Merge tag 's390-5.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / drivers / crypto / stm32 / stm32-cryp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) STMicroelectronics SA 2017
4  * Author: Fabien Dessenne <fabien.dessenne@st.com>
5  */
6
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
16
17 #include <crypto/aes.h>
18 #include <crypto/internal/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
23
24 #define DRIVER_NAME             "stm32-cryp"
25
26 /* Bit [0] encrypt / decrypt */
27 #define FLG_ENCRYPT             BIT(0)
28 /* Bit [8..1] algo & operation mode */
29 #define FLG_AES                 BIT(1)
30 #define FLG_DES                 BIT(2)
31 #define FLG_TDES                BIT(3)
32 #define FLG_ECB                 BIT(4)
33 #define FLG_CBC                 BIT(5)
34 #define FLG_CTR                 BIT(6)
35 #define FLG_GCM                 BIT(7)
36 #define FLG_CCM                 BIT(8)
37 /* Mode mask = bits [15..0] */
38 #define FLG_MODE_MASK           GENMASK(15, 0)
39 /* Bit [31..16] status  */
40 #define FLG_CCM_PADDED_WA       BIT(16)
41
42 /* Registers */
43 #define CRYP_CR                 0x00000000
44 #define CRYP_SR                 0x00000004
45 #define CRYP_DIN                0x00000008
46 #define CRYP_DOUT               0x0000000C
47 #define CRYP_DMACR              0x00000010
48 #define CRYP_IMSCR              0x00000014
49 #define CRYP_RISR               0x00000018
50 #define CRYP_MISR               0x0000001C
51 #define CRYP_K0LR               0x00000020
52 #define CRYP_K0RR               0x00000024
53 #define CRYP_K1LR               0x00000028
54 #define CRYP_K1RR               0x0000002C
55 #define CRYP_K2LR               0x00000030
56 #define CRYP_K2RR               0x00000034
57 #define CRYP_K3LR               0x00000038
58 #define CRYP_K3RR               0x0000003C
59 #define CRYP_IV0LR              0x00000040
60 #define CRYP_IV0RR              0x00000044
61 #define CRYP_IV1LR              0x00000048
62 #define CRYP_IV1RR              0x0000004C
63 #define CRYP_CSGCMCCM0R         0x00000050
64 #define CRYP_CSGCM0R            0x00000070
65
66 /* Registers values */
67 #define CR_DEC_NOT_ENC          0x00000004
68 #define CR_TDES_ECB             0x00000000
69 #define CR_TDES_CBC             0x00000008
70 #define CR_DES_ECB              0x00000010
71 #define CR_DES_CBC              0x00000018
72 #define CR_AES_ECB              0x00000020
73 #define CR_AES_CBC              0x00000028
74 #define CR_AES_CTR              0x00000030
75 #define CR_AES_KP               0x00000038
76 #define CR_AES_GCM              0x00080000
77 #define CR_AES_CCM              0x00080008
78 #define CR_AES_UNKNOWN          0xFFFFFFFF
79 #define CR_ALGO_MASK            0x00080038
80 #define CR_DATA32               0x00000000
81 #define CR_DATA16               0x00000040
82 #define CR_DATA8                0x00000080
83 #define CR_DATA1                0x000000C0
84 #define CR_KEY128               0x00000000
85 #define CR_KEY192               0x00000100
86 #define CR_KEY256               0x00000200
87 #define CR_FFLUSH               0x00004000
88 #define CR_CRYPEN               0x00008000
89 #define CR_PH_INIT              0x00000000
90 #define CR_PH_HEADER            0x00010000
91 #define CR_PH_PAYLOAD           0x00020000
92 #define CR_PH_FINAL             0x00030000
93 #define CR_PH_MASK              0x00030000
94 #define CR_NBPBL_SHIFT          20
95
96 #define SR_BUSY                 0x00000010
97 #define SR_OFNE                 0x00000004
98
99 #define IMSCR_IN                BIT(0)
100 #define IMSCR_OUT               BIT(1)
101
102 #define MISR_IN                 BIT(0)
103 #define MISR_OUT                BIT(1)
104
105 /* Misc */
106 #define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
107 #define GCM_CTR_INIT            2
108 #define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
109 #define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
110 #define CRYP_AUTOSUSPEND_DELAY  50
111
112 struct stm32_cryp_caps {
113         bool                    swap_final;
114         bool                    padding_wa;
115 };
116
117 struct stm32_cryp_ctx {
118         struct crypto_engine_ctx enginectx;
119         struct stm32_cryp       *cryp;
120         int                     keylen;
121         __be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
122         unsigned long           flags;
123 };
124
125 struct stm32_cryp_reqctx {
126         unsigned long mode;
127 };
128
129 struct stm32_cryp {
130         struct list_head        list;
131         struct device           *dev;
132         void __iomem            *regs;
133         struct clk              *clk;
134         unsigned long           flags;
135         u32                     irq_status;
136         const struct stm32_cryp_caps *caps;
137         struct stm32_cryp_ctx   *ctx;
138
139         struct crypto_engine    *engine;
140
141         struct skcipher_request *req;
142         struct aead_request     *areq;
143
144         size_t                  authsize;
145         size_t                  hw_blocksize;
146
147         size_t                  total_in;
148         size_t                  total_in_save;
149         size_t                  total_out;
150         size_t                  total_out_save;
151
152         struct scatterlist      *in_sg;
153         struct scatterlist      *out_sg;
154         struct scatterlist      *out_sg_save;
155
156         struct scatterlist      in_sgl;
157         struct scatterlist      out_sgl;
158         bool                    sgs_copied;
159
160         int                     in_sg_len;
161         int                     out_sg_len;
162
163         struct scatter_walk     in_walk;
164         struct scatter_walk     out_walk;
165
166         u32                     last_ctr[4];
167         u32                     gcm_ctr;
168 };
169
170 struct stm32_cryp_list {
171         struct list_head        dev_list;
172         spinlock_t              lock; /* protect dev_list */
173 };
174
175 static struct stm32_cryp_list cryp_list = {
176         .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177         .lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
178 };
179
180 static inline bool is_aes(struct stm32_cryp *cryp)
181 {
182         return cryp->flags & FLG_AES;
183 }
184
185 static inline bool is_des(struct stm32_cryp *cryp)
186 {
187         return cryp->flags & FLG_DES;
188 }
189
190 static inline bool is_tdes(struct stm32_cryp *cryp)
191 {
192         return cryp->flags & FLG_TDES;
193 }
194
195 static inline bool is_ecb(struct stm32_cryp *cryp)
196 {
197         return cryp->flags & FLG_ECB;
198 }
199
200 static inline bool is_cbc(struct stm32_cryp *cryp)
201 {
202         return cryp->flags & FLG_CBC;
203 }
204
205 static inline bool is_ctr(struct stm32_cryp *cryp)
206 {
207         return cryp->flags & FLG_CTR;
208 }
209
210 static inline bool is_gcm(struct stm32_cryp *cryp)
211 {
212         return cryp->flags & FLG_GCM;
213 }
214
215 static inline bool is_ccm(struct stm32_cryp *cryp)
216 {
217         return cryp->flags & FLG_CCM;
218 }
219
220 static inline bool is_encrypt(struct stm32_cryp *cryp)
221 {
222         return cryp->flags & FLG_ENCRYPT;
223 }
224
225 static inline bool is_decrypt(struct stm32_cryp *cryp)
226 {
227         return !is_encrypt(cryp);
228 }
229
230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
231 {
232         return readl_relaxed(cryp->regs + ofst);
233 }
234
235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
236 {
237         writel_relaxed(val, cryp->regs + ofst);
238 }
239
240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
241 {
242         u32 status;
243
244         return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245                         !(status & SR_BUSY), 10, 100000);
246 }
247
248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
249 {
250         u32 status;
251
252         return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253                         !(status & CR_CRYPEN), 10, 100000);
254 }
255
256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
257 {
258         u32 status;
259
260         return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261                         status & SR_OFNE, 10, 100000);
262 }
263
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
265
266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
267 {
268         struct stm32_cryp *tmp, *cryp = NULL;
269
270         spin_lock_bh(&cryp_list.lock);
271         if (!ctx->cryp) {
272                 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273                         cryp = tmp;
274                         break;
275                 }
276                 ctx->cryp = cryp;
277         } else {
278                 cryp = ctx->cryp;
279         }
280
281         spin_unlock_bh(&cryp_list.lock);
282
283         return cryp;
284 }
285
286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287                                     size_t align)
288 {
289         int len = 0;
290
291         if (!total)
292                 return 0;
293
294         if (!IS_ALIGNED(total, align))
295                 return -EINVAL;
296
297         while (sg) {
298                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299                         return -EINVAL;
300
301                 if (!IS_ALIGNED(sg->length, align))
302                         return -EINVAL;
303
304                 len += sg->length;
305                 sg = sg_next(sg);
306         }
307
308         if (len != total)
309                 return -EINVAL;
310
311         return 0;
312 }
313
314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
315 {
316         int ret;
317
318         ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319                                        cryp->hw_blocksize);
320         if (ret)
321                 return ret;
322
323         ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324                                        cryp->hw_blocksize);
325
326         return ret;
327 }
328
329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330                         unsigned int start, unsigned int nbytes, int out)
331 {
332         struct scatter_walk walk;
333
334         if (!nbytes)
335                 return;
336
337         scatterwalk_start(&walk, sg);
338         scatterwalk_advance(&walk, start);
339         scatterwalk_copychunks(buf, &walk, nbytes, out);
340         scatterwalk_done(&walk, out, 0);
341 }
342
343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
344 {
345         void *buf_in, *buf_out;
346         int pages, total_in, total_out;
347
348         if (!stm32_cryp_check_io_aligned(cryp)) {
349                 cryp->sgs_copied = 0;
350                 return 0;
351         }
352
353         total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354         pages = total_in ? get_order(total_in) : 1;
355         buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
356
357         total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358         pages = total_out ? get_order(total_out) : 1;
359         buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
360
361         if (!buf_in || !buf_out) {
362                 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363                 cryp->sgs_copied = 0;
364                 return -EFAULT;
365         }
366
367         sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
368
369         sg_init_one(&cryp->in_sgl, buf_in, total_in);
370         cryp->in_sg = &cryp->in_sgl;
371         cryp->in_sg_len = 1;
372
373         sg_init_one(&cryp->out_sgl, buf_out, total_out);
374         cryp->out_sg_save = cryp->out_sg;
375         cryp->out_sg = &cryp->out_sgl;
376         cryp->out_sg_len = 1;
377
378         cryp->sgs_copied = 1;
379
380         return 0;
381 }
382
383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
384 {
385         if (!iv)
386                 return;
387
388         stm32_cryp_write(cryp, CRYP_IV0LR, be32_to_cpu(*iv++));
389         stm32_cryp_write(cryp, CRYP_IV0RR, be32_to_cpu(*iv++));
390
391         if (is_aes(cryp)) {
392                 stm32_cryp_write(cryp, CRYP_IV1LR, be32_to_cpu(*iv++));
393                 stm32_cryp_write(cryp, CRYP_IV1RR, be32_to_cpu(*iv++));
394         }
395 }
396
397 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
398 {
399         struct skcipher_request *req = cryp->req;
400         __be32 *tmp = (void *)req->iv;
401
402         if (!tmp)
403                 return;
404
405         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
406         *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
407
408         if (is_aes(cryp)) {
409                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
410                 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
411         }
412 }
413
414 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
415 {
416         unsigned int i;
417         int r_id;
418
419         if (is_des(c)) {
420                 stm32_cryp_write(c, CRYP_K1LR, be32_to_cpu(c->ctx->key[0]));
421                 stm32_cryp_write(c, CRYP_K1RR, be32_to_cpu(c->ctx->key[1]));
422         } else {
423                 r_id = CRYP_K3RR;
424                 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
425                         stm32_cryp_write(c, r_id,
426                                          be32_to_cpu(c->ctx->key[i - 1]));
427         }
428 }
429
430 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
431 {
432         if (is_aes(cryp) && is_ecb(cryp))
433                 return CR_AES_ECB;
434
435         if (is_aes(cryp) && is_cbc(cryp))
436                 return CR_AES_CBC;
437
438         if (is_aes(cryp) && is_ctr(cryp))
439                 return CR_AES_CTR;
440
441         if (is_aes(cryp) && is_gcm(cryp))
442                 return CR_AES_GCM;
443
444         if (is_aes(cryp) && is_ccm(cryp))
445                 return CR_AES_CCM;
446
447         if (is_des(cryp) && is_ecb(cryp))
448                 return CR_DES_ECB;
449
450         if (is_des(cryp) && is_cbc(cryp))
451                 return CR_DES_CBC;
452
453         if (is_tdes(cryp) && is_ecb(cryp))
454                 return CR_TDES_ECB;
455
456         if (is_tdes(cryp) && is_cbc(cryp))
457                 return CR_TDES_CBC;
458
459         dev_err(cryp->dev, "Unknown mode\n");
460         return CR_AES_UNKNOWN;
461 }
462
463 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
464 {
465         return is_encrypt(cryp) ? cryp->areq->cryptlen :
466                                   cryp->areq->cryptlen - cryp->authsize;
467 }
468
469 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
470 {
471         int ret;
472         __be32 iv[4];
473
474         /* Phase 1 : init */
475         memcpy(iv, cryp->areq->iv, 12);
476         iv[3] = cpu_to_be32(GCM_CTR_INIT);
477         cryp->gcm_ctr = GCM_CTR_INIT;
478         stm32_cryp_hw_write_iv(cryp, iv);
479
480         stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
481
482         /* Wait for end of processing */
483         ret = stm32_cryp_wait_enable(cryp);
484         if (ret)
485                 dev_err(cryp->dev, "Timeout (gcm init)\n");
486
487         return ret;
488 }
489
490 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
491 {
492         int ret;
493         u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
494         __be32 *bd;
495         u32 *d;
496         unsigned int i, textlen;
497
498         /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
499         memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
500         memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
501         iv[AES_BLOCK_SIZE - 1] = 1;
502         stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
503
504         /* Build B0 */
505         memcpy(b0, iv, AES_BLOCK_SIZE);
506
507         b0[0] |= (8 * ((cryp->authsize - 2) / 2));
508
509         if (cryp->areq->assoclen)
510                 b0[0] |= 0x40;
511
512         textlen = stm32_cryp_get_input_text_len(cryp);
513
514         b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
515         b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
516
517         /* Enable HW */
518         stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
519
520         /* Write B0 */
521         d = (u32 *)b0;
522         bd = (__be32 *)b0;
523
524         for (i = 0; i < AES_BLOCK_32; i++) {
525                 u32 xd = d[i];
526
527                 if (!cryp->caps->padding_wa)
528                         xd = be32_to_cpu(bd[i]);
529                 stm32_cryp_write(cryp, CRYP_DIN, xd);
530         }
531
532         /* Wait for end of processing */
533         ret = stm32_cryp_wait_enable(cryp);
534         if (ret)
535                 dev_err(cryp->dev, "Timeout (ccm init)\n");
536
537         return ret;
538 }
539
540 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
541 {
542         int ret;
543         u32 cfg, hw_mode;
544
545         pm_runtime_resume_and_get(cryp->dev);
546
547         /* Disable interrupt */
548         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
549
550         /* Set key */
551         stm32_cryp_hw_write_key(cryp);
552
553         /* Set configuration */
554         cfg = CR_DATA8 | CR_FFLUSH;
555
556         switch (cryp->ctx->keylen) {
557         case AES_KEYSIZE_128:
558                 cfg |= CR_KEY128;
559                 break;
560
561         case AES_KEYSIZE_192:
562                 cfg |= CR_KEY192;
563                 break;
564
565         default:
566         case AES_KEYSIZE_256:
567                 cfg |= CR_KEY256;
568                 break;
569         }
570
571         hw_mode = stm32_cryp_get_hw_mode(cryp);
572         if (hw_mode == CR_AES_UNKNOWN)
573                 return -EINVAL;
574
575         /* AES ECB/CBC decrypt: run key preparation first */
576         if (is_decrypt(cryp) &&
577             ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
578                 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
579
580                 /* Wait for end of processing */
581                 ret = stm32_cryp_wait_busy(cryp);
582                 if (ret) {
583                         dev_err(cryp->dev, "Timeout (key preparation)\n");
584                         return ret;
585                 }
586         }
587
588         cfg |= hw_mode;
589
590         if (is_decrypt(cryp))
591                 cfg |= CR_DEC_NOT_ENC;
592
593         /* Apply config and flush (valid when CRYPEN = 0) */
594         stm32_cryp_write(cryp, CRYP_CR, cfg);
595
596         switch (hw_mode) {
597         case CR_AES_GCM:
598         case CR_AES_CCM:
599                 /* Phase 1 : init */
600                 if (hw_mode == CR_AES_CCM)
601                         ret = stm32_cryp_ccm_init(cryp, cfg);
602                 else
603                         ret = stm32_cryp_gcm_init(cryp, cfg);
604
605                 if (ret)
606                         return ret;
607
608                 /* Phase 2 : header (authenticated data) */
609                 if (cryp->areq->assoclen) {
610                         cfg |= CR_PH_HEADER;
611                 } else if (stm32_cryp_get_input_text_len(cryp)) {
612                         cfg |= CR_PH_PAYLOAD;
613                         stm32_cryp_write(cryp, CRYP_CR, cfg);
614                 } else {
615                         cfg |= CR_PH_INIT;
616                 }
617
618                 break;
619
620         case CR_DES_CBC:
621         case CR_TDES_CBC:
622         case CR_AES_CBC:
623         case CR_AES_CTR:
624                 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
625                 break;
626
627         default:
628                 break;
629         }
630
631         /* Enable now */
632         cfg |= CR_CRYPEN;
633
634         stm32_cryp_write(cryp, CRYP_CR, cfg);
635
636         cryp->flags &= ~FLG_CCM_PADDED_WA;
637
638         return 0;
639 }
640
641 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
642 {
643         if (!err && (is_gcm(cryp) || is_ccm(cryp)))
644                 /* Phase 4 : output tag */
645                 err = stm32_cryp_read_auth_tag(cryp);
646
647         if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
648                 stm32_cryp_get_iv(cryp);
649
650         if (cryp->sgs_copied) {
651                 void *buf_in, *buf_out;
652                 int pages, len;
653
654                 buf_in = sg_virt(&cryp->in_sgl);
655                 buf_out = sg_virt(&cryp->out_sgl);
656
657                 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
658                             cryp->total_out_save, 1);
659
660                 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
661                 pages = len ? get_order(len) : 1;
662                 free_pages((unsigned long)buf_in, pages);
663
664                 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
665                 pages = len ? get_order(len) : 1;
666                 free_pages((unsigned long)buf_out, pages);
667         }
668
669         pm_runtime_mark_last_busy(cryp->dev);
670         pm_runtime_put_autosuspend(cryp->dev);
671
672         if (is_gcm(cryp) || is_ccm(cryp))
673                 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
674         else
675                 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
676                                                    err);
677
678         memset(cryp->ctx->key, 0, cryp->ctx->keylen);
679 }
680
681 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
682 {
683         /* Enable interrupt and let the IRQ handler do everything */
684         stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
685
686         return 0;
687 }
688
689 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
690 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
691                                          void *areq);
692
693 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
694 {
695         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
696
697         crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
698
699         ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
700         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
701         ctx->enginectx.op.unprepare_request = NULL;
702         return 0;
703 }
704
705 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
706 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
707                                        void *areq);
708
709 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
710 {
711         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
712
713         tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
714
715         ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
716         ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
717         ctx->enginectx.op.unprepare_request = NULL;
718
719         return 0;
720 }
721
722 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
723 {
724         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
725                         crypto_skcipher_reqtfm(req));
726         struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
727         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
728
729         if (!cryp)
730                 return -ENODEV;
731
732         rctx->mode = mode;
733
734         return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
735 }
736
737 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
738 {
739         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
740         struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
741         struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
742
743         if (!cryp)
744                 return -ENODEV;
745
746         rctx->mode = mode;
747
748         return crypto_transfer_aead_request_to_engine(cryp->engine, req);
749 }
750
751 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
752                              unsigned int keylen)
753 {
754         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
755
756         memcpy(ctx->key, key, keylen);
757         ctx->keylen = keylen;
758
759         return 0;
760 }
761
762 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
763                                  unsigned int keylen)
764 {
765         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
766             keylen != AES_KEYSIZE_256)
767                 return -EINVAL;
768         else
769                 return stm32_cryp_setkey(tfm, key, keylen);
770 }
771
772 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
773                                  unsigned int keylen)
774 {
775         return verify_skcipher_des_key(tfm, key) ?:
776                stm32_cryp_setkey(tfm, key, keylen);
777 }
778
779 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
780                                   unsigned int keylen)
781 {
782         return verify_skcipher_des3_key(tfm, key) ?:
783                stm32_cryp_setkey(tfm, key, keylen);
784 }
785
786 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
787                                       unsigned int keylen)
788 {
789         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
790
791         if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
792             keylen != AES_KEYSIZE_256)
793                 return -EINVAL;
794
795         memcpy(ctx->key, key, keylen);
796         ctx->keylen = keylen;
797
798         return 0;
799 }
800
801 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
802                                           unsigned int authsize)
803 {
804         return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
805 }
806
807 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
808                                           unsigned int authsize)
809 {
810         switch (authsize) {
811         case 4:
812         case 6:
813         case 8:
814         case 10:
815         case 12:
816         case 14:
817         case 16:
818                 break;
819         default:
820                 return -EINVAL;
821         }
822
823         return 0;
824 }
825
826 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
827 {
828         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
829 }
830
831 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
832 {
833         return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
834 }
835
836 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
837 {
838         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
839 }
840
841 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
842 {
843         return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
844 }
845
846 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
847 {
848         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
849 }
850
851 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
852 {
853         return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
854 }
855
856 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
857 {
858         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
859 }
860
861 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
862 {
863         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
864 }
865
866 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
867 {
868         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
869 }
870
871 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
872 {
873         return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
874 }
875
876 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
877 {
878         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
879 }
880
881 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
882 {
883         return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
884 }
885
886 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
887 {
888         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
889 }
890
891 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
892 {
893         return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
894 }
895
896 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
897 {
898         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
899 }
900
901 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
902 {
903         return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
904 }
905
906 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
907 {
908         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
909 }
910
911 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
912 {
913         return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
914 }
915
916 static int stm32_cryp_prepare_req(struct skcipher_request *req,
917                                   struct aead_request *areq)
918 {
919         struct stm32_cryp_ctx *ctx;
920         struct stm32_cryp *cryp;
921         struct stm32_cryp_reqctx *rctx;
922         int ret;
923
924         if (!req && !areq)
925                 return -EINVAL;
926
927         ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
928                     crypto_aead_ctx(crypto_aead_reqtfm(areq));
929
930         cryp = ctx->cryp;
931
932         if (!cryp)
933                 return -ENODEV;
934
935         rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
936         rctx->mode &= FLG_MODE_MASK;
937
938         ctx->cryp = cryp;
939
940         cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
941         cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
942         cryp->ctx = ctx;
943
944         if (req) {
945                 cryp->req = req;
946                 cryp->areq = NULL;
947                 cryp->total_in = req->cryptlen;
948                 cryp->total_out = cryp->total_in;
949         } else {
950                 /*
951                  * Length of input and output data:
952                  * Encryption case:
953                  *  INPUT  =   AssocData  ||   PlainText
954                  *          <- assoclen ->  <- cryptlen ->
955                  *          <------- total_in ----------->
956                  *
957                  *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
958                  *          <- assoclen ->  <- cryptlen ->  <- authsize ->
959                  *          <---------------- total_out ----------------->
960                  *
961                  * Decryption case:
962                  *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
963                  *          <- assoclen ->  <--------- cryptlen --------->
964                  *                                          <- authsize ->
965                  *          <---------------- total_in ------------------>
966                  *
967                  *  OUTPUT =   AssocData  ||   PlainText
968                  *          <- assoclen ->  <- crypten - authsize ->
969                  *          <---------- total_out ----------------->
970                  */
971                 cryp->areq = areq;
972                 cryp->req = NULL;
973                 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
974                 cryp->total_in = areq->assoclen + areq->cryptlen;
975                 if (is_encrypt(cryp))
976                         /* Append auth tag to output */
977                         cryp->total_out = cryp->total_in + cryp->authsize;
978                 else
979                         /* No auth tag in output */
980                         cryp->total_out = cryp->total_in - cryp->authsize;
981         }
982
983         cryp->total_in_save = cryp->total_in;
984         cryp->total_out_save = cryp->total_out;
985
986         cryp->in_sg = req ? req->src : areq->src;
987         cryp->out_sg = req ? req->dst : areq->dst;
988         cryp->out_sg_save = cryp->out_sg;
989
990         cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
991         if (cryp->in_sg_len < 0) {
992                 dev_err(cryp->dev, "Cannot get in_sg_len\n");
993                 ret = cryp->in_sg_len;
994                 return ret;
995         }
996
997         cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
998         if (cryp->out_sg_len < 0) {
999                 dev_err(cryp->dev, "Cannot get out_sg_len\n");
1000                 ret = cryp->out_sg_len;
1001                 return ret;
1002         }
1003
1004         ret = stm32_cryp_copy_sgs(cryp);
1005         if (ret)
1006                 return ret;
1007
1008         scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1009         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1010
1011         if (is_gcm(cryp) || is_ccm(cryp)) {
1012                 /* In output, jump after assoc data */
1013                 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1014                 cryp->total_out -= cryp->areq->assoclen;
1015         }
1016
1017         ret = stm32_cryp_hw_init(cryp);
1018         return ret;
1019 }
1020
1021 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1022                                          void *areq)
1023 {
1024         struct skcipher_request *req = container_of(areq,
1025                                                       struct skcipher_request,
1026                                                       base);
1027
1028         return stm32_cryp_prepare_req(req, NULL);
1029 }
1030
1031 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1032 {
1033         struct skcipher_request *req = container_of(areq,
1034                                                       struct skcipher_request,
1035                                                       base);
1036         struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1037                         crypto_skcipher_reqtfm(req));
1038         struct stm32_cryp *cryp = ctx->cryp;
1039
1040         if (!cryp)
1041                 return -ENODEV;
1042
1043         return stm32_cryp_cpu_start(cryp);
1044 }
1045
1046 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1047 {
1048         struct aead_request *req = container_of(areq, struct aead_request,
1049                                                 base);
1050
1051         return stm32_cryp_prepare_req(NULL, req);
1052 }
1053
1054 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1055 {
1056         struct aead_request *req = container_of(areq, struct aead_request,
1057                                                 base);
1058         struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1059         struct stm32_cryp *cryp = ctx->cryp;
1060
1061         if (!cryp)
1062                 return -ENODEV;
1063
1064         if (unlikely(!cryp->areq->assoclen &&
1065                      !stm32_cryp_get_input_text_len(cryp))) {
1066                 /* No input data to process: get tag and finish */
1067                 stm32_cryp_finish_req(cryp, 0);
1068                 return 0;
1069         }
1070
1071         return stm32_cryp_cpu_start(cryp);
1072 }
1073
1074 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1075                                 unsigned int n)
1076 {
1077         scatterwalk_advance(&cryp->out_walk, n);
1078
1079         if (unlikely(cryp->out_sg->length == _walked_out)) {
1080                 cryp->out_sg = sg_next(cryp->out_sg);
1081                 if (cryp->out_sg) {
1082                         scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1083                         return (sg_virt(cryp->out_sg) + _walked_out);
1084                 }
1085         }
1086
1087         return (u32 *)((u8 *)dst + n);
1088 }
1089
1090 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1091                                unsigned int n)
1092 {
1093         scatterwalk_advance(&cryp->in_walk, n);
1094
1095         if (unlikely(cryp->in_sg->length == _walked_in)) {
1096                 cryp->in_sg = sg_next(cryp->in_sg);
1097                 if (cryp->in_sg) {
1098                         scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1099                         return (sg_virt(cryp->in_sg) + _walked_in);
1100                 }
1101         }
1102
1103         return (u32 *)((u8 *)src + n);
1104 }
1105
1106 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1107 {
1108         u32 cfg, size_bit, *dst, d32;
1109         u8 *d8;
1110         unsigned int i, j;
1111         int ret = 0;
1112
1113         /* Update Config */
1114         cfg = stm32_cryp_read(cryp, CRYP_CR);
1115
1116         cfg &= ~CR_PH_MASK;
1117         cfg |= CR_PH_FINAL;
1118         cfg &= ~CR_DEC_NOT_ENC;
1119         cfg |= CR_CRYPEN;
1120
1121         stm32_cryp_write(cryp, CRYP_CR, cfg);
1122
1123         if (is_gcm(cryp)) {
1124                 /* GCM: write aad and payload size (in bits) */
1125                 size_bit = cryp->areq->assoclen * 8;
1126                 if (cryp->caps->swap_final)
1127                         size_bit = (__force u32)cpu_to_be32(size_bit);
1128
1129                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1130                 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1131
1132                 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1133                                 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1134                 size_bit *= 8;
1135                 if (cryp->caps->swap_final)
1136                         size_bit = (__force u32)cpu_to_be32(size_bit);
1137
1138                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1139                 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1140         } else {
1141                 /* CCM: write CTR0 */
1142                 u8 iv[AES_BLOCK_SIZE];
1143                 u32 *iv32 = (u32 *)iv;
1144                 __be32 *biv;
1145
1146                 biv = (void *)iv;
1147
1148                 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1149                 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1150
1151                 for (i = 0; i < AES_BLOCK_32; i++) {
1152                         u32 xiv = iv32[i];
1153
1154                         if (!cryp->caps->padding_wa)
1155                                 xiv = be32_to_cpu(biv[i]);
1156                         stm32_cryp_write(cryp, CRYP_DIN, xiv);
1157                 }
1158         }
1159
1160         /* Wait for output data */
1161         ret = stm32_cryp_wait_output(cryp);
1162         if (ret) {
1163                 dev_err(cryp->dev, "Timeout (read tag)\n");
1164                 return ret;
1165         }
1166
1167         if (is_encrypt(cryp)) {
1168                 /* Get and write tag */
1169                 dst = sg_virt(cryp->out_sg) + _walked_out;
1170
1171                 for (i = 0; i < AES_BLOCK_32; i++) {
1172                         if (cryp->total_out >= sizeof(u32)) {
1173                                 /* Read a full u32 */
1174                                 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1175
1176                                 dst = stm32_cryp_next_out(cryp, dst,
1177                                                           sizeof(u32));
1178                                 cryp->total_out -= sizeof(u32);
1179                         } else if (!cryp->total_out) {
1180                                 /* Empty fifo out (data from input padding) */
1181                                 stm32_cryp_read(cryp, CRYP_DOUT);
1182                         } else {
1183                                 /* Read less than an u32 */
1184                                 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1185                                 d8 = (u8 *)&d32;
1186
1187                                 for (j = 0; j < cryp->total_out; j++) {
1188                                         *((u8 *)dst) = *(d8++);
1189                                         dst = stm32_cryp_next_out(cryp, dst, 1);
1190                                 }
1191                                 cryp->total_out = 0;
1192                         }
1193                 }
1194         } else {
1195                 /* Get and check tag */
1196                 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1197
1198                 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1199                                          cryp->total_in_save - cryp->authsize,
1200                                          cryp->authsize, 0);
1201
1202                 for (i = 0; i < AES_BLOCK_32; i++)
1203                         out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1204
1205                 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1206                         ret = -EBADMSG;
1207         }
1208
1209         /* Disable cryp */
1210         cfg &= ~CR_CRYPEN;
1211         stm32_cryp_write(cryp, CRYP_CR, cfg);
1212
1213         return ret;
1214 }
1215
1216 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1217 {
1218         u32 cr;
1219
1220         if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1221                 cryp->last_ctr[3] = 0;
1222                 cryp->last_ctr[2]++;
1223                 if (!cryp->last_ctr[2]) {
1224                         cryp->last_ctr[1]++;
1225                         if (!cryp->last_ctr[1])
1226                                 cryp->last_ctr[0]++;
1227                 }
1228
1229                 cr = stm32_cryp_read(cryp, CRYP_CR);
1230                 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1231
1232                 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->last_ctr);
1233
1234                 stm32_cryp_write(cryp, CRYP_CR, cr);
1235         }
1236
1237         cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1238         cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1239         cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1240         cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1241 }
1242
1243 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1244 {
1245         unsigned int i, j;
1246         u32 d32, *dst;
1247         u8 *d8;
1248         size_t tag_size;
1249
1250         /* Do no read tag now (if any) */
1251         if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1252                 tag_size = cryp->authsize;
1253         else
1254                 tag_size = 0;
1255
1256         dst = sg_virt(cryp->out_sg) + _walked_out;
1257
1258         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1259                 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1260                         /* Read a full u32 */
1261                         *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1262
1263                         dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1264                         cryp->total_out -= sizeof(u32);
1265                 } else if (cryp->total_out == tag_size) {
1266                         /* Empty fifo out (data from input padding) */
1267                         d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1268                 } else {
1269                         /* Read less than an u32 */
1270                         d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1271                         d8 = (u8 *)&d32;
1272
1273                         for (j = 0; j < cryp->total_out - tag_size; j++) {
1274                                 *((u8 *)dst) = *(d8++);
1275                                 dst = stm32_cryp_next_out(cryp, dst, 1);
1276                         }
1277                         cryp->total_out = tag_size;
1278                 }
1279         }
1280
1281         return !(cryp->total_out - tag_size) || !cryp->total_in;
1282 }
1283
1284 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1285 {
1286         unsigned int i, j;
1287         u32 *src;
1288         u8 d8[4];
1289         size_t tag_size;
1290
1291         /* Do no write tag (if any) */
1292         if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1293                 tag_size = cryp->authsize;
1294         else
1295                 tag_size = 0;
1296
1297         src = sg_virt(cryp->in_sg) + _walked_in;
1298
1299         for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1300                 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1301                         /* Write a full u32 */
1302                         stm32_cryp_write(cryp, CRYP_DIN, *src);
1303
1304                         src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1305                         cryp->total_in -= sizeof(u32);
1306                 } else if (cryp->total_in == tag_size) {
1307                         /* Write padding data */
1308                         stm32_cryp_write(cryp, CRYP_DIN, 0);
1309                 } else {
1310                         /* Write less than an u32 */
1311                         memset(d8, 0, sizeof(u32));
1312                         for (j = 0; j < cryp->total_in - tag_size; j++) {
1313                                 d8[j] = *((u8 *)src);
1314                                 src = stm32_cryp_next_in(cryp, src, 1);
1315                         }
1316
1317                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1318                         cryp->total_in = tag_size;
1319                 }
1320         }
1321 }
1322
1323 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1324 {
1325         int err;
1326         u32 cfg, tmp[AES_BLOCK_32];
1327         size_t total_in_ori = cryp->total_in;
1328         struct scatterlist *out_sg_ori = cryp->out_sg;
1329         unsigned int i;
1330
1331         /* 'Special workaround' procedure described in the datasheet */
1332
1333         /* a) disable ip */
1334         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1335         cfg = stm32_cryp_read(cryp, CRYP_CR);
1336         cfg &= ~CR_CRYPEN;
1337         stm32_cryp_write(cryp, CRYP_CR, cfg);
1338
1339         /* b) Update IV1R */
1340         stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1341
1342         /* c) change mode to CTR */
1343         cfg &= ~CR_ALGO_MASK;
1344         cfg |= CR_AES_CTR;
1345         stm32_cryp_write(cryp, CRYP_CR, cfg);
1346
1347         /* a) enable IP */
1348         cfg |= CR_CRYPEN;
1349         stm32_cryp_write(cryp, CRYP_CR, cfg);
1350
1351         /* b) pad and write the last block */
1352         stm32_cryp_irq_write_block(cryp);
1353         cryp->total_in = total_in_ori;
1354         err = stm32_cryp_wait_output(cryp);
1355         if (err) {
1356                 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1357                 return stm32_cryp_finish_req(cryp, err);
1358         }
1359
1360         /* c) get and store encrypted data */
1361         stm32_cryp_irq_read_data(cryp);
1362         scatterwalk_map_and_copy(tmp, out_sg_ori,
1363                                  cryp->total_in_save - total_in_ori,
1364                                  total_in_ori, 0);
1365
1366         /* d) change mode back to AES GCM */
1367         cfg &= ~CR_ALGO_MASK;
1368         cfg |= CR_AES_GCM;
1369         stm32_cryp_write(cryp, CRYP_CR, cfg);
1370
1371         /* e) change phase to Final */
1372         cfg &= ~CR_PH_MASK;
1373         cfg |= CR_PH_FINAL;
1374         stm32_cryp_write(cryp, CRYP_CR, cfg);
1375
1376         /* f) write padded data */
1377         for (i = 0; i < AES_BLOCK_32; i++) {
1378                 if (cryp->total_in)
1379                         stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1380                 else
1381                         stm32_cryp_write(cryp, CRYP_DIN, 0);
1382
1383                 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1384         }
1385
1386         /* g) Empty fifo out */
1387         err = stm32_cryp_wait_output(cryp);
1388         if (err) {
1389                 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1390                 return stm32_cryp_finish_req(cryp, err);
1391         }
1392
1393         for (i = 0; i < AES_BLOCK_32; i++)
1394                 stm32_cryp_read(cryp, CRYP_DOUT);
1395
1396         /* h) run the he normal Final phase */
1397         stm32_cryp_finish_req(cryp, 0);
1398 }
1399
1400 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1401 {
1402         u32 cfg, payload_bytes;
1403
1404         /* disable ip, set NPBLB and reneable ip */
1405         cfg = stm32_cryp_read(cryp, CRYP_CR);
1406         cfg &= ~CR_CRYPEN;
1407         stm32_cryp_write(cryp, CRYP_CR, cfg);
1408
1409         payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1410                                            cryp->total_in;
1411         cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1412         cfg |= CR_CRYPEN;
1413         stm32_cryp_write(cryp, CRYP_CR, cfg);
1414 }
1415
1416 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1417 {
1418         int err = 0;
1419         u32 cfg, iv1tmp;
1420         u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1421         size_t last_total_out, total_in_ori = cryp->total_in;
1422         struct scatterlist *out_sg_ori = cryp->out_sg;
1423         unsigned int i;
1424
1425         /* 'Special workaround' procedure described in the datasheet */
1426         cryp->flags |= FLG_CCM_PADDED_WA;
1427
1428         /* a) disable ip */
1429         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1430
1431         cfg = stm32_cryp_read(cryp, CRYP_CR);
1432         cfg &= ~CR_CRYPEN;
1433         stm32_cryp_write(cryp, CRYP_CR, cfg);
1434
1435         /* b) get IV1 from CRYP_CSGCMCCM7 */
1436         iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1437
1438         /* c) Load CRYP_CSGCMCCMxR */
1439         for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1440                 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1441
1442         /* d) Write IV1R */
1443         stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1444
1445         /* e) change mode to CTR */
1446         cfg &= ~CR_ALGO_MASK;
1447         cfg |= CR_AES_CTR;
1448         stm32_cryp_write(cryp, CRYP_CR, cfg);
1449
1450         /* a) enable IP */
1451         cfg |= CR_CRYPEN;
1452         stm32_cryp_write(cryp, CRYP_CR, cfg);
1453
1454         /* b) pad and write the last block */
1455         stm32_cryp_irq_write_block(cryp);
1456         cryp->total_in = total_in_ori;
1457         err = stm32_cryp_wait_output(cryp);
1458         if (err) {
1459                 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1460                 return stm32_cryp_finish_req(cryp, err);
1461         }
1462
1463         /* c) get and store decrypted data */
1464         last_total_out = cryp->total_out;
1465         stm32_cryp_irq_read_data(cryp);
1466
1467         memset(tmp, 0, sizeof(tmp));
1468         scatterwalk_map_and_copy(tmp, out_sg_ori,
1469                                  cryp->total_out_save - last_total_out,
1470                                  last_total_out, 0);
1471
1472         /* d) Load again CRYP_CSGCMCCMxR */
1473         for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1474                 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1475
1476         /* e) change mode back to AES CCM */
1477         cfg &= ~CR_ALGO_MASK;
1478         cfg |= CR_AES_CCM;
1479         stm32_cryp_write(cryp, CRYP_CR, cfg);
1480
1481         /* f) change phase to header */
1482         cfg &= ~CR_PH_MASK;
1483         cfg |= CR_PH_HEADER;
1484         stm32_cryp_write(cryp, CRYP_CR, cfg);
1485
1486         /* g) XOR and write padded data */
1487         for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1488                 tmp[i] ^= cstmp1[i];
1489                 tmp[i] ^= cstmp2[i];
1490                 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1491         }
1492
1493         /* h) wait for completion */
1494         err = stm32_cryp_wait_busy(cryp);
1495         if (err)
1496                 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1497
1498         /* i) run the he normal Final phase */
1499         stm32_cryp_finish_req(cryp, err);
1500 }
1501
1502 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1503 {
1504         if (unlikely(!cryp->total_in)) {
1505                 dev_warn(cryp->dev, "No more data to process\n");
1506                 return;
1507         }
1508
1509         if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1510                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1511                      is_encrypt(cryp))) {
1512                 /* Padding for AES GCM encryption */
1513                 if (cryp->caps->padding_wa)
1514                         /* Special case 1 */
1515                         return stm32_cryp_irq_write_gcm_padded_data(cryp);
1516
1517                 /* Setting padding bytes (NBBLB) */
1518                 stm32_cryp_irq_set_npblb(cryp);
1519         }
1520
1521         if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1522                      (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1523                      is_decrypt(cryp))) {
1524                 /* Padding for AES CCM decryption */
1525                 if (cryp->caps->padding_wa)
1526                         /* Special case 2 */
1527                         return stm32_cryp_irq_write_ccm_padded_data(cryp);
1528
1529                 /* Setting padding bytes (NBBLB) */
1530                 stm32_cryp_irq_set_npblb(cryp);
1531         }
1532
1533         if (is_aes(cryp) && is_ctr(cryp))
1534                 stm32_cryp_check_ctr_counter(cryp);
1535
1536         stm32_cryp_irq_write_block(cryp);
1537 }
1538
1539 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1540 {
1541         int err;
1542         unsigned int i, j;
1543         u32 cfg, *src;
1544
1545         src = sg_virt(cryp->in_sg) + _walked_in;
1546
1547         for (i = 0; i < AES_BLOCK_32; i++) {
1548                 stm32_cryp_write(cryp, CRYP_DIN, *src);
1549
1550                 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1551                 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1552
1553                 /* Check if whole header written */
1554                 if ((cryp->total_in_save - cryp->total_in) ==
1555                                 cryp->areq->assoclen) {
1556                         /* Write padding if needed */
1557                         for (j = i + 1; j < AES_BLOCK_32; j++)
1558                                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1559
1560                         /* Wait for completion */
1561                         err = stm32_cryp_wait_busy(cryp);
1562                         if (err) {
1563                                 dev_err(cryp->dev, "Timeout (gcm header)\n");
1564                                 return stm32_cryp_finish_req(cryp, err);
1565                         }
1566
1567                         if (stm32_cryp_get_input_text_len(cryp)) {
1568                                 /* Phase 3 : payload */
1569                                 cfg = stm32_cryp_read(cryp, CRYP_CR);
1570                                 cfg &= ~CR_CRYPEN;
1571                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1572
1573                                 cfg &= ~CR_PH_MASK;
1574                                 cfg |= CR_PH_PAYLOAD;
1575                                 cfg |= CR_CRYPEN;
1576                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1577                         } else {
1578                                 /* Phase 4 : tag */
1579                                 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1580                                 stm32_cryp_finish_req(cryp, 0);
1581                         }
1582
1583                         break;
1584                 }
1585
1586                 if (!cryp->total_in)
1587                         break;
1588         }
1589 }
1590
1591 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1592 {
1593         int err;
1594         unsigned int i = 0, j, k;
1595         u32 alen, cfg, *src;
1596         u8 d8[4];
1597
1598         src = sg_virt(cryp->in_sg) + _walked_in;
1599         alen = cryp->areq->assoclen;
1600
1601         if (!_walked_in) {
1602                 if (cryp->areq->assoclen <= 65280) {
1603                         /* Write first u32 of B1 */
1604                         d8[0] = (alen >> 8) & 0xFF;
1605                         d8[1] = alen & 0xFF;
1606                         d8[2] = *((u8 *)src);
1607                         src = stm32_cryp_next_in(cryp, src, 1);
1608                         d8[3] = *((u8 *)src);
1609                         src = stm32_cryp_next_in(cryp, src, 1);
1610
1611                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1612                         i++;
1613
1614                         cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1615                 } else {
1616                         /* Build the two first u32 of B1 */
1617                         d8[0] = 0xFF;
1618                         d8[1] = 0xFE;
1619                         d8[2] = alen & 0xFF000000;
1620                         d8[3] = alen & 0x00FF0000;
1621
1622                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623                         i++;
1624
1625                         d8[0] = alen & 0x0000FF00;
1626                         d8[1] = alen & 0x000000FF;
1627                         d8[2] = *((u8 *)src);
1628                         src = stm32_cryp_next_in(cryp, src, 1);
1629                         d8[3] = *((u8 *)src);
1630                         src = stm32_cryp_next_in(cryp, src, 1);
1631
1632                         stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1633                         i++;
1634
1635                         cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1636                 }
1637         }
1638
1639         /* Write next u32 */
1640         for (; i < AES_BLOCK_32; i++) {
1641                 /* Build an u32 */
1642                 memset(d8, 0, sizeof(u32));
1643                 for (k = 0; k < sizeof(u32); k++) {
1644                         d8[k] = *((u8 *)src);
1645                         src = stm32_cryp_next_in(cryp, src, 1);
1646
1647                         cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1648                         if ((cryp->total_in_save - cryp->total_in) == alen)
1649                                 break;
1650                 }
1651
1652                 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1653
1654                 if ((cryp->total_in_save - cryp->total_in) == alen) {
1655                         /* Write padding if needed */
1656                         for (j = i + 1; j < AES_BLOCK_32; j++)
1657                                 stm32_cryp_write(cryp, CRYP_DIN, 0);
1658
1659                         /* Wait for completion */
1660                         err = stm32_cryp_wait_busy(cryp);
1661                         if (err) {
1662                                 dev_err(cryp->dev, "Timeout (ccm header)\n");
1663                                 return stm32_cryp_finish_req(cryp, err);
1664                         }
1665
1666                         if (stm32_cryp_get_input_text_len(cryp)) {
1667                                 /* Phase 3 : payload */
1668                                 cfg = stm32_cryp_read(cryp, CRYP_CR);
1669                                 cfg &= ~CR_CRYPEN;
1670                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1671
1672                                 cfg &= ~CR_PH_MASK;
1673                                 cfg |= CR_PH_PAYLOAD;
1674                                 cfg |= CR_CRYPEN;
1675                                 stm32_cryp_write(cryp, CRYP_CR, cfg);
1676                         } else {
1677                                 /* Phase 4 : tag */
1678                                 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1679                                 stm32_cryp_finish_req(cryp, 0);
1680                         }
1681
1682                         break;
1683                 }
1684         }
1685 }
1686
1687 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1688 {
1689         struct stm32_cryp *cryp = arg;
1690         u32 ph;
1691
1692         if (cryp->irq_status & MISR_OUT)
1693                 /* Output FIFO IRQ: read data */
1694                 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1695                         /* All bytes processed, finish */
1696                         stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1697                         stm32_cryp_finish_req(cryp, 0);
1698                         return IRQ_HANDLED;
1699                 }
1700
1701         if (cryp->irq_status & MISR_IN) {
1702                 if (is_gcm(cryp)) {
1703                         ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704                         if (unlikely(ph == CR_PH_HEADER))
1705                                 /* Write Header */
1706                                 stm32_cryp_irq_write_gcm_header(cryp);
1707                         else
1708                                 /* Input FIFO IRQ: write data */
1709                                 stm32_cryp_irq_write_data(cryp);
1710                         cryp->gcm_ctr++;
1711                 } else if (is_ccm(cryp)) {
1712                         ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1713                         if (unlikely(ph == CR_PH_HEADER))
1714                                 /* Write Header */
1715                                 stm32_cryp_irq_write_ccm_header(cryp);
1716                         else
1717                                 /* Input FIFO IRQ: write data */
1718                                 stm32_cryp_irq_write_data(cryp);
1719                 } else {
1720                         /* Input FIFO IRQ: write data */
1721                         stm32_cryp_irq_write_data(cryp);
1722                 }
1723         }
1724
1725         return IRQ_HANDLED;
1726 }
1727
1728 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1729 {
1730         struct stm32_cryp *cryp = arg;
1731
1732         cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1733
1734         return IRQ_WAKE_THREAD;
1735 }
1736
1737 static struct skcipher_alg crypto_algs[] = {
1738 {
1739         .base.cra_name          = "ecb(aes)",
1740         .base.cra_driver_name   = "stm32-ecb-aes",
1741         .base.cra_priority      = 200,
1742         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1743         .base.cra_blocksize     = AES_BLOCK_SIZE,
1744         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1745         .base.cra_alignmask     = 0xf,
1746         .base.cra_module        = THIS_MODULE,
1747
1748         .init                   = stm32_cryp_init_tfm,
1749         .min_keysize            = AES_MIN_KEY_SIZE,
1750         .max_keysize            = AES_MAX_KEY_SIZE,
1751         .setkey                 = stm32_cryp_aes_setkey,
1752         .encrypt                = stm32_cryp_aes_ecb_encrypt,
1753         .decrypt                = stm32_cryp_aes_ecb_decrypt,
1754 },
1755 {
1756         .base.cra_name          = "cbc(aes)",
1757         .base.cra_driver_name   = "stm32-cbc-aes",
1758         .base.cra_priority      = 200,
1759         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1760         .base.cra_blocksize     = AES_BLOCK_SIZE,
1761         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1762         .base.cra_alignmask     = 0xf,
1763         .base.cra_module        = THIS_MODULE,
1764
1765         .init                   = stm32_cryp_init_tfm,
1766         .min_keysize            = AES_MIN_KEY_SIZE,
1767         .max_keysize            = AES_MAX_KEY_SIZE,
1768         .ivsize                 = AES_BLOCK_SIZE,
1769         .setkey                 = stm32_cryp_aes_setkey,
1770         .encrypt                = stm32_cryp_aes_cbc_encrypt,
1771         .decrypt                = stm32_cryp_aes_cbc_decrypt,
1772 },
1773 {
1774         .base.cra_name          = "ctr(aes)",
1775         .base.cra_driver_name   = "stm32-ctr-aes",
1776         .base.cra_priority      = 200,
1777         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1778         .base.cra_blocksize     = 1,
1779         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1780         .base.cra_alignmask     = 0xf,
1781         .base.cra_module        = THIS_MODULE,
1782
1783         .init                   = stm32_cryp_init_tfm,
1784         .min_keysize            = AES_MIN_KEY_SIZE,
1785         .max_keysize            = AES_MAX_KEY_SIZE,
1786         .ivsize                 = AES_BLOCK_SIZE,
1787         .setkey                 = stm32_cryp_aes_setkey,
1788         .encrypt                = stm32_cryp_aes_ctr_encrypt,
1789         .decrypt                = stm32_cryp_aes_ctr_decrypt,
1790 },
1791 {
1792         .base.cra_name          = "ecb(des)",
1793         .base.cra_driver_name   = "stm32-ecb-des",
1794         .base.cra_priority      = 200,
1795         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1796         .base.cra_blocksize     = DES_BLOCK_SIZE,
1797         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1798         .base.cra_alignmask     = 0xf,
1799         .base.cra_module        = THIS_MODULE,
1800
1801         .init                   = stm32_cryp_init_tfm,
1802         .min_keysize            = DES_BLOCK_SIZE,
1803         .max_keysize            = DES_BLOCK_SIZE,
1804         .setkey                 = stm32_cryp_des_setkey,
1805         .encrypt                = stm32_cryp_des_ecb_encrypt,
1806         .decrypt                = stm32_cryp_des_ecb_decrypt,
1807 },
1808 {
1809         .base.cra_name          = "cbc(des)",
1810         .base.cra_driver_name   = "stm32-cbc-des",
1811         .base.cra_priority      = 200,
1812         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1813         .base.cra_blocksize     = DES_BLOCK_SIZE,
1814         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1815         .base.cra_alignmask     = 0xf,
1816         .base.cra_module        = THIS_MODULE,
1817
1818         .init                   = stm32_cryp_init_tfm,
1819         .min_keysize            = DES_BLOCK_SIZE,
1820         .max_keysize            = DES_BLOCK_SIZE,
1821         .ivsize                 = DES_BLOCK_SIZE,
1822         .setkey                 = stm32_cryp_des_setkey,
1823         .encrypt                = stm32_cryp_des_cbc_encrypt,
1824         .decrypt                = stm32_cryp_des_cbc_decrypt,
1825 },
1826 {
1827         .base.cra_name          = "ecb(des3_ede)",
1828         .base.cra_driver_name   = "stm32-ecb-des3",
1829         .base.cra_priority      = 200,
1830         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1831         .base.cra_blocksize     = DES_BLOCK_SIZE,
1832         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1833         .base.cra_alignmask     = 0xf,
1834         .base.cra_module        = THIS_MODULE,
1835
1836         .init                   = stm32_cryp_init_tfm,
1837         .min_keysize            = 3 * DES_BLOCK_SIZE,
1838         .max_keysize            = 3 * DES_BLOCK_SIZE,
1839         .setkey                 = stm32_cryp_tdes_setkey,
1840         .encrypt                = stm32_cryp_tdes_ecb_encrypt,
1841         .decrypt                = stm32_cryp_tdes_ecb_decrypt,
1842 },
1843 {
1844         .base.cra_name          = "cbc(des3_ede)",
1845         .base.cra_driver_name   = "stm32-cbc-des3",
1846         .base.cra_priority      = 200,
1847         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1848         .base.cra_blocksize     = DES_BLOCK_SIZE,
1849         .base.cra_ctxsize       = sizeof(struct stm32_cryp_ctx),
1850         .base.cra_alignmask     = 0xf,
1851         .base.cra_module        = THIS_MODULE,
1852
1853         .init                   = stm32_cryp_init_tfm,
1854         .min_keysize            = 3 * DES_BLOCK_SIZE,
1855         .max_keysize            = 3 * DES_BLOCK_SIZE,
1856         .ivsize                 = DES_BLOCK_SIZE,
1857         .setkey                 = stm32_cryp_tdes_setkey,
1858         .encrypt                = stm32_cryp_tdes_cbc_encrypt,
1859         .decrypt                = stm32_cryp_tdes_cbc_decrypt,
1860 },
1861 };
1862
1863 static struct aead_alg aead_algs[] = {
1864 {
1865         .setkey         = stm32_cryp_aes_aead_setkey,
1866         .setauthsize    = stm32_cryp_aes_gcm_setauthsize,
1867         .encrypt        = stm32_cryp_aes_gcm_encrypt,
1868         .decrypt        = stm32_cryp_aes_gcm_decrypt,
1869         .init           = stm32_cryp_aes_aead_init,
1870         .ivsize         = 12,
1871         .maxauthsize    = AES_BLOCK_SIZE,
1872
1873         .base = {
1874                 .cra_name               = "gcm(aes)",
1875                 .cra_driver_name        = "stm32-gcm-aes",
1876                 .cra_priority           = 200,
1877                 .cra_flags              = CRYPTO_ALG_ASYNC,
1878                 .cra_blocksize          = 1,
1879                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1880                 .cra_alignmask          = 0xf,
1881                 .cra_module             = THIS_MODULE,
1882         },
1883 },
1884 {
1885         .setkey         = stm32_cryp_aes_aead_setkey,
1886         .setauthsize    = stm32_cryp_aes_ccm_setauthsize,
1887         .encrypt        = stm32_cryp_aes_ccm_encrypt,
1888         .decrypt        = stm32_cryp_aes_ccm_decrypt,
1889         .init           = stm32_cryp_aes_aead_init,
1890         .ivsize         = AES_BLOCK_SIZE,
1891         .maxauthsize    = AES_BLOCK_SIZE,
1892
1893         .base = {
1894                 .cra_name               = "ccm(aes)",
1895                 .cra_driver_name        = "stm32-ccm-aes",
1896                 .cra_priority           = 200,
1897                 .cra_flags              = CRYPTO_ALG_ASYNC,
1898                 .cra_blocksize          = 1,
1899                 .cra_ctxsize            = sizeof(struct stm32_cryp_ctx),
1900                 .cra_alignmask          = 0xf,
1901                 .cra_module             = THIS_MODULE,
1902         },
1903 },
1904 };
1905
1906 static const struct stm32_cryp_caps f7_data = {
1907         .swap_final = true,
1908         .padding_wa = true,
1909 };
1910
1911 static const struct stm32_cryp_caps mp1_data = {
1912         .swap_final = false,
1913         .padding_wa = false,
1914 };
1915
1916 static const struct of_device_id stm32_dt_ids[] = {
1917         { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1918         { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1919         {},
1920 };
1921 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1922
1923 static int stm32_cryp_probe(struct platform_device *pdev)
1924 {
1925         struct device *dev = &pdev->dev;
1926         struct stm32_cryp *cryp;
1927         struct reset_control *rst;
1928         int irq, ret;
1929
1930         cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1931         if (!cryp)
1932                 return -ENOMEM;
1933
1934         cryp->caps = of_device_get_match_data(dev);
1935         if (!cryp->caps)
1936                 return -ENODEV;
1937
1938         cryp->dev = dev;
1939
1940         cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1941         if (IS_ERR(cryp->regs))
1942                 return PTR_ERR(cryp->regs);
1943
1944         irq = platform_get_irq(pdev, 0);
1945         if (irq < 0)
1946                 return irq;
1947
1948         ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1949                                         stm32_cryp_irq_thread, IRQF_ONESHOT,
1950                                         dev_name(dev), cryp);
1951         if (ret) {
1952                 dev_err(dev, "Cannot grab IRQ\n");
1953                 return ret;
1954         }
1955
1956         cryp->clk = devm_clk_get(dev, NULL);
1957         if (IS_ERR(cryp->clk)) {
1958                 dev_err(dev, "Could not get clock\n");
1959                 return PTR_ERR(cryp->clk);
1960         }
1961
1962         ret = clk_prepare_enable(cryp->clk);
1963         if (ret) {
1964                 dev_err(cryp->dev, "Failed to enable clock\n");
1965                 return ret;
1966         }
1967
1968         pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1969         pm_runtime_use_autosuspend(dev);
1970
1971         pm_runtime_get_noresume(dev);
1972         pm_runtime_set_active(dev);
1973         pm_runtime_enable(dev);
1974
1975         rst = devm_reset_control_get(dev, NULL);
1976         if (!IS_ERR(rst)) {
1977                 reset_control_assert(rst);
1978                 udelay(2);
1979                 reset_control_deassert(rst);
1980         }
1981
1982         platform_set_drvdata(pdev, cryp);
1983
1984         spin_lock(&cryp_list.lock);
1985         list_add(&cryp->list, &cryp_list.dev_list);
1986         spin_unlock(&cryp_list.lock);
1987
1988         /* Initialize crypto engine */
1989         cryp->engine = crypto_engine_alloc_init(dev, 1);
1990         if (!cryp->engine) {
1991                 dev_err(dev, "Could not init crypto engine\n");
1992                 ret = -ENOMEM;
1993                 goto err_engine1;
1994         }
1995
1996         ret = crypto_engine_start(cryp->engine);
1997         if (ret) {
1998                 dev_err(dev, "Could not start crypto engine\n");
1999                 goto err_engine2;
2000         }
2001
2002         ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2003         if (ret) {
2004                 dev_err(dev, "Could not register algs\n");
2005                 goto err_algs;
2006         }
2007
2008         ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2009         if (ret)
2010                 goto err_aead_algs;
2011
2012         dev_info(dev, "Initialized\n");
2013
2014         pm_runtime_put_sync(dev);
2015
2016         return 0;
2017
2018 err_aead_algs:
2019         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2020 err_algs:
2021 err_engine2:
2022         crypto_engine_exit(cryp->engine);
2023 err_engine1:
2024         spin_lock(&cryp_list.lock);
2025         list_del(&cryp->list);
2026         spin_unlock(&cryp_list.lock);
2027
2028         pm_runtime_disable(dev);
2029         pm_runtime_put_noidle(dev);
2030         pm_runtime_disable(dev);
2031         pm_runtime_put_noidle(dev);
2032
2033         clk_disable_unprepare(cryp->clk);
2034
2035         return ret;
2036 }
2037
2038 static int stm32_cryp_remove(struct platform_device *pdev)
2039 {
2040         struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2041         int ret;
2042
2043         if (!cryp)
2044                 return -ENODEV;
2045
2046         ret = pm_runtime_resume_and_get(cryp->dev);
2047         if (ret < 0)
2048                 return ret;
2049
2050         crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2051         crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052
2053         crypto_engine_exit(cryp->engine);
2054
2055         spin_lock(&cryp_list.lock);
2056         list_del(&cryp->list);
2057         spin_unlock(&cryp_list.lock);
2058
2059         pm_runtime_disable(cryp->dev);
2060         pm_runtime_put_noidle(cryp->dev);
2061
2062         clk_disable_unprepare(cryp->clk);
2063
2064         return 0;
2065 }
2066
2067 #ifdef CONFIG_PM
2068 static int stm32_cryp_runtime_suspend(struct device *dev)
2069 {
2070         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071
2072         clk_disable_unprepare(cryp->clk);
2073
2074         return 0;
2075 }
2076
2077 static int stm32_cryp_runtime_resume(struct device *dev)
2078 {
2079         struct stm32_cryp *cryp = dev_get_drvdata(dev);
2080         int ret;
2081
2082         ret = clk_prepare_enable(cryp->clk);
2083         if (ret) {
2084                 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2085                 return ret;
2086         }
2087
2088         return 0;
2089 }
2090 #endif
2091
2092 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2093         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2094                                 pm_runtime_force_resume)
2095         SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2096                            stm32_cryp_runtime_resume, NULL)
2097 };
2098
2099 static struct platform_driver stm32_cryp_driver = {
2100         .probe  = stm32_cryp_probe,
2101         .remove = stm32_cryp_remove,
2102         .driver = {
2103                 .name           = DRIVER_NAME,
2104                 .pm             = &stm32_cryp_pm_ops,
2105                 .of_match_table = stm32_dt_ids,
2106         },
2107 };
2108
2109 module_platform_driver(stm32_cryp_driver);
2110
2111 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2112 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2113 MODULE_LICENSE("GPL");