scsi: qla2xxx: remove double assignment in qla2x00_update_fcport
[linux-2.6-microblaze.git] / drivers / crypto / s5p-sss.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Cryptographic API.
4 //
5 // Support for Samsung S5PV210 and Exynos HW acceleration.
6 //
7 // Copyright (C) 2011 NetUP Inc. All rights reserved.
8 // Copyright (c) 2017 Samsung Electronics Co., Ltd. All rights reserved.
9 //
10 // Hash part based on omap-sham.c driver.
11
12 #include <linux/clk.h>
13 #include <linux/crypto.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/platform_device.h>
24 #include <linux/scatterlist.h>
25
26 #include <crypto/ctr.h>
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <crypto/hash.h>
32 #include <crypto/md5.h>
33 #include <crypto/sha.h>
34 #include <crypto/internal/hash.h>
35
36 #define _SBF(s, v)                      ((v) << (s))
37
38 /* Feed control registers */
39 #define SSS_REG_FCINTSTAT               0x0000
40 #define SSS_FCINTSTAT_HPARTINT          BIT(7)
41 #define SSS_FCINTSTAT_HDONEINT          BIT(5)
42 #define SSS_FCINTSTAT_BRDMAINT          BIT(3)
43 #define SSS_FCINTSTAT_BTDMAINT          BIT(2)
44 #define SSS_FCINTSTAT_HRDMAINT          BIT(1)
45 #define SSS_FCINTSTAT_PKDMAINT          BIT(0)
46
47 #define SSS_REG_FCINTENSET              0x0004
48 #define SSS_FCINTENSET_HPARTINTENSET    BIT(7)
49 #define SSS_FCINTENSET_HDONEINTENSET    BIT(5)
50 #define SSS_FCINTENSET_BRDMAINTENSET    BIT(3)
51 #define SSS_FCINTENSET_BTDMAINTENSET    BIT(2)
52 #define SSS_FCINTENSET_HRDMAINTENSET    BIT(1)
53 #define SSS_FCINTENSET_PKDMAINTENSET    BIT(0)
54
55 #define SSS_REG_FCINTENCLR              0x0008
56 #define SSS_FCINTENCLR_HPARTINTENCLR    BIT(7)
57 #define SSS_FCINTENCLR_HDONEINTENCLR    BIT(5)
58 #define SSS_FCINTENCLR_BRDMAINTENCLR    BIT(3)
59 #define SSS_FCINTENCLR_BTDMAINTENCLR    BIT(2)
60 #define SSS_FCINTENCLR_HRDMAINTENCLR    BIT(1)
61 #define SSS_FCINTENCLR_PKDMAINTENCLR    BIT(0)
62
63 #define SSS_REG_FCINTPEND               0x000C
64 #define SSS_FCINTPEND_HPARTINTP         BIT(7)
65 #define SSS_FCINTPEND_HDONEINTP         BIT(5)
66 #define SSS_FCINTPEND_BRDMAINTP         BIT(3)
67 #define SSS_FCINTPEND_BTDMAINTP         BIT(2)
68 #define SSS_FCINTPEND_HRDMAINTP         BIT(1)
69 #define SSS_FCINTPEND_PKDMAINTP         BIT(0)
70
71 #define SSS_REG_FCFIFOSTAT              0x0010
72 #define SSS_FCFIFOSTAT_BRFIFOFUL        BIT(7)
73 #define SSS_FCFIFOSTAT_BRFIFOEMP        BIT(6)
74 #define SSS_FCFIFOSTAT_BTFIFOFUL        BIT(5)
75 #define SSS_FCFIFOSTAT_BTFIFOEMP        BIT(4)
76 #define SSS_FCFIFOSTAT_HRFIFOFUL        BIT(3)
77 #define SSS_FCFIFOSTAT_HRFIFOEMP        BIT(2)
78 #define SSS_FCFIFOSTAT_PKFIFOFUL        BIT(1)
79 #define SSS_FCFIFOSTAT_PKFIFOEMP        BIT(0)
80
81 #define SSS_REG_FCFIFOCTRL              0x0014
82 #define SSS_FCFIFOCTRL_DESSEL           BIT(2)
83 #define SSS_HASHIN_INDEPENDENT          _SBF(0, 0x00)
84 #define SSS_HASHIN_CIPHER_INPUT         _SBF(0, 0x01)
85 #define SSS_HASHIN_CIPHER_OUTPUT        _SBF(0, 0x02)
86 #define SSS_HASHIN_MASK                 _SBF(0, 0x03)
87
88 #define SSS_REG_FCBRDMAS                0x0020
89 #define SSS_REG_FCBRDMAL                0x0024
90 #define SSS_REG_FCBRDMAC                0x0028
91 #define SSS_FCBRDMAC_BYTESWAP           BIT(1)
92 #define SSS_FCBRDMAC_FLUSH              BIT(0)
93
94 #define SSS_REG_FCBTDMAS                0x0030
95 #define SSS_REG_FCBTDMAL                0x0034
96 #define SSS_REG_FCBTDMAC                0x0038
97 #define SSS_FCBTDMAC_BYTESWAP           BIT(1)
98 #define SSS_FCBTDMAC_FLUSH              BIT(0)
99
100 #define SSS_REG_FCHRDMAS                0x0040
101 #define SSS_REG_FCHRDMAL                0x0044
102 #define SSS_REG_FCHRDMAC                0x0048
103 #define SSS_FCHRDMAC_BYTESWAP           BIT(1)
104 #define SSS_FCHRDMAC_FLUSH              BIT(0)
105
106 #define SSS_REG_FCPKDMAS                0x0050
107 #define SSS_REG_FCPKDMAL                0x0054
108 #define SSS_REG_FCPKDMAC                0x0058
109 #define SSS_FCPKDMAC_BYTESWAP           BIT(3)
110 #define SSS_FCPKDMAC_DESCEND            BIT(2)
111 #define SSS_FCPKDMAC_TRANSMIT           BIT(1)
112 #define SSS_FCPKDMAC_FLUSH              BIT(0)
113
114 #define SSS_REG_FCPKDMAO                0x005C
115
116 /* AES registers */
117 #define SSS_REG_AES_CONTROL             0x00
118 #define SSS_AES_BYTESWAP_DI             BIT(11)
119 #define SSS_AES_BYTESWAP_DO             BIT(10)
120 #define SSS_AES_BYTESWAP_IV             BIT(9)
121 #define SSS_AES_BYTESWAP_CNT            BIT(8)
122 #define SSS_AES_BYTESWAP_KEY            BIT(7)
123 #define SSS_AES_KEY_CHANGE_MODE         BIT(6)
124 #define SSS_AES_KEY_SIZE_128            _SBF(4, 0x00)
125 #define SSS_AES_KEY_SIZE_192            _SBF(4, 0x01)
126 #define SSS_AES_KEY_SIZE_256            _SBF(4, 0x02)
127 #define SSS_AES_FIFO_MODE               BIT(3)
128 #define SSS_AES_CHAIN_MODE_ECB          _SBF(1, 0x00)
129 #define SSS_AES_CHAIN_MODE_CBC          _SBF(1, 0x01)
130 #define SSS_AES_CHAIN_MODE_CTR          _SBF(1, 0x02)
131 #define SSS_AES_MODE_DECRYPT            BIT(0)
132
133 #define SSS_REG_AES_STATUS              0x04
134 #define SSS_AES_BUSY                    BIT(2)
135 #define SSS_AES_INPUT_READY             BIT(1)
136 #define SSS_AES_OUTPUT_READY            BIT(0)
137
138 #define SSS_REG_AES_IN_DATA(s)          (0x10 + (s << 2))
139 #define SSS_REG_AES_OUT_DATA(s)         (0x20 + (s << 2))
140 #define SSS_REG_AES_IV_DATA(s)          (0x30 + (s << 2))
141 #define SSS_REG_AES_CNT_DATA(s)         (0x40 + (s << 2))
142 #define SSS_REG_AES_KEY_DATA(s)         (0x80 + (s << 2))
143
144 #define SSS_REG(dev, reg)               ((dev)->ioaddr + (SSS_REG_##reg))
145 #define SSS_READ(dev, reg)              __raw_readl(SSS_REG(dev, reg))
146 #define SSS_WRITE(dev, reg, val)        __raw_writel((val), SSS_REG(dev, reg))
147
148 #define SSS_AES_REG(dev, reg)           ((dev)->aes_ioaddr + SSS_REG_##reg)
149 #define SSS_AES_WRITE(dev, reg, val)    __raw_writel((val), \
150                                                 SSS_AES_REG(dev, reg))
151
152 /* HW engine modes */
153 #define FLAGS_AES_DECRYPT               BIT(0)
154 #define FLAGS_AES_MODE_MASK             _SBF(1, 0x03)
155 #define FLAGS_AES_CBC                   _SBF(1, 0x01)
156 #define FLAGS_AES_CTR                   _SBF(1, 0x02)
157
158 #define AES_KEY_LEN                     16
159 #define CRYPTO_QUEUE_LEN                1
160
161 /* HASH registers */
162 #define SSS_REG_HASH_CTRL               0x00
163
164 #define SSS_HASH_USER_IV_EN             BIT(5)
165 #define SSS_HASH_INIT_BIT               BIT(4)
166 #define SSS_HASH_ENGINE_SHA1            _SBF(1, 0x00)
167 #define SSS_HASH_ENGINE_MD5             _SBF(1, 0x01)
168 #define SSS_HASH_ENGINE_SHA256          _SBF(1, 0x02)
169
170 #define SSS_HASH_ENGINE_MASK            _SBF(1, 0x03)
171
172 #define SSS_REG_HASH_CTRL_PAUSE         0x04
173
174 #define SSS_HASH_PAUSE                  BIT(0)
175
176 #define SSS_REG_HASH_CTRL_FIFO          0x08
177
178 #define SSS_HASH_FIFO_MODE_DMA          BIT(0)
179 #define SSS_HASH_FIFO_MODE_CPU          0
180
181 #define SSS_REG_HASH_CTRL_SWAP          0x0C
182
183 #define SSS_HASH_BYTESWAP_DI            BIT(3)
184 #define SSS_HASH_BYTESWAP_DO            BIT(2)
185 #define SSS_HASH_BYTESWAP_IV            BIT(1)
186 #define SSS_HASH_BYTESWAP_KEY           BIT(0)
187
188 #define SSS_REG_HASH_STATUS             0x10
189
190 #define SSS_HASH_STATUS_MSG_DONE        BIT(6)
191 #define SSS_HASH_STATUS_PARTIAL_DONE    BIT(4)
192 #define SSS_HASH_STATUS_BUFFER_READY    BIT(0)
193
194 #define SSS_REG_HASH_MSG_SIZE_LOW       0x20
195 #define SSS_REG_HASH_MSG_SIZE_HIGH      0x24
196
197 #define SSS_REG_HASH_PRE_MSG_SIZE_LOW   0x28
198 #define SSS_REG_HASH_PRE_MSG_SIZE_HIGH  0x2C
199
200 #define SSS_REG_HASH_IV(s)              (0xB0 + ((s) << 2))
201 #define SSS_REG_HASH_OUT(s)             (0x100 + ((s) << 2))
202
203 #define HASH_BLOCK_SIZE                 64
204 #define HASH_REG_SIZEOF                 4
205 #define HASH_MD5_MAX_REG                (MD5_DIGEST_SIZE / HASH_REG_SIZEOF)
206 #define HASH_SHA1_MAX_REG               (SHA1_DIGEST_SIZE / HASH_REG_SIZEOF)
207 #define HASH_SHA256_MAX_REG             (SHA256_DIGEST_SIZE / HASH_REG_SIZEOF)
208
209 /*
210  * HASH bit numbers, used by device, setting in dev->hash_flags with
211  * functions set_bit(), clear_bit() or tested with test_bit() or BIT(),
212  * to keep HASH state BUSY or FREE, or to signal state from irq_handler
213  * to hash_tasklet. SGS keep track of allocated memory for scatterlist
214  */
215 #define HASH_FLAGS_BUSY         0
216 #define HASH_FLAGS_FINAL        1
217 #define HASH_FLAGS_DMA_ACTIVE   2
218 #define HASH_FLAGS_OUTPUT_READY 3
219 #define HASH_FLAGS_DMA_READY    4
220 #define HASH_FLAGS_SGS_COPIED   5
221 #define HASH_FLAGS_SGS_ALLOCED  6
222
223 /* HASH HW constants */
224 #define BUFLEN                  HASH_BLOCK_SIZE
225
226 #define SSS_HASH_DMA_LEN_ALIGN  8
227 #define SSS_HASH_DMA_ALIGN_MASK (SSS_HASH_DMA_LEN_ALIGN - 1)
228
229 #define SSS_HASH_QUEUE_LENGTH   10
230
231 /**
232  * struct samsung_aes_variant - platform specific SSS driver data
233  * @aes_offset: AES register offset from SSS module's base.
234  * @hash_offset: HASH register offset from SSS module's base.
235  * @clk_names: names of clocks needed to run SSS IP
236  *
237  * Specifies platform specific configuration of SSS module.
238  * Note: A structure for driver specific platform data is used for future
239  * expansion of its usage.
240  */
241 struct samsung_aes_variant {
242         unsigned int                    aes_offset;
243         unsigned int                    hash_offset;
244         const char                      *clk_names[2];
245 };
246
247 struct s5p_aes_reqctx {
248         unsigned long                   mode;
249 };
250
251 struct s5p_aes_ctx {
252         struct s5p_aes_dev              *dev;
253
254         u8                              aes_key[AES_MAX_KEY_SIZE];
255         u8                              nonce[CTR_RFC3686_NONCE_SIZE];
256         int                             keylen;
257 };
258
259 /**
260  * struct s5p_aes_dev - Crypto device state container
261  * @dev:        Associated device
262  * @clk:        Clock for accessing hardware
263  * @ioaddr:     Mapped IO memory region
264  * @aes_ioaddr: Per-varian offset for AES block IO memory
265  * @irq_fc:     Feed control interrupt line
266  * @req:        Crypto request currently handled by the device
267  * @ctx:        Configuration for currently handled crypto request
268  * @sg_src:     Scatter list with source data for currently handled block
269  *              in device.  This is DMA-mapped into device.
270  * @sg_dst:     Scatter list with destination data for currently handled block
271  *              in device. This is DMA-mapped into device.
272  * @sg_src_cpy: In case of unaligned access, copied scatter list
273  *              with source data.
274  * @sg_dst_cpy: In case of unaligned access, copied scatter list
275  *              with destination data.
276  * @tasklet:    New request scheduling jib
277  * @queue:      Crypto queue
278  * @busy:       Indicates whether the device is currently handling some request
279  *              thus it uses some of the fields from this state, like:
280  *              req, ctx, sg_src/dst (and copies).  This essentially
281  *              protects against concurrent access to these fields.
282  * @lock:       Lock for protecting both access to device hardware registers
283  *              and fields related to current request (including the busy field).
284  * @res:        Resources for hash.
285  * @io_hash_base: Per-variant offset for HASH block IO memory.
286  * @hash_lock:  Lock for protecting hash_req, hash_queue and hash_flags
287  *              variable.
288  * @hash_flags: Flags for current HASH op.
289  * @hash_queue: Async hash queue.
290  * @hash_tasklet: New HASH request scheduling job.
291  * @xmit_buf:   Buffer for current HASH request transfer into SSS block.
292  * @hash_req:   Current request sending to SSS HASH block.
293  * @hash_sg_iter: Scatterlist transferred through DMA into SSS HASH block.
294  * @hash_sg_cnt: Counter for hash_sg_iter.
295  *
296  * @use_hash:   true if HASH algs enabled
297  */
298 struct s5p_aes_dev {
299         struct device                   *dev;
300         struct clk                      *clk;
301         struct clk                      *pclk;
302         void __iomem                    *ioaddr;
303         void __iomem                    *aes_ioaddr;
304         int                             irq_fc;
305
306         struct ablkcipher_request       *req;
307         struct s5p_aes_ctx              *ctx;
308         struct scatterlist              *sg_src;
309         struct scatterlist              *sg_dst;
310
311         struct scatterlist              *sg_src_cpy;
312         struct scatterlist              *sg_dst_cpy;
313
314         struct tasklet_struct           tasklet;
315         struct crypto_queue             queue;
316         bool                            busy;
317         spinlock_t                      lock;
318
319         struct resource                 *res;
320         void __iomem                    *io_hash_base;
321
322         spinlock_t                      hash_lock; /* protect hash_ vars */
323         unsigned long                   hash_flags;
324         struct crypto_queue             hash_queue;
325         struct tasklet_struct           hash_tasklet;
326
327         u8                              xmit_buf[BUFLEN];
328         struct ahash_request            *hash_req;
329         struct scatterlist              *hash_sg_iter;
330         unsigned int                    hash_sg_cnt;
331
332         bool                            use_hash;
333 };
334
335 /**
336  * struct s5p_hash_reqctx - HASH request context
337  * @dd:         Associated device
338  * @op_update:  Current request operation (OP_UPDATE or OP_FINAL)
339  * @digcnt:     Number of bytes processed by HW (without buffer[] ones)
340  * @digest:     Digest message or IV for partial result
341  * @nregs:      Number of HW registers for digest or IV read/write
342  * @engine:     Bits for selecting type of HASH in SSS block
343  * @sg:         sg for DMA transfer
344  * @sg_len:     Length of sg for DMA transfer
345  * @sgl[]:      sg for joining buffer and req->src scatterlist
346  * @skip:       Skip offset in req->src for current op
347  * @total:      Total number of bytes for current request
348  * @finup:      Keep state for finup or final.
349  * @error:      Keep track of error.
350  * @bufcnt:     Number of bytes holded in buffer[]
351  * @buffer[]:   For byte(s) from end of req->src in UPDATE op
352  */
353 struct s5p_hash_reqctx {
354         struct s5p_aes_dev      *dd;
355         bool                    op_update;
356
357         u64                     digcnt;
358         u8                      digest[SHA256_DIGEST_SIZE];
359
360         unsigned int            nregs; /* digest_size / sizeof(reg) */
361         u32                     engine;
362
363         struct scatterlist      *sg;
364         unsigned int            sg_len;
365         struct scatterlist      sgl[2];
366         unsigned int            skip;
367         unsigned int            total;
368         bool                    finup;
369         bool                    error;
370
371         u32                     bufcnt;
372         u8                      buffer[0];
373 };
374
375 /**
376  * struct s5p_hash_ctx - HASH transformation context
377  * @dd:         Associated device
378  * @flags:      Bits for algorithm HASH.
379  * @fallback:   Software transformation for zero message or size < BUFLEN.
380  */
381 struct s5p_hash_ctx {
382         struct s5p_aes_dev      *dd;
383         unsigned long           flags;
384         struct crypto_shash     *fallback;
385 };
386
387 static const struct samsung_aes_variant s5p_aes_data = {
388         .aes_offset     = 0x4000,
389         .hash_offset    = 0x6000,
390         .clk_names      = { "secss", },
391 };
392
393 static const struct samsung_aes_variant exynos_aes_data = {
394         .aes_offset     = 0x200,
395         .hash_offset    = 0x400,
396         .clk_names      = { "secss", },
397 };
398
399 static const struct samsung_aes_variant exynos5433_slim_aes_data = {
400         .aes_offset     = 0x400,
401         .hash_offset    = 0x800,
402         .clk_names      = { "pclk", "aclk", },
403 };
404
405 static const struct of_device_id s5p_sss_dt_match[] = {
406         {
407                 .compatible = "samsung,s5pv210-secss",
408                 .data = &s5p_aes_data,
409         },
410         {
411                 .compatible = "samsung,exynos4210-secss",
412                 .data = &exynos_aes_data,
413         },
414         {
415                 .compatible = "samsung,exynos5433-slim-sss",
416                 .data = &exynos5433_slim_aes_data,
417         },
418         { },
419 };
420 MODULE_DEVICE_TABLE(of, s5p_sss_dt_match);
421
422 static inline const struct samsung_aes_variant *find_s5p_sss_version
423                                    (const struct platform_device *pdev)
424 {
425         if (IS_ENABLED(CONFIG_OF) && (pdev->dev.of_node)) {
426                 const struct of_device_id *match;
427
428                 match = of_match_node(s5p_sss_dt_match,
429                                         pdev->dev.of_node);
430                 return (const struct samsung_aes_variant *)match->data;
431         }
432         return (const struct samsung_aes_variant *)
433                         platform_get_device_id(pdev)->driver_data;
434 }
435
436 static struct s5p_aes_dev *s5p_dev;
437
438 static void s5p_set_dma_indata(struct s5p_aes_dev *dev,
439                                const struct scatterlist *sg)
440 {
441         SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
442         SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
443 }
444
445 static void s5p_set_dma_outdata(struct s5p_aes_dev *dev,
446                                 const struct scatterlist *sg)
447 {
448         SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
449         SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
450 }
451
452 static void s5p_free_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist **sg)
453 {
454         int len;
455
456         if (!*sg)
457                 return;
458
459         len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
460         free_pages((unsigned long)sg_virt(*sg), get_order(len));
461
462         kfree(*sg);
463         *sg = NULL;
464 }
465
466 static void s5p_sg_copy_buf(void *buf, struct scatterlist *sg,
467                             unsigned int nbytes, int out)
468 {
469         struct scatter_walk walk;
470
471         if (!nbytes)
472                 return;
473
474         scatterwalk_start(&walk, sg);
475         scatterwalk_copychunks(buf, &walk, nbytes, out);
476         scatterwalk_done(&walk, out, 0);
477 }
478
479 static void s5p_sg_done(struct s5p_aes_dev *dev)
480 {
481         struct ablkcipher_request *req = dev->req;
482         struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
483
484         if (dev->sg_dst_cpy) {
485                 dev_dbg(dev->dev,
486                         "Copying %d bytes of output data back to original place\n",
487                         dev->req->nbytes);
488                 s5p_sg_copy_buf(sg_virt(dev->sg_dst_cpy), dev->req->dst,
489                                 dev->req->nbytes, 1);
490         }
491         s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
492         s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
493         if (reqctx->mode & FLAGS_AES_CBC)
494                 memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), AES_BLOCK_SIZE);
495
496         else if (reqctx->mode & FLAGS_AES_CTR)
497                 memcpy_fromio(req->info, dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), AES_BLOCK_SIZE);
498 }
499
500 /* Calls the completion. Cannot be called with dev->lock hold. */
501 static void s5p_aes_complete(struct ablkcipher_request *req, int err)
502 {
503         req->base.complete(&req->base, err);
504 }
505
506 static void s5p_unset_outdata(struct s5p_aes_dev *dev)
507 {
508         dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
509 }
510
511 static void s5p_unset_indata(struct s5p_aes_dev *dev)
512 {
513         dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
514 }
515
516 static int s5p_make_sg_cpy(struct s5p_aes_dev *dev, struct scatterlist *src,
517                            struct scatterlist **dst)
518 {
519         void *pages;
520         int len;
521
522         *dst = kmalloc(sizeof(**dst), GFP_ATOMIC);
523         if (!*dst)
524                 return -ENOMEM;
525
526         len = ALIGN(dev->req->nbytes, AES_BLOCK_SIZE);
527         pages = (void *)__get_free_pages(GFP_ATOMIC, get_order(len));
528         if (!pages) {
529                 kfree(*dst);
530                 *dst = NULL;
531                 return -ENOMEM;
532         }
533
534         s5p_sg_copy_buf(pages, src, dev->req->nbytes, 0);
535
536         sg_init_table(*dst, 1);
537         sg_set_buf(*dst, pages, len);
538
539         return 0;
540 }
541
542 static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
543 {
544         if (!sg->length)
545                 return -EINVAL;
546
547         if (!dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE))
548                 return -ENOMEM;
549
550         dev->sg_dst = sg;
551
552         return 0;
553 }
554
555 static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
556 {
557         if (!sg->length)
558                 return -EINVAL;
559
560         if (!dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE))
561                 return -ENOMEM;
562
563         dev->sg_src = sg;
564
565         return 0;
566 }
567
568 /*
569  * Returns -ERRNO on error (mapping of new data failed).
570  * On success returns:
571  *  - 0 if there is no more data,
572  *  - 1 if new transmitting (output) data is ready and its address+length
573  *     have to be written to device (by calling s5p_set_dma_outdata()).
574  */
575 static int s5p_aes_tx(struct s5p_aes_dev *dev)
576 {
577         int ret = 0;
578
579         s5p_unset_outdata(dev);
580
581         if (!sg_is_last(dev->sg_dst)) {
582                 ret = s5p_set_outdata(dev, sg_next(dev->sg_dst));
583                 if (!ret)
584                         ret = 1;
585         }
586
587         return ret;
588 }
589
590 /*
591  * Returns -ERRNO on error (mapping of new data failed).
592  * On success returns:
593  *  - 0 if there is no more data,
594  *  - 1 if new receiving (input) data is ready and its address+length
595  *     have to be written to device (by calling s5p_set_dma_indata()).
596  */
597 static int s5p_aes_rx(struct s5p_aes_dev *dev/*, bool *set_dma*/)
598 {
599         int ret = 0;
600
601         s5p_unset_indata(dev);
602
603         if (!sg_is_last(dev->sg_src)) {
604                 ret = s5p_set_indata(dev, sg_next(dev->sg_src));
605                 if (!ret)
606                         ret = 1;
607         }
608
609         return ret;
610 }
611
612 static inline u32 s5p_hash_read(struct s5p_aes_dev *dd, u32 offset)
613 {
614         return __raw_readl(dd->io_hash_base + offset);
615 }
616
617 static inline void s5p_hash_write(struct s5p_aes_dev *dd,
618                                   u32 offset, u32 value)
619 {
620         __raw_writel(value, dd->io_hash_base + offset);
621 }
622
623 /**
624  * s5p_set_dma_hashdata() - start DMA with sg
625  * @dev:        device
626  * @sg:         scatterlist ready to DMA transmit
627  */
628 static void s5p_set_dma_hashdata(struct s5p_aes_dev *dev,
629                                  const struct scatterlist *sg)
630 {
631         dev->hash_sg_cnt--;
632         SSS_WRITE(dev, FCHRDMAS, sg_dma_address(sg));
633         SSS_WRITE(dev, FCHRDMAL, sg_dma_len(sg)); /* DMA starts */
634 }
635
636 /**
637  * s5p_hash_rx() - get next hash_sg_iter
638  * @dev:        device
639  *
640  * Return:
641  * 2    if there is no more data and it is UPDATE op
642  * 1    if new receiving (input) data is ready and can be written to device
643  * 0    if there is no more data and it is FINAL op
644  */
645 static int s5p_hash_rx(struct s5p_aes_dev *dev)
646 {
647         if (dev->hash_sg_cnt > 0) {
648                 dev->hash_sg_iter = sg_next(dev->hash_sg_iter);
649                 return 1;
650         }
651
652         set_bit(HASH_FLAGS_DMA_READY, &dev->hash_flags);
653         if (test_bit(HASH_FLAGS_FINAL, &dev->hash_flags))
654                 return 0;
655
656         return 2;
657 }
658
659 static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
660 {
661         struct platform_device *pdev = dev_id;
662         struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
663         struct ablkcipher_request *req;
664         int err_dma_tx = 0;
665         int err_dma_rx = 0;
666         int err_dma_hx = 0;
667         bool tx_end = false;
668         bool hx_end = false;
669         unsigned long flags;
670         u32 status, st_bits;
671         int err;
672
673         spin_lock_irqsave(&dev->lock, flags);
674
675         /*
676          * Handle rx or tx interrupt. If there is still data (scatterlist did not
677          * reach end), then map next scatterlist entry.
678          * In case of such mapping error, s5p_aes_complete() should be called.
679          *
680          * If there is no more data in tx scatter list, call s5p_aes_complete()
681          * and schedule new tasklet.
682          *
683          * Handle hx interrupt. If there is still data map next entry.
684          */
685         status = SSS_READ(dev, FCINTSTAT);
686         if (status & SSS_FCINTSTAT_BRDMAINT)
687                 err_dma_rx = s5p_aes_rx(dev);
688
689         if (status & SSS_FCINTSTAT_BTDMAINT) {
690                 if (sg_is_last(dev->sg_dst))
691                         tx_end = true;
692                 err_dma_tx = s5p_aes_tx(dev);
693         }
694
695         if (status & SSS_FCINTSTAT_HRDMAINT)
696                 err_dma_hx = s5p_hash_rx(dev);
697
698         st_bits = status & (SSS_FCINTSTAT_BRDMAINT | SSS_FCINTSTAT_BTDMAINT |
699                                 SSS_FCINTSTAT_HRDMAINT);
700         /* clear DMA bits */
701         SSS_WRITE(dev, FCINTPEND, st_bits);
702
703         /* clear HASH irq bits */
704         if (status & (SSS_FCINTSTAT_HDONEINT | SSS_FCINTSTAT_HPARTINT)) {
705                 /* cannot have both HPART and HDONE */
706                 if (status & SSS_FCINTSTAT_HPARTINT)
707                         st_bits = SSS_HASH_STATUS_PARTIAL_DONE;
708
709                 if (status & SSS_FCINTSTAT_HDONEINT)
710                         st_bits = SSS_HASH_STATUS_MSG_DONE;
711
712                 set_bit(HASH_FLAGS_OUTPUT_READY, &dev->hash_flags);
713                 s5p_hash_write(dev, SSS_REG_HASH_STATUS, st_bits);
714                 hx_end = true;
715                 /* when DONE or PART, do not handle HASH DMA */
716                 err_dma_hx = 0;
717         }
718
719         if (err_dma_rx < 0) {
720                 err = err_dma_rx;
721                 goto error;
722         }
723         if (err_dma_tx < 0) {
724                 err = err_dma_tx;
725                 goto error;
726         }
727
728         if (tx_end) {
729                 s5p_sg_done(dev);
730                 if (err_dma_hx == 1)
731                         s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
732
733                 spin_unlock_irqrestore(&dev->lock, flags);
734
735                 s5p_aes_complete(dev->req, 0);
736                 /* Device is still busy */
737                 tasklet_schedule(&dev->tasklet);
738         } else {
739                 /*
740                  * Writing length of DMA block (either receiving or
741                  * transmitting) will start the operation immediately, so this
742                  * should be done at the end (even after clearing pending
743                  * interrupts to not miss the interrupt).
744                  */
745                 if (err_dma_tx == 1)
746                         s5p_set_dma_outdata(dev, dev->sg_dst);
747                 if (err_dma_rx == 1)
748                         s5p_set_dma_indata(dev, dev->sg_src);
749                 if (err_dma_hx == 1)
750                         s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
751
752                 spin_unlock_irqrestore(&dev->lock, flags);
753         }
754
755         goto hash_irq_end;
756
757 error:
758         s5p_sg_done(dev);
759         dev->busy = false;
760         req = dev->req;
761         if (err_dma_hx == 1)
762                 s5p_set_dma_hashdata(dev, dev->hash_sg_iter);
763
764         spin_unlock_irqrestore(&dev->lock, flags);
765         s5p_aes_complete(req, err);
766
767 hash_irq_end:
768         /*
769          * Note about else if:
770          *   when hash_sg_iter reaches end and its UPDATE op,
771          *   issue SSS_HASH_PAUSE and wait for HPART irq
772          */
773         if (hx_end)
774                 tasklet_schedule(&dev->hash_tasklet);
775         else if (err_dma_hx == 2)
776                 s5p_hash_write(dev, SSS_REG_HASH_CTRL_PAUSE,
777                                SSS_HASH_PAUSE);
778
779         return IRQ_HANDLED;
780 }
781
782 /**
783  * s5p_hash_read_msg() - read message or IV from HW
784  * @req:        AHASH request
785  */
786 static void s5p_hash_read_msg(struct ahash_request *req)
787 {
788         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
789         struct s5p_aes_dev *dd = ctx->dd;
790         u32 *hash = (u32 *)ctx->digest;
791         unsigned int i;
792
793         for (i = 0; i < ctx->nregs; i++)
794                 hash[i] = s5p_hash_read(dd, SSS_REG_HASH_OUT(i));
795 }
796
797 /**
798  * s5p_hash_write_ctx_iv() - write IV for next partial/finup op.
799  * @dd:         device
800  * @ctx:        request context
801  */
802 static void s5p_hash_write_ctx_iv(struct s5p_aes_dev *dd,
803                                   const struct s5p_hash_reqctx *ctx)
804 {
805         const u32 *hash = (const u32 *)ctx->digest;
806         unsigned int i;
807
808         for (i = 0; i < ctx->nregs; i++)
809                 s5p_hash_write(dd, SSS_REG_HASH_IV(i), hash[i]);
810 }
811
812 /**
813  * s5p_hash_write_iv() - write IV for next partial/finup op.
814  * @req:        AHASH request
815  */
816 static void s5p_hash_write_iv(struct ahash_request *req)
817 {
818         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
819
820         s5p_hash_write_ctx_iv(ctx->dd, ctx);
821 }
822
823 /**
824  * s5p_hash_copy_result() - copy digest into req->result
825  * @req:        AHASH request
826  */
827 static void s5p_hash_copy_result(struct ahash_request *req)
828 {
829         const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
830
831         if (!req->result)
832                 return;
833
834         memcpy(req->result, ctx->digest, ctx->nregs * HASH_REG_SIZEOF);
835 }
836
837 /**
838  * s5p_hash_dma_flush() - flush HASH DMA
839  * @dev:        secss device
840  */
841 static void s5p_hash_dma_flush(struct s5p_aes_dev *dev)
842 {
843         SSS_WRITE(dev, FCHRDMAC, SSS_FCHRDMAC_FLUSH);
844 }
845
846 /**
847  * s5p_hash_dma_enable() - enable DMA mode for HASH
848  * @dev:        secss device
849  *
850  * enable DMA mode for HASH
851  */
852 static void s5p_hash_dma_enable(struct s5p_aes_dev *dev)
853 {
854         s5p_hash_write(dev, SSS_REG_HASH_CTRL_FIFO, SSS_HASH_FIFO_MODE_DMA);
855 }
856
857 /**
858  * s5p_hash_irq_disable() - disable irq HASH signals
859  * @dev:        secss device
860  * @flags:      bitfield with irq's to be disabled
861  */
862 static void s5p_hash_irq_disable(struct s5p_aes_dev *dev, u32 flags)
863 {
864         SSS_WRITE(dev, FCINTENCLR, flags);
865 }
866
867 /**
868  * s5p_hash_irq_enable() - enable irq signals
869  * @dev:        secss device
870  * @flags:      bitfield with irq's to be enabled
871  */
872 static void s5p_hash_irq_enable(struct s5p_aes_dev *dev, int flags)
873 {
874         SSS_WRITE(dev, FCINTENSET, flags);
875 }
876
877 /**
878  * s5p_hash_set_flow() - set flow inside SecSS AES/DES with/without HASH
879  * @dev:        secss device
880  * @hashflow:   HASH stream flow with/without crypto AES/DES
881  */
882 static void s5p_hash_set_flow(struct s5p_aes_dev *dev, u32 hashflow)
883 {
884         unsigned long flags;
885         u32 flow;
886
887         spin_lock_irqsave(&dev->lock, flags);
888
889         flow = SSS_READ(dev, FCFIFOCTRL);
890         flow &= ~SSS_HASHIN_MASK;
891         flow |= hashflow;
892         SSS_WRITE(dev, FCFIFOCTRL, flow);
893
894         spin_unlock_irqrestore(&dev->lock, flags);
895 }
896
897 /**
898  * s5p_ahash_dma_init() - enable DMA and set HASH flow inside SecSS
899  * @dev:        secss device
900  * @hashflow:   HASH stream flow with/without AES/DES
901  *
902  * flush HASH DMA and enable DMA, set HASH stream flow inside SecSS HW,
903  * enable HASH irq's HRDMA, HDONE, HPART
904  */
905 static void s5p_ahash_dma_init(struct s5p_aes_dev *dev, u32 hashflow)
906 {
907         s5p_hash_irq_disable(dev, SSS_FCINTENCLR_HRDMAINTENCLR |
908                              SSS_FCINTENCLR_HDONEINTENCLR |
909                              SSS_FCINTENCLR_HPARTINTENCLR);
910         s5p_hash_dma_flush(dev);
911
912         s5p_hash_dma_enable(dev);
913         s5p_hash_set_flow(dev, hashflow & SSS_HASHIN_MASK);
914         s5p_hash_irq_enable(dev, SSS_FCINTENSET_HRDMAINTENSET |
915                             SSS_FCINTENSET_HDONEINTENSET |
916                             SSS_FCINTENSET_HPARTINTENSET);
917 }
918
919 /**
920  * s5p_hash_write_ctrl() - prepare HASH block in SecSS for processing
921  * @dd:         secss device
922  * @length:     length for request
923  * @final:      true if final op
924  *
925  * Prepare SSS HASH block for processing bytes in DMA mode. If it is called
926  * after previous updates, fill up IV words. For final, calculate and set
927  * lengths for HASH so SecSS can finalize hash. For partial, set SSS HASH
928  * length as 2^63 so it will be never reached and set to zero prelow and
929  * prehigh.
930  *
931  * This function does not start DMA transfer.
932  */
933 static void s5p_hash_write_ctrl(struct s5p_aes_dev *dd, size_t length,
934                                 bool final)
935 {
936         struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
937         u32 prelow, prehigh, low, high;
938         u32 configflags, swapflags;
939         u64 tmplen;
940
941         configflags = ctx->engine | SSS_HASH_INIT_BIT;
942
943         if (likely(ctx->digcnt)) {
944                 s5p_hash_write_ctx_iv(dd, ctx);
945                 configflags |= SSS_HASH_USER_IV_EN;
946         }
947
948         if (final) {
949                 /* number of bytes for last part */
950                 low = length;
951                 high = 0;
952                 /* total number of bits prev hashed */
953                 tmplen = ctx->digcnt * 8;
954                 prelow = (u32)tmplen;
955                 prehigh = (u32)(tmplen >> 32);
956         } else {
957                 prelow = 0;
958                 prehigh = 0;
959                 low = 0;
960                 high = BIT(31);
961         }
962
963         swapflags = SSS_HASH_BYTESWAP_DI | SSS_HASH_BYTESWAP_DO |
964                     SSS_HASH_BYTESWAP_IV | SSS_HASH_BYTESWAP_KEY;
965
966         s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_LOW, low);
967         s5p_hash_write(dd, SSS_REG_HASH_MSG_SIZE_HIGH, high);
968         s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_LOW, prelow);
969         s5p_hash_write(dd, SSS_REG_HASH_PRE_MSG_SIZE_HIGH, prehigh);
970
971         s5p_hash_write(dd, SSS_REG_HASH_CTRL_SWAP, swapflags);
972         s5p_hash_write(dd, SSS_REG_HASH_CTRL, configflags);
973 }
974
975 /**
976  * s5p_hash_xmit_dma() - start DMA hash processing
977  * @dd:         secss device
978  * @length:     length for request
979  * @final:      true if final op
980  *
981  * Update digcnt here, as it is needed for finup/final op.
982  */
983 static int s5p_hash_xmit_dma(struct s5p_aes_dev *dd, size_t length,
984                              bool final)
985 {
986         struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
987         unsigned int cnt;
988
989         cnt = dma_map_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
990         if (!cnt) {
991                 dev_err(dd->dev, "dma_map_sg error\n");
992                 ctx->error = true;
993                 return -EINVAL;
994         }
995
996         set_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
997         dd->hash_sg_iter = ctx->sg;
998         dd->hash_sg_cnt = cnt;
999         s5p_hash_write_ctrl(dd, length, final);
1000         ctx->digcnt += length;
1001         ctx->total -= length;
1002
1003         /* catch last interrupt */
1004         if (final)
1005                 set_bit(HASH_FLAGS_FINAL, &dd->hash_flags);
1006
1007         s5p_set_dma_hashdata(dd, dd->hash_sg_iter); /* DMA starts */
1008
1009         return -EINPROGRESS;
1010 }
1011
1012 /**
1013  * s5p_hash_copy_sgs() - copy request's bytes into new buffer
1014  * @ctx:        request context
1015  * @sg:         source scatterlist request
1016  * @new_len:    number of bytes to process from sg
1017  *
1018  * Allocate new buffer, copy data for HASH into it. If there was xmit_buf
1019  * filled, copy it first, then copy data from sg into it. Prepare one sgl[0]
1020  * with allocated buffer.
1021  *
1022  * Set bit in dd->hash_flag so we can free it after irq ends processing.
1023  */
1024 static int s5p_hash_copy_sgs(struct s5p_hash_reqctx *ctx,
1025                              struct scatterlist *sg, unsigned int new_len)
1026 {
1027         unsigned int pages, len;
1028         void *buf;
1029
1030         len = new_len + ctx->bufcnt;
1031         pages = get_order(len);
1032
1033         buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
1034         if (!buf) {
1035                 dev_err(ctx->dd->dev, "alloc pages for unaligned case.\n");
1036                 ctx->error = true;
1037                 return -ENOMEM;
1038         }
1039
1040         if (ctx->bufcnt)
1041                 memcpy(buf, ctx->dd->xmit_buf, ctx->bufcnt);
1042
1043         scatterwalk_map_and_copy(buf + ctx->bufcnt, sg, ctx->skip,
1044                                  new_len, 0);
1045         sg_init_table(ctx->sgl, 1);
1046         sg_set_buf(ctx->sgl, buf, len);
1047         ctx->sg = ctx->sgl;
1048         ctx->sg_len = 1;
1049         ctx->bufcnt = 0;
1050         ctx->skip = 0;
1051         set_bit(HASH_FLAGS_SGS_COPIED, &ctx->dd->hash_flags);
1052
1053         return 0;
1054 }
1055
1056 /**
1057  * s5p_hash_copy_sg_lists() - copy sg list and make fixes in copy
1058  * @ctx:        request context
1059  * @sg:         source scatterlist request
1060  * @new_len:    number of bytes to process from sg
1061  *
1062  * Allocate new scatterlist table, copy data for HASH into it. If there was
1063  * xmit_buf filled, prepare it first, then copy page, length and offset from
1064  * source sg into it, adjusting begin and/or end for skip offset and
1065  * hash_later value.
1066  *
1067  * Resulting sg table will be assigned to ctx->sg. Set flag so we can free
1068  * it after irq ends processing.
1069  */
1070 static int s5p_hash_copy_sg_lists(struct s5p_hash_reqctx *ctx,
1071                                   struct scatterlist *sg, unsigned int new_len)
1072 {
1073         unsigned int skip = ctx->skip, n = sg_nents(sg);
1074         struct scatterlist *tmp;
1075         unsigned int len;
1076
1077         if (ctx->bufcnt)
1078                 n++;
1079
1080         ctx->sg = kmalloc_array(n, sizeof(*sg), GFP_KERNEL);
1081         if (!ctx->sg) {
1082                 ctx->error = true;
1083                 return -ENOMEM;
1084         }
1085
1086         sg_init_table(ctx->sg, n);
1087
1088         tmp = ctx->sg;
1089
1090         ctx->sg_len = 0;
1091
1092         if (ctx->bufcnt) {
1093                 sg_set_buf(tmp, ctx->dd->xmit_buf, ctx->bufcnt);
1094                 tmp = sg_next(tmp);
1095                 ctx->sg_len++;
1096         }
1097
1098         while (sg && skip >= sg->length) {
1099                 skip -= sg->length;
1100                 sg = sg_next(sg);
1101         }
1102
1103         while (sg && new_len) {
1104                 len = sg->length - skip;
1105                 if (new_len < len)
1106                         len = new_len;
1107
1108                 new_len -= len;
1109                 sg_set_page(tmp, sg_page(sg), len, sg->offset + skip);
1110                 skip = 0;
1111                 if (new_len <= 0)
1112                         sg_mark_end(tmp);
1113
1114                 tmp = sg_next(tmp);
1115                 ctx->sg_len++;
1116                 sg = sg_next(sg);
1117         }
1118
1119         set_bit(HASH_FLAGS_SGS_ALLOCED, &ctx->dd->hash_flags);
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * s5p_hash_prepare_sgs() - prepare sg for processing
1126  * @ctx:        request context
1127  * @sg:         source scatterlist request
1128  * @nbytes:     number of bytes to process from sg
1129  * @final:      final flag
1130  *
1131  * Check two conditions: (1) if buffers in sg have len aligned data, and (2)
1132  * sg table have good aligned elements (list_ok). If one of this checks fails,
1133  * then either (1) allocates new buffer for data with s5p_hash_copy_sgs, copy
1134  * data into this buffer and prepare request in sgl, or (2) allocates new sg
1135  * table and prepare sg elements.
1136  *
1137  * For digest or finup all conditions can be good, and we may not need any
1138  * fixes.
1139  */
1140 static int s5p_hash_prepare_sgs(struct s5p_hash_reqctx *ctx,
1141                                 struct scatterlist *sg,
1142                                 unsigned int new_len, bool final)
1143 {
1144         unsigned int skip = ctx->skip, nbytes = new_len, n = 0;
1145         bool aligned = true, list_ok = true;
1146         struct scatterlist *sg_tmp = sg;
1147
1148         if (!sg || !sg->length || !new_len)
1149                 return 0;
1150
1151         if (skip || !final)
1152                 list_ok = false;
1153
1154         while (nbytes > 0 && sg_tmp) {
1155                 n++;
1156                 if (skip >= sg_tmp->length) {
1157                         skip -= sg_tmp->length;
1158                         if (!sg_tmp->length) {
1159                                 aligned = false;
1160                                 break;
1161                         }
1162                 } else {
1163                         if (!IS_ALIGNED(sg_tmp->length - skip, BUFLEN)) {
1164                                 aligned = false;
1165                                 break;
1166                         }
1167
1168                         if (nbytes < sg_tmp->length - skip) {
1169                                 list_ok = false;
1170                                 break;
1171                         }
1172
1173                         nbytes -= sg_tmp->length - skip;
1174                         skip = 0;
1175                 }
1176
1177                 sg_tmp = sg_next(sg_tmp);
1178         }
1179
1180         if (!aligned)
1181                 return s5p_hash_copy_sgs(ctx, sg, new_len);
1182         else if (!list_ok)
1183                 return s5p_hash_copy_sg_lists(ctx, sg, new_len);
1184
1185         /*
1186          * Have aligned data from previous operation and/or current
1187          * Note: will enter here only if (digest or finup) and aligned
1188          */
1189         if (ctx->bufcnt) {
1190                 ctx->sg_len = n;
1191                 sg_init_table(ctx->sgl, 2);
1192                 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, ctx->bufcnt);
1193                 sg_chain(ctx->sgl, 2, sg);
1194                 ctx->sg = ctx->sgl;
1195                 ctx->sg_len++;
1196         } else {
1197                 ctx->sg = sg;
1198                 ctx->sg_len = n;
1199         }
1200
1201         return 0;
1202 }
1203
1204 /**
1205  * s5p_hash_prepare_request() - prepare request for processing
1206  * @req:        AHASH request
1207  * @update:     true if UPDATE op
1208  *
1209  * Note 1: we can have update flag _and_ final flag at the same time.
1210  * Note 2: we enter here when digcnt > BUFLEN (=HASH_BLOCK_SIZE) or
1211  *         either req->nbytes or ctx->bufcnt + req->nbytes is > BUFLEN or
1212  *         we have final op
1213  */
1214 static int s5p_hash_prepare_request(struct ahash_request *req, bool update)
1215 {
1216         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1217         bool final = ctx->finup;
1218         int xmit_len, hash_later, nbytes;
1219         int ret;
1220
1221         if (update)
1222                 nbytes = req->nbytes;
1223         else
1224                 nbytes = 0;
1225
1226         ctx->total = nbytes + ctx->bufcnt;
1227         if (!ctx->total)
1228                 return 0;
1229
1230         if (nbytes && (!IS_ALIGNED(ctx->bufcnt, BUFLEN))) {
1231                 /* bytes left from previous request, so fill up to BUFLEN */
1232                 int len = BUFLEN - ctx->bufcnt % BUFLEN;
1233
1234                 if (len > nbytes)
1235                         len = nbytes;
1236
1237                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1238                                          0, len, 0);
1239                 ctx->bufcnt += len;
1240                 nbytes -= len;
1241                 ctx->skip = len;
1242         } else {
1243                 ctx->skip = 0;
1244         }
1245
1246         if (ctx->bufcnt)
1247                 memcpy(ctx->dd->xmit_buf, ctx->buffer, ctx->bufcnt);
1248
1249         xmit_len = ctx->total;
1250         if (final) {
1251                 hash_later = 0;
1252         } else {
1253                 if (IS_ALIGNED(xmit_len, BUFLEN))
1254                         xmit_len -= BUFLEN;
1255                 else
1256                         xmit_len -= xmit_len & (BUFLEN - 1);
1257
1258                 hash_later = ctx->total - xmit_len;
1259                 /* copy hash_later bytes from end of req->src */
1260                 /* previous bytes are in xmit_buf, so no overwrite */
1261                 scatterwalk_map_and_copy(ctx->buffer, req->src,
1262                                          req->nbytes - hash_later,
1263                                          hash_later, 0);
1264         }
1265
1266         if (xmit_len > BUFLEN) {
1267                 ret = s5p_hash_prepare_sgs(ctx, req->src, nbytes - hash_later,
1268                                            final);
1269                 if (ret)
1270                         return ret;
1271         } else {
1272                 /* have buffered data only */
1273                 if (unlikely(!ctx->bufcnt)) {
1274                         /* first update didn't fill up buffer */
1275                         scatterwalk_map_and_copy(ctx->dd->xmit_buf, req->src,
1276                                                  0, xmit_len, 0);
1277                 }
1278
1279                 sg_init_table(ctx->sgl, 1);
1280                 sg_set_buf(ctx->sgl, ctx->dd->xmit_buf, xmit_len);
1281
1282                 ctx->sg = ctx->sgl;
1283                 ctx->sg_len = 1;
1284         }
1285
1286         ctx->bufcnt = hash_later;
1287         if (!final)
1288                 ctx->total = xmit_len;
1289
1290         return 0;
1291 }
1292
1293 /**
1294  * s5p_hash_update_dma_stop() - unmap DMA
1295  * @dd:         secss device
1296  *
1297  * Unmap scatterlist ctx->sg.
1298  */
1299 static void s5p_hash_update_dma_stop(struct s5p_aes_dev *dd)
1300 {
1301         const struct s5p_hash_reqctx *ctx = ahash_request_ctx(dd->hash_req);
1302
1303         dma_unmap_sg(dd->dev, ctx->sg, ctx->sg_len, DMA_TO_DEVICE);
1304         clear_bit(HASH_FLAGS_DMA_ACTIVE, &dd->hash_flags);
1305 }
1306
1307 /**
1308  * s5p_hash_finish() - copy calculated digest to crypto layer
1309  * @req:        AHASH request
1310  */
1311 static void s5p_hash_finish(struct ahash_request *req)
1312 {
1313         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1314         struct s5p_aes_dev *dd = ctx->dd;
1315
1316         if (ctx->digcnt)
1317                 s5p_hash_copy_result(req);
1318
1319         dev_dbg(dd->dev, "hash_finish digcnt: %lld\n", ctx->digcnt);
1320 }
1321
1322 /**
1323  * s5p_hash_finish_req() - finish request
1324  * @req:        AHASH request
1325  * @err:        error
1326  */
1327 static void s5p_hash_finish_req(struct ahash_request *req, int err)
1328 {
1329         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1330         struct s5p_aes_dev *dd = ctx->dd;
1331         unsigned long flags;
1332
1333         if (test_bit(HASH_FLAGS_SGS_COPIED, &dd->hash_flags))
1334                 free_pages((unsigned long)sg_virt(ctx->sg),
1335                            get_order(ctx->sg->length));
1336
1337         if (test_bit(HASH_FLAGS_SGS_ALLOCED, &dd->hash_flags))
1338                 kfree(ctx->sg);
1339
1340         ctx->sg = NULL;
1341         dd->hash_flags &= ~(BIT(HASH_FLAGS_SGS_ALLOCED) |
1342                             BIT(HASH_FLAGS_SGS_COPIED));
1343
1344         if (!err && !ctx->error) {
1345                 s5p_hash_read_msg(req);
1346                 if (test_bit(HASH_FLAGS_FINAL, &dd->hash_flags))
1347                         s5p_hash_finish(req);
1348         } else {
1349                 ctx->error = true;
1350         }
1351
1352         spin_lock_irqsave(&dd->hash_lock, flags);
1353         dd->hash_flags &= ~(BIT(HASH_FLAGS_BUSY) | BIT(HASH_FLAGS_FINAL) |
1354                             BIT(HASH_FLAGS_DMA_READY) |
1355                             BIT(HASH_FLAGS_OUTPUT_READY));
1356         spin_unlock_irqrestore(&dd->hash_lock, flags);
1357
1358         if (req->base.complete)
1359                 req->base.complete(&req->base, err);
1360 }
1361
1362 /**
1363  * s5p_hash_handle_queue() - handle hash queue
1364  * @dd:         device s5p_aes_dev
1365  * @req:        AHASH request
1366  *
1367  * If req!=NULL enqueue it on dd->queue, if FLAGS_BUSY is not set on the
1368  * device then processes the first request from the dd->queue
1369  *
1370  * Returns: see s5p_hash_final below.
1371  */
1372 static int s5p_hash_handle_queue(struct s5p_aes_dev *dd,
1373                                  struct ahash_request *req)
1374 {
1375         struct crypto_async_request *async_req, *backlog;
1376         struct s5p_hash_reqctx *ctx;
1377         unsigned long flags;
1378         int err = 0, ret = 0;
1379
1380 retry:
1381         spin_lock_irqsave(&dd->hash_lock, flags);
1382         if (req)
1383                 ret = ahash_enqueue_request(&dd->hash_queue, req);
1384
1385         if (test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1386                 spin_unlock_irqrestore(&dd->hash_lock, flags);
1387                 return ret;
1388         }
1389
1390         backlog = crypto_get_backlog(&dd->hash_queue);
1391         async_req = crypto_dequeue_request(&dd->hash_queue);
1392         if (async_req)
1393                 set_bit(HASH_FLAGS_BUSY, &dd->hash_flags);
1394
1395         spin_unlock_irqrestore(&dd->hash_lock, flags);
1396
1397         if (!async_req)
1398                 return ret;
1399
1400         if (backlog)
1401                 backlog->complete(backlog, -EINPROGRESS);
1402
1403         req = ahash_request_cast(async_req);
1404         dd->hash_req = req;
1405         ctx = ahash_request_ctx(req);
1406
1407         err = s5p_hash_prepare_request(req, ctx->op_update);
1408         if (err || !ctx->total)
1409                 goto out;
1410
1411         dev_dbg(dd->dev, "handling new req, op_update: %u, nbytes: %d\n",
1412                 ctx->op_update, req->nbytes);
1413
1414         s5p_ahash_dma_init(dd, SSS_HASHIN_INDEPENDENT);
1415         if (ctx->digcnt)
1416                 s5p_hash_write_iv(req); /* restore hash IV */
1417
1418         if (ctx->op_update) { /* HASH_OP_UPDATE */
1419                 err = s5p_hash_xmit_dma(dd, ctx->total, ctx->finup);
1420                 if (err != -EINPROGRESS && ctx->finup && !ctx->error)
1421                         /* no final() after finup() */
1422                         err = s5p_hash_xmit_dma(dd, ctx->total, true);
1423         } else { /* HASH_OP_FINAL */
1424                 err = s5p_hash_xmit_dma(dd, ctx->total, true);
1425         }
1426 out:
1427         if (err != -EINPROGRESS) {
1428                 /* hash_tasklet_cb will not finish it, so do it here */
1429                 s5p_hash_finish_req(req, err);
1430                 req = NULL;
1431
1432                 /*
1433                  * Execute next request immediately if there is anything
1434                  * in queue.
1435                  */
1436                 goto retry;
1437         }
1438
1439         return ret;
1440 }
1441
1442 /**
1443  * s5p_hash_tasklet_cb() - hash tasklet
1444  * @data:       ptr to s5p_aes_dev
1445  */
1446 static void s5p_hash_tasklet_cb(unsigned long data)
1447 {
1448         struct s5p_aes_dev *dd = (struct s5p_aes_dev *)data;
1449
1450         if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags)) {
1451                 s5p_hash_handle_queue(dd, NULL);
1452                 return;
1453         }
1454
1455         if (test_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags)) {
1456                 if (test_and_clear_bit(HASH_FLAGS_DMA_ACTIVE,
1457                                        &dd->hash_flags)) {
1458                         s5p_hash_update_dma_stop(dd);
1459                 }
1460
1461                 if (test_and_clear_bit(HASH_FLAGS_OUTPUT_READY,
1462                                        &dd->hash_flags)) {
1463                         /* hash or semi-hash ready */
1464                         clear_bit(HASH_FLAGS_DMA_READY, &dd->hash_flags);
1465                         goto finish;
1466                 }
1467         }
1468
1469         return;
1470
1471 finish:
1472         /* finish curent request */
1473         s5p_hash_finish_req(dd->hash_req, 0);
1474
1475         /* If we are not busy, process next req */
1476         if (!test_bit(HASH_FLAGS_BUSY, &dd->hash_flags))
1477                 s5p_hash_handle_queue(dd, NULL);
1478 }
1479
1480 /**
1481  * s5p_hash_enqueue() - enqueue request
1482  * @req:        AHASH request
1483  * @op:         operation UPDATE (true) or FINAL (false)
1484  *
1485  * Returns: see s5p_hash_final below.
1486  */
1487 static int s5p_hash_enqueue(struct ahash_request *req, bool op)
1488 {
1489         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1490         struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1491
1492         ctx->op_update = op;
1493
1494         return s5p_hash_handle_queue(tctx->dd, req);
1495 }
1496
1497 /**
1498  * s5p_hash_update() - process the hash input data
1499  * @req:        AHASH request
1500  *
1501  * If request will fit in buffer, copy it and return immediately
1502  * else enqueue it with OP_UPDATE.
1503  *
1504  * Returns: see s5p_hash_final below.
1505  */
1506 static int s5p_hash_update(struct ahash_request *req)
1507 {
1508         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1509
1510         if (!req->nbytes)
1511                 return 0;
1512
1513         if (ctx->bufcnt + req->nbytes <= BUFLEN) {
1514                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, req->src,
1515                                          0, req->nbytes, 0);
1516                 ctx->bufcnt += req->nbytes;
1517                 return 0;
1518         }
1519
1520         return s5p_hash_enqueue(req, true); /* HASH_OP_UPDATE */
1521 }
1522
1523 /**
1524  * s5p_hash_shash_digest() - calculate shash digest
1525  * @tfm:        crypto transformation
1526  * @flags:      tfm flags
1527  * @data:       input data
1528  * @len:        length of data
1529  * @out:        output buffer
1530  */
1531 static int s5p_hash_shash_digest(struct crypto_shash *tfm, u32 flags,
1532                                  const u8 *data, unsigned int len, u8 *out)
1533 {
1534         SHASH_DESC_ON_STACK(shash, tfm);
1535
1536         shash->tfm = tfm;
1537
1538         return crypto_shash_digest(shash, data, len, out);
1539 }
1540
1541 /**
1542  * s5p_hash_final_shash() - calculate shash digest
1543  * @req:        AHASH request
1544  */
1545 static int s5p_hash_final_shash(struct ahash_request *req)
1546 {
1547         struct s5p_hash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1548         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1549
1550         return s5p_hash_shash_digest(tctx->fallback, req->base.flags,
1551                                      ctx->buffer, ctx->bufcnt, req->result);
1552 }
1553
1554 /**
1555  * s5p_hash_final() - close up hash and calculate digest
1556  * @req:        AHASH request
1557  *
1558  * Note: in final req->src do not have any data, and req->nbytes can be
1559  * non-zero.
1560  *
1561  * If there were no input data processed yet and the buffered hash data is
1562  * less than BUFLEN (64) then calculate the final hash immediately by using
1563  * SW algorithm fallback.
1564  *
1565  * Otherwise enqueues the current AHASH request with OP_FINAL operation op
1566  * and finalize hash message in HW. Note that if digcnt!=0 then there were
1567  * previous update op, so there are always some buffered bytes in ctx->buffer,
1568  * which means that ctx->bufcnt!=0
1569  *
1570  * Returns:
1571  * 0 if the request has been processed immediately,
1572  * -EINPROGRESS if the operation has been queued for later execution or is set
1573  *              to processing by HW,
1574  * -EBUSY if queue is full and request should be resubmitted later,
1575  * other negative values denotes an error.
1576  */
1577 static int s5p_hash_final(struct ahash_request *req)
1578 {
1579         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1580
1581         ctx->finup = true;
1582         if (ctx->error)
1583                 return -EINVAL; /* uncompleted hash is not needed */
1584
1585         if (!ctx->digcnt && ctx->bufcnt < BUFLEN)
1586                 return s5p_hash_final_shash(req);
1587
1588         return s5p_hash_enqueue(req, false); /* HASH_OP_FINAL */
1589 }
1590
1591 /**
1592  * s5p_hash_finup() - process last req->src and calculate digest
1593  * @req:        AHASH request containing the last update data
1594  *
1595  * Return values: see s5p_hash_final above.
1596  */
1597 static int s5p_hash_finup(struct ahash_request *req)
1598 {
1599         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1600         int err1, err2;
1601
1602         ctx->finup = true;
1603
1604         err1 = s5p_hash_update(req);
1605         if (err1 == -EINPROGRESS || err1 == -EBUSY)
1606                 return err1;
1607
1608         /*
1609          * final() has to be always called to cleanup resources even if
1610          * update() failed, except EINPROGRESS or calculate digest for small
1611          * size
1612          */
1613         err2 = s5p_hash_final(req);
1614
1615         return err1 ?: err2;
1616 }
1617
1618 /**
1619  * s5p_hash_init() - initialize AHASH request contex
1620  * @req:        AHASH request
1621  *
1622  * Init async hash request context.
1623  */
1624 static int s5p_hash_init(struct ahash_request *req)
1625 {
1626         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1627         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1628         struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1629
1630         ctx->dd = tctx->dd;
1631         ctx->error = false;
1632         ctx->finup = false;
1633         ctx->bufcnt = 0;
1634         ctx->digcnt = 0;
1635         ctx->total = 0;
1636         ctx->skip = 0;
1637
1638         dev_dbg(tctx->dd->dev, "init: digest size: %d\n",
1639                 crypto_ahash_digestsize(tfm));
1640
1641         switch (crypto_ahash_digestsize(tfm)) {
1642         case MD5_DIGEST_SIZE:
1643                 ctx->engine = SSS_HASH_ENGINE_MD5;
1644                 ctx->nregs = HASH_MD5_MAX_REG;
1645                 break;
1646         case SHA1_DIGEST_SIZE:
1647                 ctx->engine = SSS_HASH_ENGINE_SHA1;
1648                 ctx->nregs = HASH_SHA1_MAX_REG;
1649                 break;
1650         case SHA256_DIGEST_SIZE:
1651                 ctx->engine = SSS_HASH_ENGINE_SHA256;
1652                 ctx->nregs = HASH_SHA256_MAX_REG;
1653                 break;
1654         default:
1655                 ctx->error = true;
1656                 return -EINVAL;
1657         }
1658
1659         return 0;
1660 }
1661
1662 /**
1663  * s5p_hash_digest - calculate digest from req->src
1664  * @req:        AHASH request
1665  *
1666  * Return values: see s5p_hash_final above.
1667  */
1668 static int s5p_hash_digest(struct ahash_request *req)
1669 {
1670         return s5p_hash_init(req) ?: s5p_hash_finup(req);
1671 }
1672
1673 /**
1674  * s5p_hash_cra_init_alg - init crypto alg transformation
1675  * @tfm:        crypto transformation
1676  */
1677 static int s5p_hash_cra_init_alg(struct crypto_tfm *tfm)
1678 {
1679         struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1680         const char *alg_name = crypto_tfm_alg_name(tfm);
1681
1682         tctx->dd = s5p_dev;
1683         /* Allocate a fallback and abort if it failed. */
1684         tctx->fallback = crypto_alloc_shash(alg_name, 0,
1685                                             CRYPTO_ALG_NEED_FALLBACK);
1686         if (IS_ERR(tctx->fallback)) {
1687                 pr_err("fallback alloc fails for '%s'\n", alg_name);
1688                 return PTR_ERR(tctx->fallback);
1689         }
1690
1691         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1692                                  sizeof(struct s5p_hash_reqctx) + BUFLEN);
1693
1694         return 0;
1695 }
1696
1697 /**
1698  * s5p_hash_cra_init - init crypto tfm
1699  * @tfm:        crypto transformation
1700  */
1701 static int s5p_hash_cra_init(struct crypto_tfm *tfm)
1702 {
1703         return s5p_hash_cra_init_alg(tfm);
1704 }
1705
1706 /**
1707  * s5p_hash_cra_exit - exit crypto tfm
1708  * @tfm:        crypto transformation
1709  *
1710  * free allocated fallback
1711  */
1712 static void s5p_hash_cra_exit(struct crypto_tfm *tfm)
1713 {
1714         struct s5p_hash_ctx *tctx = crypto_tfm_ctx(tfm);
1715
1716         crypto_free_shash(tctx->fallback);
1717         tctx->fallback = NULL;
1718 }
1719
1720 /**
1721  * s5p_hash_export - export hash state
1722  * @req:        AHASH request
1723  * @out:        buffer for exported state
1724  */
1725 static int s5p_hash_export(struct ahash_request *req, void *out)
1726 {
1727         const struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1728
1729         memcpy(out, ctx, sizeof(*ctx) + ctx->bufcnt);
1730
1731         return 0;
1732 }
1733
1734 /**
1735  * s5p_hash_import - import hash state
1736  * @req:        AHASH request
1737  * @in:         buffer with state to be imported from
1738  */
1739 static int s5p_hash_import(struct ahash_request *req, const void *in)
1740 {
1741         struct s5p_hash_reqctx *ctx = ahash_request_ctx(req);
1742         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1743         struct s5p_hash_ctx *tctx = crypto_ahash_ctx(tfm);
1744         const struct s5p_hash_reqctx *ctx_in = in;
1745
1746         memcpy(ctx, in, sizeof(*ctx) + BUFLEN);
1747         if (ctx_in->bufcnt > BUFLEN) {
1748                 ctx->error = true;
1749                 return -EINVAL;
1750         }
1751
1752         ctx->dd = tctx->dd;
1753         ctx->error = false;
1754
1755         return 0;
1756 }
1757
1758 static struct ahash_alg algs_sha1_md5_sha256[] = {
1759 {
1760         .init           = s5p_hash_init,
1761         .update         = s5p_hash_update,
1762         .final          = s5p_hash_final,
1763         .finup          = s5p_hash_finup,
1764         .digest         = s5p_hash_digest,
1765         .export         = s5p_hash_export,
1766         .import         = s5p_hash_import,
1767         .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1768         .halg.digestsize        = SHA1_DIGEST_SIZE,
1769         .halg.base      = {
1770                 .cra_name               = "sha1",
1771                 .cra_driver_name        = "exynos-sha1",
1772                 .cra_priority           = 100,
1773                 .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1774                                           CRYPTO_ALG_ASYNC |
1775                                           CRYPTO_ALG_NEED_FALLBACK,
1776                 .cra_blocksize          = HASH_BLOCK_SIZE,
1777                 .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1778                 .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1779                 .cra_module             = THIS_MODULE,
1780                 .cra_init               = s5p_hash_cra_init,
1781                 .cra_exit               = s5p_hash_cra_exit,
1782         }
1783 },
1784 {
1785         .init           = s5p_hash_init,
1786         .update         = s5p_hash_update,
1787         .final          = s5p_hash_final,
1788         .finup          = s5p_hash_finup,
1789         .digest         = s5p_hash_digest,
1790         .export         = s5p_hash_export,
1791         .import         = s5p_hash_import,
1792         .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1793         .halg.digestsize        = MD5_DIGEST_SIZE,
1794         .halg.base      = {
1795                 .cra_name               = "md5",
1796                 .cra_driver_name        = "exynos-md5",
1797                 .cra_priority           = 100,
1798                 .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1799                                           CRYPTO_ALG_ASYNC |
1800                                           CRYPTO_ALG_NEED_FALLBACK,
1801                 .cra_blocksize          = HASH_BLOCK_SIZE,
1802                 .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1803                 .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1804                 .cra_module             = THIS_MODULE,
1805                 .cra_init               = s5p_hash_cra_init,
1806                 .cra_exit               = s5p_hash_cra_exit,
1807         }
1808 },
1809 {
1810         .init           = s5p_hash_init,
1811         .update         = s5p_hash_update,
1812         .final          = s5p_hash_final,
1813         .finup          = s5p_hash_finup,
1814         .digest         = s5p_hash_digest,
1815         .export         = s5p_hash_export,
1816         .import         = s5p_hash_import,
1817         .halg.statesize = sizeof(struct s5p_hash_reqctx) + BUFLEN,
1818         .halg.digestsize        = SHA256_DIGEST_SIZE,
1819         .halg.base      = {
1820                 .cra_name               = "sha256",
1821                 .cra_driver_name        = "exynos-sha256",
1822                 .cra_priority           = 100,
1823                 .cra_flags              = CRYPTO_ALG_KERN_DRIVER_ONLY |
1824                                           CRYPTO_ALG_ASYNC |
1825                                           CRYPTO_ALG_NEED_FALLBACK,
1826                 .cra_blocksize          = HASH_BLOCK_SIZE,
1827                 .cra_ctxsize            = sizeof(struct s5p_hash_ctx),
1828                 .cra_alignmask          = SSS_HASH_DMA_ALIGN_MASK,
1829                 .cra_module             = THIS_MODULE,
1830                 .cra_init               = s5p_hash_cra_init,
1831                 .cra_exit               = s5p_hash_cra_exit,
1832         }
1833 }
1834
1835 };
1836
1837 static void s5p_set_aes(struct s5p_aes_dev *dev,
1838                         const u8 *key, const u8 *iv, const u8 *ctr,
1839                         unsigned int keylen)
1840 {
1841         void __iomem *keystart;
1842
1843         if (iv)
1844                 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_IV_DATA(0), iv,
1845                             AES_BLOCK_SIZE);
1846
1847         if (ctr)
1848                 memcpy_toio(dev->aes_ioaddr + SSS_REG_AES_CNT_DATA(0), ctr,
1849                             AES_BLOCK_SIZE);
1850
1851         if (keylen == AES_KEYSIZE_256)
1852                 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(0);
1853         else if (keylen == AES_KEYSIZE_192)
1854                 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(2);
1855         else
1856                 keystart = dev->aes_ioaddr + SSS_REG_AES_KEY_DATA(4);
1857
1858         memcpy_toio(keystart, key, keylen);
1859 }
1860
1861 static bool s5p_is_sg_aligned(struct scatterlist *sg)
1862 {
1863         while (sg) {
1864                 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1865                         return false;
1866                 sg = sg_next(sg);
1867         }
1868
1869         return true;
1870 }
1871
1872 static int s5p_set_indata_start(struct s5p_aes_dev *dev,
1873                                 struct ablkcipher_request *req)
1874 {
1875         struct scatterlist *sg;
1876         int err;
1877
1878         dev->sg_src_cpy = NULL;
1879         sg = req->src;
1880         if (!s5p_is_sg_aligned(sg)) {
1881                 dev_dbg(dev->dev,
1882                         "At least one unaligned source scatter list, making a copy\n");
1883                 err = s5p_make_sg_cpy(dev, sg, &dev->sg_src_cpy);
1884                 if (err)
1885                         return err;
1886
1887                 sg = dev->sg_src_cpy;
1888         }
1889
1890         err = s5p_set_indata(dev, sg);
1891         if (err) {
1892                 s5p_free_sg_cpy(dev, &dev->sg_src_cpy);
1893                 return err;
1894         }
1895
1896         return 0;
1897 }
1898
1899 static int s5p_set_outdata_start(struct s5p_aes_dev *dev,
1900                                  struct ablkcipher_request *req)
1901 {
1902         struct scatterlist *sg;
1903         int err;
1904
1905         dev->sg_dst_cpy = NULL;
1906         sg = req->dst;
1907         if (!s5p_is_sg_aligned(sg)) {
1908                 dev_dbg(dev->dev,
1909                         "At least one unaligned dest scatter list, making a copy\n");
1910                 err = s5p_make_sg_cpy(dev, sg, &dev->sg_dst_cpy);
1911                 if (err)
1912                         return err;
1913
1914                 sg = dev->sg_dst_cpy;
1915         }
1916
1917         err = s5p_set_outdata(dev, sg);
1918         if (err) {
1919                 s5p_free_sg_cpy(dev, &dev->sg_dst_cpy);
1920                 return err;
1921         }
1922
1923         return 0;
1924 }
1925
1926 static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
1927 {
1928         struct ablkcipher_request *req = dev->req;
1929         u32 aes_control;
1930         unsigned long flags;
1931         int err;
1932         u8 *iv, *ctr;
1933
1934         /* This sets bit [13:12] to 00, which selects 128-bit counter */
1935         aes_control = SSS_AES_KEY_CHANGE_MODE;
1936         if (mode & FLAGS_AES_DECRYPT)
1937                 aes_control |= SSS_AES_MODE_DECRYPT;
1938
1939         if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC) {
1940                 aes_control |= SSS_AES_CHAIN_MODE_CBC;
1941                 iv = req->info;
1942                 ctr = NULL;
1943         } else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR) {
1944                 aes_control |= SSS_AES_CHAIN_MODE_CTR;
1945                 iv = NULL;
1946                 ctr = req->info;
1947         } else {
1948                 iv = NULL; /* AES_ECB */
1949                 ctr = NULL;
1950         }
1951
1952         if (dev->ctx->keylen == AES_KEYSIZE_192)
1953                 aes_control |= SSS_AES_KEY_SIZE_192;
1954         else if (dev->ctx->keylen == AES_KEYSIZE_256)
1955                 aes_control |= SSS_AES_KEY_SIZE_256;
1956
1957         aes_control |= SSS_AES_FIFO_MODE;
1958
1959         /* as a variant it is possible to use byte swapping on DMA side */
1960         aes_control |= SSS_AES_BYTESWAP_DI
1961                     |  SSS_AES_BYTESWAP_DO
1962                     |  SSS_AES_BYTESWAP_IV
1963                     |  SSS_AES_BYTESWAP_KEY
1964                     |  SSS_AES_BYTESWAP_CNT;
1965
1966         spin_lock_irqsave(&dev->lock, flags);
1967
1968         SSS_WRITE(dev, FCINTENCLR,
1969                   SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
1970         SSS_WRITE(dev, FCFIFOCTRL, 0x00);
1971
1972         err = s5p_set_indata_start(dev, req);
1973         if (err)
1974                 goto indata_error;
1975
1976         err = s5p_set_outdata_start(dev, req);
1977         if (err)
1978                 goto outdata_error;
1979
1980         SSS_AES_WRITE(dev, AES_CONTROL, aes_control);
1981         s5p_set_aes(dev, dev->ctx->aes_key, iv, ctr, dev->ctx->keylen);
1982
1983         s5p_set_dma_indata(dev,  dev->sg_src);
1984         s5p_set_dma_outdata(dev, dev->sg_dst);
1985
1986         SSS_WRITE(dev, FCINTENSET,
1987                   SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
1988
1989         spin_unlock_irqrestore(&dev->lock, flags);
1990
1991         return;
1992
1993 outdata_error:
1994         s5p_unset_indata(dev);
1995
1996 indata_error:
1997         s5p_sg_done(dev);
1998         dev->busy = false;
1999         spin_unlock_irqrestore(&dev->lock, flags);
2000         s5p_aes_complete(req, err);
2001 }
2002
2003 static void s5p_tasklet_cb(unsigned long data)
2004 {
2005         struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
2006         struct crypto_async_request *async_req, *backlog;
2007         struct s5p_aes_reqctx *reqctx;
2008         unsigned long flags;
2009
2010         spin_lock_irqsave(&dev->lock, flags);
2011         backlog   = crypto_get_backlog(&dev->queue);
2012         async_req = crypto_dequeue_request(&dev->queue);
2013
2014         if (!async_req) {
2015                 dev->busy = false;
2016                 spin_unlock_irqrestore(&dev->lock, flags);
2017                 return;
2018         }
2019         spin_unlock_irqrestore(&dev->lock, flags);
2020
2021         if (backlog)
2022                 backlog->complete(backlog, -EINPROGRESS);
2023
2024         dev->req = ablkcipher_request_cast(async_req);
2025         dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
2026         reqctx   = ablkcipher_request_ctx(dev->req);
2027
2028         s5p_aes_crypt_start(dev, reqctx->mode);
2029 }
2030
2031 static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
2032                               struct ablkcipher_request *req)
2033 {
2034         unsigned long flags;
2035         int err;
2036
2037         spin_lock_irqsave(&dev->lock, flags);
2038         err = ablkcipher_enqueue_request(&dev->queue, req);
2039         if (dev->busy) {
2040                 spin_unlock_irqrestore(&dev->lock, flags);
2041                 return err;
2042         }
2043         dev->busy = true;
2044
2045         spin_unlock_irqrestore(&dev->lock, flags);
2046
2047         tasklet_schedule(&dev->tasklet);
2048
2049         return err;
2050 }
2051
2052 static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
2053 {
2054         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
2055         struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
2056         struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
2057         struct s5p_aes_dev *dev = ctx->dev;
2058
2059         if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE) &&
2060                         ((mode & FLAGS_AES_MODE_MASK) != FLAGS_AES_CTR)) {
2061                 dev_err(dev->dev, "request size is not exact amount of AES blocks\n");
2062                 return -EINVAL;
2063         }
2064
2065         reqctx->mode = mode;
2066
2067         return s5p_aes_handle_req(dev, req);
2068 }
2069
2070 static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
2071                           const u8 *key, unsigned int keylen)
2072 {
2073         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2074         struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2075
2076         if (keylen != AES_KEYSIZE_128 &&
2077             keylen != AES_KEYSIZE_192 &&
2078             keylen != AES_KEYSIZE_256)
2079                 return -EINVAL;
2080
2081         memcpy(ctx->aes_key, key, keylen);
2082         ctx->keylen = keylen;
2083
2084         return 0;
2085 }
2086
2087 static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
2088 {
2089         return s5p_aes_crypt(req, 0);
2090 }
2091
2092 static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
2093 {
2094         return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
2095 }
2096
2097 static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
2098 {
2099         return s5p_aes_crypt(req, FLAGS_AES_CBC);
2100 }
2101
2102 static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
2103 {
2104         return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
2105 }
2106
2107 static int s5p_aes_ctr_crypt(struct ablkcipher_request *req)
2108 {
2109         return s5p_aes_crypt(req, FLAGS_AES_CTR);
2110 }
2111
2112 static int s5p_aes_cra_init(struct crypto_tfm *tfm)
2113 {
2114         struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
2115
2116         ctx->dev = s5p_dev;
2117         tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
2118
2119         return 0;
2120 }
2121
2122 static struct crypto_alg algs[] = {
2123         {
2124                 .cra_name               = "ecb(aes)",
2125                 .cra_driver_name        = "ecb-aes-s5p",
2126                 .cra_priority           = 100,
2127                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2128                                           CRYPTO_ALG_ASYNC |
2129                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
2130                 .cra_blocksize          = AES_BLOCK_SIZE,
2131                 .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2132                 .cra_alignmask          = 0x0f,
2133                 .cra_type               = &crypto_ablkcipher_type,
2134                 .cra_module             = THIS_MODULE,
2135                 .cra_init               = s5p_aes_cra_init,
2136                 .cra_u.ablkcipher = {
2137                         .min_keysize    = AES_MIN_KEY_SIZE,
2138                         .max_keysize    = AES_MAX_KEY_SIZE,
2139                         .setkey         = s5p_aes_setkey,
2140                         .encrypt        = s5p_aes_ecb_encrypt,
2141                         .decrypt        = s5p_aes_ecb_decrypt,
2142                 }
2143         },
2144         {
2145                 .cra_name               = "cbc(aes)",
2146                 .cra_driver_name        = "cbc-aes-s5p",
2147                 .cra_priority           = 100,
2148                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2149                                           CRYPTO_ALG_ASYNC |
2150                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
2151                 .cra_blocksize          = AES_BLOCK_SIZE,
2152                 .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2153                 .cra_alignmask          = 0x0f,
2154                 .cra_type               = &crypto_ablkcipher_type,
2155                 .cra_module             = THIS_MODULE,
2156                 .cra_init               = s5p_aes_cra_init,
2157                 .cra_u.ablkcipher = {
2158                         .min_keysize    = AES_MIN_KEY_SIZE,
2159                         .max_keysize    = AES_MAX_KEY_SIZE,
2160                         .ivsize         = AES_BLOCK_SIZE,
2161                         .setkey         = s5p_aes_setkey,
2162                         .encrypt        = s5p_aes_cbc_encrypt,
2163                         .decrypt        = s5p_aes_cbc_decrypt,
2164                 }
2165         },
2166         {
2167                 .cra_name               = "ctr(aes)",
2168                 .cra_driver_name        = "ctr-aes-s5p",
2169                 .cra_priority           = 100,
2170                 .cra_flags              = CRYPTO_ALG_TYPE_ABLKCIPHER |
2171                                           CRYPTO_ALG_ASYNC |
2172                                           CRYPTO_ALG_KERN_DRIVER_ONLY,
2173                 .cra_blocksize          = AES_BLOCK_SIZE,
2174                 .cra_ctxsize            = sizeof(struct s5p_aes_ctx),
2175                 .cra_alignmask          = 0x0f,
2176                 .cra_type               = &crypto_ablkcipher_type,
2177                 .cra_module             = THIS_MODULE,
2178                 .cra_init               = s5p_aes_cra_init,
2179                 .cra_u.ablkcipher = {
2180                         .min_keysize    = AES_MIN_KEY_SIZE,
2181                         .max_keysize    = AES_MAX_KEY_SIZE,
2182                         .ivsize         = AES_BLOCK_SIZE,
2183                         .setkey         = s5p_aes_setkey,
2184                         .encrypt        = s5p_aes_ctr_crypt,
2185                         .decrypt        = s5p_aes_ctr_crypt,
2186                 }
2187         },
2188 };
2189
2190 static int s5p_aes_probe(struct platform_device *pdev)
2191 {
2192         struct device *dev = &pdev->dev;
2193         int i, j, err = -ENODEV;
2194         const struct samsung_aes_variant *variant;
2195         struct s5p_aes_dev *pdata;
2196         struct resource *res;
2197         unsigned int hash_i;
2198
2199         if (s5p_dev)
2200                 return -EEXIST;
2201
2202         pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2203         if (!pdata)
2204                 return -ENOMEM;
2205
2206         variant = find_s5p_sss_version(pdev);
2207         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2208
2209         /*
2210          * Note: HASH and PRNG uses the same registers in secss, avoid
2211          * overwrite each other. This will drop HASH when CONFIG_EXYNOS_RNG
2212          * is enabled in config. We need larger size for HASH registers in
2213          * secss, current describe only AES/DES
2214          */
2215         if (IS_ENABLED(CONFIG_CRYPTO_DEV_EXYNOS_HASH)) {
2216                 if (variant == &exynos_aes_data) {
2217                         res->end += 0x300;
2218                         pdata->use_hash = true;
2219                 }
2220         }
2221
2222         pdata->res = res;
2223         pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2224         if (IS_ERR(pdata->ioaddr)) {
2225                 if (!pdata->use_hash)
2226                         return PTR_ERR(pdata->ioaddr);
2227                 /* try AES without HASH */
2228                 res->end -= 0x300;
2229                 pdata->use_hash = false;
2230                 pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
2231                 if (IS_ERR(pdata->ioaddr))
2232                         return PTR_ERR(pdata->ioaddr);
2233         }
2234
2235         pdata->clk = devm_clk_get(dev, variant->clk_names[0]);
2236         if (IS_ERR(pdata->clk)) {
2237                 dev_err(dev, "failed to find secss clock %s\n",
2238                         variant->clk_names[0]);
2239                 return -ENOENT;
2240         }
2241
2242         err = clk_prepare_enable(pdata->clk);
2243         if (err < 0) {
2244                 dev_err(dev, "Enabling clock %s failed, err %d\n",
2245                         variant->clk_names[0], err);
2246                 return err;
2247         }
2248
2249         if (variant->clk_names[1]) {
2250                 pdata->pclk = devm_clk_get(dev, variant->clk_names[1]);
2251                 if (IS_ERR(pdata->pclk)) {
2252                         dev_err(dev, "failed to find clock %s\n",
2253                                 variant->clk_names[1]);
2254                         err = -ENOENT;
2255                         goto err_clk;
2256                 }
2257
2258                 err = clk_prepare_enable(pdata->pclk);
2259                 if (err < 0) {
2260                         dev_err(dev, "Enabling clock %s failed, err %d\n",
2261                                 variant->clk_names[0], err);
2262                         goto err_clk;
2263                 }
2264         } else {
2265                 pdata->pclk = NULL;
2266         }
2267
2268         spin_lock_init(&pdata->lock);
2269         spin_lock_init(&pdata->hash_lock);
2270
2271         pdata->aes_ioaddr = pdata->ioaddr + variant->aes_offset;
2272         pdata->io_hash_base = pdata->ioaddr + variant->hash_offset;
2273
2274         pdata->irq_fc = platform_get_irq(pdev, 0);
2275         if (pdata->irq_fc < 0) {
2276                 err = pdata->irq_fc;
2277                 dev_warn(dev, "feed control interrupt is not available.\n");
2278                 goto err_irq;
2279         }
2280         err = devm_request_threaded_irq(dev, pdata->irq_fc, NULL,
2281                                         s5p_aes_interrupt, IRQF_ONESHOT,
2282                                         pdev->name, pdev);
2283         if (err < 0) {
2284                 dev_warn(dev, "feed control interrupt is not available.\n");
2285                 goto err_irq;
2286         }
2287
2288         pdata->busy = false;
2289         pdata->dev = dev;
2290         platform_set_drvdata(pdev, pdata);
2291         s5p_dev = pdata;
2292
2293         tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
2294         crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
2295
2296         for (i = 0; i < ARRAY_SIZE(algs); i++) {
2297                 err = crypto_register_alg(&algs[i]);
2298                 if (err)
2299                         goto err_algs;
2300         }
2301
2302         if (pdata->use_hash) {
2303                 tasklet_init(&pdata->hash_tasklet, s5p_hash_tasklet_cb,
2304                              (unsigned long)pdata);
2305                 crypto_init_queue(&pdata->hash_queue, SSS_HASH_QUEUE_LENGTH);
2306
2307                 for (hash_i = 0; hash_i < ARRAY_SIZE(algs_sha1_md5_sha256);
2308                      hash_i++) {
2309                         struct ahash_alg *alg;
2310
2311                         alg = &algs_sha1_md5_sha256[hash_i];
2312                         err = crypto_register_ahash(alg);
2313                         if (err) {
2314                                 dev_err(dev, "can't register '%s': %d\n",
2315                                         alg->halg.base.cra_driver_name, err);
2316                                 goto err_hash;
2317                         }
2318                 }
2319         }
2320
2321         dev_info(dev, "s5p-sss driver registered\n");
2322
2323         return 0;
2324
2325 err_hash:
2326         for (j = hash_i - 1; j >= 0; j--)
2327                 crypto_unregister_ahash(&algs_sha1_md5_sha256[j]);
2328
2329         tasklet_kill(&pdata->hash_tasklet);
2330         res->end -= 0x300;
2331
2332 err_algs:
2333         if (i < ARRAY_SIZE(algs))
2334                 dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name,
2335                         err);
2336
2337         for (j = 0; j < i; j++)
2338                 crypto_unregister_alg(&algs[j]);
2339
2340         tasklet_kill(&pdata->tasklet);
2341
2342 err_irq:
2343         if (pdata->pclk)
2344                 clk_disable_unprepare(pdata->pclk);
2345
2346 err_clk:
2347         clk_disable_unprepare(pdata->clk);
2348         s5p_dev = NULL;
2349
2350         return err;
2351 }
2352
2353 static int s5p_aes_remove(struct platform_device *pdev)
2354 {
2355         struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
2356         int i;
2357
2358         if (!pdata)
2359                 return -ENODEV;
2360
2361         for (i = 0; i < ARRAY_SIZE(algs); i++)
2362                 crypto_unregister_alg(&algs[i]);
2363
2364         tasklet_kill(&pdata->tasklet);
2365         if (pdata->use_hash) {
2366                 for (i = ARRAY_SIZE(algs_sha1_md5_sha256) - 1; i >= 0; i--)
2367                         crypto_unregister_ahash(&algs_sha1_md5_sha256[i]);
2368
2369                 pdata->res->end -= 0x300;
2370                 tasklet_kill(&pdata->hash_tasklet);
2371                 pdata->use_hash = false;
2372         }
2373
2374         if (pdata->pclk)
2375                 clk_disable_unprepare(pdata->pclk);
2376
2377         clk_disable_unprepare(pdata->clk);
2378         s5p_dev = NULL;
2379
2380         return 0;
2381 }
2382
2383 static struct platform_driver s5p_aes_crypto = {
2384         .probe  = s5p_aes_probe,
2385         .remove = s5p_aes_remove,
2386         .driver = {
2387                 .name   = "s5p-secss",
2388                 .of_match_table = s5p_sss_dt_match,
2389         },
2390 };
2391
2392 module_platform_driver(s5p_aes_crypto);
2393
2394 MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
2395 MODULE_LICENSE("GPL v2");
2396 MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
2397 MODULE_AUTHOR("Kamil Konieczny <k.konieczny@partner.samsung.com>");