Merge tag 'trace-v5.10-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32
33 #include "n2_core.h"
34
35 #define DRV_MODULE_NAME         "n2_crypto"
36 #define DRV_MODULE_VERSION      "0.2"
37 #define DRV_MODULE_RELDATE      "July 28, 2011"
38
39 static const char version[] =
40         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46
47 #define N2_CRA_PRIORITY         200
48
49 static DEFINE_MUTEX(spu_lock);
50
51 struct spu_queue {
52         cpumask_t               sharing;
53         unsigned long           qhandle;
54
55         spinlock_t              lock;
56         u8                      q_type;
57         void                    *q;
58         unsigned long           head;
59         unsigned long           tail;
60         struct list_head        jobs;
61
62         unsigned long           devino;
63
64         char                    irq_name[32];
65         unsigned int            irq;
66
67         struct list_head        list;
68 };
69
70 struct spu_qreg {
71         struct spu_queue        *queue;
72         unsigned long           type;
73 };
74
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80         if (q->q_type == HV_NCS_QTYPE_MAU) {
81                 off += MAU_ENTRY_SIZE;
82                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83                         off = 0;
84         } else {
85                 off += CWQ_ENTRY_SIZE;
86                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87                         off = 0;
88         }
89         return off;
90 }
91
92 struct n2_request_common {
93         struct list_head        entry;
94         unsigned int            offset;
95 };
96 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
97
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103                                 unsigned long old_head, unsigned long new_head)
104 {
105         if (old_head <= new_head) {
106                 if (offset > old_head && offset <= new_head)
107                         return true;
108         } else {
109                 if (offset > old_head || offset <= new_head)
110                         return true;
111         }
112         return false;
113 }
114
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122         unsigned long off, new_head, hv_ret;
123         struct spu_queue *q = dev_id;
124
125         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126                smp_processor_id(), q->qhandle);
127
128         spin_lock(&q->lock);
129
130         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133                smp_processor_id(), new_head, hv_ret);
134
135         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136                 /* XXX ... XXX */
137         }
138
139         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140         if (hv_ret == HV_EOK)
141                 q->head = new_head;
142
143         spin_unlock(&q->lock);
144
145         return IRQ_HANDLED;
146 }
147
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150         struct spu_queue *q = dev_id;
151         unsigned long head, hv_ret;
152
153         spin_lock(&q->lock);
154
155         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156                smp_processor_id(), q->qhandle);
157
158         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161                smp_processor_id(), head, hv_ret);
162
163         sun4v_ncs_sethead_marker(q->qhandle, head);
164
165         spin_unlock(&q->lock);
166
167         return IRQ_HANDLED;
168 }
169
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172         return q->q + spu_next_offset(q, cur - q->q);
173 }
174
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177         unsigned long head = q->head;
178         unsigned long tail = q->tail;
179         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180         unsigned long diff;
181
182         if (head > tail)
183                 diff = head - tail;
184         else
185                 diff = (end - tail) + head;
186
187         return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192         int avail = spu_queue_num_free(q);
193
194         if (avail >= num_entries)
195                 return q->q + q->tail;
196
197         return NULL;
198 }
199
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202         unsigned long hv_ret, new_tail;
203
204         new_tail = spu_next_offset(q, last - q->q);
205
206         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207         if (hv_ret == HV_EOK)
208                 q->tail = new_tail;
209         return hv_ret;
210 }
211
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213                              int enc_type, int auth_type,
214                              unsigned int hash_len,
215                              bool sfas, bool sob, bool eob, bool encrypt,
216                              int opcode)
217 {
218         u64 word = (len - 1) & CONTROL_LEN;
219
220         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223         if (sfas)
224                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225         if (sob)
226                 word |= CONTROL_START_OF_BLOCK;
227         if (eob)
228                 word |= CONTROL_END_OF_BLOCK;
229         if (encrypt)
230                 word |= CONTROL_ENCRYPT;
231         if (hmac_key_len)
232                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233         if (hash_len)
234                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236         return word;
237 }
238
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242         if (this_len >= 64 ||
243             qp->head != qp->tail)
244                 return true;
245         return false;
246 }
247 #endif
248
249 struct n2_ahash_alg {
250         struct list_head        entry;
251         const u8                *hash_zero;
252         const u8                *hash_init;
253         u8                      hw_op_hashsz;
254         u8                      digest_size;
255         u8                      auth_type;
256         u8                      hmac_type;
257         struct ahash_alg        alg;
258 };
259
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262         struct crypto_alg *alg = tfm->__crt_alg;
263         struct ahash_alg *ahash_alg;
264
265         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267         return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269
270 struct n2_hmac_alg {
271         const char              *child_alg;
272         struct n2_ahash_alg     derived;
273 };
274
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277         struct crypto_alg *alg = tfm->__crt_alg;
278         struct ahash_alg *ahash_alg;
279
280         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284
285 struct n2_hash_ctx {
286         struct crypto_ahash             *fallback_tfm;
287 };
288
289 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
290
291 struct n2_hmac_ctx {
292         struct n2_hash_ctx              base;
293
294         struct crypto_shash             *child_shash;
295
296         int                             hash_key_len;
297         unsigned char                   hash_key[N2_HASH_KEY_MAX];
298 };
299
300 struct n2_hash_req_ctx {
301         union {
302                 struct md5_state        md5;
303                 struct sha1_state       sha1;
304                 struct sha256_state     sha256;
305         } u;
306
307         struct ahash_request            fallback_req;
308 };
309
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319         return crypto_ahash_init(&rctx->fallback_req);
320 }
321
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330         rctx->fallback_req.nbytes = req->nbytes;
331         rctx->fallback_req.src = req->src;
332
333         return crypto_ahash_update(&rctx->fallback_req);
334 }
335
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344         rctx->fallback_req.result = req->result;
345
346         return crypto_ahash_final(&rctx->fallback_req);
347 }
348
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357         rctx->fallback_req.nbytes = req->nbytes;
358         rctx->fallback_req.src = req->src;
359         rctx->fallback_req.result = req->result;
360
361         return crypto_ahash_finup(&rctx->fallback_req);
362 }
363
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366         return -ENOSYS;
367 }
368
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371         return -ENOSYS;
372 }
373
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379         struct crypto_ahash *fallback_tfm;
380         int err;
381
382         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383                                           CRYPTO_ALG_NEED_FALLBACK);
384         if (IS_ERR(fallback_tfm)) {
385                 pr_warn("Fallback driver '%s' could not be loaded!\n",
386                         fallback_driver_name);
387                 err = PTR_ERR(fallback_tfm);
388                 goto out;
389         }
390
391         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392                                          crypto_ahash_reqsize(fallback_tfm)));
393
394         ctx->fallback_tfm = fallback_tfm;
395         return 0;
396
397 out:
398         return err;
399 }
400
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406         crypto_free_ahash(ctx->fallback_tfm);
407 }
408
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415         struct crypto_ahash *fallback_tfm;
416         struct crypto_shash *child_shash;
417         int err;
418
419         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420                                           CRYPTO_ALG_NEED_FALLBACK);
421         if (IS_ERR(fallback_tfm)) {
422                 pr_warn("Fallback driver '%s' could not be loaded!\n",
423                         fallback_driver_name);
424                 err = PTR_ERR(fallback_tfm);
425                 goto out;
426         }
427
428         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429         if (IS_ERR(child_shash)) {
430                 pr_warn("Child shash '%s' could not be loaded!\n",
431                         n2alg->child_alg);
432                 err = PTR_ERR(child_shash);
433                 goto out_free_fallback;
434         }
435
436         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437                                          crypto_ahash_reqsize(fallback_tfm)));
438
439         ctx->child_shash = child_shash;
440         ctx->base.fallback_tfm = fallback_tfm;
441         return 0;
442
443 out_free_fallback:
444         crypto_free_ahash(fallback_tfm);
445
446 out:
447         return err;
448 }
449
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455         crypto_free_ahash(ctx->base.fallback_tfm);
456         crypto_free_shash(ctx->child_shash);
457 }
458
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460                                 unsigned int keylen)
461 {
462         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463         struct crypto_shash *child_shash = ctx->child_shash;
464         struct crypto_ahash *fallback_tfm;
465         int err, bs, ds;
466
467         fallback_tfm = ctx->base.fallback_tfm;
468         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469         if (err)
470                 return err;
471
472         bs = crypto_shash_blocksize(child_shash);
473         ds = crypto_shash_digestsize(child_shash);
474         BUG_ON(ds > N2_HASH_KEY_MAX);
475         if (keylen > bs) {
476                 err = crypto_shash_tfm_digest(child_shash, key, keylen,
477                                               ctx->hash_key);
478                 if (err)
479                         return err;
480                 keylen = ds;
481         } else if (keylen <= N2_HASH_KEY_MAX)
482                 memcpy(ctx->hash_key, key, keylen);
483
484         ctx->hash_key_len = keylen;
485
486         return err;
487 }
488
489 static unsigned long wait_for_tail(struct spu_queue *qp)
490 {
491         unsigned long head, hv_ret;
492
493         do {
494                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495                 if (hv_ret != HV_EOK) {
496                         pr_err("Hypervisor error on gethead\n");
497                         break;
498                 }
499                 if (head == qp->tail) {
500                         qp->head = head;
501                         break;
502                 }
503         } while (1);
504         return hv_ret;
505 }
506
507 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508                                               struct cwq_initial_entry *ent)
509 {
510         unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512         if (hv_ret == HV_EOK)
513                 hv_ret = wait_for_tail(qp);
514
515         return hv_ret;
516 }
517
518 static int n2_do_async_digest(struct ahash_request *req,
519                               unsigned int auth_type, unsigned int digest_size,
520                               unsigned int result_size, void *hash_loc,
521                               unsigned long auth_key, unsigned int auth_key_len)
522 {
523         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524         struct cwq_initial_entry *ent;
525         struct crypto_hash_walk walk;
526         struct spu_queue *qp;
527         unsigned long flags;
528         int err = -ENODEV;
529         int nbytes, cpu;
530
531         /* The total effective length of the operation may not
532          * exceed 2^16.
533          */
534         if (unlikely(req->nbytes > (1 << 16))) {
535                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539                 rctx->fallback_req.base.flags =
540                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541                 rctx->fallback_req.nbytes = req->nbytes;
542                 rctx->fallback_req.src = req->src;
543                 rctx->fallback_req.result = req->result;
544
545                 return crypto_ahash_digest(&rctx->fallback_req);
546         }
547
548         nbytes = crypto_hash_walk_first(req, &walk);
549
550         cpu = get_cpu();
551         qp = cpu_to_cwq[cpu];
552         if (!qp)
553                 goto out;
554
555         spin_lock_irqsave(&qp->lock, flags);
556
557         /* XXX can do better, improve this later by doing a by-hand scatterlist
558          * XXX walk, etc.
559          */
560         ent = qp->q + qp->tail;
561
562         ent->control = control_word_base(nbytes, auth_key_len, 0,
563                                          auth_type, digest_size,
564                                          false, true, false, false,
565                                          OPCODE_INPLACE_BIT |
566                                          OPCODE_AUTH_MAC);
567         ent->src_addr = __pa(walk.data);
568         ent->auth_key_addr = auth_key;
569         ent->auth_iv_addr = __pa(hash_loc);
570         ent->final_auth_state_addr = 0UL;
571         ent->enc_key_addr = 0UL;
572         ent->enc_iv_addr = 0UL;
573         ent->dest_addr = __pa(hash_loc);
574
575         nbytes = crypto_hash_walk_done(&walk, 0);
576         while (nbytes > 0) {
577                 ent = spu_queue_next(qp, ent);
578
579                 ent->control = (nbytes - 1);
580                 ent->src_addr = __pa(walk.data);
581                 ent->auth_key_addr = 0UL;
582                 ent->auth_iv_addr = 0UL;
583                 ent->final_auth_state_addr = 0UL;
584                 ent->enc_key_addr = 0UL;
585                 ent->enc_iv_addr = 0UL;
586                 ent->dest_addr = 0UL;
587
588                 nbytes = crypto_hash_walk_done(&walk, 0);
589         }
590         ent->control |= CONTROL_END_OF_BLOCK;
591
592         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593                 err = -EINVAL;
594         else
595                 err = 0;
596
597         spin_unlock_irqrestore(&qp->lock, flags);
598
599         if (!err)
600                 memcpy(req->result, hash_loc, result_size);
601 out:
602         put_cpu();
603
604         return err;
605 }
606
607 static int n2_hash_async_digest(struct ahash_request *req)
608 {
609         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611         int ds;
612
613         ds = n2alg->digest_size;
614         if (unlikely(req->nbytes == 0)) {
615                 memcpy(req->result, n2alg->hash_zero, ds);
616                 return 0;
617         }
618         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620         return n2_do_async_digest(req, n2alg->auth_type,
621                                   n2alg->hw_op_hashsz, ds,
622                                   &rctx->u, 0UL, 0);
623 }
624
625 static int n2_hmac_async_digest(struct ahash_request *req)
626 {
627         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631         int ds;
632
633         ds = n2alg->derived.digest_size;
634         if (unlikely(req->nbytes == 0) ||
635             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640                 rctx->fallback_req.base.flags =
641                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642                 rctx->fallback_req.nbytes = req->nbytes;
643                 rctx->fallback_req.src = req->src;
644                 rctx->fallback_req.result = req->result;
645
646                 return crypto_ahash_digest(&rctx->fallback_req);
647         }
648         memcpy(&rctx->u, n2alg->derived.hash_init,
649                n2alg->derived.hw_op_hashsz);
650
651         return n2_do_async_digest(req, n2alg->derived.hmac_type,
652                                   n2alg->derived.hw_op_hashsz, ds,
653                                   &rctx->u,
654                                   __pa(&ctx->hash_key),
655                                   ctx->hash_key_len);
656 }
657
658 struct n2_skcipher_context {
659         int                     key_len;
660         int                     enc_type;
661         union {
662                 u8              aes[AES_MAX_KEY_SIZE];
663                 u8              des[DES_KEY_SIZE];
664                 u8              des3[3 * DES_KEY_SIZE];
665         } key;
666 };
667
668 #define N2_CHUNK_ARR_LEN        16
669
670 struct n2_crypto_chunk {
671         struct list_head        entry;
672         unsigned long           iv_paddr : 44;
673         unsigned long           arr_len : 20;
674         unsigned long           dest_paddr;
675         unsigned long           dest_final;
676         struct {
677                 unsigned long   src_paddr : 44;
678                 unsigned long   src_len : 20;
679         } arr[N2_CHUNK_ARR_LEN];
680 };
681
682 struct n2_request_context {
683         struct skcipher_walk    walk;
684         struct list_head        chunk_list;
685         struct n2_crypto_chunk  chunk;
686         u8                      temp_iv[16];
687 };
688
689 /* The SPU allows some level of flexibility for partial cipher blocks
690  * being specified in a descriptor.
691  *
692  * It merely requires that every descriptor's length field is at least
693  * as large as the cipher block size.  This means that a cipher block
694  * can span at most 2 descriptors.  However, this does not allow a
695  * partial block to span into the final descriptor as that would
696  * violate the rule (since every descriptor's length must be at lest
697  * the block size).  So, for example, assuming an 8 byte block size:
698  *
699  *      0xe --> 0xa --> 0x8
700  *
701  * is a valid length sequence, whereas:
702  *
703  *      0xe --> 0xb --> 0x7
704  *
705  * is not a valid sequence.
706  */
707
708 struct n2_skcipher_alg {
709         struct list_head        entry;
710         u8                      enc_type;
711         struct skcipher_alg     skcipher;
712 };
713
714 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
715 {
716         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
717
718         return container_of(alg, struct n2_skcipher_alg, skcipher);
719 }
720
721 struct n2_skcipher_request_context {
722         struct skcipher_walk    walk;
723 };
724
725 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
726                          unsigned int keylen)
727 {
728         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
729         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
730         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
731
732         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
733
734         switch (keylen) {
735         case AES_KEYSIZE_128:
736                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
737                 break;
738         case AES_KEYSIZE_192:
739                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
740                 break;
741         case AES_KEYSIZE_256:
742                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
743                 break;
744         default:
745                 return -EINVAL;
746         }
747
748         ctx->key_len = keylen;
749         memcpy(ctx->key.aes, key, keylen);
750         return 0;
751 }
752
753 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
754                          unsigned int keylen)
755 {
756         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
757         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
758         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
759         int err;
760
761         err = verify_skcipher_des_key(skcipher, key);
762         if (err)
763                 return err;
764
765         ctx->enc_type = n2alg->enc_type;
766
767         ctx->key_len = keylen;
768         memcpy(ctx->key.des, key, keylen);
769         return 0;
770 }
771
772 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
773                           unsigned int keylen)
774 {
775         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
776         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
777         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
778         int err;
779
780         err = verify_skcipher_des3_key(skcipher, key);
781         if (err)
782                 return err;
783
784         ctx->enc_type = n2alg->enc_type;
785
786         ctx->key_len = keylen;
787         memcpy(ctx->key.des3, key, keylen);
788         return 0;
789 }
790
791 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
792 {
793         int this_len = nbytes;
794
795         this_len -= (nbytes & (block_size - 1));
796         return this_len > (1 << 16) ? (1 << 16) : this_len;
797 }
798
799 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
800                             struct n2_crypto_chunk *cp,
801                             struct spu_queue *qp, bool encrypt)
802 {
803         struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
804         struct cwq_initial_entry *ent;
805         bool in_place;
806         int i;
807
808         ent = spu_queue_alloc(qp, cp->arr_len);
809         if (!ent) {
810                 pr_info("queue_alloc() of %d fails\n",
811                         cp->arr_len);
812                 return -EBUSY;
813         }
814
815         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
816
817         ent->control = control_word_base(cp->arr[0].src_len,
818                                          0, ctx->enc_type, 0, 0,
819                                          false, true, false, encrypt,
820                                          OPCODE_ENCRYPT |
821                                          (in_place ? OPCODE_INPLACE_BIT : 0));
822         ent->src_addr = cp->arr[0].src_paddr;
823         ent->auth_key_addr = 0UL;
824         ent->auth_iv_addr = 0UL;
825         ent->final_auth_state_addr = 0UL;
826         ent->enc_key_addr = __pa(&ctx->key);
827         ent->enc_iv_addr = cp->iv_paddr;
828         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
829
830         for (i = 1; i < cp->arr_len; i++) {
831                 ent = spu_queue_next(qp, ent);
832
833                 ent->control = cp->arr[i].src_len - 1;
834                 ent->src_addr = cp->arr[i].src_paddr;
835                 ent->auth_key_addr = 0UL;
836                 ent->auth_iv_addr = 0UL;
837                 ent->final_auth_state_addr = 0UL;
838                 ent->enc_key_addr = 0UL;
839                 ent->enc_iv_addr = 0UL;
840                 ent->dest_addr = 0UL;
841         }
842         ent->control |= CONTROL_END_OF_BLOCK;
843
844         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
845 }
846
847 static int n2_compute_chunks(struct skcipher_request *req)
848 {
849         struct n2_request_context *rctx = skcipher_request_ctx(req);
850         struct skcipher_walk *walk = &rctx->walk;
851         struct n2_crypto_chunk *chunk;
852         unsigned long dest_prev;
853         unsigned int tot_len;
854         bool prev_in_place;
855         int err, nbytes;
856
857         err = skcipher_walk_async(walk, req);
858         if (err)
859                 return err;
860
861         INIT_LIST_HEAD(&rctx->chunk_list);
862
863         chunk = &rctx->chunk;
864         INIT_LIST_HEAD(&chunk->entry);
865
866         chunk->iv_paddr = 0UL;
867         chunk->arr_len = 0;
868         chunk->dest_paddr = 0UL;
869
870         prev_in_place = false;
871         dest_prev = ~0UL;
872         tot_len = 0;
873
874         while ((nbytes = walk->nbytes) != 0) {
875                 unsigned long dest_paddr, src_paddr;
876                 bool in_place;
877                 int this_len;
878
879                 src_paddr = (page_to_phys(walk->src.phys.page) +
880                              walk->src.phys.offset);
881                 dest_paddr = (page_to_phys(walk->dst.phys.page) +
882                               walk->dst.phys.offset);
883                 in_place = (src_paddr == dest_paddr);
884                 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
885
886                 if (chunk->arr_len != 0) {
887                         if (in_place != prev_in_place ||
888                             (!prev_in_place &&
889                              dest_paddr != dest_prev) ||
890                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
891                             tot_len + this_len > (1 << 16)) {
892                                 chunk->dest_final = dest_prev;
893                                 list_add_tail(&chunk->entry,
894                                               &rctx->chunk_list);
895                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
896                                 if (!chunk) {
897                                         err = -ENOMEM;
898                                         break;
899                                 }
900                                 INIT_LIST_HEAD(&chunk->entry);
901                         }
902                 }
903                 if (chunk->arr_len == 0) {
904                         chunk->dest_paddr = dest_paddr;
905                         tot_len = 0;
906                 }
907                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
908                 chunk->arr[chunk->arr_len].src_len = this_len;
909                 chunk->arr_len++;
910
911                 dest_prev = dest_paddr + this_len;
912                 prev_in_place = in_place;
913                 tot_len += this_len;
914
915                 err = skcipher_walk_done(walk, nbytes - this_len);
916                 if (err)
917                         break;
918         }
919         if (!err && chunk->arr_len != 0) {
920                 chunk->dest_final = dest_prev;
921                 list_add_tail(&chunk->entry, &rctx->chunk_list);
922         }
923
924         return err;
925 }
926
927 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
928 {
929         struct n2_request_context *rctx = skcipher_request_ctx(req);
930         struct n2_crypto_chunk *c, *tmp;
931
932         if (final_iv)
933                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
934
935         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
936                 list_del(&c->entry);
937                 if (unlikely(c != &rctx->chunk))
938                         kfree(c);
939         }
940
941 }
942
943 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
944 {
945         struct n2_request_context *rctx = skcipher_request_ctx(req);
946         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
947         int err = n2_compute_chunks(req);
948         struct n2_crypto_chunk *c, *tmp;
949         unsigned long flags, hv_ret;
950         struct spu_queue *qp;
951
952         if (err)
953                 return err;
954
955         qp = cpu_to_cwq[get_cpu()];
956         err = -ENODEV;
957         if (!qp)
958                 goto out;
959
960         spin_lock_irqsave(&qp->lock, flags);
961
962         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
963                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
964                 if (err)
965                         break;
966                 list_del(&c->entry);
967                 if (unlikely(c != &rctx->chunk))
968                         kfree(c);
969         }
970         if (!err) {
971                 hv_ret = wait_for_tail(qp);
972                 if (hv_ret != HV_EOK)
973                         err = -EINVAL;
974         }
975
976         spin_unlock_irqrestore(&qp->lock, flags);
977
978 out:
979         put_cpu();
980
981         n2_chunk_complete(req, NULL);
982         return err;
983 }
984
985 static int n2_encrypt_ecb(struct skcipher_request *req)
986 {
987         return n2_do_ecb(req, true);
988 }
989
990 static int n2_decrypt_ecb(struct skcipher_request *req)
991 {
992         return n2_do_ecb(req, false);
993 }
994
995 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
996 {
997         struct n2_request_context *rctx = skcipher_request_ctx(req);
998         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
999         unsigned long flags, hv_ret, iv_paddr;
1000         int err = n2_compute_chunks(req);
1001         struct n2_crypto_chunk *c, *tmp;
1002         struct spu_queue *qp;
1003         void *final_iv_addr;
1004
1005         final_iv_addr = NULL;
1006
1007         if (err)
1008                 return err;
1009
1010         qp = cpu_to_cwq[get_cpu()];
1011         err = -ENODEV;
1012         if (!qp)
1013                 goto out;
1014
1015         spin_lock_irqsave(&qp->lock, flags);
1016
1017         if (encrypt) {
1018                 iv_paddr = __pa(rctx->walk.iv);
1019                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1020                                          entry) {
1021                         c->iv_paddr = iv_paddr;
1022                         err = __n2_crypt_chunk(tfm, c, qp, true);
1023                         if (err)
1024                                 break;
1025                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1026                         list_del(&c->entry);
1027                         if (unlikely(c != &rctx->chunk))
1028                                 kfree(c);
1029                 }
1030                 final_iv_addr = __va(iv_paddr);
1031         } else {
1032                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1033                                                  entry) {
1034                         if (c == &rctx->chunk) {
1035                                 iv_paddr = __pa(rctx->walk.iv);
1036                         } else {
1037                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1038                                             tmp->arr[tmp->arr_len-1].src_len -
1039                                             rctx->walk.blocksize);
1040                         }
1041                         if (!final_iv_addr) {
1042                                 unsigned long pa;
1043
1044                                 pa = (c->arr[c->arr_len-1].src_paddr +
1045                                       c->arr[c->arr_len-1].src_len -
1046                                       rctx->walk.blocksize);
1047                                 final_iv_addr = rctx->temp_iv;
1048                                 memcpy(rctx->temp_iv, __va(pa),
1049                                        rctx->walk.blocksize);
1050                         }
1051                         c->iv_paddr = iv_paddr;
1052                         err = __n2_crypt_chunk(tfm, c, qp, false);
1053                         if (err)
1054                                 break;
1055                         list_del(&c->entry);
1056                         if (unlikely(c != &rctx->chunk))
1057                                 kfree(c);
1058                 }
1059         }
1060         if (!err) {
1061                 hv_ret = wait_for_tail(qp);
1062                 if (hv_ret != HV_EOK)
1063                         err = -EINVAL;
1064         }
1065
1066         spin_unlock_irqrestore(&qp->lock, flags);
1067
1068 out:
1069         put_cpu();
1070
1071         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1072         return err;
1073 }
1074
1075 static int n2_encrypt_chaining(struct skcipher_request *req)
1076 {
1077         return n2_do_chaining(req, true);
1078 }
1079
1080 static int n2_decrypt_chaining(struct skcipher_request *req)
1081 {
1082         return n2_do_chaining(req, false);
1083 }
1084
1085 struct n2_skcipher_tmpl {
1086         const char              *name;
1087         const char              *drv_name;
1088         u8                      block_size;
1089         u8                      enc_type;
1090         struct skcipher_alg     skcipher;
1091 };
1092
1093 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1094         /* DES: ECB CBC and CFB are supported */
1095         {       .name           = "ecb(des)",
1096                 .drv_name       = "ecb-des",
1097                 .block_size     = DES_BLOCK_SIZE,
1098                 .enc_type       = (ENC_TYPE_ALG_DES |
1099                                    ENC_TYPE_CHAINING_ECB),
1100                 .skcipher       = {
1101                         .min_keysize    = DES_KEY_SIZE,
1102                         .max_keysize    = DES_KEY_SIZE,
1103                         .setkey         = n2_des_setkey,
1104                         .encrypt        = n2_encrypt_ecb,
1105                         .decrypt        = n2_decrypt_ecb,
1106                 },
1107         },
1108         {       .name           = "cbc(des)",
1109                 .drv_name       = "cbc-des",
1110                 .block_size     = DES_BLOCK_SIZE,
1111                 .enc_type       = (ENC_TYPE_ALG_DES |
1112                                    ENC_TYPE_CHAINING_CBC),
1113                 .skcipher       = {
1114                         .ivsize         = DES_BLOCK_SIZE,
1115                         .min_keysize    = DES_KEY_SIZE,
1116                         .max_keysize    = DES_KEY_SIZE,
1117                         .setkey         = n2_des_setkey,
1118                         .encrypt        = n2_encrypt_chaining,
1119                         .decrypt        = n2_decrypt_chaining,
1120                 },
1121         },
1122         {       .name           = "cfb(des)",
1123                 .drv_name       = "cfb-des",
1124                 .block_size     = DES_BLOCK_SIZE,
1125                 .enc_type       = (ENC_TYPE_ALG_DES |
1126                                    ENC_TYPE_CHAINING_CFB),
1127                 .skcipher       = {
1128                         .min_keysize    = DES_KEY_SIZE,
1129                         .max_keysize    = DES_KEY_SIZE,
1130                         .setkey         = n2_des_setkey,
1131                         .encrypt        = n2_encrypt_chaining,
1132                         .decrypt        = n2_decrypt_chaining,
1133                 },
1134         },
1135
1136         /* 3DES: ECB CBC and CFB are supported */
1137         {       .name           = "ecb(des3_ede)",
1138                 .drv_name       = "ecb-3des",
1139                 .block_size     = DES_BLOCK_SIZE,
1140                 .enc_type       = (ENC_TYPE_ALG_3DES |
1141                                    ENC_TYPE_CHAINING_ECB),
1142                 .skcipher       = {
1143                         .min_keysize    = 3 * DES_KEY_SIZE,
1144                         .max_keysize    = 3 * DES_KEY_SIZE,
1145                         .setkey         = n2_3des_setkey,
1146                         .encrypt        = n2_encrypt_ecb,
1147                         .decrypt        = n2_decrypt_ecb,
1148                 },
1149         },
1150         {       .name           = "cbc(des3_ede)",
1151                 .drv_name       = "cbc-3des",
1152                 .block_size     = DES_BLOCK_SIZE,
1153                 .enc_type       = (ENC_TYPE_ALG_3DES |
1154                                    ENC_TYPE_CHAINING_CBC),
1155                 .skcipher       = {
1156                         .ivsize         = DES_BLOCK_SIZE,
1157                         .min_keysize    = 3 * DES_KEY_SIZE,
1158                         .max_keysize    = 3 * DES_KEY_SIZE,
1159                         .setkey         = n2_3des_setkey,
1160                         .encrypt        = n2_encrypt_chaining,
1161                         .decrypt        = n2_decrypt_chaining,
1162                 },
1163         },
1164         {       .name           = "cfb(des3_ede)",
1165                 .drv_name       = "cfb-3des",
1166                 .block_size     = DES_BLOCK_SIZE,
1167                 .enc_type       = (ENC_TYPE_ALG_3DES |
1168                                    ENC_TYPE_CHAINING_CFB),
1169                 .skcipher       = {
1170                         .min_keysize    = 3 * DES_KEY_SIZE,
1171                         .max_keysize    = 3 * DES_KEY_SIZE,
1172                         .setkey         = n2_3des_setkey,
1173                         .encrypt        = n2_encrypt_chaining,
1174                         .decrypt        = n2_decrypt_chaining,
1175                 },
1176         },
1177         /* AES: ECB CBC and CTR are supported */
1178         {       .name           = "ecb(aes)",
1179                 .drv_name       = "ecb-aes",
1180                 .block_size     = AES_BLOCK_SIZE,
1181                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1182                                    ENC_TYPE_CHAINING_ECB),
1183                 .skcipher       = {
1184                         .min_keysize    = AES_MIN_KEY_SIZE,
1185                         .max_keysize    = AES_MAX_KEY_SIZE,
1186                         .setkey         = n2_aes_setkey,
1187                         .encrypt        = n2_encrypt_ecb,
1188                         .decrypt        = n2_decrypt_ecb,
1189                 },
1190         },
1191         {       .name           = "cbc(aes)",
1192                 .drv_name       = "cbc-aes",
1193                 .block_size     = AES_BLOCK_SIZE,
1194                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1195                                    ENC_TYPE_CHAINING_CBC),
1196                 .skcipher       = {
1197                         .ivsize         = AES_BLOCK_SIZE,
1198                         .min_keysize    = AES_MIN_KEY_SIZE,
1199                         .max_keysize    = AES_MAX_KEY_SIZE,
1200                         .setkey         = n2_aes_setkey,
1201                         .encrypt        = n2_encrypt_chaining,
1202                         .decrypt        = n2_decrypt_chaining,
1203                 },
1204         },
1205         {       .name           = "ctr(aes)",
1206                 .drv_name       = "ctr-aes",
1207                 .block_size     = AES_BLOCK_SIZE,
1208                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1209                                    ENC_TYPE_CHAINING_COUNTER),
1210                 .skcipher       = {
1211                         .ivsize         = AES_BLOCK_SIZE,
1212                         .min_keysize    = AES_MIN_KEY_SIZE,
1213                         .max_keysize    = AES_MAX_KEY_SIZE,
1214                         .setkey         = n2_aes_setkey,
1215                         .encrypt        = n2_encrypt_chaining,
1216                         .decrypt        = n2_encrypt_chaining,
1217                 },
1218         },
1219
1220 };
1221 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1222
1223 static LIST_HEAD(skcipher_algs);
1224
1225 struct n2_hash_tmpl {
1226         const char      *name;
1227         const u8        *hash_zero;
1228         const u8        *hash_init;
1229         u8              hw_op_hashsz;
1230         u8              digest_size;
1231         u8              block_size;
1232         u8              auth_type;
1233         u8              hmac_type;
1234 };
1235
1236 static const __le32 n2_md5_init[MD5_HASH_WORDS] = {
1237         cpu_to_le32(MD5_H0),
1238         cpu_to_le32(MD5_H1),
1239         cpu_to_le32(MD5_H2),
1240         cpu_to_le32(MD5_H3),
1241 };
1242 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1243         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1244 };
1245 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1246         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1247         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1248 };
1249 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1250         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1251         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1252 };
1253
1254 static const struct n2_hash_tmpl hash_tmpls[] = {
1255         { .name         = "md5",
1256           .hash_zero    = md5_zero_message_hash,
1257           .hash_init    = (u8 *)n2_md5_init,
1258           .auth_type    = AUTH_TYPE_MD5,
1259           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1260           .hw_op_hashsz = MD5_DIGEST_SIZE,
1261           .digest_size  = MD5_DIGEST_SIZE,
1262           .block_size   = MD5_HMAC_BLOCK_SIZE },
1263         { .name         = "sha1",
1264           .hash_zero    = sha1_zero_message_hash,
1265           .hash_init    = (u8 *)n2_sha1_init,
1266           .auth_type    = AUTH_TYPE_SHA1,
1267           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1268           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1269           .digest_size  = SHA1_DIGEST_SIZE,
1270           .block_size   = SHA1_BLOCK_SIZE },
1271         { .name         = "sha256",
1272           .hash_zero    = sha256_zero_message_hash,
1273           .hash_init    = (u8 *)n2_sha256_init,
1274           .auth_type    = AUTH_TYPE_SHA256,
1275           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1276           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1277           .digest_size  = SHA256_DIGEST_SIZE,
1278           .block_size   = SHA256_BLOCK_SIZE },
1279         { .name         = "sha224",
1280           .hash_zero    = sha224_zero_message_hash,
1281           .hash_init    = (u8 *)n2_sha224_init,
1282           .auth_type    = AUTH_TYPE_SHA256,
1283           .hmac_type    = AUTH_TYPE_RESERVED,
1284           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1285           .digest_size  = SHA224_DIGEST_SIZE,
1286           .block_size   = SHA224_BLOCK_SIZE },
1287 };
1288 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1289
1290 static LIST_HEAD(ahash_algs);
1291 static LIST_HEAD(hmac_algs);
1292
1293 static int algs_registered;
1294
1295 static void __n2_unregister_algs(void)
1296 {
1297         struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1298         struct n2_ahash_alg *alg, *alg_tmp;
1299         struct n2_hmac_alg *hmac, *hmac_tmp;
1300
1301         list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1302                 crypto_unregister_skcipher(&skcipher->skcipher);
1303                 list_del(&skcipher->entry);
1304                 kfree(skcipher);
1305         }
1306         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1307                 crypto_unregister_ahash(&hmac->derived.alg);
1308                 list_del(&hmac->derived.entry);
1309                 kfree(hmac);
1310         }
1311         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1312                 crypto_unregister_ahash(&alg->alg);
1313                 list_del(&alg->entry);
1314                 kfree(alg);
1315         }
1316 }
1317
1318 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1319 {
1320         crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1321         return 0;
1322 }
1323
1324 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1325 {
1326         struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1327         struct skcipher_alg *alg;
1328         int err;
1329
1330         if (!p)
1331                 return -ENOMEM;
1332
1333         alg = &p->skcipher;
1334         *alg = tmpl->skcipher;
1335
1336         snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1337         snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1338         alg->base.cra_priority = N2_CRA_PRIORITY;
1339         alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1340                               CRYPTO_ALG_ALLOCATES_MEMORY;
1341         alg->base.cra_blocksize = tmpl->block_size;
1342         p->enc_type = tmpl->enc_type;
1343         alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1344         alg->base.cra_module = THIS_MODULE;
1345         alg->init = n2_skcipher_init_tfm;
1346
1347         list_add(&p->entry, &skcipher_algs);
1348         err = crypto_register_skcipher(alg);
1349         if (err) {
1350                 pr_err("%s alg registration failed\n", alg->base.cra_name);
1351                 list_del(&p->entry);
1352                 kfree(p);
1353         } else {
1354                 pr_info("%s alg registered\n", alg->base.cra_name);
1355         }
1356         return err;
1357 }
1358
1359 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1360 {
1361         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1362         struct ahash_alg *ahash;
1363         struct crypto_alg *base;
1364         int err;
1365
1366         if (!p)
1367                 return -ENOMEM;
1368
1369         p->child_alg = n2ahash->alg.halg.base.cra_name;
1370         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1371         INIT_LIST_HEAD(&p->derived.entry);
1372
1373         ahash = &p->derived.alg;
1374         ahash->digest = n2_hmac_async_digest;
1375         ahash->setkey = n2_hmac_async_setkey;
1376
1377         base = &ahash->halg.base;
1378         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1379         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1380
1381         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1382         base->cra_init = n2_hmac_cra_init;
1383         base->cra_exit = n2_hmac_cra_exit;
1384
1385         list_add(&p->derived.entry, &hmac_algs);
1386         err = crypto_register_ahash(ahash);
1387         if (err) {
1388                 pr_err("%s alg registration failed\n", base->cra_name);
1389                 list_del(&p->derived.entry);
1390                 kfree(p);
1391         } else {
1392                 pr_info("%s alg registered\n", base->cra_name);
1393         }
1394         return err;
1395 }
1396
1397 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1398 {
1399         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1400         struct hash_alg_common *halg;
1401         struct crypto_alg *base;
1402         struct ahash_alg *ahash;
1403         int err;
1404
1405         if (!p)
1406                 return -ENOMEM;
1407
1408         p->hash_zero = tmpl->hash_zero;
1409         p->hash_init = tmpl->hash_init;
1410         p->auth_type = tmpl->auth_type;
1411         p->hmac_type = tmpl->hmac_type;
1412         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1413         p->digest_size = tmpl->digest_size;
1414
1415         ahash = &p->alg;
1416         ahash->init = n2_hash_async_init;
1417         ahash->update = n2_hash_async_update;
1418         ahash->final = n2_hash_async_final;
1419         ahash->finup = n2_hash_async_finup;
1420         ahash->digest = n2_hash_async_digest;
1421         ahash->export = n2_hash_async_noexport;
1422         ahash->import = n2_hash_async_noimport;
1423
1424         halg = &ahash->halg;
1425         halg->digestsize = tmpl->digest_size;
1426
1427         base = &halg->base;
1428         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1429         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1430         base->cra_priority = N2_CRA_PRIORITY;
1431         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1432                           CRYPTO_ALG_NEED_FALLBACK;
1433         base->cra_blocksize = tmpl->block_size;
1434         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1435         base->cra_module = THIS_MODULE;
1436         base->cra_init = n2_hash_cra_init;
1437         base->cra_exit = n2_hash_cra_exit;
1438
1439         list_add(&p->entry, &ahash_algs);
1440         err = crypto_register_ahash(ahash);
1441         if (err) {
1442                 pr_err("%s alg registration failed\n", base->cra_name);
1443                 list_del(&p->entry);
1444                 kfree(p);
1445         } else {
1446                 pr_info("%s alg registered\n", base->cra_name);
1447         }
1448         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1449                 err = __n2_register_one_hmac(p);
1450         return err;
1451 }
1452
1453 static int n2_register_algs(void)
1454 {
1455         int i, err = 0;
1456
1457         mutex_lock(&spu_lock);
1458         if (algs_registered++)
1459                 goto out;
1460
1461         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1462                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1463                 if (err) {
1464                         __n2_unregister_algs();
1465                         goto out;
1466                 }
1467         }
1468         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1469                 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1470                 if (err) {
1471                         __n2_unregister_algs();
1472                         goto out;
1473                 }
1474         }
1475
1476 out:
1477         mutex_unlock(&spu_lock);
1478         return err;
1479 }
1480
1481 static void n2_unregister_algs(void)
1482 {
1483         mutex_lock(&spu_lock);
1484         if (!--algs_registered)
1485                 __n2_unregister_algs();
1486         mutex_unlock(&spu_lock);
1487 }
1488
1489 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1490  * a devino.  This isn't very useful to us because all of the
1491  * interrupts listed in the device_node have been translated to
1492  * Linux virtual IRQ cookie numbers.
1493  *
1494  * So we have to back-translate, going through the 'intr' and 'ino'
1495  * property tables of the n2cp MDESC node, matching it with the OF
1496  * 'interrupts' property entries, in order to to figure out which
1497  * devino goes to which already-translated IRQ.
1498  */
1499 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1500                              unsigned long dev_ino)
1501 {
1502         const unsigned int *dev_intrs;
1503         unsigned int intr;
1504         int i;
1505
1506         for (i = 0; i < ip->num_intrs; i++) {
1507                 if (ip->ino_table[i].ino == dev_ino)
1508                         break;
1509         }
1510         if (i == ip->num_intrs)
1511                 return -ENODEV;
1512
1513         intr = ip->ino_table[i].intr;
1514
1515         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1516         if (!dev_intrs)
1517                 return -ENODEV;
1518
1519         for (i = 0; i < dev->archdata.num_irqs; i++) {
1520                 if (dev_intrs[i] == intr)
1521                         return i;
1522         }
1523
1524         return -ENODEV;
1525 }
1526
1527 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1528                        const char *irq_name, struct spu_queue *p,
1529                        irq_handler_t handler)
1530 {
1531         unsigned long herr;
1532         int index;
1533
1534         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1535         if (herr)
1536                 return -EINVAL;
1537
1538         index = find_devino_index(dev, ip, p->devino);
1539         if (index < 0)
1540                 return index;
1541
1542         p->irq = dev->archdata.irqs[index];
1543
1544         sprintf(p->irq_name, "%s-%d", irq_name, index);
1545
1546         return request_irq(p->irq, handler, 0, p->irq_name, p);
1547 }
1548
1549 static struct kmem_cache *queue_cache[2];
1550
1551 static void *new_queue(unsigned long q_type)
1552 {
1553         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1554 }
1555
1556 static void free_queue(void *p, unsigned long q_type)
1557 {
1558         kmem_cache_free(queue_cache[q_type - 1], p);
1559 }
1560
1561 static int queue_cache_init(void)
1562 {
1563         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1564                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1565                         kmem_cache_create("mau_queue",
1566                                           (MAU_NUM_ENTRIES *
1567                                            MAU_ENTRY_SIZE),
1568                                           MAU_ENTRY_SIZE, 0, NULL);
1569         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1570                 return -ENOMEM;
1571
1572         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1573                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1574                         kmem_cache_create("cwq_queue",
1575                                           (CWQ_NUM_ENTRIES *
1576                                            CWQ_ENTRY_SIZE),
1577                                           CWQ_ENTRY_SIZE, 0, NULL);
1578         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1579                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1580                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1581                 return -ENOMEM;
1582         }
1583         return 0;
1584 }
1585
1586 static void queue_cache_destroy(void)
1587 {
1588         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1589         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1590         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1591         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1592 }
1593
1594 static long spu_queue_register_workfn(void *arg)
1595 {
1596         struct spu_qreg *qr = arg;
1597         struct spu_queue *p = qr->queue;
1598         unsigned long q_type = qr->type;
1599         unsigned long hv_ret;
1600
1601         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1602                                  CWQ_NUM_ENTRIES, &p->qhandle);
1603         if (!hv_ret)
1604                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1605
1606         return hv_ret ? -EINVAL : 0;
1607 }
1608
1609 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1610 {
1611         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1612         struct spu_qreg qr = { .queue = p, .type = q_type };
1613
1614         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1615 }
1616
1617 static int spu_queue_setup(struct spu_queue *p)
1618 {
1619         int err;
1620
1621         p->q = new_queue(p->q_type);
1622         if (!p->q)
1623                 return -ENOMEM;
1624
1625         err = spu_queue_register(p, p->q_type);
1626         if (err) {
1627                 free_queue(p->q, p->q_type);
1628                 p->q = NULL;
1629         }
1630
1631         return err;
1632 }
1633
1634 static void spu_queue_destroy(struct spu_queue *p)
1635 {
1636         unsigned long hv_ret;
1637
1638         if (!p->q)
1639                 return;
1640
1641         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1642
1643         if (!hv_ret)
1644                 free_queue(p->q, p->q_type);
1645 }
1646
1647 static void spu_list_destroy(struct list_head *list)
1648 {
1649         struct spu_queue *p, *n;
1650
1651         list_for_each_entry_safe(p, n, list, list) {
1652                 int i;
1653
1654                 for (i = 0; i < NR_CPUS; i++) {
1655                         if (cpu_to_cwq[i] == p)
1656                                 cpu_to_cwq[i] = NULL;
1657                 }
1658
1659                 if (p->irq) {
1660                         free_irq(p->irq, p);
1661                         p->irq = 0;
1662                 }
1663                 spu_queue_destroy(p);
1664                 list_del(&p->list);
1665                 kfree(p);
1666         }
1667 }
1668
1669 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1670  * gathering cpu membership information.
1671  */
1672 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1673                                struct platform_device *dev,
1674                                u64 node, struct spu_queue *p,
1675                                struct spu_queue **table)
1676 {
1677         u64 arc;
1678
1679         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1680                 u64 tgt = mdesc_arc_target(mdesc, arc);
1681                 const char *name = mdesc_node_name(mdesc, tgt);
1682                 const u64 *id;
1683
1684                 if (strcmp(name, "cpu"))
1685                         continue;
1686                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1687                 if (table[*id] != NULL) {
1688                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1689                                 dev->dev.of_node);
1690                         return -EINVAL;
1691                 }
1692                 cpumask_set_cpu(*id, &p->sharing);
1693                 table[*id] = p;
1694         }
1695         return 0;
1696 }
1697
1698 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1699 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1700                             struct platform_device *dev, struct mdesc_handle *mdesc,
1701                             u64 node, const char *iname, unsigned long q_type,
1702                             irq_handler_t handler, struct spu_queue **table)
1703 {
1704         struct spu_queue *p;
1705         int err;
1706
1707         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1708         if (!p) {
1709                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1710                         dev->dev.of_node);
1711                 return -ENOMEM;
1712         }
1713
1714         cpumask_clear(&p->sharing);
1715         spin_lock_init(&p->lock);
1716         p->q_type = q_type;
1717         INIT_LIST_HEAD(&p->jobs);
1718         list_add(&p->list, list);
1719
1720         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1721         if (err)
1722                 return err;
1723
1724         err = spu_queue_setup(p);
1725         if (err)
1726                 return err;
1727
1728         return spu_map_ino(dev, ip, iname, p, handler);
1729 }
1730
1731 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1732                           struct spu_mdesc_info *ip, struct list_head *list,
1733                           const char *exec_name, unsigned long q_type,
1734                           irq_handler_t handler, struct spu_queue **table)
1735 {
1736         int err = 0;
1737         u64 node;
1738
1739         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1740                 const char *type;
1741
1742                 type = mdesc_get_property(mdesc, node, "type", NULL);
1743                 if (!type || strcmp(type, exec_name))
1744                         continue;
1745
1746                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1747                                        exec_name, q_type, handler, table);
1748                 if (err) {
1749                         spu_list_destroy(list);
1750                         break;
1751                 }
1752         }
1753
1754         return err;
1755 }
1756
1757 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1758                          struct spu_mdesc_info *ip)
1759 {
1760         const u64 *ino;
1761         int ino_len;
1762         int i;
1763
1764         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1765         if (!ino) {
1766                 printk("NO 'ino'\n");
1767                 return -ENODEV;
1768         }
1769
1770         ip->num_intrs = ino_len / sizeof(u64);
1771         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1772                                  ip->num_intrs),
1773                                 GFP_KERNEL);
1774         if (!ip->ino_table)
1775                 return -ENOMEM;
1776
1777         for (i = 0; i < ip->num_intrs; i++) {
1778                 struct ino_blob *b = &ip->ino_table[i];
1779                 b->intr = i + 1;
1780                 b->ino = ino[i];
1781         }
1782
1783         return 0;
1784 }
1785
1786 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1787                                 struct platform_device *dev,
1788                                 struct spu_mdesc_info *ip,
1789                                 const char *node_name)
1790 {
1791         const unsigned int *reg;
1792         u64 node;
1793
1794         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1795         if (!reg)
1796                 return -ENODEV;
1797
1798         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1799                 const char *name;
1800                 const u64 *chdl;
1801
1802                 name = mdesc_get_property(mdesc, node, "name", NULL);
1803                 if (!name || strcmp(name, node_name))
1804                         continue;
1805                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1806                 if (!chdl || (*chdl != *reg))
1807                         continue;
1808                 ip->cfg_handle = *chdl;
1809                 return get_irq_props(mdesc, node, ip);
1810         }
1811
1812         return -ENODEV;
1813 }
1814
1815 static unsigned long n2_spu_hvapi_major;
1816 static unsigned long n2_spu_hvapi_minor;
1817
1818 static int n2_spu_hvapi_register(void)
1819 {
1820         int err;
1821
1822         n2_spu_hvapi_major = 2;
1823         n2_spu_hvapi_minor = 0;
1824
1825         err = sun4v_hvapi_register(HV_GRP_NCS,
1826                                    n2_spu_hvapi_major,
1827                                    &n2_spu_hvapi_minor);
1828
1829         if (!err)
1830                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1831                         n2_spu_hvapi_major,
1832                         n2_spu_hvapi_minor);
1833
1834         return err;
1835 }
1836
1837 static void n2_spu_hvapi_unregister(void)
1838 {
1839         sun4v_hvapi_unregister(HV_GRP_NCS);
1840 }
1841
1842 static int global_ref;
1843
1844 static int grab_global_resources(void)
1845 {
1846         int err = 0;
1847
1848         mutex_lock(&spu_lock);
1849
1850         if (global_ref++)
1851                 goto out;
1852
1853         err = n2_spu_hvapi_register();
1854         if (err)
1855                 goto out;
1856
1857         err = queue_cache_init();
1858         if (err)
1859                 goto out_hvapi_release;
1860
1861         err = -ENOMEM;
1862         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1863                              GFP_KERNEL);
1864         if (!cpu_to_cwq)
1865                 goto out_queue_cache_destroy;
1866
1867         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1868                              GFP_KERNEL);
1869         if (!cpu_to_mau)
1870                 goto out_free_cwq_table;
1871
1872         err = 0;
1873
1874 out:
1875         if (err)
1876                 global_ref--;
1877         mutex_unlock(&spu_lock);
1878         return err;
1879
1880 out_free_cwq_table:
1881         kfree(cpu_to_cwq);
1882         cpu_to_cwq = NULL;
1883
1884 out_queue_cache_destroy:
1885         queue_cache_destroy();
1886
1887 out_hvapi_release:
1888         n2_spu_hvapi_unregister();
1889         goto out;
1890 }
1891
1892 static void release_global_resources(void)
1893 {
1894         mutex_lock(&spu_lock);
1895         if (!--global_ref) {
1896                 kfree(cpu_to_cwq);
1897                 cpu_to_cwq = NULL;
1898
1899                 kfree(cpu_to_mau);
1900                 cpu_to_mau = NULL;
1901
1902                 queue_cache_destroy();
1903                 n2_spu_hvapi_unregister();
1904         }
1905         mutex_unlock(&spu_lock);
1906 }
1907
1908 static struct n2_crypto *alloc_n2cp(void)
1909 {
1910         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1911
1912         if (np)
1913                 INIT_LIST_HEAD(&np->cwq_list);
1914
1915         return np;
1916 }
1917
1918 static void free_n2cp(struct n2_crypto *np)
1919 {
1920         kfree(np->cwq_info.ino_table);
1921         np->cwq_info.ino_table = NULL;
1922
1923         kfree(np);
1924 }
1925
1926 static void n2_spu_driver_version(void)
1927 {
1928         static int n2_spu_version_printed;
1929
1930         if (n2_spu_version_printed++ == 0)
1931                 pr_info("%s", version);
1932 }
1933
1934 static int n2_crypto_probe(struct platform_device *dev)
1935 {
1936         struct mdesc_handle *mdesc;
1937         struct n2_crypto *np;
1938         int err;
1939
1940         n2_spu_driver_version();
1941
1942         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1943
1944         np = alloc_n2cp();
1945         if (!np) {
1946                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1947                         dev->dev.of_node);
1948                 return -ENOMEM;
1949         }
1950
1951         err = grab_global_resources();
1952         if (err) {
1953                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
1954                         dev->dev.of_node);
1955                 goto out_free_n2cp;
1956         }
1957
1958         mdesc = mdesc_grab();
1959
1960         if (!mdesc) {
1961                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
1962                         dev->dev.of_node);
1963                 err = -ENODEV;
1964                 goto out_free_global;
1965         }
1966         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
1967         if (err) {
1968                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
1969                         dev->dev.of_node);
1970                 mdesc_release(mdesc);
1971                 goto out_free_global;
1972         }
1973
1974         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
1975                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
1976                              cpu_to_cwq);
1977         mdesc_release(mdesc);
1978
1979         if (err) {
1980                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
1981                         dev->dev.of_node);
1982                 goto out_free_global;
1983         }
1984
1985         err = n2_register_algs();
1986         if (err) {
1987                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
1988                         dev->dev.of_node);
1989                 goto out_free_spu_list;
1990         }
1991
1992         dev_set_drvdata(&dev->dev, np);
1993
1994         return 0;
1995
1996 out_free_spu_list:
1997         spu_list_destroy(&np->cwq_list);
1998
1999 out_free_global:
2000         release_global_resources();
2001
2002 out_free_n2cp:
2003         free_n2cp(np);
2004
2005         return err;
2006 }
2007
2008 static int n2_crypto_remove(struct platform_device *dev)
2009 {
2010         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2011
2012         n2_unregister_algs();
2013
2014         spu_list_destroy(&np->cwq_list);
2015
2016         release_global_resources();
2017
2018         free_n2cp(np);
2019
2020         return 0;
2021 }
2022
2023 static struct n2_mau *alloc_ncp(void)
2024 {
2025         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2026
2027         if (mp)
2028                 INIT_LIST_HEAD(&mp->mau_list);
2029
2030         return mp;
2031 }
2032
2033 static void free_ncp(struct n2_mau *mp)
2034 {
2035         kfree(mp->mau_info.ino_table);
2036         mp->mau_info.ino_table = NULL;
2037
2038         kfree(mp);
2039 }
2040
2041 static int n2_mau_probe(struct platform_device *dev)
2042 {
2043         struct mdesc_handle *mdesc;
2044         struct n2_mau *mp;
2045         int err;
2046
2047         n2_spu_driver_version();
2048
2049         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2050
2051         mp = alloc_ncp();
2052         if (!mp) {
2053                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2054                         dev->dev.of_node);
2055                 return -ENOMEM;
2056         }
2057
2058         err = grab_global_resources();
2059         if (err) {
2060                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2061                         dev->dev.of_node);
2062                 goto out_free_ncp;
2063         }
2064
2065         mdesc = mdesc_grab();
2066
2067         if (!mdesc) {
2068                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2069                         dev->dev.of_node);
2070                 err = -ENODEV;
2071                 goto out_free_global;
2072         }
2073
2074         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2075         if (err) {
2076                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2077                         dev->dev.of_node);
2078                 mdesc_release(mdesc);
2079                 goto out_free_global;
2080         }
2081
2082         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2083                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2084                              cpu_to_mau);
2085         mdesc_release(mdesc);
2086
2087         if (err) {
2088                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2089                         dev->dev.of_node);
2090                 goto out_free_global;
2091         }
2092
2093         dev_set_drvdata(&dev->dev, mp);
2094
2095         return 0;
2096
2097 out_free_global:
2098         release_global_resources();
2099
2100 out_free_ncp:
2101         free_ncp(mp);
2102
2103         return err;
2104 }
2105
2106 static int n2_mau_remove(struct platform_device *dev)
2107 {
2108         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2109
2110         spu_list_destroy(&mp->mau_list);
2111
2112         release_global_resources();
2113
2114         free_ncp(mp);
2115
2116         return 0;
2117 }
2118
2119 static const struct of_device_id n2_crypto_match[] = {
2120         {
2121                 .name = "n2cp",
2122                 .compatible = "SUNW,n2-cwq",
2123         },
2124         {
2125                 .name = "n2cp",
2126                 .compatible = "SUNW,vf-cwq",
2127         },
2128         {
2129                 .name = "n2cp",
2130                 .compatible = "SUNW,kt-cwq",
2131         },
2132         {},
2133 };
2134
2135 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2136
2137 static struct platform_driver n2_crypto_driver = {
2138         .driver = {
2139                 .name           =       "n2cp",
2140                 .of_match_table =       n2_crypto_match,
2141         },
2142         .probe          =       n2_crypto_probe,
2143         .remove         =       n2_crypto_remove,
2144 };
2145
2146 static const struct of_device_id n2_mau_match[] = {
2147         {
2148                 .name = "ncp",
2149                 .compatible = "SUNW,n2-mau",
2150         },
2151         {
2152                 .name = "ncp",
2153                 .compatible = "SUNW,vf-mau",
2154         },
2155         {
2156                 .name = "ncp",
2157                 .compatible = "SUNW,kt-mau",
2158         },
2159         {},
2160 };
2161
2162 MODULE_DEVICE_TABLE(of, n2_mau_match);
2163
2164 static struct platform_driver n2_mau_driver = {
2165         .driver = {
2166                 .name           =       "ncp",
2167                 .of_match_table =       n2_mau_match,
2168         },
2169         .probe          =       n2_mau_probe,
2170         .remove         =       n2_mau_remove,
2171 };
2172
2173 static struct platform_driver * const drivers[] = {
2174         &n2_crypto_driver,
2175         &n2_mau_driver,
2176 };
2177
2178 static int __init n2_init(void)
2179 {
2180         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2181 }
2182
2183 static void __exit n2_exit(void)
2184 {
2185         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2186 }
2187
2188 module_init(n2_init);
2189 module_exit(n2_exit);