net: dsa: mv88e6xxx: Fix masking of egress port
[linux-2.6-microblaze.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32
33 #include "n2_core.h"
34
35 #define DRV_MODULE_NAME         "n2_crypto"
36 #define DRV_MODULE_VERSION      "0.2"
37 #define DRV_MODULE_RELDATE      "July 28, 2011"
38
39 static const char version[] =
40         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46
47 #define N2_CRA_PRIORITY         200
48
49 static DEFINE_MUTEX(spu_lock);
50
51 struct spu_queue {
52         cpumask_t               sharing;
53         unsigned long           qhandle;
54
55         spinlock_t              lock;
56         u8                      q_type;
57         void                    *q;
58         unsigned long           head;
59         unsigned long           tail;
60         struct list_head        jobs;
61
62         unsigned long           devino;
63
64         char                    irq_name[32];
65         unsigned int            irq;
66
67         struct list_head        list;
68 };
69
70 struct spu_qreg {
71         struct spu_queue        *queue;
72         unsigned long           type;
73 };
74
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80         if (q->q_type == HV_NCS_QTYPE_MAU) {
81                 off += MAU_ENTRY_SIZE;
82                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83                         off = 0;
84         } else {
85                 off += CWQ_ENTRY_SIZE;
86                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87                         off = 0;
88         }
89         return off;
90 }
91
92 struct n2_request_common {
93         struct list_head        entry;
94         unsigned int            offset;
95 };
96 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
97
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103                                 unsigned long old_head, unsigned long new_head)
104 {
105         if (old_head <= new_head) {
106                 if (offset > old_head && offset <= new_head)
107                         return true;
108         } else {
109                 if (offset > old_head || offset <= new_head)
110                         return true;
111         }
112         return false;
113 }
114
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122         unsigned long off, new_head, hv_ret;
123         struct spu_queue *q = dev_id;
124
125         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126                smp_processor_id(), q->qhandle);
127
128         spin_lock(&q->lock);
129
130         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133                smp_processor_id(), new_head, hv_ret);
134
135         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136                 /* XXX ... XXX */
137         }
138
139         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140         if (hv_ret == HV_EOK)
141                 q->head = new_head;
142
143         spin_unlock(&q->lock);
144
145         return IRQ_HANDLED;
146 }
147
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150         struct spu_queue *q = dev_id;
151         unsigned long head, hv_ret;
152
153         spin_lock(&q->lock);
154
155         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156                smp_processor_id(), q->qhandle);
157
158         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161                smp_processor_id(), head, hv_ret);
162
163         sun4v_ncs_sethead_marker(q->qhandle, head);
164
165         spin_unlock(&q->lock);
166
167         return IRQ_HANDLED;
168 }
169
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172         return q->q + spu_next_offset(q, cur - q->q);
173 }
174
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177         unsigned long head = q->head;
178         unsigned long tail = q->tail;
179         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180         unsigned long diff;
181
182         if (head > tail)
183                 diff = head - tail;
184         else
185                 diff = (end - tail) + head;
186
187         return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192         int avail = spu_queue_num_free(q);
193
194         if (avail >= num_entries)
195                 return q->q + q->tail;
196
197         return NULL;
198 }
199
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202         unsigned long hv_ret, new_tail;
203
204         new_tail = spu_next_offset(q, last - q->q);
205
206         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207         if (hv_ret == HV_EOK)
208                 q->tail = new_tail;
209         return hv_ret;
210 }
211
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213                              int enc_type, int auth_type,
214                              unsigned int hash_len,
215                              bool sfas, bool sob, bool eob, bool encrypt,
216                              int opcode)
217 {
218         u64 word = (len - 1) & CONTROL_LEN;
219
220         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223         if (sfas)
224                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225         if (sob)
226                 word |= CONTROL_START_OF_BLOCK;
227         if (eob)
228                 word |= CONTROL_END_OF_BLOCK;
229         if (encrypt)
230                 word |= CONTROL_ENCRYPT;
231         if (hmac_key_len)
232                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233         if (hash_len)
234                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236         return word;
237 }
238
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242         if (this_len >= 64 ||
243             qp->head != qp->tail)
244                 return true;
245         return false;
246 }
247 #endif
248
249 struct n2_ahash_alg {
250         struct list_head        entry;
251         const u8                *hash_zero;
252         const u32               *hash_init;
253         u8                      hw_op_hashsz;
254         u8                      digest_size;
255         u8                      auth_type;
256         u8                      hmac_type;
257         struct ahash_alg        alg;
258 };
259
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262         struct crypto_alg *alg = tfm->__crt_alg;
263         struct ahash_alg *ahash_alg;
264
265         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267         return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269
270 struct n2_hmac_alg {
271         const char              *child_alg;
272         struct n2_ahash_alg     derived;
273 };
274
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277         struct crypto_alg *alg = tfm->__crt_alg;
278         struct ahash_alg *ahash_alg;
279
280         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284
285 struct n2_hash_ctx {
286         struct crypto_ahash             *fallback_tfm;
287 };
288
289 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
290
291 struct n2_hmac_ctx {
292         struct n2_hash_ctx              base;
293
294         struct crypto_shash             *child_shash;
295
296         int                             hash_key_len;
297         unsigned char                   hash_key[N2_HASH_KEY_MAX];
298 };
299
300 struct n2_hash_req_ctx {
301         union {
302                 struct md5_state        md5;
303                 struct sha1_state       sha1;
304                 struct sha256_state     sha256;
305         } u;
306
307         struct ahash_request            fallback_req;
308 };
309
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319         return crypto_ahash_init(&rctx->fallback_req);
320 }
321
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330         rctx->fallback_req.nbytes = req->nbytes;
331         rctx->fallback_req.src = req->src;
332
333         return crypto_ahash_update(&rctx->fallback_req);
334 }
335
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344         rctx->fallback_req.result = req->result;
345
346         return crypto_ahash_final(&rctx->fallback_req);
347 }
348
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357         rctx->fallback_req.nbytes = req->nbytes;
358         rctx->fallback_req.src = req->src;
359         rctx->fallback_req.result = req->result;
360
361         return crypto_ahash_finup(&rctx->fallback_req);
362 }
363
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366         return -ENOSYS;
367 }
368
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371         return -ENOSYS;
372 }
373
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379         struct crypto_ahash *fallback_tfm;
380         int err;
381
382         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383                                           CRYPTO_ALG_NEED_FALLBACK);
384         if (IS_ERR(fallback_tfm)) {
385                 pr_warn("Fallback driver '%s' could not be loaded!\n",
386                         fallback_driver_name);
387                 err = PTR_ERR(fallback_tfm);
388                 goto out;
389         }
390
391         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392                                          crypto_ahash_reqsize(fallback_tfm)));
393
394         ctx->fallback_tfm = fallback_tfm;
395         return 0;
396
397 out:
398         return err;
399 }
400
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406         crypto_free_ahash(ctx->fallback_tfm);
407 }
408
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415         struct crypto_ahash *fallback_tfm;
416         struct crypto_shash *child_shash;
417         int err;
418
419         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420                                           CRYPTO_ALG_NEED_FALLBACK);
421         if (IS_ERR(fallback_tfm)) {
422                 pr_warn("Fallback driver '%s' could not be loaded!\n",
423                         fallback_driver_name);
424                 err = PTR_ERR(fallback_tfm);
425                 goto out;
426         }
427
428         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429         if (IS_ERR(child_shash)) {
430                 pr_warn("Child shash '%s' could not be loaded!\n",
431                         n2alg->child_alg);
432                 err = PTR_ERR(child_shash);
433                 goto out_free_fallback;
434         }
435
436         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437                                          crypto_ahash_reqsize(fallback_tfm)));
438
439         ctx->child_shash = child_shash;
440         ctx->base.fallback_tfm = fallback_tfm;
441         return 0;
442
443 out_free_fallback:
444         crypto_free_ahash(fallback_tfm);
445
446 out:
447         return err;
448 }
449
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455         crypto_free_ahash(ctx->base.fallback_tfm);
456         crypto_free_shash(ctx->child_shash);
457 }
458
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460                                 unsigned int keylen)
461 {
462         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463         struct crypto_shash *child_shash = ctx->child_shash;
464         struct crypto_ahash *fallback_tfm;
465         SHASH_DESC_ON_STACK(shash, child_shash);
466         int err, bs, ds;
467
468         fallback_tfm = ctx->base.fallback_tfm;
469         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
470         if (err)
471                 return err;
472
473         shash->tfm = child_shash;
474
475         bs = crypto_shash_blocksize(child_shash);
476         ds = crypto_shash_digestsize(child_shash);
477         BUG_ON(ds > N2_HASH_KEY_MAX);
478         if (keylen > bs) {
479                 err = crypto_shash_digest(shash, key, keylen,
480                                           ctx->hash_key);
481                 if (err)
482                         return err;
483                 keylen = ds;
484         } else if (keylen <= N2_HASH_KEY_MAX)
485                 memcpy(ctx->hash_key, key, keylen);
486
487         ctx->hash_key_len = keylen;
488
489         return err;
490 }
491
492 static unsigned long wait_for_tail(struct spu_queue *qp)
493 {
494         unsigned long head, hv_ret;
495
496         do {
497                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
498                 if (hv_ret != HV_EOK) {
499                         pr_err("Hypervisor error on gethead\n");
500                         break;
501                 }
502                 if (head == qp->tail) {
503                         qp->head = head;
504                         break;
505                 }
506         } while (1);
507         return hv_ret;
508 }
509
510 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
511                                               struct cwq_initial_entry *ent)
512 {
513         unsigned long hv_ret = spu_queue_submit(qp, ent);
514
515         if (hv_ret == HV_EOK)
516                 hv_ret = wait_for_tail(qp);
517
518         return hv_ret;
519 }
520
521 static int n2_do_async_digest(struct ahash_request *req,
522                               unsigned int auth_type, unsigned int digest_size,
523                               unsigned int result_size, void *hash_loc,
524                               unsigned long auth_key, unsigned int auth_key_len)
525 {
526         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
527         struct cwq_initial_entry *ent;
528         struct crypto_hash_walk walk;
529         struct spu_queue *qp;
530         unsigned long flags;
531         int err = -ENODEV;
532         int nbytes, cpu;
533
534         /* The total effective length of the operation may not
535          * exceed 2^16.
536          */
537         if (unlikely(req->nbytes > (1 << 16))) {
538                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
539                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
540
541                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
542                 rctx->fallback_req.base.flags =
543                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
544                 rctx->fallback_req.nbytes = req->nbytes;
545                 rctx->fallback_req.src = req->src;
546                 rctx->fallback_req.result = req->result;
547
548                 return crypto_ahash_digest(&rctx->fallback_req);
549         }
550
551         nbytes = crypto_hash_walk_first(req, &walk);
552
553         cpu = get_cpu();
554         qp = cpu_to_cwq[cpu];
555         if (!qp)
556                 goto out;
557
558         spin_lock_irqsave(&qp->lock, flags);
559
560         /* XXX can do better, improve this later by doing a by-hand scatterlist
561          * XXX walk, etc.
562          */
563         ent = qp->q + qp->tail;
564
565         ent->control = control_word_base(nbytes, auth_key_len, 0,
566                                          auth_type, digest_size,
567                                          false, true, false, false,
568                                          OPCODE_INPLACE_BIT |
569                                          OPCODE_AUTH_MAC);
570         ent->src_addr = __pa(walk.data);
571         ent->auth_key_addr = auth_key;
572         ent->auth_iv_addr = __pa(hash_loc);
573         ent->final_auth_state_addr = 0UL;
574         ent->enc_key_addr = 0UL;
575         ent->enc_iv_addr = 0UL;
576         ent->dest_addr = __pa(hash_loc);
577
578         nbytes = crypto_hash_walk_done(&walk, 0);
579         while (nbytes > 0) {
580                 ent = spu_queue_next(qp, ent);
581
582                 ent->control = (nbytes - 1);
583                 ent->src_addr = __pa(walk.data);
584                 ent->auth_key_addr = 0UL;
585                 ent->auth_iv_addr = 0UL;
586                 ent->final_auth_state_addr = 0UL;
587                 ent->enc_key_addr = 0UL;
588                 ent->enc_iv_addr = 0UL;
589                 ent->dest_addr = 0UL;
590
591                 nbytes = crypto_hash_walk_done(&walk, 0);
592         }
593         ent->control |= CONTROL_END_OF_BLOCK;
594
595         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
596                 err = -EINVAL;
597         else
598                 err = 0;
599
600         spin_unlock_irqrestore(&qp->lock, flags);
601
602         if (!err)
603                 memcpy(req->result, hash_loc, result_size);
604 out:
605         put_cpu();
606
607         return err;
608 }
609
610 static int n2_hash_async_digest(struct ahash_request *req)
611 {
612         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
613         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
614         int ds;
615
616         ds = n2alg->digest_size;
617         if (unlikely(req->nbytes == 0)) {
618                 memcpy(req->result, n2alg->hash_zero, ds);
619                 return 0;
620         }
621         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
622
623         return n2_do_async_digest(req, n2alg->auth_type,
624                                   n2alg->hw_op_hashsz, ds,
625                                   &rctx->u, 0UL, 0);
626 }
627
628 static int n2_hmac_async_digest(struct ahash_request *req)
629 {
630         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
631         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
632         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
633         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
634         int ds;
635
636         ds = n2alg->derived.digest_size;
637         if (unlikely(req->nbytes == 0) ||
638             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
639                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
640                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
641
642                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
643                 rctx->fallback_req.base.flags =
644                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
645                 rctx->fallback_req.nbytes = req->nbytes;
646                 rctx->fallback_req.src = req->src;
647                 rctx->fallback_req.result = req->result;
648
649                 return crypto_ahash_digest(&rctx->fallback_req);
650         }
651         memcpy(&rctx->u, n2alg->derived.hash_init,
652                n2alg->derived.hw_op_hashsz);
653
654         return n2_do_async_digest(req, n2alg->derived.hmac_type,
655                                   n2alg->derived.hw_op_hashsz, ds,
656                                   &rctx->u,
657                                   __pa(&ctx->hash_key),
658                                   ctx->hash_key_len);
659 }
660
661 struct n2_skcipher_context {
662         int                     key_len;
663         int                     enc_type;
664         union {
665                 u8              aes[AES_MAX_KEY_SIZE];
666                 u8              des[DES_KEY_SIZE];
667                 u8              des3[3 * DES_KEY_SIZE];
668                 u8              arc4[258]; /* S-box, X, Y */
669         } key;
670 };
671
672 #define N2_CHUNK_ARR_LEN        16
673
674 struct n2_crypto_chunk {
675         struct list_head        entry;
676         unsigned long           iv_paddr : 44;
677         unsigned long           arr_len : 20;
678         unsigned long           dest_paddr;
679         unsigned long           dest_final;
680         struct {
681                 unsigned long   src_paddr : 44;
682                 unsigned long   src_len : 20;
683         } arr[N2_CHUNK_ARR_LEN];
684 };
685
686 struct n2_request_context {
687         struct skcipher_walk    walk;
688         struct list_head        chunk_list;
689         struct n2_crypto_chunk  chunk;
690         u8                      temp_iv[16];
691 };
692
693 /* The SPU allows some level of flexibility for partial cipher blocks
694  * being specified in a descriptor.
695  *
696  * It merely requires that every descriptor's length field is at least
697  * as large as the cipher block size.  This means that a cipher block
698  * can span at most 2 descriptors.  However, this does not allow a
699  * partial block to span into the final descriptor as that would
700  * violate the rule (since every descriptor's length must be at lest
701  * the block size).  So, for example, assuming an 8 byte block size:
702  *
703  *      0xe --> 0xa --> 0x8
704  *
705  * is a valid length sequence, whereas:
706  *
707  *      0xe --> 0xb --> 0x7
708  *
709  * is not a valid sequence.
710  */
711
712 struct n2_skcipher_alg {
713         struct list_head        entry;
714         u8                      enc_type;
715         struct skcipher_alg     skcipher;
716 };
717
718 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
719 {
720         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
721
722         return container_of(alg, struct n2_skcipher_alg, skcipher);
723 }
724
725 struct n2_skcipher_request_context {
726         struct skcipher_walk    walk;
727 };
728
729 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
730                          unsigned int keylen)
731 {
732         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
733         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
734         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
735
736         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
737
738         switch (keylen) {
739         case AES_KEYSIZE_128:
740                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
741                 break;
742         case AES_KEYSIZE_192:
743                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
744                 break;
745         case AES_KEYSIZE_256:
746                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
747                 break;
748         default:
749                 return -EINVAL;
750         }
751
752         ctx->key_len = keylen;
753         memcpy(ctx->key.aes, key, keylen);
754         return 0;
755 }
756
757 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
758                          unsigned int keylen)
759 {
760         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
761         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
762         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
763         int err;
764
765         err = verify_skcipher_des_key(skcipher, key);
766         if (err)
767                 return err;
768
769         ctx->enc_type = n2alg->enc_type;
770
771         ctx->key_len = keylen;
772         memcpy(ctx->key.des, key, keylen);
773         return 0;
774 }
775
776 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
777                           unsigned int keylen)
778 {
779         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
780         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
781         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
782         int err;
783
784         err = verify_skcipher_des3_key(skcipher, key);
785         if (err)
786                 return err;
787
788         ctx->enc_type = n2alg->enc_type;
789
790         ctx->key_len = keylen;
791         memcpy(ctx->key.des3, key, keylen);
792         return 0;
793 }
794
795 static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
796                           unsigned int keylen)
797 {
798         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
799         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
800         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
801         u8 *s = ctx->key.arc4;
802         u8 *x = s + 256;
803         u8 *y = x + 1;
804         int i, j, k;
805
806         ctx->enc_type = n2alg->enc_type;
807
808         j = k = 0;
809         *x = 0;
810         *y = 0;
811         for (i = 0; i < 256; i++)
812                 s[i] = i;
813         for (i = 0; i < 256; i++) {
814                 u8 a = s[i];
815                 j = (j + key[k] + a) & 0xff;
816                 s[i] = s[j];
817                 s[j] = a;
818                 if (++k >= keylen)
819                         k = 0;
820         }
821
822         return 0;
823 }
824
825 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
826 {
827         int this_len = nbytes;
828
829         this_len -= (nbytes & (block_size - 1));
830         return this_len > (1 << 16) ? (1 << 16) : this_len;
831 }
832
833 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
834                             struct n2_crypto_chunk *cp,
835                             struct spu_queue *qp, bool encrypt)
836 {
837         struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
838         struct cwq_initial_entry *ent;
839         bool in_place;
840         int i;
841
842         ent = spu_queue_alloc(qp, cp->arr_len);
843         if (!ent) {
844                 pr_info("queue_alloc() of %d fails\n",
845                         cp->arr_len);
846                 return -EBUSY;
847         }
848
849         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
850
851         ent->control = control_word_base(cp->arr[0].src_len,
852                                          0, ctx->enc_type, 0, 0,
853                                          false, true, false, encrypt,
854                                          OPCODE_ENCRYPT |
855                                          (in_place ? OPCODE_INPLACE_BIT : 0));
856         ent->src_addr = cp->arr[0].src_paddr;
857         ent->auth_key_addr = 0UL;
858         ent->auth_iv_addr = 0UL;
859         ent->final_auth_state_addr = 0UL;
860         ent->enc_key_addr = __pa(&ctx->key);
861         ent->enc_iv_addr = cp->iv_paddr;
862         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
863
864         for (i = 1; i < cp->arr_len; i++) {
865                 ent = spu_queue_next(qp, ent);
866
867                 ent->control = cp->arr[i].src_len - 1;
868                 ent->src_addr = cp->arr[i].src_paddr;
869                 ent->auth_key_addr = 0UL;
870                 ent->auth_iv_addr = 0UL;
871                 ent->final_auth_state_addr = 0UL;
872                 ent->enc_key_addr = 0UL;
873                 ent->enc_iv_addr = 0UL;
874                 ent->dest_addr = 0UL;
875         }
876         ent->control |= CONTROL_END_OF_BLOCK;
877
878         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
879 }
880
881 static int n2_compute_chunks(struct skcipher_request *req)
882 {
883         struct n2_request_context *rctx = skcipher_request_ctx(req);
884         struct skcipher_walk *walk = &rctx->walk;
885         struct n2_crypto_chunk *chunk;
886         unsigned long dest_prev;
887         unsigned int tot_len;
888         bool prev_in_place;
889         int err, nbytes;
890
891         err = skcipher_walk_async(walk, req);
892         if (err)
893                 return err;
894
895         INIT_LIST_HEAD(&rctx->chunk_list);
896
897         chunk = &rctx->chunk;
898         INIT_LIST_HEAD(&chunk->entry);
899
900         chunk->iv_paddr = 0UL;
901         chunk->arr_len = 0;
902         chunk->dest_paddr = 0UL;
903
904         prev_in_place = false;
905         dest_prev = ~0UL;
906         tot_len = 0;
907
908         while ((nbytes = walk->nbytes) != 0) {
909                 unsigned long dest_paddr, src_paddr;
910                 bool in_place;
911                 int this_len;
912
913                 src_paddr = (page_to_phys(walk->src.phys.page) +
914                              walk->src.phys.offset);
915                 dest_paddr = (page_to_phys(walk->dst.phys.page) +
916                               walk->dst.phys.offset);
917                 in_place = (src_paddr == dest_paddr);
918                 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
919
920                 if (chunk->arr_len != 0) {
921                         if (in_place != prev_in_place ||
922                             (!prev_in_place &&
923                              dest_paddr != dest_prev) ||
924                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
925                             tot_len + this_len > (1 << 16)) {
926                                 chunk->dest_final = dest_prev;
927                                 list_add_tail(&chunk->entry,
928                                               &rctx->chunk_list);
929                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
930                                 if (!chunk) {
931                                         err = -ENOMEM;
932                                         break;
933                                 }
934                                 INIT_LIST_HEAD(&chunk->entry);
935                         }
936                 }
937                 if (chunk->arr_len == 0) {
938                         chunk->dest_paddr = dest_paddr;
939                         tot_len = 0;
940                 }
941                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
942                 chunk->arr[chunk->arr_len].src_len = this_len;
943                 chunk->arr_len++;
944
945                 dest_prev = dest_paddr + this_len;
946                 prev_in_place = in_place;
947                 tot_len += this_len;
948
949                 err = skcipher_walk_done(walk, nbytes - this_len);
950                 if (err)
951                         break;
952         }
953         if (!err && chunk->arr_len != 0) {
954                 chunk->dest_final = dest_prev;
955                 list_add_tail(&chunk->entry, &rctx->chunk_list);
956         }
957
958         return err;
959 }
960
961 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
962 {
963         struct n2_request_context *rctx = skcipher_request_ctx(req);
964         struct n2_crypto_chunk *c, *tmp;
965
966         if (final_iv)
967                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
968
969         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
970                 list_del(&c->entry);
971                 if (unlikely(c != &rctx->chunk))
972                         kfree(c);
973         }
974
975 }
976
977 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
978 {
979         struct n2_request_context *rctx = skcipher_request_ctx(req);
980         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
981         int err = n2_compute_chunks(req);
982         struct n2_crypto_chunk *c, *tmp;
983         unsigned long flags, hv_ret;
984         struct spu_queue *qp;
985
986         if (err)
987                 return err;
988
989         qp = cpu_to_cwq[get_cpu()];
990         err = -ENODEV;
991         if (!qp)
992                 goto out;
993
994         spin_lock_irqsave(&qp->lock, flags);
995
996         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
997                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
998                 if (err)
999                         break;
1000                 list_del(&c->entry);
1001                 if (unlikely(c != &rctx->chunk))
1002                         kfree(c);
1003         }
1004         if (!err) {
1005                 hv_ret = wait_for_tail(qp);
1006                 if (hv_ret != HV_EOK)
1007                         err = -EINVAL;
1008         }
1009
1010         spin_unlock_irqrestore(&qp->lock, flags);
1011
1012 out:
1013         put_cpu();
1014
1015         n2_chunk_complete(req, NULL);
1016         return err;
1017 }
1018
1019 static int n2_encrypt_ecb(struct skcipher_request *req)
1020 {
1021         return n2_do_ecb(req, true);
1022 }
1023
1024 static int n2_decrypt_ecb(struct skcipher_request *req)
1025 {
1026         return n2_do_ecb(req, false);
1027 }
1028
1029 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1030 {
1031         struct n2_request_context *rctx = skcipher_request_ctx(req);
1032         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1033         unsigned long flags, hv_ret, iv_paddr;
1034         int err = n2_compute_chunks(req);
1035         struct n2_crypto_chunk *c, *tmp;
1036         struct spu_queue *qp;
1037         void *final_iv_addr;
1038
1039         final_iv_addr = NULL;
1040
1041         if (err)
1042                 return err;
1043
1044         qp = cpu_to_cwq[get_cpu()];
1045         err = -ENODEV;
1046         if (!qp)
1047                 goto out;
1048
1049         spin_lock_irqsave(&qp->lock, flags);
1050
1051         if (encrypt) {
1052                 iv_paddr = __pa(rctx->walk.iv);
1053                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1054                                          entry) {
1055                         c->iv_paddr = iv_paddr;
1056                         err = __n2_crypt_chunk(tfm, c, qp, true);
1057                         if (err)
1058                                 break;
1059                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1060                         list_del(&c->entry);
1061                         if (unlikely(c != &rctx->chunk))
1062                                 kfree(c);
1063                 }
1064                 final_iv_addr = __va(iv_paddr);
1065         } else {
1066                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1067                                                  entry) {
1068                         if (c == &rctx->chunk) {
1069                                 iv_paddr = __pa(rctx->walk.iv);
1070                         } else {
1071                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1072                                             tmp->arr[tmp->arr_len-1].src_len -
1073                                             rctx->walk.blocksize);
1074                         }
1075                         if (!final_iv_addr) {
1076                                 unsigned long pa;
1077
1078                                 pa = (c->arr[c->arr_len-1].src_paddr +
1079                                       c->arr[c->arr_len-1].src_len -
1080                                       rctx->walk.blocksize);
1081                                 final_iv_addr = rctx->temp_iv;
1082                                 memcpy(rctx->temp_iv, __va(pa),
1083                                        rctx->walk.blocksize);
1084                         }
1085                         c->iv_paddr = iv_paddr;
1086                         err = __n2_crypt_chunk(tfm, c, qp, false);
1087                         if (err)
1088                                 break;
1089                         list_del(&c->entry);
1090                         if (unlikely(c != &rctx->chunk))
1091                                 kfree(c);
1092                 }
1093         }
1094         if (!err) {
1095                 hv_ret = wait_for_tail(qp);
1096                 if (hv_ret != HV_EOK)
1097                         err = -EINVAL;
1098         }
1099
1100         spin_unlock_irqrestore(&qp->lock, flags);
1101
1102 out:
1103         put_cpu();
1104
1105         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1106         return err;
1107 }
1108
1109 static int n2_encrypt_chaining(struct skcipher_request *req)
1110 {
1111         return n2_do_chaining(req, true);
1112 }
1113
1114 static int n2_decrypt_chaining(struct skcipher_request *req)
1115 {
1116         return n2_do_chaining(req, false);
1117 }
1118
1119 struct n2_skcipher_tmpl {
1120         const char              *name;
1121         const char              *drv_name;
1122         u8                      block_size;
1123         u8                      enc_type;
1124         struct skcipher_alg     skcipher;
1125 };
1126
1127 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1128         /* ARC4: only ECB is supported (chaining bits ignored) */
1129         {       .name           = "ecb(arc4)",
1130                 .drv_name       = "ecb-arc4",
1131                 .block_size     = 1,
1132                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1133                                    ENC_TYPE_CHAINING_ECB),
1134                 .skcipher       = {
1135                         .min_keysize    = 1,
1136                         .max_keysize    = 256,
1137                         .setkey         = n2_arc4_setkey,
1138                         .encrypt        = n2_encrypt_ecb,
1139                         .decrypt        = n2_decrypt_ecb,
1140                 },
1141         },
1142
1143         /* DES: ECB CBC and CFB are supported */
1144         {       .name           = "ecb(des)",
1145                 .drv_name       = "ecb-des",
1146                 .block_size     = DES_BLOCK_SIZE,
1147                 .enc_type       = (ENC_TYPE_ALG_DES |
1148                                    ENC_TYPE_CHAINING_ECB),
1149                 .skcipher       = {
1150                         .min_keysize    = DES_KEY_SIZE,
1151                         .max_keysize    = DES_KEY_SIZE,
1152                         .setkey         = n2_des_setkey,
1153                         .encrypt        = n2_encrypt_ecb,
1154                         .decrypt        = n2_decrypt_ecb,
1155                 },
1156         },
1157         {       .name           = "cbc(des)",
1158                 .drv_name       = "cbc-des",
1159                 .block_size     = DES_BLOCK_SIZE,
1160                 .enc_type       = (ENC_TYPE_ALG_DES |
1161                                    ENC_TYPE_CHAINING_CBC),
1162                 .skcipher       = {
1163                         .ivsize         = DES_BLOCK_SIZE,
1164                         .min_keysize    = DES_KEY_SIZE,
1165                         .max_keysize    = DES_KEY_SIZE,
1166                         .setkey         = n2_des_setkey,
1167                         .encrypt        = n2_encrypt_chaining,
1168                         .decrypt        = n2_decrypt_chaining,
1169                 },
1170         },
1171         {       .name           = "cfb(des)",
1172                 .drv_name       = "cfb-des",
1173                 .block_size     = DES_BLOCK_SIZE,
1174                 .enc_type       = (ENC_TYPE_ALG_DES |
1175                                    ENC_TYPE_CHAINING_CFB),
1176                 .skcipher       = {
1177                         .min_keysize    = DES_KEY_SIZE,
1178                         .max_keysize    = DES_KEY_SIZE,
1179                         .setkey         = n2_des_setkey,
1180                         .encrypt        = n2_encrypt_chaining,
1181                         .decrypt        = n2_decrypt_chaining,
1182                 },
1183         },
1184
1185         /* 3DES: ECB CBC and CFB are supported */
1186         {       .name           = "ecb(des3_ede)",
1187                 .drv_name       = "ecb-3des",
1188                 .block_size     = DES_BLOCK_SIZE,
1189                 .enc_type       = (ENC_TYPE_ALG_3DES |
1190                                    ENC_TYPE_CHAINING_ECB),
1191                 .skcipher       = {
1192                         .min_keysize    = 3 * DES_KEY_SIZE,
1193                         .max_keysize    = 3 * DES_KEY_SIZE,
1194                         .setkey         = n2_3des_setkey,
1195                         .encrypt        = n2_encrypt_ecb,
1196                         .decrypt        = n2_decrypt_ecb,
1197                 },
1198         },
1199         {       .name           = "cbc(des3_ede)",
1200                 .drv_name       = "cbc-3des",
1201                 .block_size     = DES_BLOCK_SIZE,
1202                 .enc_type       = (ENC_TYPE_ALG_3DES |
1203                                    ENC_TYPE_CHAINING_CBC),
1204                 .skcipher       = {
1205                         .ivsize         = DES_BLOCK_SIZE,
1206                         .min_keysize    = 3 * DES_KEY_SIZE,
1207                         .max_keysize    = 3 * DES_KEY_SIZE,
1208                         .setkey         = n2_3des_setkey,
1209                         .encrypt        = n2_encrypt_chaining,
1210                         .decrypt        = n2_decrypt_chaining,
1211                 },
1212         },
1213         {       .name           = "cfb(des3_ede)",
1214                 .drv_name       = "cfb-3des",
1215                 .block_size     = DES_BLOCK_SIZE,
1216                 .enc_type       = (ENC_TYPE_ALG_3DES |
1217                                    ENC_TYPE_CHAINING_CFB),
1218                 .skcipher       = {
1219                         .min_keysize    = 3 * DES_KEY_SIZE,
1220                         .max_keysize    = 3 * DES_KEY_SIZE,
1221                         .setkey         = n2_3des_setkey,
1222                         .encrypt        = n2_encrypt_chaining,
1223                         .decrypt        = n2_decrypt_chaining,
1224                 },
1225         },
1226         /* AES: ECB CBC and CTR are supported */
1227         {       .name           = "ecb(aes)",
1228                 .drv_name       = "ecb-aes",
1229                 .block_size     = AES_BLOCK_SIZE,
1230                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1231                                    ENC_TYPE_CHAINING_ECB),
1232                 .skcipher       = {
1233                         .min_keysize    = AES_MIN_KEY_SIZE,
1234                         .max_keysize    = AES_MAX_KEY_SIZE,
1235                         .setkey         = n2_aes_setkey,
1236                         .encrypt        = n2_encrypt_ecb,
1237                         .decrypt        = n2_decrypt_ecb,
1238                 },
1239         },
1240         {       .name           = "cbc(aes)",
1241                 .drv_name       = "cbc-aes",
1242                 .block_size     = AES_BLOCK_SIZE,
1243                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1244                                    ENC_TYPE_CHAINING_CBC),
1245                 .skcipher       = {
1246                         .ivsize         = AES_BLOCK_SIZE,
1247                         .min_keysize    = AES_MIN_KEY_SIZE,
1248                         .max_keysize    = AES_MAX_KEY_SIZE,
1249                         .setkey         = n2_aes_setkey,
1250                         .encrypt        = n2_encrypt_chaining,
1251                         .decrypt        = n2_decrypt_chaining,
1252                 },
1253         },
1254         {       .name           = "ctr(aes)",
1255                 .drv_name       = "ctr-aes",
1256                 .block_size     = AES_BLOCK_SIZE,
1257                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1258                                    ENC_TYPE_CHAINING_COUNTER),
1259                 .skcipher       = {
1260                         .ivsize         = AES_BLOCK_SIZE,
1261                         .min_keysize    = AES_MIN_KEY_SIZE,
1262                         .max_keysize    = AES_MAX_KEY_SIZE,
1263                         .setkey         = n2_aes_setkey,
1264                         .encrypt        = n2_encrypt_chaining,
1265                         .decrypt        = n2_encrypt_chaining,
1266                 },
1267         },
1268
1269 };
1270 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1271
1272 static LIST_HEAD(skcipher_algs);
1273
1274 struct n2_hash_tmpl {
1275         const char      *name;
1276         const u8        *hash_zero;
1277         const u32       *hash_init;
1278         u8              hw_op_hashsz;
1279         u8              digest_size;
1280         u8              block_size;
1281         u8              auth_type;
1282         u8              hmac_type;
1283 };
1284
1285 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1286         cpu_to_le32(MD5_H0),
1287         cpu_to_le32(MD5_H1),
1288         cpu_to_le32(MD5_H2),
1289         cpu_to_le32(MD5_H3),
1290 };
1291 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1292         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1293 };
1294 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1295         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1296         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1297 };
1298 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1299         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1300         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1301 };
1302
1303 static const struct n2_hash_tmpl hash_tmpls[] = {
1304         { .name         = "md5",
1305           .hash_zero    = md5_zero_message_hash,
1306           .hash_init    = n2_md5_init,
1307           .auth_type    = AUTH_TYPE_MD5,
1308           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1309           .hw_op_hashsz = MD5_DIGEST_SIZE,
1310           .digest_size  = MD5_DIGEST_SIZE,
1311           .block_size   = MD5_HMAC_BLOCK_SIZE },
1312         { .name         = "sha1",
1313           .hash_zero    = sha1_zero_message_hash,
1314           .hash_init    = n2_sha1_init,
1315           .auth_type    = AUTH_TYPE_SHA1,
1316           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1317           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1318           .digest_size  = SHA1_DIGEST_SIZE,
1319           .block_size   = SHA1_BLOCK_SIZE },
1320         { .name         = "sha256",
1321           .hash_zero    = sha256_zero_message_hash,
1322           .hash_init    = n2_sha256_init,
1323           .auth_type    = AUTH_TYPE_SHA256,
1324           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1325           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1326           .digest_size  = SHA256_DIGEST_SIZE,
1327           .block_size   = SHA256_BLOCK_SIZE },
1328         { .name         = "sha224",
1329           .hash_zero    = sha224_zero_message_hash,
1330           .hash_init    = n2_sha224_init,
1331           .auth_type    = AUTH_TYPE_SHA256,
1332           .hmac_type    = AUTH_TYPE_RESERVED,
1333           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1334           .digest_size  = SHA224_DIGEST_SIZE,
1335           .block_size   = SHA224_BLOCK_SIZE },
1336 };
1337 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1338
1339 static LIST_HEAD(ahash_algs);
1340 static LIST_HEAD(hmac_algs);
1341
1342 static int algs_registered;
1343
1344 static void __n2_unregister_algs(void)
1345 {
1346         struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1347         struct n2_ahash_alg *alg, *alg_tmp;
1348         struct n2_hmac_alg *hmac, *hmac_tmp;
1349
1350         list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1351                 crypto_unregister_skcipher(&skcipher->skcipher);
1352                 list_del(&skcipher->entry);
1353                 kfree(skcipher);
1354         }
1355         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1356                 crypto_unregister_ahash(&hmac->derived.alg);
1357                 list_del(&hmac->derived.entry);
1358                 kfree(hmac);
1359         }
1360         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1361                 crypto_unregister_ahash(&alg->alg);
1362                 list_del(&alg->entry);
1363                 kfree(alg);
1364         }
1365 }
1366
1367 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1368 {
1369         crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1370         return 0;
1371 }
1372
1373 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1374 {
1375         struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1376         struct skcipher_alg *alg;
1377         int err;
1378
1379         if (!p)
1380                 return -ENOMEM;
1381
1382         alg = &p->skcipher;
1383         *alg = tmpl->skcipher;
1384
1385         snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1386         snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1387         alg->base.cra_priority = N2_CRA_PRIORITY;
1388         alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1389         alg->base.cra_blocksize = tmpl->block_size;
1390         p->enc_type = tmpl->enc_type;
1391         alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1392         alg->base.cra_module = THIS_MODULE;
1393         alg->init = n2_skcipher_init_tfm;
1394
1395         list_add(&p->entry, &skcipher_algs);
1396         err = crypto_register_skcipher(alg);
1397         if (err) {
1398                 pr_err("%s alg registration failed\n", alg->base.cra_name);
1399                 list_del(&p->entry);
1400                 kfree(p);
1401         } else {
1402                 pr_info("%s alg registered\n", alg->base.cra_name);
1403         }
1404         return err;
1405 }
1406
1407 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1408 {
1409         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1410         struct ahash_alg *ahash;
1411         struct crypto_alg *base;
1412         int err;
1413
1414         if (!p)
1415                 return -ENOMEM;
1416
1417         p->child_alg = n2ahash->alg.halg.base.cra_name;
1418         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1419         INIT_LIST_HEAD(&p->derived.entry);
1420
1421         ahash = &p->derived.alg;
1422         ahash->digest = n2_hmac_async_digest;
1423         ahash->setkey = n2_hmac_async_setkey;
1424
1425         base = &ahash->halg.base;
1426         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1427         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1428
1429         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1430         base->cra_init = n2_hmac_cra_init;
1431         base->cra_exit = n2_hmac_cra_exit;
1432
1433         list_add(&p->derived.entry, &hmac_algs);
1434         err = crypto_register_ahash(ahash);
1435         if (err) {
1436                 pr_err("%s alg registration failed\n", base->cra_name);
1437                 list_del(&p->derived.entry);
1438                 kfree(p);
1439         } else {
1440                 pr_info("%s alg registered\n", base->cra_name);
1441         }
1442         return err;
1443 }
1444
1445 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1446 {
1447         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1448         struct hash_alg_common *halg;
1449         struct crypto_alg *base;
1450         struct ahash_alg *ahash;
1451         int err;
1452
1453         if (!p)
1454                 return -ENOMEM;
1455
1456         p->hash_zero = tmpl->hash_zero;
1457         p->hash_init = tmpl->hash_init;
1458         p->auth_type = tmpl->auth_type;
1459         p->hmac_type = tmpl->hmac_type;
1460         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1461         p->digest_size = tmpl->digest_size;
1462
1463         ahash = &p->alg;
1464         ahash->init = n2_hash_async_init;
1465         ahash->update = n2_hash_async_update;
1466         ahash->final = n2_hash_async_final;
1467         ahash->finup = n2_hash_async_finup;
1468         ahash->digest = n2_hash_async_digest;
1469         ahash->export = n2_hash_async_noexport;
1470         ahash->import = n2_hash_async_noimport;
1471
1472         halg = &ahash->halg;
1473         halg->digestsize = tmpl->digest_size;
1474
1475         base = &halg->base;
1476         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1477         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1478         base->cra_priority = N2_CRA_PRIORITY;
1479         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1480                           CRYPTO_ALG_NEED_FALLBACK;
1481         base->cra_blocksize = tmpl->block_size;
1482         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1483         base->cra_module = THIS_MODULE;
1484         base->cra_init = n2_hash_cra_init;
1485         base->cra_exit = n2_hash_cra_exit;
1486
1487         list_add(&p->entry, &ahash_algs);
1488         err = crypto_register_ahash(ahash);
1489         if (err) {
1490                 pr_err("%s alg registration failed\n", base->cra_name);
1491                 list_del(&p->entry);
1492                 kfree(p);
1493         } else {
1494                 pr_info("%s alg registered\n", base->cra_name);
1495         }
1496         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1497                 err = __n2_register_one_hmac(p);
1498         return err;
1499 }
1500
1501 static int n2_register_algs(void)
1502 {
1503         int i, err = 0;
1504
1505         mutex_lock(&spu_lock);
1506         if (algs_registered++)
1507                 goto out;
1508
1509         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1510                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1511                 if (err) {
1512                         __n2_unregister_algs();
1513                         goto out;
1514                 }
1515         }
1516         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1517                 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1518                 if (err) {
1519                         __n2_unregister_algs();
1520                         goto out;
1521                 }
1522         }
1523
1524 out:
1525         mutex_unlock(&spu_lock);
1526         return err;
1527 }
1528
1529 static void n2_unregister_algs(void)
1530 {
1531         mutex_lock(&spu_lock);
1532         if (!--algs_registered)
1533                 __n2_unregister_algs();
1534         mutex_unlock(&spu_lock);
1535 }
1536
1537 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1538  * a devino.  This isn't very useful to us because all of the
1539  * interrupts listed in the device_node have been translated to
1540  * Linux virtual IRQ cookie numbers.
1541  *
1542  * So we have to back-translate, going through the 'intr' and 'ino'
1543  * property tables of the n2cp MDESC node, matching it with the OF
1544  * 'interrupts' property entries, in order to to figure out which
1545  * devino goes to which already-translated IRQ.
1546  */
1547 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1548                              unsigned long dev_ino)
1549 {
1550         const unsigned int *dev_intrs;
1551         unsigned int intr;
1552         int i;
1553
1554         for (i = 0; i < ip->num_intrs; i++) {
1555                 if (ip->ino_table[i].ino == dev_ino)
1556                         break;
1557         }
1558         if (i == ip->num_intrs)
1559                 return -ENODEV;
1560
1561         intr = ip->ino_table[i].intr;
1562
1563         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1564         if (!dev_intrs)
1565                 return -ENODEV;
1566
1567         for (i = 0; i < dev->archdata.num_irqs; i++) {
1568                 if (dev_intrs[i] == intr)
1569                         return i;
1570         }
1571
1572         return -ENODEV;
1573 }
1574
1575 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1576                        const char *irq_name, struct spu_queue *p,
1577                        irq_handler_t handler)
1578 {
1579         unsigned long herr;
1580         int index;
1581
1582         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1583         if (herr)
1584                 return -EINVAL;
1585
1586         index = find_devino_index(dev, ip, p->devino);
1587         if (index < 0)
1588                 return index;
1589
1590         p->irq = dev->archdata.irqs[index];
1591
1592         sprintf(p->irq_name, "%s-%d", irq_name, index);
1593
1594         return request_irq(p->irq, handler, 0, p->irq_name, p);
1595 }
1596
1597 static struct kmem_cache *queue_cache[2];
1598
1599 static void *new_queue(unsigned long q_type)
1600 {
1601         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1602 }
1603
1604 static void free_queue(void *p, unsigned long q_type)
1605 {
1606         kmem_cache_free(queue_cache[q_type - 1], p);
1607 }
1608
1609 static int queue_cache_init(void)
1610 {
1611         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1612                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1613                         kmem_cache_create("mau_queue",
1614                                           (MAU_NUM_ENTRIES *
1615                                            MAU_ENTRY_SIZE),
1616                                           MAU_ENTRY_SIZE, 0, NULL);
1617         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1618                 return -ENOMEM;
1619
1620         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1621                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1622                         kmem_cache_create("cwq_queue",
1623                                           (CWQ_NUM_ENTRIES *
1624                                            CWQ_ENTRY_SIZE),
1625                                           CWQ_ENTRY_SIZE, 0, NULL);
1626         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1627                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1628                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1629                 return -ENOMEM;
1630         }
1631         return 0;
1632 }
1633
1634 static void queue_cache_destroy(void)
1635 {
1636         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1637         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1638         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1639         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1640 }
1641
1642 static long spu_queue_register_workfn(void *arg)
1643 {
1644         struct spu_qreg *qr = arg;
1645         struct spu_queue *p = qr->queue;
1646         unsigned long q_type = qr->type;
1647         unsigned long hv_ret;
1648
1649         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1650                                  CWQ_NUM_ENTRIES, &p->qhandle);
1651         if (!hv_ret)
1652                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1653
1654         return hv_ret ? -EINVAL : 0;
1655 }
1656
1657 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1658 {
1659         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1660         struct spu_qreg qr = { .queue = p, .type = q_type };
1661
1662         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1663 }
1664
1665 static int spu_queue_setup(struct spu_queue *p)
1666 {
1667         int err;
1668
1669         p->q = new_queue(p->q_type);
1670         if (!p->q)
1671                 return -ENOMEM;
1672
1673         err = spu_queue_register(p, p->q_type);
1674         if (err) {
1675                 free_queue(p->q, p->q_type);
1676                 p->q = NULL;
1677         }
1678
1679         return err;
1680 }
1681
1682 static void spu_queue_destroy(struct spu_queue *p)
1683 {
1684         unsigned long hv_ret;
1685
1686         if (!p->q)
1687                 return;
1688
1689         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1690
1691         if (!hv_ret)
1692                 free_queue(p->q, p->q_type);
1693 }
1694
1695 static void spu_list_destroy(struct list_head *list)
1696 {
1697         struct spu_queue *p, *n;
1698
1699         list_for_each_entry_safe(p, n, list, list) {
1700                 int i;
1701
1702                 for (i = 0; i < NR_CPUS; i++) {
1703                         if (cpu_to_cwq[i] == p)
1704                                 cpu_to_cwq[i] = NULL;
1705                 }
1706
1707                 if (p->irq) {
1708                         free_irq(p->irq, p);
1709                         p->irq = 0;
1710                 }
1711                 spu_queue_destroy(p);
1712                 list_del(&p->list);
1713                 kfree(p);
1714         }
1715 }
1716
1717 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1718  * gathering cpu membership information.
1719  */
1720 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1721                                struct platform_device *dev,
1722                                u64 node, struct spu_queue *p,
1723                                struct spu_queue **table)
1724 {
1725         u64 arc;
1726
1727         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1728                 u64 tgt = mdesc_arc_target(mdesc, arc);
1729                 const char *name = mdesc_node_name(mdesc, tgt);
1730                 const u64 *id;
1731
1732                 if (strcmp(name, "cpu"))
1733                         continue;
1734                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1735                 if (table[*id] != NULL) {
1736                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1737                                 dev->dev.of_node);
1738                         return -EINVAL;
1739                 }
1740                 cpumask_set_cpu(*id, &p->sharing);
1741                 table[*id] = p;
1742         }
1743         return 0;
1744 }
1745
1746 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1747 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1748                             struct platform_device *dev, struct mdesc_handle *mdesc,
1749                             u64 node, const char *iname, unsigned long q_type,
1750                             irq_handler_t handler, struct spu_queue **table)
1751 {
1752         struct spu_queue *p;
1753         int err;
1754
1755         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1756         if (!p) {
1757                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1758                         dev->dev.of_node);
1759                 return -ENOMEM;
1760         }
1761
1762         cpumask_clear(&p->sharing);
1763         spin_lock_init(&p->lock);
1764         p->q_type = q_type;
1765         INIT_LIST_HEAD(&p->jobs);
1766         list_add(&p->list, list);
1767
1768         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1769         if (err)
1770                 return err;
1771
1772         err = spu_queue_setup(p);
1773         if (err)
1774                 return err;
1775
1776         return spu_map_ino(dev, ip, iname, p, handler);
1777 }
1778
1779 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1780                           struct spu_mdesc_info *ip, struct list_head *list,
1781                           const char *exec_name, unsigned long q_type,
1782                           irq_handler_t handler, struct spu_queue **table)
1783 {
1784         int err = 0;
1785         u64 node;
1786
1787         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1788                 const char *type;
1789
1790                 type = mdesc_get_property(mdesc, node, "type", NULL);
1791                 if (!type || strcmp(type, exec_name))
1792                         continue;
1793
1794                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1795                                        exec_name, q_type, handler, table);
1796                 if (err) {
1797                         spu_list_destroy(list);
1798                         break;
1799                 }
1800         }
1801
1802         return err;
1803 }
1804
1805 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1806                          struct spu_mdesc_info *ip)
1807 {
1808         const u64 *ino;
1809         int ino_len;
1810         int i;
1811
1812         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1813         if (!ino) {
1814                 printk("NO 'ino'\n");
1815                 return -ENODEV;
1816         }
1817
1818         ip->num_intrs = ino_len / sizeof(u64);
1819         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1820                                  ip->num_intrs),
1821                                 GFP_KERNEL);
1822         if (!ip->ino_table)
1823                 return -ENOMEM;
1824
1825         for (i = 0; i < ip->num_intrs; i++) {
1826                 struct ino_blob *b = &ip->ino_table[i];
1827                 b->intr = i + 1;
1828                 b->ino = ino[i];
1829         }
1830
1831         return 0;
1832 }
1833
1834 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1835                                 struct platform_device *dev,
1836                                 struct spu_mdesc_info *ip,
1837                                 const char *node_name)
1838 {
1839         const unsigned int *reg;
1840         u64 node;
1841
1842         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1843         if (!reg)
1844                 return -ENODEV;
1845
1846         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1847                 const char *name;
1848                 const u64 *chdl;
1849
1850                 name = mdesc_get_property(mdesc, node, "name", NULL);
1851                 if (!name || strcmp(name, node_name))
1852                         continue;
1853                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1854                 if (!chdl || (*chdl != *reg))
1855                         continue;
1856                 ip->cfg_handle = *chdl;
1857                 return get_irq_props(mdesc, node, ip);
1858         }
1859
1860         return -ENODEV;
1861 }
1862
1863 static unsigned long n2_spu_hvapi_major;
1864 static unsigned long n2_spu_hvapi_minor;
1865
1866 static int n2_spu_hvapi_register(void)
1867 {
1868         int err;
1869
1870         n2_spu_hvapi_major = 2;
1871         n2_spu_hvapi_minor = 0;
1872
1873         err = sun4v_hvapi_register(HV_GRP_NCS,
1874                                    n2_spu_hvapi_major,
1875                                    &n2_spu_hvapi_minor);
1876
1877         if (!err)
1878                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1879                         n2_spu_hvapi_major,
1880                         n2_spu_hvapi_minor);
1881
1882         return err;
1883 }
1884
1885 static void n2_spu_hvapi_unregister(void)
1886 {
1887         sun4v_hvapi_unregister(HV_GRP_NCS);
1888 }
1889
1890 static int global_ref;
1891
1892 static int grab_global_resources(void)
1893 {
1894         int err = 0;
1895
1896         mutex_lock(&spu_lock);
1897
1898         if (global_ref++)
1899                 goto out;
1900
1901         err = n2_spu_hvapi_register();
1902         if (err)
1903                 goto out;
1904
1905         err = queue_cache_init();
1906         if (err)
1907                 goto out_hvapi_release;
1908
1909         err = -ENOMEM;
1910         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1911                              GFP_KERNEL);
1912         if (!cpu_to_cwq)
1913                 goto out_queue_cache_destroy;
1914
1915         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1916                              GFP_KERNEL);
1917         if (!cpu_to_mau)
1918                 goto out_free_cwq_table;
1919
1920         err = 0;
1921
1922 out:
1923         if (err)
1924                 global_ref--;
1925         mutex_unlock(&spu_lock);
1926         return err;
1927
1928 out_free_cwq_table:
1929         kfree(cpu_to_cwq);
1930         cpu_to_cwq = NULL;
1931
1932 out_queue_cache_destroy:
1933         queue_cache_destroy();
1934
1935 out_hvapi_release:
1936         n2_spu_hvapi_unregister();
1937         goto out;
1938 }
1939
1940 static void release_global_resources(void)
1941 {
1942         mutex_lock(&spu_lock);
1943         if (!--global_ref) {
1944                 kfree(cpu_to_cwq);
1945                 cpu_to_cwq = NULL;
1946
1947                 kfree(cpu_to_mau);
1948                 cpu_to_mau = NULL;
1949
1950                 queue_cache_destroy();
1951                 n2_spu_hvapi_unregister();
1952         }
1953         mutex_unlock(&spu_lock);
1954 }
1955
1956 static struct n2_crypto *alloc_n2cp(void)
1957 {
1958         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1959
1960         if (np)
1961                 INIT_LIST_HEAD(&np->cwq_list);
1962
1963         return np;
1964 }
1965
1966 static void free_n2cp(struct n2_crypto *np)
1967 {
1968         kfree(np->cwq_info.ino_table);
1969         np->cwq_info.ino_table = NULL;
1970
1971         kfree(np);
1972 }
1973
1974 static void n2_spu_driver_version(void)
1975 {
1976         static int n2_spu_version_printed;
1977
1978         if (n2_spu_version_printed++ == 0)
1979                 pr_info("%s", version);
1980 }
1981
1982 static int n2_crypto_probe(struct platform_device *dev)
1983 {
1984         struct mdesc_handle *mdesc;
1985         struct n2_crypto *np;
1986         int err;
1987
1988         n2_spu_driver_version();
1989
1990         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1991
1992         np = alloc_n2cp();
1993         if (!np) {
1994                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1995                         dev->dev.of_node);
1996                 return -ENOMEM;
1997         }
1998
1999         err = grab_global_resources();
2000         if (err) {
2001                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2002                         dev->dev.of_node);
2003                 goto out_free_n2cp;
2004         }
2005
2006         mdesc = mdesc_grab();
2007
2008         if (!mdesc) {
2009                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2010                         dev->dev.of_node);
2011                 err = -ENODEV;
2012                 goto out_free_global;
2013         }
2014         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2015         if (err) {
2016                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2017                         dev->dev.of_node);
2018                 mdesc_release(mdesc);
2019                 goto out_free_global;
2020         }
2021
2022         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2023                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2024                              cpu_to_cwq);
2025         mdesc_release(mdesc);
2026
2027         if (err) {
2028                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2029                         dev->dev.of_node);
2030                 goto out_free_global;
2031         }
2032
2033         err = n2_register_algs();
2034         if (err) {
2035                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2036                         dev->dev.of_node);
2037                 goto out_free_spu_list;
2038         }
2039
2040         dev_set_drvdata(&dev->dev, np);
2041
2042         return 0;
2043
2044 out_free_spu_list:
2045         spu_list_destroy(&np->cwq_list);
2046
2047 out_free_global:
2048         release_global_resources();
2049
2050 out_free_n2cp:
2051         free_n2cp(np);
2052
2053         return err;
2054 }
2055
2056 static int n2_crypto_remove(struct platform_device *dev)
2057 {
2058         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2059
2060         n2_unregister_algs();
2061
2062         spu_list_destroy(&np->cwq_list);
2063
2064         release_global_resources();
2065
2066         free_n2cp(np);
2067
2068         return 0;
2069 }
2070
2071 static struct n2_mau *alloc_ncp(void)
2072 {
2073         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2074
2075         if (mp)
2076                 INIT_LIST_HEAD(&mp->mau_list);
2077
2078         return mp;
2079 }
2080
2081 static void free_ncp(struct n2_mau *mp)
2082 {
2083         kfree(mp->mau_info.ino_table);
2084         mp->mau_info.ino_table = NULL;
2085
2086         kfree(mp);
2087 }
2088
2089 static int n2_mau_probe(struct platform_device *dev)
2090 {
2091         struct mdesc_handle *mdesc;
2092         struct n2_mau *mp;
2093         int err;
2094
2095         n2_spu_driver_version();
2096
2097         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2098
2099         mp = alloc_ncp();
2100         if (!mp) {
2101                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2102                         dev->dev.of_node);
2103                 return -ENOMEM;
2104         }
2105
2106         err = grab_global_resources();
2107         if (err) {
2108                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2109                         dev->dev.of_node);
2110                 goto out_free_ncp;
2111         }
2112
2113         mdesc = mdesc_grab();
2114
2115         if (!mdesc) {
2116                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2117                         dev->dev.of_node);
2118                 err = -ENODEV;
2119                 goto out_free_global;
2120         }
2121
2122         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2123         if (err) {
2124                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2125                         dev->dev.of_node);
2126                 mdesc_release(mdesc);
2127                 goto out_free_global;
2128         }
2129
2130         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2131                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2132                              cpu_to_mau);
2133         mdesc_release(mdesc);
2134
2135         if (err) {
2136                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2137                         dev->dev.of_node);
2138                 goto out_free_global;
2139         }
2140
2141         dev_set_drvdata(&dev->dev, mp);
2142
2143         return 0;
2144
2145 out_free_global:
2146         release_global_resources();
2147
2148 out_free_ncp:
2149         free_ncp(mp);
2150
2151         return err;
2152 }
2153
2154 static int n2_mau_remove(struct platform_device *dev)
2155 {
2156         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2157
2158         spu_list_destroy(&mp->mau_list);
2159
2160         release_global_resources();
2161
2162         free_ncp(mp);
2163
2164         return 0;
2165 }
2166
2167 static const struct of_device_id n2_crypto_match[] = {
2168         {
2169                 .name = "n2cp",
2170                 .compatible = "SUNW,n2-cwq",
2171         },
2172         {
2173                 .name = "n2cp",
2174                 .compatible = "SUNW,vf-cwq",
2175         },
2176         {
2177                 .name = "n2cp",
2178                 .compatible = "SUNW,kt-cwq",
2179         },
2180         {},
2181 };
2182
2183 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2184
2185 static struct platform_driver n2_crypto_driver = {
2186         .driver = {
2187                 .name           =       "n2cp",
2188                 .of_match_table =       n2_crypto_match,
2189         },
2190         .probe          =       n2_crypto_probe,
2191         .remove         =       n2_crypto_remove,
2192 };
2193
2194 static const struct of_device_id n2_mau_match[] = {
2195         {
2196                 .name = "ncp",
2197                 .compatible = "SUNW,n2-mau",
2198         },
2199         {
2200                 .name = "ncp",
2201                 .compatible = "SUNW,vf-mau",
2202         },
2203         {
2204                 .name = "ncp",
2205                 .compatible = "SUNW,kt-mau",
2206         },
2207         {},
2208 };
2209
2210 MODULE_DEVICE_TABLE(of, n2_mau_match);
2211
2212 static struct platform_driver n2_mau_driver = {
2213         .driver = {
2214                 .name           =       "ncp",
2215                 .of_match_table =       n2_mau_match,
2216         },
2217         .probe          =       n2_mau_probe,
2218         .remove         =       n2_mau_remove,
2219 };
2220
2221 static struct platform_driver * const drivers[] = {
2222         &n2_crypto_driver,
2223         &n2_mau_driver,
2224 };
2225
2226 static int __init n2_init(void)
2227 {
2228         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2229 }
2230
2231 static void __exit n2_exit(void)
2232 {
2233         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2234 }
2235
2236 module_init(n2_init);
2237 module_exit(n2_exit);