Merge tag 'dlm-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/teigland/linux-dlm
[linux-2.6-microblaze.git] / drivers / crypto / n2_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3  *
4  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
5  */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_device.h>
13 #include <linux/cpumask.h>
14 #include <linux/slab.h>
15 #include <linux/interrupt.h>
16 #include <linux/crypto.h>
17 #include <crypto/md5.h>
18 #include <crypto/sha.h>
19 #include <crypto/aes.h>
20 #include <crypto/internal/des.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24
25 #include <crypto/internal/hash.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/scatterwalk.h>
28 #include <crypto/algapi.h>
29
30 #include <asm/hypervisor.h>
31 #include <asm/mdesc.h>
32
33 #include "n2_core.h"
34
35 #define DRV_MODULE_NAME         "n2_crypto"
36 #define DRV_MODULE_VERSION      "0.2"
37 #define DRV_MODULE_RELDATE      "July 28, 2011"
38
39 static const char version[] =
40         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
41
42 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
43 MODULE_DESCRIPTION("Niagara2 Crypto driver");
44 MODULE_LICENSE("GPL");
45 MODULE_VERSION(DRV_MODULE_VERSION);
46
47 #define N2_CRA_PRIORITY         200
48
49 static DEFINE_MUTEX(spu_lock);
50
51 struct spu_queue {
52         cpumask_t               sharing;
53         unsigned long           qhandle;
54
55         spinlock_t              lock;
56         u8                      q_type;
57         void                    *q;
58         unsigned long           head;
59         unsigned long           tail;
60         struct list_head        jobs;
61
62         unsigned long           devino;
63
64         char                    irq_name[32];
65         unsigned int            irq;
66
67         struct list_head        list;
68 };
69
70 struct spu_qreg {
71         struct spu_queue        *queue;
72         unsigned long           type;
73 };
74
75 static struct spu_queue **cpu_to_cwq;
76 static struct spu_queue **cpu_to_mau;
77
78 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
79 {
80         if (q->q_type == HV_NCS_QTYPE_MAU) {
81                 off += MAU_ENTRY_SIZE;
82                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
83                         off = 0;
84         } else {
85                 off += CWQ_ENTRY_SIZE;
86                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
87                         off = 0;
88         }
89         return off;
90 }
91
92 struct n2_request_common {
93         struct list_head        entry;
94         unsigned int            offset;
95 };
96 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
97
98 /* An async job request records the final tail value it used in
99  * n2_request_common->offset, test to see if that offset is in
100  * the range old_head, new_head, inclusive.
101  */
102 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
103                                 unsigned long old_head, unsigned long new_head)
104 {
105         if (old_head <= new_head) {
106                 if (offset > old_head && offset <= new_head)
107                         return true;
108         } else {
109                 if (offset > old_head || offset <= new_head)
110                         return true;
111         }
112         return false;
113 }
114
115 /* When the HEAD marker is unequal to the actual HEAD, we get
116  * a virtual device INO interrupt.  We should process the
117  * completed CWQ entries and adjust the HEAD marker to clear
118  * the IRQ.
119  */
120 static irqreturn_t cwq_intr(int irq, void *dev_id)
121 {
122         unsigned long off, new_head, hv_ret;
123         struct spu_queue *q = dev_id;
124
125         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
126                smp_processor_id(), q->qhandle);
127
128         spin_lock(&q->lock);
129
130         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
131
132         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
133                smp_processor_id(), new_head, hv_ret);
134
135         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
136                 /* XXX ... XXX */
137         }
138
139         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
140         if (hv_ret == HV_EOK)
141                 q->head = new_head;
142
143         spin_unlock(&q->lock);
144
145         return IRQ_HANDLED;
146 }
147
148 static irqreturn_t mau_intr(int irq, void *dev_id)
149 {
150         struct spu_queue *q = dev_id;
151         unsigned long head, hv_ret;
152
153         spin_lock(&q->lock);
154
155         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
156                smp_processor_id(), q->qhandle);
157
158         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
159
160         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
161                smp_processor_id(), head, hv_ret);
162
163         sun4v_ncs_sethead_marker(q->qhandle, head);
164
165         spin_unlock(&q->lock);
166
167         return IRQ_HANDLED;
168 }
169
170 static void *spu_queue_next(struct spu_queue *q, void *cur)
171 {
172         return q->q + spu_next_offset(q, cur - q->q);
173 }
174
175 static int spu_queue_num_free(struct spu_queue *q)
176 {
177         unsigned long head = q->head;
178         unsigned long tail = q->tail;
179         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
180         unsigned long diff;
181
182         if (head > tail)
183                 diff = head - tail;
184         else
185                 diff = (end - tail) + head;
186
187         return (diff / CWQ_ENTRY_SIZE) - 1;
188 }
189
190 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
191 {
192         int avail = spu_queue_num_free(q);
193
194         if (avail >= num_entries)
195                 return q->q + q->tail;
196
197         return NULL;
198 }
199
200 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
201 {
202         unsigned long hv_ret, new_tail;
203
204         new_tail = spu_next_offset(q, last - q->q);
205
206         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
207         if (hv_ret == HV_EOK)
208                 q->tail = new_tail;
209         return hv_ret;
210 }
211
212 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
213                              int enc_type, int auth_type,
214                              unsigned int hash_len,
215                              bool sfas, bool sob, bool eob, bool encrypt,
216                              int opcode)
217 {
218         u64 word = (len - 1) & CONTROL_LEN;
219
220         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
221         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
222         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
223         if (sfas)
224                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
225         if (sob)
226                 word |= CONTROL_START_OF_BLOCK;
227         if (eob)
228                 word |= CONTROL_END_OF_BLOCK;
229         if (encrypt)
230                 word |= CONTROL_ENCRYPT;
231         if (hmac_key_len)
232                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
233         if (hash_len)
234                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
235
236         return word;
237 }
238
239 #if 0
240 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
241 {
242         if (this_len >= 64 ||
243             qp->head != qp->tail)
244                 return true;
245         return false;
246 }
247 #endif
248
249 struct n2_ahash_alg {
250         struct list_head        entry;
251         const u8                *hash_zero;
252         const u32               *hash_init;
253         u8                      hw_op_hashsz;
254         u8                      digest_size;
255         u8                      auth_type;
256         u8                      hmac_type;
257         struct ahash_alg        alg;
258 };
259
260 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
261 {
262         struct crypto_alg *alg = tfm->__crt_alg;
263         struct ahash_alg *ahash_alg;
264
265         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
266
267         return container_of(ahash_alg, struct n2_ahash_alg, alg);
268 }
269
270 struct n2_hmac_alg {
271         const char              *child_alg;
272         struct n2_ahash_alg     derived;
273 };
274
275 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
276 {
277         struct crypto_alg *alg = tfm->__crt_alg;
278         struct ahash_alg *ahash_alg;
279
280         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
281
282         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
283 }
284
285 struct n2_hash_ctx {
286         struct crypto_ahash             *fallback_tfm;
287 };
288
289 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
290
291 struct n2_hmac_ctx {
292         struct n2_hash_ctx              base;
293
294         struct crypto_shash             *child_shash;
295
296         int                             hash_key_len;
297         unsigned char                   hash_key[N2_HASH_KEY_MAX];
298 };
299
300 struct n2_hash_req_ctx {
301         union {
302                 struct md5_state        md5;
303                 struct sha1_state       sha1;
304                 struct sha256_state     sha256;
305         } u;
306
307         struct ahash_request            fallback_req;
308 };
309
310 static int n2_hash_async_init(struct ahash_request *req)
311 {
312         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
313         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
314         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
315
316         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
317         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
318
319         return crypto_ahash_init(&rctx->fallback_req);
320 }
321
322 static int n2_hash_async_update(struct ahash_request *req)
323 {
324         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
325         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
326         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
327
328         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
329         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
330         rctx->fallback_req.nbytes = req->nbytes;
331         rctx->fallback_req.src = req->src;
332
333         return crypto_ahash_update(&rctx->fallback_req);
334 }
335
336 static int n2_hash_async_final(struct ahash_request *req)
337 {
338         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
339         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
340         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
341
342         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
343         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
344         rctx->fallback_req.result = req->result;
345
346         return crypto_ahash_final(&rctx->fallback_req);
347 }
348
349 static int n2_hash_async_finup(struct ahash_request *req)
350 {
351         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
352         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
353         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
354
355         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
356         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
357         rctx->fallback_req.nbytes = req->nbytes;
358         rctx->fallback_req.src = req->src;
359         rctx->fallback_req.result = req->result;
360
361         return crypto_ahash_finup(&rctx->fallback_req);
362 }
363
364 static int n2_hash_async_noimport(struct ahash_request *req, const void *in)
365 {
366         return -ENOSYS;
367 }
368
369 static int n2_hash_async_noexport(struct ahash_request *req, void *out)
370 {
371         return -ENOSYS;
372 }
373
374 static int n2_hash_cra_init(struct crypto_tfm *tfm)
375 {
376         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
377         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
378         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
379         struct crypto_ahash *fallback_tfm;
380         int err;
381
382         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
383                                           CRYPTO_ALG_NEED_FALLBACK);
384         if (IS_ERR(fallback_tfm)) {
385                 pr_warn("Fallback driver '%s' could not be loaded!\n",
386                         fallback_driver_name);
387                 err = PTR_ERR(fallback_tfm);
388                 goto out;
389         }
390
391         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
392                                          crypto_ahash_reqsize(fallback_tfm)));
393
394         ctx->fallback_tfm = fallback_tfm;
395         return 0;
396
397 out:
398         return err;
399 }
400
401 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
402 {
403         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
404         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
405
406         crypto_free_ahash(ctx->fallback_tfm);
407 }
408
409 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
410 {
411         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
412         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
413         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
414         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
415         struct crypto_ahash *fallback_tfm;
416         struct crypto_shash *child_shash;
417         int err;
418
419         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
420                                           CRYPTO_ALG_NEED_FALLBACK);
421         if (IS_ERR(fallback_tfm)) {
422                 pr_warn("Fallback driver '%s' could not be loaded!\n",
423                         fallback_driver_name);
424                 err = PTR_ERR(fallback_tfm);
425                 goto out;
426         }
427
428         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
429         if (IS_ERR(child_shash)) {
430                 pr_warn("Child shash '%s' could not be loaded!\n",
431                         n2alg->child_alg);
432                 err = PTR_ERR(child_shash);
433                 goto out_free_fallback;
434         }
435
436         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
437                                          crypto_ahash_reqsize(fallback_tfm)));
438
439         ctx->child_shash = child_shash;
440         ctx->base.fallback_tfm = fallback_tfm;
441         return 0;
442
443 out_free_fallback:
444         crypto_free_ahash(fallback_tfm);
445
446 out:
447         return err;
448 }
449
450 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
451 {
452         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
453         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
454
455         crypto_free_ahash(ctx->base.fallback_tfm);
456         crypto_free_shash(ctx->child_shash);
457 }
458
459 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
460                                 unsigned int keylen)
461 {
462         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
463         struct crypto_shash *child_shash = ctx->child_shash;
464         struct crypto_ahash *fallback_tfm;
465         int err, bs, ds;
466
467         fallback_tfm = ctx->base.fallback_tfm;
468         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
469         if (err)
470                 return err;
471
472         bs = crypto_shash_blocksize(child_shash);
473         ds = crypto_shash_digestsize(child_shash);
474         BUG_ON(ds > N2_HASH_KEY_MAX);
475         if (keylen > bs) {
476                 err = crypto_shash_tfm_digest(child_shash, key, keylen,
477                                               ctx->hash_key);
478                 if (err)
479                         return err;
480                 keylen = ds;
481         } else if (keylen <= N2_HASH_KEY_MAX)
482                 memcpy(ctx->hash_key, key, keylen);
483
484         ctx->hash_key_len = keylen;
485
486         return err;
487 }
488
489 static unsigned long wait_for_tail(struct spu_queue *qp)
490 {
491         unsigned long head, hv_ret;
492
493         do {
494                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
495                 if (hv_ret != HV_EOK) {
496                         pr_err("Hypervisor error on gethead\n");
497                         break;
498                 }
499                 if (head == qp->tail) {
500                         qp->head = head;
501                         break;
502                 }
503         } while (1);
504         return hv_ret;
505 }
506
507 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
508                                               struct cwq_initial_entry *ent)
509 {
510         unsigned long hv_ret = spu_queue_submit(qp, ent);
511
512         if (hv_ret == HV_EOK)
513                 hv_ret = wait_for_tail(qp);
514
515         return hv_ret;
516 }
517
518 static int n2_do_async_digest(struct ahash_request *req,
519                               unsigned int auth_type, unsigned int digest_size,
520                               unsigned int result_size, void *hash_loc,
521                               unsigned long auth_key, unsigned int auth_key_len)
522 {
523         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
524         struct cwq_initial_entry *ent;
525         struct crypto_hash_walk walk;
526         struct spu_queue *qp;
527         unsigned long flags;
528         int err = -ENODEV;
529         int nbytes, cpu;
530
531         /* The total effective length of the operation may not
532          * exceed 2^16.
533          */
534         if (unlikely(req->nbytes > (1 << 16))) {
535                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
536                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
537
538                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
539                 rctx->fallback_req.base.flags =
540                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
541                 rctx->fallback_req.nbytes = req->nbytes;
542                 rctx->fallback_req.src = req->src;
543                 rctx->fallback_req.result = req->result;
544
545                 return crypto_ahash_digest(&rctx->fallback_req);
546         }
547
548         nbytes = crypto_hash_walk_first(req, &walk);
549
550         cpu = get_cpu();
551         qp = cpu_to_cwq[cpu];
552         if (!qp)
553                 goto out;
554
555         spin_lock_irqsave(&qp->lock, flags);
556
557         /* XXX can do better, improve this later by doing a by-hand scatterlist
558          * XXX walk, etc.
559          */
560         ent = qp->q + qp->tail;
561
562         ent->control = control_word_base(nbytes, auth_key_len, 0,
563                                          auth_type, digest_size,
564                                          false, true, false, false,
565                                          OPCODE_INPLACE_BIT |
566                                          OPCODE_AUTH_MAC);
567         ent->src_addr = __pa(walk.data);
568         ent->auth_key_addr = auth_key;
569         ent->auth_iv_addr = __pa(hash_loc);
570         ent->final_auth_state_addr = 0UL;
571         ent->enc_key_addr = 0UL;
572         ent->enc_iv_addr = 0UL;
573         ent->dest_addr = __pa(hash_loc);
574
575         nbytes = crypto_hash_walk_done(&walk, 0);
576         while (nbytes > 0) {
577                 ent = spu_queue_next(qp, ent);
578
579                 ent->control = (nbytes - 1);
580                 ent->src_addr = __pa(walk.data);
581                 ent->auth_key_addr = 0UL;
582                 ent->auth_iv_addr = 0UL;
583                 ent->final_auth_state_addr = 0UL;
584                 ent->enc_key_addr = 0UL;
585                 ent->enc_iv_addr = 0UL;
586                 ent->dest_addr = 0UL;
587
588                 nbytes = crypto_hash_walk_done(&walk, 0);
589         }
590         ent->control |= CONTROL_END_OF_BLOCK;
591
592         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
593                 err = -EINVAL;
594         else
595                 err = 0;
596
597         spin_unlock_irqrestore(&qp->lock, flags);
598
599         if (!err)
600                 memcpy(req->result, hash_loc, result_size);
601 out:
602         put_cpu();
603
604         return err;
605 }
606
607 static int n2_hash_async_digest(struct ahash_request *req)
608 {
609         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
610         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
611         int ds;
612
613         ds = n2alg->digest_size;
614         if (unlikely(req->nbytes == 0)) {
615                 memcpy(req->result, n2alg->hash_zero, ds);
616                 return 0;
617         }
618         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
619
620         return n2_do_async_digest(req, n2alg->auth_type,
621                                   n2alg->hw_op_hashsz, ds,
622                                   &rctx->u, 0UL, 0);
623 }
624
625 static int n2_hmac_async_digest(struct ahash_request *req)
626 {
627         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
628         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
629         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
630         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
631         int ds;
632
633         ds = n2alg->derived.digest_size;
634         if (unlikely(req->nbytes == 0) ||
635             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
636                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
637                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
638
639                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
640                 rctx->fallback_req.base.flags =
641                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
642                 rctx->fallback_req.nbytes = req->nbytes;
643                 rctx->fallback_req.src = req->src;
644                 rctx->fallback_req.result = req->result;
645
646                 return crypto_ahash_digest(&rctx->fallback_req);
647         }
648         memcpy(&rctx->u, n2alg->derived.hash_init,
649                n2alg->derived.hw_op_hashsz);
650
651         return n2_do_async_digest(req, n2alg->derived.hmac_type,
652                                   n2alg->derived.hw_op_hashsz, ds,
653                                   &rctx->u,
654                                   __pa(&ctx->hash_key),
655                                   ctx->hash_key_len);
656 }
657
658 struct n2_skcipher_context {
659         int                     key_len;
660         int                     enc_type;
661         union {
662                 u8              aes[AES_MAX_KEY_SIZE];
663                 u8              des[DES_KEY_SIZE];
664                 u8              des3[3 * DES_KEY_SIZE];
665                 u8              arc4[258]; /* S-box, X, Y */
666         } key;
667 };
668
669 #define N2_CHUNK_ARR_LEN        16
670
671 struct n2_crypto_chunk {
672         struct list_head        entry;
673         unsigned long           iv_paddr : 44;
674         unsigned long           arr_len : 20;
675         unsigned long           dest_paddr;
676         unsigned long           dest_final;
677         struct {
678                 unsigned long   src_paddr : 44;
679                 unsigned long   src_len : 20;
680         } arr[N2_CHUNK_ARR_LEN];
681 };
682
683 struct n2_request_context {
684         struct skcipher_walk    walk;
685         struct list_head        chunk_list;
686         struct n2_crypto_chunk  chunk;
687         u8                      temp_iv[16];
688 };
689
690 /* The SPU allows some level of flexibility for partial cipher blocks
691  * being specified in a descriptor.
692  *
693  * It merely requires that every descriptor's length field is at least
694  * as large as the cipher block size.  This means that a cipher block
695  * can span at most 2 descriptors.  However, this does not allow a
696  * partial block to span into the final descriptor as that would
697  * violate the rule (since every descriptor's length must be at lest
698  * the block size).  So, for example, assuming an 8 byte block size:
699  *
700  *      0xe --> 0xa --> 0x8
701  *
702  * is a valid length sequence, whereas:
703  *
704  *      0xe --> 0xb --> 0x7
705  *
706  * is not a valid sequence.
707  */
708
709 struct n2_skcipher_alg {
710         struct list_head        entry;
711         u8                      enc_type;
712         struct skcipher_alg     skcipher;
713 };
714
715 static inline struct n2_skcipher_alg *n2_skcipher_alg(struct crypto_skcipher *tfm)
716 {
717         struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
718
719         return container_of(alg, struct n2_skcipher_alg, skcipher);
720 }
721
722 struct n2_skcipher_request_context {
723         struct skcipher_walk    walk;
724 };
725
726 static int n2_aes_setkey(struct crypto_skcipher *skcipher, const u8 *key,
727                          unsigned int keylen)
728 {
729         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
730         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
731         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
732
733         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
734
735         switch (keylen) {
736         case AES_KEYSIZE_128:
737                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
738                 break;
739         case AES_KEYSIZE_192:
740                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
741                 break;
742         case AES_KEYSIZE_256:
743                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
744                 break;
745         default:
746                 return -EINVAL;
747         }
748
749         ctx->key_len = keylen;
750         memcpy(ctx->key.aes, key, keylen);
751         return 0;
752 }
753
754 static int n2_des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
755                          unsigned int keylen)
756 {
757         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
758         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
759         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
760         int err;
761
762         err = verify_skcipher_des_key(skcipher, key);
763         if (err)
764                 return err;
765
766         ctx->enc_type = n2alg->enc_type;
767
768         ctx->key_len = keylen;
769         memcpy(ctx->key.des, key, keylen);
770         return 0;
771 }
772
773 static int n2_3des_setkey(struct crypto_skcipher *skcipher, const u8 *key,
774                           unsigned int keylen)
775 {
776         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
777         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
778         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
779         int err;
780
781         err = verify_skcipher_des3_key(skcipher, key);
782         if (err)
783                 return err;
784
785         ctx->enc_type = n2alg->enc_type;
786
787         ctx->key_len = keylen;
788         memcpy(ctx->key.des3, key, keylen);
789         return 0;
790 }
791
792 static int n2_arc4_setkey(struct crypto_skcipher *skcipher, const u8 *key,
793                           unsigned int keylen)
794 {
795         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
796         struct n2_skcipher_context *ctx = crypto_tfm_ctx(tfm);
797         struct n2_skcipher_alg *n2alg = n2_skcipher_alg(skcipher);
798         u8 *s = ctx->key.arc4;
799         u8 *x = s + 256;
800         u8 *y = x + 1;
801         int i, j, k;
802
803         ctx->enc_type = n2alg->enc_type;
804
805         j = k = 0;
806         *x = 0;
807         *y = 0;
808         for (i = 0; i < 256; i++)
809                 s[i] = i;
810         for (i = 0; i < 256; i++) {
811                 u8 a = s[i];
812                 j = (j + key[k] + a) & 0xff;
813                 s[i] = s[j];
814                 s[j] = a;
815                 if (++k >= keylen)
816                         k = 0;
817         }
818
819         return 0;
820 }
821
822 static inline int skcipher_descriptor_len(int nbytes, unsigned int block_size)
823 {
824         int this_len = nbytes;
825
826         this_len -= (nbytes & (block_size - 1));
827         return this_len > (1 << 16) ? (1 << 16) : this_len;
828 }
829
830 static int __n2_crypt_chunk(struct crypto_skcipher *skcipher,
831                             struct n2_crypto_chunk *cp,
832                             struct spu_queue *qp, bool encrypt)
833 {
834         struct n2_skcipher_context *ctx = crypto_skcipher_ctx(skcipher);
835         struct cwq_initial_entry *ent;
836         bool in_place;
837         int i;
838
839         ent = spu_queue_alloc(qp, cp->arr_len);
840         if (!ent) {
841                 pr_info("queue_alloc() of %d fails\n",
842                         cp->arr_len);
843                 return -EBUSY;
844         }
845
846         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847
848         ent->control = control_word_base(cp->arr[0].src_len,
849                                          0, ctx->enc_type, 0, 0,
850                                          false, true, false, encrypt,
851                                          OPCODE_ENCRYPT |
852                                          (in_place ? OPCODE_INPLACE_BIT : 0));
853         ent->src_addr = cp->arr[0].src_paddr;
854         ent->auth_key_addr = 0UL;
855         ent->auth_iv_addr = 0UL;
856         ent->final_auth_state_addr = 0UL;
857         ent->enc_key_addr = __pa(&ctx->key);
858         ent->enc_iv_addr = cp->iv_paddr;
859         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860
861         for (i = 1; i < cp->arr_len; i++) {
862                 ent = spu_queue_next(qp, ent);
863
864                 ent->control = cp->arr[i].src_len - 1;
865                 ent->src_addr = cp->arr[i].src_paddr;
866                 ent->auth_key_addr = 0UL;
867                 ent->auth_iv_addr = 0UL;
868                 ent->final_auth_state_addr = 0UL;
869                 ent->enc_key_addr = 0UL;
870                 ent->enc_iv_addr = 0UL;
871                 ent->dest_addr = 0UL;
872         }
873         ent->control |= CONTROL_END_OF_BLOCK;
874
875         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876 }
877
878 static int n2_compute_chunks(struct skcipher_request *req)
879 {
880         struct n2_request_context *rctx = skcipher_request_ctx(req);
881         struct skcipher_walk *walk = &rctx->walk;
882         struct n2_crypto_chunk *chunk;
883         unsigned long dest_prev;
884         unsigned int tot_len;
885         bool prev_in_place;
886         int err, nbytes;
887
888         err = skcipher_walk_async(walk, req);
889         if (err)
890                 return err;
891
892         INIT_LIST_HEAD(&rctx->chunk_list);
893
894         chunk = &rctx->chunk;
895         INIT_LIST_HEAD(&chunk->entry);
896
897         chunk->iv_paddr = 0UL;
898         chunk->arr_len = 0;
899         chunk->dest_paddr = 0UL;
900
901         prev_in_place = false;
902         dest_prev = ~0UL;
903         tot_len = 0;
904
905         while ((nbytes = walk->nbytes) != 0) {
906                 unsigned long dest_paddr, src_paddr;
907                 bool in_place;
908                 int this_len;
909
910                 src_paddr = (page_to_phys(walk->src.phys.page) +
911                              walk->src.phys.offset);
912                 dest_paddr = (page_to_phys(walk->dst.phys.page) +
913                               walk->dst.phys.offset);
914                 in_place = (src_paddr == dest_paddr);
915                 this_len = skcipher_descriptor_len(nbytes, walk->blocksize);
916
917                 if (chunk->arr_len != 0) {
918                         if (in_place != prev_in_place ||
919                             (!prev_in_place &&
920                              dest_paddr != dest_prev) ||
921                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
922                             tot_len + this_len > (1 << 16)) {
923                                 chunk->dest_final = dest_prev;
924                                 list_add_tail(&chunk->entry,
925                                               &rctx->chunk_list);
926                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
927                                 if (!chunk) {
928                                         err = -ENOMEM;
929                                         break;
930                                 }
931                                 INIT_LIST_HEAD(&chunk->entry);
932                         }
933                 }
934                 if (chunk->arr_len == 0) {
935                         chunk->dest_paddr = dest_paddr;
936                         tot_len = 0;
937                 }
938                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
939                 chunk->arr[chunk->arr_len].src_len = this_len;
940                 chunk->arr_len++;
941
942                 dest_prev = dest_paddr + this_len;
943                 prev_in_place = in_place;
944                 tot_len += this_len;
945
946                 err = skcipher_walk_done(walk, nbytes - this_len);
947                 if (err)
948                         break;
949         }
950         if (!err && chunk->arr_len != 0) {
951                 chunk->dest_final = dest_prev;
952                 list_add_tail(&chunk->entry, &rctx->chunk_list);
953         }
954
955         return err;
956 }
957
958 static void n2_chunk_complete(struct skcipher_request *req, void *final_iv)
959 {
960         struct n2_request_context *rctx = skcipher_request_ctx(req);
961         struct n2_crypto_chunk *c, *tmp;
962
963         if (final_iv)
964                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
965
966         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
967                 list_del(&c->entry);
968                 if (unlikely(c != &rctx->chunk))
969                         kfree(c);
970         }
971
972 }
973
974 static int n2_do_ecb(struct skcipher_request *req, bool encrypt)
975 {
976         struct n2_request_context *rctx = skcipher_request_ctx(req);
977         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
978         int err = n2_compute_chunks(req);
979         struct n2_crypto_chunk *c, *tmp;
980         unsigned long flags, hv_ret;
981         struct spu_queue *qp;
982
983         if (err)
984                 return err;
985
986         qp = cpu_to_cwq[get_cpu()];
987         err = -ENODEV;
988         if (!qp)
989                 goto out;
990
991         spin_lock_irqsave(&qp->lock, flags);
992
993         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
994                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
995                 if (err)
996                         break;
997                 list_del(&c->entry);
998                 if (unlikely(c != &rctx->chunk))
999                         kfree(c);
1000         }
1001         if (!err) {
1002                 hv_ret = wait_for_tail(qp);
1003                 if (hv_ret != HV_EOK)
1004                         err = -EINVAL;
1005         }
1006
1007         spin_unlock_irqrestore(&qp->lock, flags);
1008
1009 out:
1010         put_cpu();
1011
1012         n2_chunk_complete(req, NULL);
1013         return err;
1014 }
1015
1016 static int n2_encrypt_ecb(struct skcipher_request *req)
1017 {
1018         return n2_do_ecb(req, true);
1019 }
1020
1021 static int n2_decrypt_ecb(struct skcipher_request *req)
1022 {
1023         return n2_do_ecb(req, false);
1024 }
1025
1026 static int n2_do_chaining(struct skcipher_request *req, bool encrypt)
1027 {
1028         struct n2_request_context *rctx = skcipher_request_ctx(req);
1029         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1030         unsigned long flags, hv_ret, iv_paddr;
1031         int err = n2_compute_chunks(req);
1032         struct n2_crypto_chunk *c, *tmp;
1033         struct spu_queue *qp;
1034         void *final_iv_addr;
1035
1036         final_iv_addr = NULL;
1037
1038         if (err)
1039                 return err;
1040
1041         qp = cpu_to_cwq[get_cpu()];
1042         err = -ENODEV;
1043         if (!qp)
1044                 goto out;
1045
1046         spin_lock_irqsave(&qp->lock, flags);
1047
1048         if (encrypt) {
1049                 iv_paddr = __pa(rctx->walk.iv);
1050                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1051                                          entry) {
1052                         c->iv_paddr = iv_paddr;
1053                         err = __n2_crypt_chunk(tfm, c, qp, true);
1054                         if (err)
1055                                 break;
1056                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1057                         list_del(&c->entry);
1058                         if (unlikely(c != &rctx->chunk))
1059                                 kfree(c);
1060                 }
1061                 final_iv_addr = __va(iv_paddr);
1062         } else {
1063                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1064                                                  entry) {
1065                         if (c == &rctx->chunk) {
1066                                 iv_paddr = __pa(rctx->walk.iv);
1067                         } else {
1068                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1069                                             tmp->arr[tmp->arr_len-1].src_len -
1070                                             rctx->walk.blocksize);
1071                         }
1072                         if (!final_iv_addr) {
1073                                 unsigned long pa;
1074
1075                                 pa = (c->arr[c->arr_len-1].src_paddr +
1076                                       c->arr[c->arr_len-1].src_len -
1077                                       rctx->walk.blocksize);
1078                                 final_iv_addr = rctx->temp_iv;
1079                                 memcpy(rctx->temp_iv, __va(pa),
1080                                        rctx->walk.blocksize);
1081                         }
1082                         c->iv_paddr = iv_paddr;
1083                         err = __n2_crypt_chunk(tfm, c, qp, false);
1084                         if (err)
1085                                 break;
1086                         list_del(&c->entry);
1087                         if (unlikely(c != &rctx->chunk))
1088                                 kfree(c);
1089                 }
1090         }
1091         if (!err) {
1092                 hv_ret = wait_for_tail(qp);
1093                 if (hv_ret != HV_EOK)
1094                         err = -EINVAL;
1095         }
1096
1097         spin_unlock_irqrestore(&qp->lock, flags);
1098
1099 out:
1100         put_cpu();
1101
1102         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1103         return err;
1104 }
1105
1106 static int n2_encrypt_chaining(struct skcipher_request *req)
1107 {
1108         return n2_do_chaining(req, true);
1109 }
1110
1111 static int n2_decrypt_chaining(struct skcipher_request *req)
1112 {
1113         return n2_do_chaining(req, false);
1114 }
1115
1116 struct n2_skcipher_tmpl {
1117         const char              *name;
1118         const char              *drv_name;
1119         u8                      block_size;
1120         u8                      enc_type;
1121         struct skcipher_alg     skcipher;
1122 };
1123
1124 static const struct n2_skcipher_tmpl skcipher_tmpls[] = {
1125         /* ARC4: only ECB is supported (chaining bits ignored) */
1126         {       .name           = "ecb(arc4)",
1127                 .drv_name       = "ecb-arc4",
1128                 .block_size     = 1,
1129                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1130                                    ENC_TYPE_CHAINING_ECB),
1131                 .skcipher       = {
1132                         .min_keysize    = 1,
1133                         .max_keysize    = 256,
1134                         .setkey         = n2_arc4_setkey,
1135                         .encrypt        = n2_encrypt_ecb,
1136                         .decrypt        = n2_decrypt_ecb,
1137                 },
1138         },
1139
1140         /* DES: ECB CBC and CFB are supported */
1141         {       .name           = "ecb(des)",
1142                 .drv_name       = "ecb-des",
1143                 .block_size     = DES_BLOCK_SIZE,
1144                 .enc_type       = (ENC_TYPE_ALG_DES |
1145                                    ENC_TYPE_CHAINING_ECB),
1146                 .skcipher       = {
1147                         .min_keysize    = DES_KEY_SIZE,
1148                         .max_keysize    = DES_KEY_SIZE,
1149                         .setkey         = n2_des_setkey,
1150                         .encrypt        = n2_encrypt_ecb,
1151                         .decrypt        = n2_decrypt_ecb,
1152                 },
1153         },
1154         {       .name           = "cbc(des)",
1155                 .drv_name       = "cbc-des",
1156                 .block_size     = DES_BLOCK_SIZE,
1157                 .enc_type       = (ENC_TYPE_ALG_DES |
1158                                    ENC_TYPE_CHAINING_CBC),
1159                 .skcipher       = {
1160                         .ivsize         = DES_BLOCK_SIZE,
1161                         .min_keysize    = DES_KEY_SIZE,
1162                         .max_keysize    = DES_KEY_SIZE,
1163                         .setkey         = n2_des_setkey,
1164                         .encrypt        = n2_encrypt_chaining,
1165                         .decrypt        = n2_decrypt_chaining,
1166                 },
1167         },
1168         {       .name           = "cfb(des)",
1169                 .drv_name       = "cfb-des",
1170                 .block_size     = DES_BLOCK_SIZE,
1171                 .enc_type       = (ENC_TYPE_ALG_DES |
1172                                    ENC_TYPE_CHAINING_CFB),
1173                 .skcipher       = {
1174                         .min_keysize    = DES_KEY_SIZE,
1175                         .max_keysize    = DES_KEY_SIZE,
1176                         .setkey         = n2_des_setkey,
1177                         .encrypt        = n2_encrypt_chaining,
1178                         .decrypt        = n2_decrypt_chaining,
1179                 },
1180         },
1181
1182         /* 3DES: ECB CBC and CFB are supported */
1183         {       .name           = "ecb(des3_ede)",
1184                 .drv_name       = "ecb-3des",
1185                 .block_size     = DES_BLOCK_SIZE,
1186                 .enc_type       = (ENC_TYPE_ALG_3DES |
1187                                    ENC_TYPE_CHAINING_ECB),
1188                 .skcipher       = {
1189                         .min_keysize    = 3 * DES_KEY_SIZE,
1190                         .max_keysize    = 3 * DES_KEY_SIZE,
1191                         .setkey         = n2_3des_setkey,
1192                         .encrypt        = n2_encrypt_ecb,
1193                         .decrypt        = n2_decrypt_ecb,
1194                 },
1195         },
1196         {       .name           = "cbc(des3_ede)",
1197                 .drv_name       = "cbc-3des",
1198                 .block_size     = DES_BLOCK_SIZE,
1199                 .enc_type       = (ENC_TYPE_ALG_3DES |
1200                                    ENC_TYPE_CHAINING_CBC),
1201                 .skcipher       = {
1202                         .ivsize         = DES_BLOCK_SIZE,
1203                         .min_keysize    = 3 * DES_KEY_SIZE,
1204                         .max_keysize    = 3 * DES_KEY_SIZE,
1205                         .setkey         = n2_3des_setkey,
1206                         .encrypt        = n2_encrypt_chaining,
1207                         .decrypt        = n2_decrypt_chaining,
1208                 },
1209         },
1210         {       .name           = "cfb(des3_ede)",
1211                 .drv_name       = "cfb-3des",
1212                 .block_size     = DES_BLOCK_SIZE,
1213                 .enc_type       = (ENC_TYPE_ALG_3DES |
1214                                    ENC_TYPE_CHAINING_CFB),
1215                 .skcipher       = {
1216                         .min_keysize    = 3 * DES_KEY_SIZE,
1217                         .max_keysize    = 3 * DES_KEY_SIZE,
1218                         .setkey         = n2_3des_setkey,
1219                         .encrypt        = n2_encrypt_chaining,
1220                         .decrypt        = n2_decrypt_chaining,
1221                 },
1222         },
1223         /* AES: ECB CBC and CTR are supported */
1224         {       .name           = "ecb(aes)",
1225                 .drv_name       = "ecb-aes",
1226                 .block_size     = AES_BLOCK_SIZE,
1227                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1228                                    ENC_TYPE_CHAINING_ECB),
1229                 .skcipher       = {
1230                         .min_keysize    = AES_MIN_KEY_SIZE,
1231                         .max_keysize    = AES_MAX_KEY_SIZE,
1232                         .setkey         = n2_aes_setkey,
1233                         .encrypt        = n2_encrypt_ecb,
1234                         .decrypt        = n2_decrypt_ecb,
1235                 },
1236         },
1237         {       .name           = "cbc(aes)",
1238                 .drv_name       = "cbc-aes",
1239                 .block_size     = AES_BLOCK_SIZE,
1240                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1241                                    ENC_TYPE_CHAINING_CBC),
1242                 .skcipher       = {
1243                         .ivsize         = AES_BLOCK_SIZE,
1244                         .min_keysize    = AES_MIN_KEY_SIZE,
1245                         .max_keysize    = AES_MAX_KEY_SIZE,
1246                         .setkey         = n2_aes_setkey,
1247                         .encrypt        = n2_encrypt_chaining,
1248                         .decrypt        = n2_decrypt_chaining,
1249                 },
1250         },
1251         {       .name           = "ctr(aes)",
1252                 .drv_name       = "ctr-aes",
1253                 .block_size     = AES_BLOCK_SIZE,
1254                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1255                                    ENC_TYPE_CHAINING_COUNTER),
1256                 .skcipher       = {
1257                         .ivsize         = AES_BLOCK_SIZE,
1258                         .min_keysize    = AES_MIN_KEY_SIZE,
1259                         .max_keysize    = AES_MAX_KEY_SIZE,
1260                         .setkey         = n2_aes_setkey,
1261                         .encrypt        = n2_encrypt_chaining,
1262                         .decrypt        = n2_encrypt_chaining,
1263                 },
1264         },
1265
1266 };
1267 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1268
1269 static LIST_HEAD(skcipher_algs);
1270
1271 struct n2_hash_tmpl {
1272         const char      *name;
1273         const u8        *hash_zero;
1274         const u32       *hash_init;
1275         u8              hw_op_hashsz;
1276         u8              digest_size;
1277         u8              block_size;
1278         u8              auth_type;
1279         u8              hmac_type;
1280 };
1281
1282 static const u32 n2_md5_init[MD5_HASH_WORDS] = {
1283         cpu_to_le32(MD5_H0),
1284         cpu_to_le32(MD5_H1),
1285         cpu_to_le32(MD5_H2),
1286         cpu_to_le32(MD5_H3),
1287 };
1288 static const u32 n2_sha1_init[SHA1_DIGEST_SIZE / 4] = {
1289         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1290 };
1291 static const u32 n2_sha256_init[SHA256_DIGEST_SIZE / 4] = {
1292         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1293         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1294 };
1295 static const u32 n2_sha224_init[SHA256_DIGEST_SIZE / 4] = {
1296         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1297         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1298 };
1299
1300 static const struct n2_hash_tmpl hash_tmpls[] = {
1301         { .name         = "md5",
1302           .hash_zero    = md5_zero_message_hash,
1303           .hash_init    = n2_md5_init,
1304           .auth_type    = AUTH_TYPE_MD5,
1305           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1306           .hw_op_hashsz = MD5_DIGEST_SIZE,
1307           .digest_size  = MD5_DIGEST_SIZE,
1308           .block_size   = MD5_HMAC_BLOCK_SIZE },
1309         { .name         = "sha1",
1310           .hash_zero    = sha1_zero_message_hash,
1311           .hash_init    = n2_sha1_init,
1312           .auth_type    = AUTH_TYPE_SHA1,
1313           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1314           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1315           .digest_size  = SHA1_DIGEST_SIZE,
1316           .block_size   = SHA1_BLOCK_SIZE },
1317         { .name         = "sha256",
1318           .hash_zero    = sha256_zero_message_hash,
1319           .hash_init    = n2_sha256_init,
1320           .auth_type    = AUTH_TYPE_SHA256,
1321           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1322           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1323           .digest_size  = SHA256_DIGEST_SIZE,
1324           .block_size   = SHA256_BLOCK_SIZE },
1325         { .name         = "sha224",
1326           .hash_zero    = sha224_zero_message_hash,
1327           .hash_init    = n2_sha224_init,
1328           .auth_type    = AUTH_TYPE_SHA256,
1329           .hmac_type    = AUTH_TYPE_RESERVED,
1330           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1331           .digest_size  = SHA224_DIGEST_SIZE,
1332           .block_size   = SHA224_BLOCK_SIZE },
1333 };
1334 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1335
1336 static LIST_HEAD(ahash_algs);
1337 static LIST_HEAD(hmac_algs);
1338
1339 static int algs_registered;
1340
1341 static void __n2_unregister_algs(void)
1342 {
1343         struct n2_skcipher_alg *skcipher, *skcipher_tmp;
1344         struct n2_ahash_alg *alg, *alg_tmp;
1345         struct n2_hmac_alg *hmac, *hmac_tmp;
1346
1347         list_for_each_entry_safe(skcipher, skcipher_tmp, &skcipher_algs, entry) {
1348                 crypto_unregister_skcipher(&skcipher->skcipher);
1349                 list_del(&skcipher->entry);
1350                 kfree(skcipher);
1351         }
1352         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1353                 crypto_unregister_ahash(&hmac->derived.alg);
1354                 list_del(&hmac->derived.entry);
1355                 kfree(hmac);
1356         }
1357         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1358                 crypto_unregister_ahash(&alg->alg);
1359                 list_del(&alg->entry);
1360                 kfree(alg);
1361         }
1362 }
1363
1364 static int n2_skcipher_init_tfm(struct crypto_skcipher *tfm)
1365 {
1366         crypto_skcipher_set_reqsize(tfm, sizeof(struct n2_request_context));
1367         return 0;
1368 }
1369
1370 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl *tmpl)
1371 {
1372         struct n2_skcipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1373         struct skcipher_alg *alg;
1374         int err;
1375
1376         if (!p)
1377                 return -ENOMEM;
1378
1379         alg = &p->skcipher;
1380         *alg = tmpl->skcipher;
1381
1382         snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1383         snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1384         alg->base.cra_priority = N2_CRA_PRIORITY;
1385         alg->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC |
1386                               CRYPTO_ALG_ALLOCATES_MEMORY;
1387         alg->base.cra_blocksize = tmpl->block_size;
1388         p->enc_type = tmpl->enc_type;
1389         alg->base.cra_ctxsize = sizeof(struct n2_skcipher_context);
1390         alg->base.cra_module = THIS_MODULE;
1391         alg->init = n2_skcipher_init_tfm;
1392
1393         list_add(&p->entry, &skcipher_algs);
1394         err = crypto_register_skcipher(alg);
1395         if (err) {
1396                 pr_err("%s alg registration failed\n", alg->base.cra_name);
1397                 list_del(&p->entry);
1398                 kfree(p);
1399         } else {
1400                 pr_info("%s alg registered\n", alg->base.cra_name);
1401         }
1402         return err;
1403 }
1404
1405 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1406 {
1407         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1408         struct ahash_alg *ahash;
1409         struct crypto_alg *base;
1410         int err;
1411
1412         if (!p)
1413                 return -ENOMEM;
1414
1415         p->child_alg = n2ahash->alg.halg.base.cra_name;
1416         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1417         INIT_LIST_HEAD(&p->derived.entry);
1418
1419         ahash = &p->derived.alg;
1420         ahash->digest = n2_hmac_async_digest;
1421         ahash->setkey = n2_hmac_async_setkey;
1422
1423         base = &ahash->halg.base;
1424         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1425         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1426
1427         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1428         base->cra_init = n2_hmac_cra_init;
1429         base->cra_exit = n2_hmac_cra_exit;
1430
1431         list_add(&p->derived.entry, &hmac_algs);
1432         err = crypto_register_ahash(ahash);
1433         if (err) {
1434                 pr_err("%s alg registration failed\n", base->cra_name);
1435                 list_del(&p->derived.entry);
1436                 kfree(p);
1437         } else {
1438                 pr_info("%s alg registered\n", base->cra_name);
1439         }
1440         return err;
1441 }
1442
1443 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1444 {
1445         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1446         struct hash_alg_common *halg;
1447         struct crypto_alg *base;
1448         struct ahash_alg *ahash;
1449         int err;
1450
1451         if (!p)
1452                 return -ENOMEM;
1453
1454         p->hash_zero = tmpl->hash_zero;
1455         p->hash_init = tmpl->hash_init;
1456         p->auth_type = tmpl->auth_type;
1457         p->hmac_type = tmpl->hmac_type;
1458         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1459         p->digest_size = tmpl->digest_size;
1460
1461         ahash = &p->alg;
1462         ahash->init = n2_hash_async_init;
1463         ahash->update = n2_hash_async_update;
1464         ahash->final = n2_hash_async_final;
1465         ahash->finup = n2_hash_async_finup;
1466         ahash->digest = n2_hash_async_digest;
1467         ahash->export = n2_hash_async_noexport;
1468         ahash->import = n2_hash_async_noimport;
1469
1470         halg = &ahash->halg;
1471         halg->digestsize = tmpl->digest_size;
1472
1473         base = &halg->base;
1474         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1475         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1476         base->cra_priority = N2_CRA_PRIORITY;
1477         base->cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1478                           CRYPTO_ALG_NEED_FALLBACK;
1479         base->cra_blocksize = tmpl->block_size;
1480         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1481         base->cra_module = THIS_MODULE;
1482         base->cra_init = n2_hash_cra_init;
1483         base->cra_exit = n2_hash_cra_exit;
1484
1485         list_add(&p->entry, &ahash_algs);
1486         err = crypto_register_ahash(ahash);
1487         if (err) {
1488                 pr_err("%s alg registration failed\n", base->cra_name);
1489                 list_del(&p->entry);
1490                 kfree(p);
1491         } else {
1492                 pr_info("%s alg registered\n", base->cra_name);
1493         }
1494         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1495                 err = __n2_register_one_hmac(p);
1496         return err;
1497 }
1498
1499 static int n2_register_algs(void)
1500 {
1501         int i, err = 0;
1502
1503         mutex_lock(&spu_lock);
1504         if (algs_registered++)
1505                 goto out;
1506
1507         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1508                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1509                 if (err) {
1510                         __n2_unregister_algs();
1511                         goto out;
1512                 }
1513         }
1514         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1515                 err = __n2_register_one_skcipher(&skcipher_tmpls[i]);
1516                 if (err) {
1517                         __n2_unregister_algs();
1518                         goto out;
1519                 }
1520         }
1521
1522 out:
1523         mutex_unlock(&spu_lock);
1524         return err;
1525 }
1526
1527 static void n2_unregister_algs(void)
1528 {
1529         mutex_lock(&spu_lock);
1530         if (!--algs_registered)
1531                 __n2_unregister_algs();
1532         mutex_unlock(&spu_lock);
1533 }
1534
1535 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1536  * a devino.  This isn't very useful to us because all of the
1537  * interrupts listed in the device_node have been translated to
1538  * Linux virtual IRQ cookie numbers.
1539  *
1540  * So we have to back-translate, going through the 'intr' and 'ino'
1541  * property tables of the n2cp MDESC node, matching it with the OF
1542  * 'interrupts' property entries, in order to to figure out which
1543  * devino goes to which already-translated IRQ.
1544  */
1545 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1546                              unsigned long dev_ino)
1547 {
1548         const unsigned int *dev_intrs;
1549         unsigned int intr;
1550         int i;
1551
1552         for (i = 0; i < ip->num_intrs; i++) {
1553                 if (ip->ino_table[i].ino == dev_ino)
1554                         break;
1555         }
1556         if (i == ip->num_intrs)
1557                 return -ENODEV;
1558
1559         intr = ip->ino_table[i].intr;
1560
1561         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1562         if (!dev_intrs)
1563                 return -ENODEV;
1564
1565         for (i = 0; i < dev->archdata.num_irqs; i++) {
1566                 if (dev_intrs[i] == intr)
1567                         return i;
1568         }
1569
1570         return -ENODEV;
1571 }
1572
1573 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1574                        const char *irq_name, struct spu_queue *p,
1575                        irq_handler_t handler)
1576 {
1577         unsigned long herr;
1578         int index;
1579
1580         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1581         if (herr)
1582                 return -EINVAL;
1583
1584         index = find_devino_index(dev, ip, p->devino);
1585         if (index < 0)
1586                 return index;
1587
1588         p->irq = dev->archdata.irqs[index];
1589
1590         sprintf(p->irq_name, "%s-%d", irq_name, index);
1591
1592         return request_irq(p->irq, handler, 0, p->irq_name, p);
1593 }
1594
1595 static struct kmem_cache *queue_cache[2];
1596
1597 static void *new_queue(unsigned long q_type)
1598 {
1599         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1600 }
1601
1602 static void free_queue(void *p, unsigned long q_type)
1603 {
1604         kmem_cache_free(queue_cache[q_type - 1], p);
1605 }
1606
1607 static int queue_cache_init(void)
1608 {
1609         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1610                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1611                         kmem_cache_create("mau_queue",
1612                                           (MAU_NUM_ENTRIES *
1613                                            MAU_ENTRY_SIZE),
1614                                           MAU_ENTRY_SIZE, 0, NULL);
1615         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1616                 return -ENOMEM;
1617
1618         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1619                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1620                         kmem_cache_create("cwq_queue",
1621                                           (CWQ_NUM_ENTRIES *
1622                                            CWQ_ENTRY_SIZE),
1623                                           CWQ_ENTRY_SIZE, 0, NULL);
1624         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1625                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1626                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1627                 return -ENOMEM;
1628         }
1629         return 0;
1630 }
1631
1632 static void queue_cache_destroy(void)
1633 {
1634         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1635         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1636         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1637         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1638 }
1639
1640 static long spu_queue_register_workfn(void *arg)
1641 {
1642         struct spu_qreg *qr = arg;
1643         struct spu_queue *p = qr->queue;
1644         unsigned long q_type = qr->type;
1645         unsigned long hv_ret;
1646
1647         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1648                                  CWQ_NUM_ENTRIES, &p->qhandle);
1649         if (!hv_ret)
1650                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1651
1652         return hv_ret ? -EINVAL : 0;
1653 }
1654
1655 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1656 {
1657         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1658         struct spu_qreg qr = { .queue = p, .type = q_type };
1659
1660         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1661 }
1662
1663 static int spu_queue_setup(struct spu_queue *p)
1664 {
1665         int err;
1666
1667         p->q = new_queue(p->q_type);
1668         if (!p->q)
1669                 return -ENOMEM;
1670
1671         err = spu_queue_register(p, p->q_type);
1672         if (err) {
1673                 free_queue(p->q, p->q_type);
1674                 p->q = NULL;
1675         }
1676
1677         return err;
1678 }
1679
1680 static void spu_queue_destroy(struct spu_queue *p)
1681 {
1682         unsigned long hv_ret;
1683
1684         if (!p->q)
1685                 return;
1686
1687         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1688
1689         if (!hv_ret)
1690                 free_queue(p->q, p->q_type);
1691 }
1692
1693 static void spu_list_destroy(struct list_head *list)
1694 {
1695         struct spu_queue *p, *n;
1696
1697         list_for_each_entry_safe(p, n, list, list) {
1698                 int i;
1699
1700                 for (i = 0; i < NR_CPUS; i++) {
1701                         if (cpu_to_cwq[i] == p)
1702                                 cpu_to_cwq[i] = NULL;
1703                 }
1704
1705                 if (p->irq) {
1706                         free_irq(p->irq, p);
1707                         p->irq = 0;
1708                 }
1709                 spu_queue_destroy(p);
1710                 list_del(&p->list);
1711                 kfree(p);
1712         }
1713 }
1714
1715 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1716  * gathering cpu membership information.
1717  */
1718 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1719                                struct platform_device *dev,
1720                                u64 node, struct spu_queue *p,
1721                                struct spu_queue **table)
1722 {
1723         u64 arc;
1724
1725         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1726                 u64 tgt = mdesc_arc_target(mdesc, arc);
1727                 const char *name = mdesc_node_name(mdesc, tgt);
1728                 const u64 *id;
1729
1730                 if (strcmp(name, "cpu"))
1731                         continue;
1732                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1733                 if (table[*id] != NULL) {
1734                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1735                                 dev->dev.of_node);
1736                         return -EINVAL;
1737                 }
1738                 cpumask_set_cpu(*id, &p->sharing);
1739                 table[*id] = p;
1740         }
1741         return 0;
1742 }
1743
1744 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1745 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1746                             struct platform_device *dev, struct mdesc_handle *mdesc,
1747                             u64 node, const char *iname, unsigned long q_type,
1748                             irq_handler_t handler, struct spu_queue **table)
1749 {
1750         struct spu_queue *p;
1751         int err;
1752
1753         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1754         if (!p) {
1755                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1756                         dev->dev.of_node);
1757                 return -ENOMEM;
1758         }
1759
1760         cpumask_clear(&p->sharing);
1761         spin_lock_init(&p->lock);
1762         p->q_type = q_type;
1763         INIT_LIST_HEAD(&p->jobs);
1764         list_add(&p->list, list);
1765
1766         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1767         if (err)
1768                 return err;
1769
1770         err = spu_queue_setup(p);
1771         if (err)
1772                 return err;
1773
1774         return spu_map_ino(dev, ip, iname, p, handler);
1775 }
1776
1777 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1778                           struct spu_mdesc_info *ip, struct list_head *list,
1779                           const char *exec_name, unsigned long q_type,
1780                           irq_handler_t handler, struct spu_queue **table)
1781 {
1782         int err = 0;
1783         u64 node;
1784
1785         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1786                 const char *type;
1787
1788                 type = mdesc_get_property(mdesc, node, "type", NULL);
1789                 if (!type || strcmp(type, exec_name))
1790                         continue;
1791
1792                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1793                                        exec_name, q_type, handler, table);
1794                 if (err) {
1795                         spu_list_destroy(list);
1796                         break;
1797                 }
1798         }
1799
1800         return err;
1801 }
1802
1803 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1804                          struct spu_mdesc_info *ip)
1805 {
1806         const u64 *ino;
1807         int ino_len;
1808         int i;
1809
1810         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1811         if (!ino) {
1812                 printk("NO 'ino'\n");
1813                 return -ENODEV;
1814         }
1815
1816         ip->num_intrs = ino_len / sizeof(u64);
1817         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1818                                  ip->num_intrs),
1819                                 GFP_KERNEL);
1820         if (!ip->ino_table)
1821                 return -ENOMEM;
1822
1823         for (i = 0; i < ip->num_intrs; i++) {
1824                 struct ino_blob *b = &ip->ino_table[i];
1825                 b->intr = i + 1;
1826                 b->ino = ino[i];
1827         }
1828
1829         return 0;
1830 }
1831
1832 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1833                                 struct platform_device *dev,
1834                                 struct spu_mdesc_info *ip,
1835                                 const char *node_name)
1836 {
1837         const unsigned int *reg;
1838         u64 node;
1839
1840         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1841         if (!reg)
1842                 return -ENODEV;
1843
1844         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1845                 const char *name;
1846                 const u64 *chdl;
1847
1848                 name = mdesc_get_property(mdesc, node, "name", NULL);
1849                 if (!name || strcmp(name, node_name))
1850                         continue;
1851                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1852                 if (!chdl || (*chdl != *reg))
1853                         continue;
1854                 ip->cfg_handle = *chdl;
1855                 return get_irq_props(mdesc, node, ip);
1856         }
1857
1858         return -ENODEV;
1859 }
1860
1861 static unsigned long n2_spu_hvapi_major;
1862 static unsigned long n2_spu_hvapi_minor;
1863
1864 static int n2_spu_hvapi_register(void)
1865 {
1866         int err;
1867
1868         n2_spu_hvapi_major = 2;
1869         n2_spu_hvapi_minor = 0;
1870
1871         err = sun4v_hvapi_register(HV_GRP_NCS,
1872                                    n2_spu_hvapi_major,
1873                                    &n2_spu_hvapi_minor);
1874
1875         if (!err)
1876                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877                         n2_spu_hvapi_major,
1878                         n2_spu_hvapi_minor);
1879
1880         return err;
1881 }
1882
1883 static void n2_spu_hvapi_unregister(void)
1884 {
1885         sun4v_hvapi_unregister(HV_GRP_NCS);
1886 }
1887
1888 static int global_ref;
1889
1890 static int grab_global_resources(void)
1891 {
1892         int err = 0;
1893
1894         mutex_lock(&spu_lock);
1895
1896         if (global_ref++)
1897                 goto out;
1898
1899         err = n2_spu_hvapi_register();
1900         if (err)
1901                 goto out;
1902
1903         err = queue_cache_init();
1904         if (err)
1905                 goto out_hvapi_release;
1906
1907         err = -ENOMEM;
1908         cpu_to_cwq = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1909                              GFP_KERNEL);
1910         if (!cpu_to_cwq)
1911                 goto out_queue_cache_destroy;
1912
1913         cpu_to_mau = kcalloc(NR_CPUS, sizeof(struct spu_queue *),
1914                              GFP_KERNEL);
1915         if (!cpu_to_mau)
1916                 goto out_free_cwq_table;
1917
1918         err = 0;
1919
1920 out:
1921         if (err)
1922                 global_ref--;
1923         mutex_unlock(&spu_lock);
1924         return err;
1925
1926 out_free_cwq_table:
1927         kfree(cpu_to_cwq);
1928         cpu_to_cwq = NULL;
1929
1930 out_queue_cache_destroy:
1931         queue_cache_destroy();
1932
1933 out_hvapi_release:
1934         n2_spu_hvapi_unregister();
1935         goto out;
1936 }
1937
1938 static void release_global_resources(void)
1939 {
1940         mutex_lock(&spu_lock);
1941         if (!--global_ref) {
1942                 kfree(cpu_to_cwq);
1943                 cpu_to_cwq = NULL;
1944
1945                 kfree(cpu_to_mau);
1946                 cpu_to_mau = NULL;
1947
1948                 queue_cache_destroy();
1949                 n2_spu_hvapi_unregister();
1950         }
1951         mutex_unlock(&spu_lock);
1952 }
1953
1954 static struct n2_crypto *alloc_n2cp(void)
1955 {
1956         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1957
1958         if (np)
1959                 INIT_LIST_HEAD(&np->cwq_list);
1960
1961         return np;
1962 }
1963
1964 static void free_n2cp(struct n2_crypto *np)
1965 {
1966         kfree(np->cwq_info.ino_table);
1967         np->cwq_info.ino_table = NULL;
1968
1969         kfree(np);
1970 }
1971
1972 static void n2_spu_driver_version(void)
1973 {
1974         static int n2_spu_version_printed;
1975
1976         if (n2_spu_version_printed++ == 0)
1977                 pr_info("%s", version);
1978 }
1979
1980 static int n2_crypto_probe(struct platform_device *dev)
1981 {
1982         struct mdesc_handle *mdesc;
1983         struct n2_crypto *np;
1984         int err;
1985
1986         n2_spu_driver_version();
1987
1988         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1989
1990         np = alloc_n2cp();
1991         if (!np) {
1992                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1993                         dev->dev.of_node);
1994                 return -ENOMEM;
1995         }
1996
1997         err = grab_global_resources();
1998         if (err) {
1999                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2000                         dev->dev.of_node);
2001                 goto out_free_n2cp;
2002         }
2003
2004         mdesc = mdesc_grab();
2005
2006         if (!mdesc) {
2007                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2008                         dev->dev.of_node);
2009                 err = -ENODEV;
2010                 goto out_free_global;
2011         }
2012         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2013         if (err) {
2014                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2015                         dev->dev.of_node);
2016                 mdesc_release(mdesc);
2017                 goto out_free_global;
2018         }
2019
2020         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2021                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2022                              cpu_to_cwq);
2023         mdesc_release(mdesc);
2024
2025         if (err) {
2026                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2027                         dev->dev.of_node);
2028                 goto out_free_global;
2029         }
2030
2031         err = n2_register_algs();
2032         if (err) {
2033                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2034                         dev->dev.of_node);
2035                 goto out_free_spu_list;
2036         }
2037
2038         dev_set_drvdata(&dev->dev, np);
2039
2040         return 0;
2041
2042 out_free_spu_list:
2043         spu_list_destroy(&np->cwq_list);
2044
2045 out_free_global:
2046         release_global_resources();
2047
2048 out_free_n2cp:
2049         free_n2cp(np);
2050
2051         return err;
2052 }
2053
2054 static int n2_crypto_remove(struct platform_device *dev)
2055 {
2056         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2057
2058         n2_unregister_algs();
2059
2060         spu_list_destroy(&np->cwq_list);
2061
2062         release_global_resources();
2063
2064         free_n2cp(np);
2065
2066         return 0;
2067 }
2068
2069 static struct n2_mau *alloc_ncp(void)
2070 {
2071         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2072
2073         if (mp)
2074                 INIT_LIST_HEAD(&mp->mau_list);
2075
2076         return mp;
2077 }
2078
2079 static void free_ncp(struct n2_mau *mp)
2080 {
2081         kfree(mp->mau_info.ino_table);
2082         mp->mau_info.ino_table = NULL;
2083
2084         kfree(mp);
2085 }
2086
2087 static int n2_mau_probe(struct platform_device *dev)
2088 {
2089         struct mdesc_handle *mdesc;
2090         struct n2_mau *mp;
2091         int err;
2092
2093         n2_spu_driver_version();
2094
2095         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2096
2097         mp = alloc_ncp();
2098         if (!mp) {
2099                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2100                         dev->dev.of_node);
2101                 return -ENOMEM;
2102         }
2103
2104         err = grab_global_resources();
2105         if (err) {
2106                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2107                         dev->dev.of_node);
2108                 goto out_free_ncp;
2109         }
2110
2111         mdesc = mdesc_grab();
2112
2113         if (!mdesc) {
2114                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2115                         dev->dev.of_node);
2116                 err = -ENODEV;
2117                 goto out_free_global;
2118         }
2119
2120         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2121         if (err) {
2122                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2123                         dev->dev.of_node);
2124                 mdesc_release(mdesc);
2125                 goto out_free_global;
2126         }
2127
2128         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2129                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2130                              cpu_to_mau);
2131         mdesc_release(mdesc);
2132
2133         if (err) {
2134                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2135                         dev->dev.of_node);
2136                 goto out_free_global;
2137         }
2138
2139         dev_set_drvdata(&dev->dev, mp);
2140
2141         return 0;
2142
2143 out_free_global:
2144         release_global_resources();
2145
2146 out_free_ncp:
2147         free_ncp(mp);
2148
2149         return err;
2150 }
2151
2152 static int n2_mau_remove(struct platform_device *dev)
2153 {
2154         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2155
2156         spu_list_destroy(&mp->mau_list);
2157
2158         release_global_resources();
2159
2160         free_ncp(mp);
2161
2162         return 0;
2163 }
2164
2165 static const struct of_device_id n2_crypto_match[] = {
2166         {
2167                 .name = "n2cp",
2168                 .compatible = "SUNW,n2-cwq",
2169         },
2170         {
2171                 .name = "n2cp",
2172                 .compatible = "SUNW,vf-cwq",
2173         },
2174         {
2175                 .name = "n2cp",
2176                 .compatible = "SUNW,kt-cwq",
2177         },
2178         {},
2179 };
2180
2181 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2182
2183 static struct platform_driver n2_crypto_driver = {
2184         .driver = {
2185                 .name           =       "n2cp",
2186                 .of_match_table =       n2_crypto_match,
2187         },
2188         .probe          =       n2_crypto_probe,
2189         .remove         =       n2_crypto_remove,
2190 };
2191
2192 static const struct of_device_id n2_mau_match[] = {
2193         {
2194                 .name = "ncp",
2195                 .compatible = "SUNW,n2-mau",
2196         },
2197         {
2198                 .name = "ncp",
2199                 .compatible = "SUNW,vf-mau",
2200         },
2201         {
2202                 .name = "ncp",
2203                 .compatible = "SUNW,kt-mau",
2204         },
2205         {},
2206 };
2207
2208 MODULE_DEVICE_TABLE(of, n2_mau_match);
2209
2210 static struct platform_driver n2_mau_driver = {
2211         .driver = {
2212                 .name           =       "ncp",
2213                 .of_match_table =       n2_mau_match,
2214         },
2215         .probe          =       n2_mau_probe,
2216         .remove         =       n2_mau_remove,
2217 };
2218
2219 static struct platform_driver * const drivers[] = {
2220         &n2_crypto_driver,
2221         &n2_mau_driver,
2222 };
2223
2224 static int __init n2_init(void)
2225 {
2226         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2227 }
2228
2229 static void __exit n2_exit(void)
2230 {
2231         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2232 }
2233
2234 module_init(n2_init);
2235 module_exit(n2_exit);