620                 ret = crypto_register_ahash(&hash_algs[i].hash);
1621                 if (ret) {
1622                         count = i;
1623                         dev_err(device_data->dev, "%s: alg registration failed\n",
1624                                 hash_algs[i].hash.halg.base.cra_driver_name);
1625                         goto unreg;
1626                 }
1627         }
1628         return 0;
1629 unreg:
1630         for (i = 0; i < count; i++)
1631                 crypto_unregister_ahash(&hash_algs[i].hash);
1632         return ret;
1633 }
1634
1635 /**
1636  * hash_algs_unregister_all -
1637  */
1638 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1639 {
1640         int i;
1641
1642         for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1643                 crypto_unregister_ahash(&hash_algs[i].hash);
1644 }
1645
1646 /**
1647  * ux500_hash_probe - Function that probes the hash hardware.
1648  * @pdev: The platform device.
1649  */
1650 static int ux500_hash_probe(struct platform_device *pdev)
1651 {
1652         int                     ret = 0;
1653         struct resource         *res = NULL;
1654         struct hash_device_data *device_data;
1655         struct device           *dev = &pdev->dev;
1656
1657         device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1658         if (!device_data) {
1659                 ret = -ENOMEM;
1660                 goto out;
1661         }
1662
1663         device_data->dev = dev;
1664         device_data->current_ctx = NULL;
1665
1666         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1667         if (!res) {
1668                 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1669                 ret = -ENODEV;
1670                 goto out;
1671         }
1672
1673         device_data->phybase = res->start;
1674         device_data->base = devm_ioremap_resource(dev, res);
1675         if (IS_ERR(device_data->base)) {
1676                 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1677                 ret = PTR_ERR(device_data->base);
1678                 goto out;
1679         }
1680         spin_lock_init(&device_data->ctx_lock);
1681         spin_lock_init(&device_data->power_state_lock);
1682
1683         /* Enable power for HASH1 hardware block */
1684         device_data->regulator = regulator_get(dev, "v-ape");
1685         if (IS_ERR(device_data->regulator)) {
1686                 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1687                 ret = PTR_ERR(device_data->regulator);
1688                 device_data->regulator = NULL;
1689                 goto out;
1690         }
1691
1692         /* Enable the clock for HASH1 hardware block */
1693         device_data->clk = devm_clk_get(dev, NULL);
1694         if (IS_ERR(device_data->clk)) {
1695                 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1696                 ret = PTR_ERR(device_data->clk);
1697                 goto out_regulator;
1698         }
1699
1700         ret = clk_prepare(device_data->clk);
1701         if (ret) {
1702                 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1703                 goto out_regulator;
1704         }
1705
1706         /* Enable device power (and clock) */
1707         ret = hash_enable_power(device_data, false);
1708         if (ret) {
1709                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1710                 goto out_clk_unprepare;
1711         }
1712
1713         ret = hash_check_hw(device_data);
1714         if (ret) {
1715                 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1716                 goto out_power;
1717         }
1718
1719         if (hash_mode == HASH_MODE_DMA)
1720                 hash_dma_setup_channel(device_data, dev);
1721
1722         platform_set_drvdata(pdev, device_data);
1723
1724         /* Put the new device into the device list... */
1725         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1726         /* ... and signal that a new device is available. */
1727         up(&driver_data.device_allocation);
1728
1729         ret = ahash_algs_register_all(device_data);
1730         if (ret) {
1731                 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1732                         __func__);
1733                 goto out_power;
1734         }
1735
1736         dev_info(dev, "successfully registered\n");
1737         return 0;
1738
1739 out_power:
1740         hash_disable_power(device_data, false);
1741
1742 out_clk_unprepare:
1743         clk_unprepare(device_data->clk);
1744
1745 out_regulator:
1746         regulator_put(device_data->regulator);
1747
1748 out:
1749         return ret;
1750 }
1751
1752 /**
1753  * ux500_hash_remove - Function that removes the hash device from the platform.
1754  * @pdev: The platform device.
1755  */
1756 static int ux500_hash_remove(struct platform_device *pdev)
1757 {
1758         struct hash_device_data *device_data;
1759         struct device           *dev = &pdev->dev;
1760
1761         device_data = platform_get_drvdata(pdev);
1762         if (!device_data) {
1763                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1764                 return -ENOMEM;
1765         }
1766
1767         /* Try to decrease the number of available devices. */
1768         if (down_trylock(&driver_data.device_allocation))
1769                 return -EBUSY;
1770
1771         /* Check that the device is free */
1772         spin_lock(&device_data->ctx_lock);
1773         /* current_ctx allocates a device, NULL = unallocated */
1774         if (device_data->current_ctx) {
1775                 /* The device is busy */
1776                 spin_unlock(&device_data->ctx_lock);
1777                 /* Return the device to the pool. */
1778                 up(&driver_data.device_allocation);
1779                 return -EBUSY;
1780         }
1781
1782         spin_unlock(&device_data->ctx_lock);
1783
1784         /* Remove the device from the list */
1785         if (klist_node_attached(&device_data->list_node))
1786                 klist_remove(&device_data->list_node);
1787
1788         /* If this was the last device, remove the services */
1789         if (list_empty(&driver_data.device_list.k_list))
1790                 ahash_algs_unregister_all(device_data);
1791
1792         if (hash_disable_power(device_data, false))
1793                 dev_err(dev, "%s: hash_disable_power() failed\n",
1794                         __func__);
1795
1796         clk_unprepare(device_data->clk);
1797         regulator_put(device_data->regulator);
1798
1799         return 0;
1800 }
1801
1802 /**
1803  * ux500_hash_shutdown - Function that shutdown the hash device.
1804  * @pdev: The platform device
1805  */
1806 static void ux500_hash_shutdown(struct platform_device *pdev)
1807 {
1808         struct hash_device_data *device_data;
1809
1810         device_data = platform_get_drvdata(pdev);
1811         if (!device_data) {
1812                 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1813                         __func__);
1814                 return;
1815         }
1816
1817         /* Check that the device is free */
1818         spin_lock(&device_data->ctx_lock);
1819         /* current_ctx allocates a device, NULL = unallocated */
1820         if (!device_data->current_ctx) {
1821                 if (down_trylock(&driver_data.device_allocation))
1822                         dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1823                                 __func__);
1824                 /**
1825                  * (Allocate the device)
1826                  * Need to set this to non-null (dummy) value,
1827                  * to avoid usage if context switching.
1828                  */
1829                 device_data->current_ctx++;
1830         }
1831         spin_unlock(&device_data->ctx_lock);
1832
1833         /* Remove the device from the list */
1834         if (klist_node_attached(&device_data->list_node))
1835                 klist_remove(&device_data->list_node);
1836
1837         /* If this was the last device, remove the services */
1838         if (list_empty(&driver_data.device_list.k_list))
1839                 ahash_algs_unregister_all(device_data);
1840
1841         if (hash_disable_power(device_data, false))
1842                 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1843                         __func__);
1844 }
1845
1846 #ifdef CONFIG_PM_SLEEP
1847 /**
1848  * ux500_hash_suspend - Function that suspends the hash device.
1849  * @dev:        Device to suspend.
1850  */
1851 static int ux500_hash_suspend(struct device *dev)
1852 {
1853         int ret;
1854         struct hash_device_data *device_data;
1855         struct hash_ctx *temp_ctx = NULL;
1856
1857         device_data = dev_get_drvdata(dev);
1858         if (!device_data) {
1859                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1860                 return -ENOMEM;
1861         }
1862
1863         spin_lock(&device_data->ctx_lock);
1864         if (!device_data->current_ctx)
1865                 device_data->current_ctx++;
1866         spin_unlock(&device_data->ctx_lock);
1867
1868         if (device_data->current_ctx == ++temp_ctx) {
1869                 if (down_interruptible(&driver_data.device_allocation))
1870                         dev_dbg(dev, "%s: down_interruptible() failed\n",
1871                                 __func__);
1872                 ret = hash_disable_power(device_data, false);
1873
1874         } else {
1875                 ret = hash_disable_power(device_data, true);
1876         }
1877
1878         if (ret)
1879                 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1880
1881         return ret;
1882 }
1883
1884 /**
1885  * ux500_hash_resume - Function that resume the hash device.
1886  * @dev:        Device to resume.
1887  */
1888 static int ux500_hash_resume(struct device *dev)
1889 {
1890         int ret = 0;
1891         struct hash_device_data *device_data;
1892         struct hash_ctx *temp_ctx = NULL;
1893
1894         device_data = dev_get_drvdata(dev);
1895         if (!device_data) {
1896                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1897                 return -ENOMEM;
1898         }
1899
1900         spin_lock(&device_data->ctx_lock);
1901         if (device_data->current_ctx == ++temp_ctx)
1902                 device_data->current_ctx = NULL;
1903         spin_unlock(&device_data->ctx_lock);
1904
1905         if (!device_data->current_ctx)
1906                 up(&driver_data.device_allocation);
1907         else
1908                 ret = hash_enable_power(device_data, true);
1909
1910         if (ret)
1911                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1912
1913         return ret;
1914 }
1915 #endif
1916
1917 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1918
1919 static const struct of_device_id ux500_hash_match[] = {
1920         { .compatible = "stericsson,ux500-hash" },
1921         { },
1922 };
1923 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1924
1925 static struct platform_driver hash_driver = {
1926         .probe  = ux500_hash_probe,
1927         .remove = ux500_hash_remove,
1928         .shutdown = ux500_hash_shutdown,
1929         .driver = {
1930                 .name  = "hash1",
1931                 .of_match_table = ux500_hash_match,
1932                 .pm    = &ux500_hash_pm,
1933         }
1934 };
1935
1936 /**
1937  * ux500_hash_mod_init - The kernel module init function.
1938  */
1939 static int __init ux500_hash_mod_init(void)
1940 {
1941         klist_init(&driver_data.device_list, NULL, NULL);
1942         /* Initialize the semaphore to 0 devices (locked state) */
1943         sema_init(&driver_data.device_allocation, 0);
1944
1945         return platform_driver_register(&hash_driver);
1946 }
1947
1948 /**
1949  * ux500_hash_mod_fini - The kernel module exit function.
1950  */
1951 static void __exit ux500_hash_mod_fini(void)
1952 {
1953         platform_driver_unregister(&hash_driver);
1954 }
1955
1956 module_init(ux500_hash_mod_init);
1957 module_exit(ux500_hash_mod_fini);
1958
1959 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1960 MODULE_LICENSE("GPL");
1961
1962 MODULE_ALIAS_CRYPTO("sha1-all");
1963 MODULE_ALIAS_CRYPTO("sha256-all");
1964 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1965 MODULE_ALIAS_CRYPTO("hmac-sha256-all");