Merge tag 'x86-fpu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / drivers / crypto / mediatek / mtk-aes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  *
5  * Driver for EIP97 AES acceleration.
6  *
7  * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
8  *
9  * Some ideas are from atmel-aes.c drivers.
10  */
11
12 #include <crypto/aes.h>
13 #include <crypto/gcm.h>
14 #include <crypto/internal/skcipher.h>
15 #include "mtk-platform.h"
16
17 #define AES_QUEUE_SIZE          512
18 #define AES_BUF_ORDER           2
19 #define AES_BUF_SIZE            ((PAGE_SIZE << AES_BUF_ORDER) \
20                                 & ~(AES_BLOCK_SIZE - 1))
21 #define AES_MAX_STATE_BUF_SIZE  SIZE_IN_WORDS(AES_KEYSIZE_256 + \
22                                 AES_BLOCK_SIZE * 2)
23 #define AES_MAX_CT_SIZE         6
24
25 #define AES_CT_CTRL_HDR         cpu_to_le32(0x00220000)
26
27 /* AES-CBC/ECB/CTR/OFB/CFB command token */
28 #define AES_CMD0                cpu_to_le32(0x05000000)
29 #define AES_CMD1                cpu_to_le32(0x2d060000)
30 #define AES_CMD2                cpu_to_le32(0xe4a63806)
31 /* AES-GCM command token */
32 #define AES_GCM_CMD0            cpu_to_le32(0x0b000000)
33 #define AES_GCM_CMD1            cpu_to_le32(0xa0800000)
34 #define AES_GCM_CMD2            cpu_to_le32(0x25000010)
35 #define AES_GCM_CMD3            cpu_to_le32(0x0f020000)
36 #define AES_GCM_CMD4            cpu_to_le32(0x21e60000)
37 #define AES_GCM_CMD5            cpu_to_le32(0x40e60000)
38 #define AES_GCM_CMD6            cpu_to_le32(0xd0070000)
39
40 /* AES transform information word 0 fields */
41 #define AES_TFM_BASIC_OUT       cpu_to_le32(0x4 << 0)
42 #define AES_TFM_BASIC_IN        cpu_to_le32(0x5 << 0)
43 #define AES_TFM_GCM_OUT         cpu_to_le32(0x6 << 0)
44 #define AES_TFM_GCM_IN          cpu_to_le32(0xf << 0)
45 #define AES_TFM_SIZE(x)         cpu_to_le32((x) << 8)
46 #define AES_TFM_128BITS         cpu_to_le32(0xb << 16)
47 #define AES_TFM_192BITS         cpu_to_le32(0xd << 16)
48 #define AES_TFM_256BITS         cpu_to_le32(0xf << 16)
49 #define AES_TFM_GHASH_DIGEST    cpu_to_le32(0x2 << 21)
50 #define AES_TFM_GHASH           cpu_to_le32(0x4 << 23)
51 /* AES transform information word 1 fields */
52 #define AES_TFM_ECB             cpu_to_le32(0x0 << 0)
53 #define AES_TFM_CBC             cpu_to_le32(0x1 << 0)
54 #define AES_TFM_OFB             cpu_to_le32(0x4 << 0)
55 #define AES_TFM_CFB128          cpu_to_le32(0x5 << 0)
56 #define AES_TFM_CTR_INIT        cpu_to_le32(0x2 << 0)   /* init counter to 1 */
57 #define AES_TFM_CTR_LOAD        cpu_to_le32(0x6 << 0)   /* load/reuse counter */
58 #define AES_TFM_3IV             cpu_to_le32(0x7 << 5)   /* using IV 0-2 */
59 #define AES_TFM_FULL_IV         cpu_to_le32(0xf << 5)   /* using IV 0-3 */
60 #define AES_TFM_IV_CTR_MODE     cpu_to_le32(0x1 << 10)
61 #define AES_TFM_ENC_HASH        cpu_to_le32(0x1 << 17)
62
63 /* AES flags */
64 #define AES_FLAGS_CIPHER_MSK    GENMASK(4, 0)
65 #define AES_FLAGS_ECB           BIT(0)
66 #define AES_FLAGS_CBC           BIT(1)
67 #define AES_FLAGS_CTR           BIT(2)
68 #define AES_FLAGS_OFB           BIT(3)
69 #define AES_FLAGS_CFB128        BIT(4)
70 #define AES_FLAGS_GCM           BIT(5)
71 #define AES_FLAGS_ENCRYPT       BIT(6)
72 #define AES_FLAGS_BUSY          BIT(7)
73
74 #define AES_AUTH_TAG_ERR        cpu_to_le32(BIT(26))
75
76 /**
77  * mtk_aes_info - hardware information of AES
78  * @cmd:        command token, hardware instruction
79  * @tfm:        transform state of cipher algorithm.
80  * @state:      contains keys and initial vectors.
81  *
82  * Memory layout of GCM buffer:
83  * /-----------\
84  * |  AES KEY  | 128/196/256 bits
85  * |-----------|
86  * |  HASH KEY | a string 128 zero bits encrypted using the block cipher
87  * |-----------|
88  * |    IVs    | 4 * 4 bytes
89  * \-----------/
90  *
91  * The engine requires all these info to do:
92  * - Commands decoding and control of the engine's data path.
93  * - Coordinating hardware data fetch and store operations.
94  * - Result token construction and output.
95  */
96 struct mtk_aes_info {
97         __le32 cmd[AES_MAX_CT_SIZE];
98         __le32 tfm[2];
99         __le32 state[AES_MAX_STATE_BUF_SIZE];
100 };
101
102 struct mtk_aes_reqctx {
103         u64 mode;
104 };
105
106 struct mtk_aes_base_ctx {
107         struct mtk_cryp *cryp;
108         u32 keylen;
109         __le32 key[12];
110         __le32 keymode;
111
112         mtk_aes_fn start;
113
114         struct mtk_aes_info info;
115         dma_addr_t ct_dma;
116         dma_addr_t tfm_dma;
117
118         __le32 ct_hdr;
119         u32 ct_size;
120 };
121
122 struct mtk_aes_ctx {
123         struct mtk_aes_base_ctx base;
124 };
125
126 struct mtk_aes_ctr_ctx {
127         struct mtk_aes_base_ctx base;
128
129         u32     iv[AES_BLOCK_SIZE / sizeof(u32)];
130         size_t offset;
131         struct scatterlist src[2];
132         struct scatterlist dst[2];
133 };
134
135 struct mtk_aes_gcm_ctx {
136         struct mtk_aes_base_ctx base;
137
138         u32 authsize;
139         size_t textlen;
140 };
141
142 struct mtk_aes_drv {
143         struct list_head dev_list;
144         /* Device list lock */
145         spinlock_t lock;
146 };
147
148 static struct mtk_aes_drv mtk_aes = {
149         .dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
150         .lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
151 };
152
153 static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
154 {
155         return readl_relaxed(cryp->base + offset);
156 }
157
158 static inline void mtk_aes_write(struct mtk_cryp *cryp,
159                                  u32 offset, u32 value)
160 {
161         writel_relaxed(value, cryp->base + offset);
162 }
163
164 static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
165 {
166         struct mtk_cryp *cryp = NULL;
167         struct mtk_cryp *tmp;
168
169         spin_lock_bh(&mtk_aes.lock);
170         if (!ctx->cryp) {
171                 list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
172                         cryp = tmp;
173                         break;
174                 }
175                 ctx->cryp = cryp;
176         } else {
177                 cryp = ctx->cryp;
178         }
179         spin_unlock_bh(&mtk_aes.lock);
180
181         return cryp;
182 }
183
184 static inline size_t mtk_aes_padlen(size_t len)
185 {
186         len &= AES_BLOCK_SIZE - 1;
187         return len ? AES_BLOCK_SIZE - len : 0;
188 }
189
190 static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
191                                   struct mtk_aes_dma *dma)
192 {
193         int nents;
194
195         if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
196                 return false;
197
198         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
199                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
200                         return false;
201
202                 if (len <= sg->length) {
203                         if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
204                                 return false;
205
206                         dma->nents = nents + 1;
207                         dma->remainder = sg->length - len;
208                         sg->length = len;
209                         return true;
210                 }
211
212                 if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
213                         return false;
214
215                 len -= sg->length;
216         }
217
218         return false;
219 }
220
221 static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes,
222                                     const struct mtk_aes_reqctx *rctx)
223 {
224         /* Clear all but persistent flags and set request flags. */
225         aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode;
226 }
227
228 static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
229 {
230         struct scatterlist *sg = dma->sg;
231         int nents = dma->nents;
232
233         if (!dma->remainder)
234                 return;
235
236         while (--nents > 0 && sg)
237                 sg = sg_next(sg);
238
239         if (!sg)
240                 return;
241
242         sg->length += dma->remainder;
243 }
244
245 static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size)
246 {
247         int i;
248
249         for (i = 0; i < SIZE_IN_WORDS(size); i++)
250                 dst[i] = cpu_to_le32(src[i]);
251 }
252
253 static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size)
254 {
255         int i;
256
257         for (i = 0; i < SIZE_IN_WORDS(size); i++)
258                 dst[i] = cpu_to_be32(src[i]);
259 }
260
261 static inline int mtk_aes_complete(struct mtk_cryp *cryp,
262                                    struct mtk_aes_rec *aes,
263                                    int err)
264 {
265         aes->flags &= ~AES_FLAGS_BUSY;
266         aes->areq->complete(aes->areq, err);
267         /* Handle new request */
268         tasklet_schedule(&aes->queue_task);
269         return err;
270 }
271
272 /*
273  * Write descriptors for processing. This will configure the engine, load
274  * the transform information and then start the packet processing.
275  */
276 static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
277 {
278         struct mtk_ring *ring = cryp->ring[aes->id];
279         struct mtk_desc *cmd = NULL, *res = NULL;
280         struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
281         u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
282         int nents;
283
284         /* Write command descriptors */
285         for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
286                 cmd = ring->cmd_next;
287                 cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
288                 cmd->buf = cpu_to_le32(sg_dma_address(ssg));
289
290                 if (nents == 0) {
291                         cmd->hdr |= MTK_DESC_FIRST |
292                                     MTK_DESC_CT_LEN(aes->ctx->ct_size);
293                         cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
294                         cmd->ct_hdr = aes->ctx->ct_hdr;
295                         cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
296                 }
297
298                 /* Shift ring buffer and check boundary */
299                 if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM)
300                         ring->cmd_next = ring->cmd_base;
301         }
302         cmd->hdr |= MTK_DESC_LAST;
303
304         /* Prepare result descriptors */
305         for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
306                 res = ring->res_next;
307                 res->hdr = MTK_DESC_BUF_LEN(dsg->length);
308                 res->buf = cpu_to_le32(sg_dma_address(dsg));
309
310                 if (nents == 0)
311                         res->hdr |= MTK_DESC_FIRST;
312
313                 /* Shift ring buffer and check boundary */
314                 if (++ring->res_next == ring->res_base + MTK_DESC_NUM)
315                         ring->res_next = ring->res_base;
316         }
317         res->hdr |= MTK_DESC_LAST;
318
319         /* Pointer to current result descriptor */
320         ring->res_prev = res;
321
322         /* Prepare enough space for authenticated tag */
323         if (aes->flags & AES_FLAGS_GCM)
324                 res->hdr += AES_BLOCK_SIZE;
325
326         /*
327          * Make sure that all changes to the DMA ring are done before we
328          * start engine.
329          */
330         wmb();
331         /* Start DMA transfer */
332         mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
333         mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
334
335         return -EINPROGRESS;
336 }
337
338 static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
339 {
340         struct mtk_aes_base_ctx *ctx = aes->ctx;
341
342         dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
343                          DMA_TO_DEVICE);
344
345         if (aes->src.sg == aes->dst.sg) {
346                 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
347                              DMA_BIDIRECTIONAL);
348
349                 if (aes->src.sg != &aes->aligned_sg)
350                         mtk_aes_restore_sg(&aes->src);
351         } else {
352                 dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents,
353                              DMA_FROM_DEVICE);
354
355                 if (aes->dst.sg != &aes->aligned_sg)
356                         mtk_aes_restore_sg(&aes->dst);
357
358                 dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
359                              DMA_TO_DEVICE);
360
361                 if (aes->src.sg != &aes->aligned_sg)
362                         mtk_aes_restore_sg(&aes->src);
363         }
364
365         if (aes->dst.sg == &aes->aligned_sg)
366                 sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst),
367                                     aes->buf, aes->total);
368 }
369
370 static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
371 {
372         struct mtk_aes_base_ctx *ctx = aes->ctx;
373         struct mtk_aes_info *info = &ctx->info;
374
375         ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
376                                      DMA_TO_DEVICE);
377         if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
378                 goto exit;
379
380         ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd);
381
382         if (aes->src.sg == aes->dst.sg) {
383                 aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
384                                              aes->src.nents,
385                                              DMA_BIDIRECTIONAL);
386                 aes->dst.sg_len = aes->src.sg_len;
387                 if (unlikely(!aes->src.sg_len))
388                         goto sg_map_err;
389         } else {
390                 aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
391                                              aes->src.nents, DMA_TO_DEVICE);
392                 if (unlikely(!aes->src.sg_len))
393                         goto sg_map_err;
394
395                 aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
396                                              aes->dst.nents, DMA_FROM_DEVICE);
397                 if (unlikely(!aes->dst.sg_len)) {
398                         dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents,
399                                      DMA_TO_DEVICE);
400                         goto sg_map_err;
401                 }
402         }
403
404         return mtk_aes_xmit(cryp, aes);
405
406 sg_map_err:
407         dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE);
408 exit:
409         return mtk_aes_complete(cryp, aes, -EINVAL);
410 }
411
412 /* Initialize transform information of CBC/ECB/CTR/OFB/CFB mode */
413 static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
414                               size_t len)
415 {
416         struct skcipher_request *req = skcipher_request_cast(aes->areq);
417         struct mtk_aes_base_ctx *ctx = aes->ctx;
418         struct mtk_aes_info *info = &ctx->info;
419         u32 cnt = 0;
420
421         ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
422         info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len);
423         info->cmd[cnt++] = AES_CMD1;
424
425         info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode;
426         if (aes->flags & AES_FLAGS_ENCRYPT)
427                 info->tfm[0] |= AES_TFM_BASIC_OUT;
428         else
429                 info->tfm[0] |= AES_TFM_BASIC_IN;
430
431         switch (aes->flags & AES_FLAGS_CIPHER_MSK) {
432         case AES_FLAGS_CBC:
433                 info->tfm[1] = AES_TFM_CBC;
434                 break;
435         case AES_FLAGS_ECB:
436                 info->tfm[1] = AES_TFM_ECB;
437                 goto ecb;
438         case AES_FLAGS_CTR:
439                 info->tfm[1] = AES_TFM_CTR_LOAD;
440                 goto ctr;
441         case AES_FLAGS_OFB:
442                 info->tfm[1] = AES_TFM_OFB;
443                 break;
444         case AES_FLAGS_CFB128:
445                 info->tfm[1] = AES_TFM_CFB128;
446                 break;
447         default:
448                 /* Should not happen... */
449                 return;
450         }
451
452         mtk_aes_write_state_le(info->state + ctx->keylen, (void *)req->iv,
453                                AES_BLOCK_SIZE);
454 ctr:
455         info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE));
456         info->tfm[1] |= AES_TFM_FULL_IV;
457         info->cmd[cnt++] = AES_CMD2;
458 ecb:
459         ctx->ct_size = cnt;
460 }
461
462 static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
463                        struct scatterlist *src, struct scatterlist *dst,
464                        size_t len)
465 {
466         size_t padlen = 0;
467         bool src_aligned, dst_aligned;
468
469         aes->total = len;
470         aes->src.sg = src;
471         aes->dst.sg = dst;
472         aes->real_dst = dst;
473
474         src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
475         if (src == dst)
476                 dst_aligned = src_aligned;
477         else
478                 dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
479
480         if (!src_aligned || !dst_aligned) {
481                 padlen = mtk_aes_padlen(len);
482
483                 if (len + padlen > AES_BUF_SIZE)
484                         return mtk_aes_complete(cryp, aes, -ENOMEM);
485
486                 if (!src_aligned) {
487                         sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
488                         aes->src.sg = &aes->aligned_sg;
489                         aes->src.nents = 1;
490                         aes->src.remainder = 0;
491                 }
492
493                 if (!dst_aligned) {
494                         aes->dst.sg = &aes->aligned_sg;
495                         aes->dst.nents = 1;
496                         aes->dst.remainder = 0;
497                 }
498
499                 sg_init_table(&aes->aligned_sg, 1);
500                 sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
501         }
502
503         mtk_aes_info_init(cryp, aes, len + padlen);
504
505         return mtk_aes_map(cryp, aes);
506 }
507
508 static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
509                                 struct crypto_async_request *new_areq)
510 {
511         struct mtk_aes_rec *aes = cryp->aes[id];
512         struct crypto_async_request *areq, *backlog;
513         struct mtk_aes_base_ctx *ctx;
514         unsigned long flags;
515         int ret = 0;
516
517         spin_lock_irqsave(&aes->lock, flags);
518         if (new_areq)
519                 ret = crypto_enqueue_request(&aes->queue, new_areq);
520         if (aes->flags & AES_FLAGS_BUSY) {
521                 spin_unlock_irqrestore(&aes->lock, flags);
522                 return ret;
523         }
524         backlog = crypto_get_backlog(&aes->queue);
525         areq = crypto_dequeue_request(&aes->queue);
526         if (areq)
527                 aes->flags |= AES_FLAGS_BUSY;
528         spin_unlock_irqrestore(&aes->lock, flags);
529
530         if (!areq)
531                 return ret;
532
533         if (backlog)
534                 backlog->complete(backlog, -EINPROGRESS);
535
536         ctx = crypto_tfm_ctx(areq->tfm);
537         /* Write key into state buffer */
538         memcpy(ctx->info.state, ctx->key, sizeof(ctx->key));
539
540         aes->areq = areq;
541         aes->ctx = ctx;
542
543         return ctx->start(cryp, aes);
544 }
545
546 static int mtk_aes_transfer_complete(struct mtk_cryp *cryp,
547                                      struct mtk_aes_rec *aes)
548 {
549         return mtk_aes_complete(cryp, aes, 0);
550 }
551
552 static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
553 {
554         struct skcipher_request *req = skcipher_request_cast(aes->areq);
555         struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
556
557         mtk_aes_set_mode(aes, rctx);
558         aes->resume = mtk_aes_transfer_complete;
559
560         return mtk_aes_dma(cryp, aes, req->src, req->dst, req->cryptlen);
561 }
562
563 static inline struct mtk_aes_ctr_ctx *
564 mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx)
565 {
566         return container_of(ctx, struct mtk_aes_ctr_ctx, base);
567 }
568
569 static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
570 {
571         struct mtk_aes_base_ctx *ctx = aes->ctx;
572         struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx);
573         struct skcipher_request *req = skcipher_request_cast(aes->areq);
574         struct scatterlist *src, *dst;
575         u32 start, end, ctr, blocks;
576         size_t datalen;
577         bool fragmented = false;
578
579         /* Check for transfer completion. */
580         cctx->offset += aes->total;
581         if (cctx->offset >= req->cryptlen)
582                 return mtk_aes_transfer_complete(cryp, aes);
583
584         /* Compute data length. */
585         datalen = req->cryptlen - cctx->offset;
586         blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
587         ctr = be32_to_cpu(cctx->iv[3]);
588
589         /* Check 32bit counter overflow. */
590         start = ctr;
591         end = start + blocks - 1;
592         if (end < start) {
593                 ctr = 0xffffffff;
594                 datalen = AES_BLOCK_SIZE * -start;
595                 fragmented = true;
596         }
597
598         /* Jump to offset. */
599         src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset);
600         dst = ((req->src == req->dst) ? src :
601                scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset));
602
603         /* Write IVs into transform state buffer. */
604         mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv,
605                                AES_BLOCK_SIZE);
606
607         if (unlikely(fragmented)) {
608         /*
609          * Increment the counter manually to cope with the hardware
610          * counter overflow.
611          */
612                 cctx->iv[3] = cpu_to_be32(ctr);
613                 crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE);
614         }
615
616         return mtk_aes_dma(cryp, aes, src, dst, datalen);
617 }
618
619 static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
620 {
621         struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx);
622         struct skcipher_request *req = skcipher_request_cast(aes->areq);
623         struct mtk_aes_reqctx *rctx = skcipher_request_ctx(req);
624
625         mtk_aes_set_mode(aes, rctx);
626
627         memcpy(cctx->iv, req->iv, AES_BLOCK_SIZE);
628         cctx->offset = 0;
629         aes->total = 0;
630         aes->resume = mtk_aes_ctr_transfer;
631
632         return mtk_aes_ctr_transfer(cryp, aes);
633 }
634
635 /* Check and set the AES key to transform state buffer */
636 static int mtk_aes_setkey(struct crypto_skcipher *tfm,
637                           const u8 *key, u32 keylen)
638 {
639         struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
640
641         switch (keylen) {
642         case AES_KEYSIZE_128:
643                 ctx->keymode = AES_TFM_128BITS;
644                 break;
645         case AES_KEYSIZE_192:
646                 ctx->keymode = AES_TFM_192BITS;
647                 break;
648         case AES_KEYSIZE_256:
649                 ctx->keymode = AES_TFM_256BITS;
650                 break;
651
652         default:
653                 return -EINVAL;
654         }
655
656         ctx->keylen = SIZE_IN_WORDS(keylen);
657         mtk_aes_write_state_le(ctx->key, (const u32 *)key, keylen);
658
659         return 0;
660 }
661
662 static int mtk_aes_crypt(struct skcipher_request *req, u64 mode)
663 {
664         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
665         struct mtk_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
666         struct mtk_aes_reqctx *rctx;
667         struct mtk_cryp *cryp;
668
669         cryp = mtk_aes_find_dev(ctx);
670         if (!cryp)
671                 return -ENODEV;
672
673         rctx = skcipher_request_ctx(req);
674         rctx->mode = mode;
675
676         return mtk_aes_handle_queue(cryp, !(mode & AES_FLAGS_ENCRYPT),
677                                     &req->base);
678 }
679
680 static int mtk_aes_ecb_encrypt(struct skcipher_request *req)
681 {
682         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
683 }
684
685 static int mtk_aes_ecb_decrypt(struct skcipher_request *req)
686 {
687         return mtk_aes_crypt(req, AES_FLAGS_ECB);
688 }
689
690 static int mtk_aes_cbc_encrypt(struct skcipher_request *req)
691 {
692         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
693 }
694
695 static int mtk_aes_cbc_decrypt(struct skcipher_request *req)
696 {
697         return mtk_aes_crypt(req, AES_FLAGS_CBC);
698 }
699
700 static int mtk_aes_ctr_encrypt(struct skcipher_request *req)
701 {
702         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR);
703 }
704
705 static int mtk_aes_ctr_decrypt(struct skcipher_request *req)
706 {
707         return mtk_aes_crypt(req, AES_FLAGS_CTR);
708 }
709
710 static int mtk_aes_ofb_encrypt(struct skcipher_request *req)
711 {
712         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_OFB);
713 }
714
715 static int mtk_aes_ofb_decrypt(struct skcipher_request *req)
716 {
717         return mtk_aes_crypt(req, AES_FLAGS_OFB);
718 }
719
720 static int mtk_aes_cfb_encrypt(struct skcipher_request *req)
721 {
722         return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CFB128);
723 }
724
725 static int mtk_aes_cfb_decrypt(struct skcipher_request *req)
726 {
727         return mtk_aes_crypt(req, AES_FLAGS_CFB128);
728 }
729
730 static int mtk_aes_init_tfm(struct crypto_skcipher *tfm)
731 {
732         struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
733
734         crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
735         ctx->base.start = mtk_aes_start;
736         return 0;
737 }
738
739 static int mtk_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
740 {
741         struct mtk_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
742
743         crypto_skcipher_set_reqsize(tfm, sizeof(struct mtk_aes_reqctx));
744         ctx->base.start = mtk_aes_ctr_start;
745         return 0;
746 }
747
748 static struct skcipher_alg aes_algs[] = {
749 {
750         .base.cra_name          = "cbc(aes)",
751         .base.cra_driver_name   = "cbc-aes-mtk",
752         .base.cra_priority      = 400,
753         .base.cra_flags         = CRYPTO_ALG_ASYNC,
754         .base.cra_blocksize     = AES_BLOCK_SIZE,
755         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
756         .base.cra_alignmask     = 0xf,
757         .base.cra_module        = THIS_MODULE,
758
759         .min_keysize            = AES_MIN_KEY_SIZE,
760         .max_keysize            = AES_MAX_KEY_SIZE,
761         .setkey                 = mtk_aes_setkey,
762         .encrypt                = mtk_aes_cbc_encrypt,
763         .decrypt                = mtk_aes_cbc_decrypt,
764         .ivsize                 = AES_BLOCK_SIZE,
765         .init                   = mtk_aes_init_tfm,
766 },
767 {
768         .base.cra_name          = "ecb(aes)",
769         .base.cra_driver_name   = "ecb-aes-mtk",
770         .base.cra_priority      = 400,
771         .base.cra_flags         = CRYPTO_ALG_ASYNC,
772         .base.cra_blocksize     = AES_BLOCK_SIZE,
773         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
774         .base.cra_alignmask     = 0xf,
775         .base.cra_module        = THIS_MODULE,
776
777         .min_keysize            = AES_MIN_KEY_SIZE,
778         .max_keysize            = AES_MAX_KEY_SIZE,
779         .setkey                 = mtk_aes_setkey,
780         .encrypt                = mtk_aes_ecb_encrypt,
781         .decrypt                = mtk_aes_ecb_decrypt,
782         .init                   = mtk_aes_init_tfm,
783 },
784 {
785         .base.cra_name          = "ctr(aes)",
786         .base.cra_driver_name   = "ctr-aes-mtk",
787         .base.cra_priority      = 400,
788         .base.cra_flags         = CRYPTO_ALG_ASYNC,
789         .base.cra_blocksize     = 1,
790         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
791         .base.cra_alignmask     = 0xf,
792         .base.cra_module        = THIS_MODULE,
793
794         .min_keysize            = AES_MIN_KEY_SIZE,
795         .max_keysize            = AES_MAX_KEY_SIZE,
796         .ivsize                 = AES_BLOCK_SIZE,
797         .setkey                 = mtk_aes_setkey,
798         .encrypt                = mtk_aes_ctr_encrypt,
799         .decrypt                = mtk_aes_ctr_decrypt,
800         .init                   = mtk_aes_ctr_init_tfm,
801 },
802 {
803         .base.cra_name          = "ofb(aes)",
804         .base.cra_driver_name   = "ofb-aes-mtk",
805         .base.cra_priority      = 400,
806         .base.cra_flags         = CRYPTO_ALG_ASYNC,
807         .base.cra_blocksize     = AES_BLOCK_SIZE,
808         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
809         .base.cra_alignmask     = 0xf,
810         .base.cra_module        = THIS_MODULE,
811
812         .min_keysize            = AES_MIN_KEY_SIZE,
813         .max_keysize            = AES_MAX_KEY_SIZE,
814         .ivsize                 = AES_BLOCK_SIZE,
815         .setkey                 = mtk_aes_setkey,
816         .encrypt                = mtk_aes_ofb_encrypt,
817         .decrypt                = mtk_aes_ofb_decrypt,
818 },
819 {
820         .base.cra_name          = "cfb(aes)",
821         .base.cra_driver_name   = "cfb-aes-mtk",
822         .base.cra_priority      = 400,
823         .base.cra_flags         = CRYPTO_ALG_ASYNC,
824         .base.cra_blocksize     = 1,
825         .base.cra_ctxsize       = sizeof(struct mtk_aes_ctx),
826         .base.cra_alignmask     = 0xf,
827         .base.cra_module        = THIS_MODULE,
828
829         .min_keysize            = AES_MIN_KEY_SIZE,
830         .max_keysize            = AES_MAX_KEY_SIZE,
831         .ivsize                 = AES_BLOCK_SIZE,
832         .setkey                 = mtk_aes_setkey,
833         .encrypt                = mtk_aes_cfb_encrypt,
834         .decrypt                = mtk_aes_cfb_decrypt,
835 },
836 };
837
838 static inline struct mtk_aes_gcm_ctx *
839 mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx)
840 {
841         return container_of(ctx, struct mtk_aes_gcm_ctx, base);
842 }
843
844 /*
845  * Engine will verify and compare tag automatically, so we just need
846  * to check returned status which stored in the result descriptor.
847  */
848 static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp,
849                                   struct mtk_aes_rec *aes)
850 {
851         u32 status = cryp->ring[aes->id]->res_prev->ct;
852
853         return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ?
854                                 -EBADMSG : 0);
855 }
856
857 /* Initialize transform information of GCM mode */
858 static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp,
859                                   struct mtk_aes_rec *aes,
860                                   size_t len)
861 {
862         struct aead_request *req = aead_request_cast(aes->areq);
863         struct mtk_aes_base_ctx *ctx = aes->ctx;
864         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
865         struct mtk_aes_info *info = &ctx->info;
866         u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
867         u32 cnt = 0;
868
869         ctx->ct_hdr = AES_CT_CTRL_HDR | len;
870
871         info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen);
872         info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen);
873         info->cmd[cnt++] = AES_GCM_CMD2;
874         info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen);
875
876         if (aes->flags & AES_FLAGS_ENCRYPT) {
877                 info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize);
878                 info->tfm[0] = AES_TFM_GCM_OUT;
879         } else {
880                 info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize);
881                 info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize);
882                 info->tfm[0] = AES_TFM_GCM_IN;
883         }
884         ctx->ct_size = cnt;
885
886         info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE(
887                         ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) |
888                         ctx->keymode;
889         info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV |
890                        AES_TFM_ENC_HASH;
891
892         mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS(
893                                AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize);
894 }
895
896 static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
897                            struct scatterlist *src, struct scatterlist *dst,
898                            size_t len)
899 {
900         bool src_aligned, dst_aligned;
901
902         aes->src.sg = src;
903         aes->dst.sg = dst;
904         aes->real_dst = dst;
905
906         src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
907         if (src == dst)
908                 dst_aligned = src_aligned;
909         else
910                 dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
911
912         if (!src_aligned || !dst_aligned) {
913                 if (aes->total > AES_BUF_SIZE)
914                         return mtk_aes_complete(cryp, aes, -ENOMEM);
915
916                 if (!src_aligned) {
917                         sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
918                         aes->src.sg = &aes->aligned_sg;
919                         aes->src.nents = 1;
920                         aes->src.remainder = 0;
921                 }
922
923                 if (!dst_aligned) {
924                         aes->dst.sg = &aes->aligned_sg;
925                         aes->dst.nents = 1;
926                         aes->dst.remainder = 0;
927                 }
928
929                 sg_init_table(&aes->aligned_sg, 1);
930                 sg_set_buf(&aes->aligned_sg, aes->buf, aes->total);
931         }
932
933         mtk_aes_gcm_info_init(cryp, aes, len);
934
935         return mtk_aes_map(cryp, aes);
936 }
937
938 /* Todo: GMAC */
939 static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
940 {
941         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx);
942         struct aead_request *req = aead_request_cast(aes->areq);
943         struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
944         u32 len = req->assoclen + req->cryptlen;
945
946         mtk_aes_set_mode(aes, rctx);
947
948         if (aes->flags & AES_FLAGS_ENCRYPT) {
949                 u32 tag[4];
950
951                 aes->resume = mtk_aes_transfer_complete;
952                 /* Compute total process length. */
953                 aes->total = len + gctx->authsize;
954                 /* Hardware will append authenticated tag to output buffer */
955                 scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1);
956         } else {
957                 aes->resume = mtk_aes_gcm_tag_verify;
958                 aes->total = len;
959         }
960
961         return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len);
962 }
963
964 static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode)
965 {
966         struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
967         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
968         struct mtk_aes_reqctx *rctx = aead_request_ctx(req);
969         struct mtk_cryp *cryp;
970         bool enc = !!(mode & AES_FLAGS_ENCRYPT);
971
972         cryp = mtk_aes_find_dev(ctx);
973         if (!cryp)
974                 return -ENODEV;
975
976         /* Compute text length. */
977         gctx->textlen = req->cryptlen - (enc ? 0 : gctx->authsize);
978
979         /* Empty messages are not supported yet */
980         if (!gctx->textlen && !req->assoclen)
981                 return -EINVAL;
982
983         rctx->mode = AES_FLAGS_GCM | mode;
984
985         return mtk_aes_handle_queue(cryp, enc, &req->base);
986 }
987
988 /*
989  * Because of the hardware limitation, we need to pre-calculate key(H)
990  * for the GHASH operation. The result of the encryption operation
991  * need to be stored in the transform state buffer.
992  */
993 static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key,
994                               u32 keylen)
995 {
996         struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
997         u8 hash[AES_BLOCK_SIZE] __aligned(4) = {};
998         struct crypto_aes_ctx aes_ctx;
999         int err;
1000
1001         switch (keylen) {
1002         case AES_KEYSIZE_128:
1003                 ctx->keymode = AES_TFM_128BITS;
1004                 break;
1005         case AES_KEYSIZE_192:
1006                 ctx->keymode = AES_TFM_192BITS;
1007                 break;
1008         case AES_KEYSIZE_256:
1009                 ctx->keymode = AES_TFM_256BITS;
1010                 break;
1011
1012         default:
1013                 return -EINVAL;
1014         }
1015
1016         ctx->keylen = SIZE_IN_WORDS(keylen);
1017
1018         err = aes_expandkey(&aes_ctx, key, keylen);
1019         if (err)
1020                 return err;
1021
1022         aes_encrypt(&aes_ctx, hash, hash);
1023         memzero_explicit(&aes_ctx, sizeof(aes_ctx));
1024
1025         mtk_aes_write_state_le(ctx->key, (const u32 *)key, keylen);
1026         mtk_aes_write_state_be(ctx->key + ctx->keylen, (const u32 *)hash,
1027                                AES_BLOCK_SIZE);
1028
1029         return 0;
1030 }
1031
1032 static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead,
1033                                    u32 authsize)
1034 {
1035         struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead);
1036         struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx);
1037
1038         /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1039         switch (authsize) {
1040         case 8:
1041         case 12:
1042         case 16:
1043                 break;
1044         default:
1045                 return -EINVAL;
1046         }
1047
1048         gctx->authsize = authsize;
1049         return 0;
1050 }
1051
1052 static int mtk_aes_gcm_encrypt(struct aead_request *req)
1053 {
1054         return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1055 }
1056
1057 static int mtk_aes_gcm_decrypt(struct aead_request *req)
1058 {
1059         return mtk_aes_gcm_crypt(req, 0);
1060 }
1061
1062 static int mtk_aes_gcm_init(struct crypto_aead *aead)
1063 {
1064         struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead);
1065
1066         crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx));
1067         ctx->base.start = mtk_aes_gcm_start;
1068         return 0;
1069 }
1070
1071 static struct aead_alg aes_gcm_alg = {
1072         .setkey         = mtk_aes_gcm_setkey,
1073         .setauthsize    = mtk_aes_gcm_setauthsize,
1074         .encrypt        = mtk_aes_gcm_encrypt,
1075         .decrypt        = mtk_aes_gcm_decrypt,
1076         .init           = mtk_aes_gcm_init,
1077         .ivsize         = GCM_AES_IV_SIZE,
1078         .maxauthsize    = AES_BLOCK_SIZE,
1079
1080         .base = {
1081                 .cra_name               = "gcm(aes)",
1082                 .cra_driver_name        = "gcm-aes-mtk",
1083                 .cra_priority           = 400,
1084                 .cra_flags              = CRYPTO_ALG_ASYNC,
1085                 .cra_blocksize          = 1,
1086                 .cra_ctxsize            = sizeof(struct mtk_aes_gcm_ctx),
1087                 .cra_alignmask          = 0xf,
1088                 .cra_module             = THIS_MODULE,
1089         },
1090 };
1091
1092 static void mtk_aes_queue_task(unsigned long data)
1093 {
1094         struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1095
1096         mtk_aes_handle_queue(aes->cryp, aes->id, NULL);
1097 }
1098
1099 static void mtk_aes_done_task(unsigned long data)
1100 {
1101         struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data;
1102         struct mtk_cryp *cryp = aes->cryp;
1103
1104         mtk_aes_unmap(cryp, aes);
1105         aes->resume(cryp, aes);
1106 }
1107
1108 static irqreturn_t mtk_aes_irq(int irq, void *dev_id)
1109 {
1110         struct mtk_aes_rec *aes  = (struct mtk_aes_rec *)dev_id;
1111         struct mtk_cryp *cryp = aes->cryp;
1112         u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id));
1113
1114         mtk_aes_write(cryp, RDR_STAT(aes->id), val);
1115
1116         if (likely(AES_FLAGS_BUSY & aes->flags)) {
1117                 mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST);
1118                 mtk_aes_write(cryp, RDR_THRESH(aes->id),
1119                               MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1120
1121                 tasklet_schedule(&aes->done_task);
1122         } else {
1123                 dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
1124         }
1125         return IRQ_HANDLED;
1126 }
1127
1128 /*
1129  * The purpose of creating encryption and decryption records is
1130  * to process outbound/inbound data in parallel, it can improve
1131  * performance in most use cases, such as IPSec VPN, especially
1132  * under heavy network traffic.
1133  */
1134 static int mtk_aes_record_init(struct mtk_cryp *cryp)
1135 {
1136         struct mtk_aes_rec **aes = cryp->aes;
1137         int i, err = -ENOMEM;
1138
1139         for (i = 0; i < MTK_REC_NUM; i++) {
1140                 aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
1141                 if (!aes[i])
1142                         goto err_cleanup;
1143
1144                 aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
1145                                                 AES_BUF_ORDER);
1146                 if (!aes[i]->buf)
1147                         goto err_cleanup;
1148
1149                 aes[i]->cryp = cryp;
1150
1151                 spin_lock_init(&aes[i]->lock);
1152                 crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
1153
1154                 tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task,
1155                              (unsigned long)aes[i]);
1156                 tasklet_init(&aes[i]->done_task, mtk_aes_done_task,
1157                              (unsigned long)aes[i]);
1158         }
1159
1160         /* Link to ring0 and ring1 respectively */
1161         aes[0]->id = MTK_RING0;
1162         aes[1]->id = MTK_RING1;
1163
1164         return 0;
1165
1166 err_cleanup:
1167         for (; i--; ) {
1168                 free_page((unsigned long)aes[i]->buf);
1169                 kfree(aes[i]);
1170         }
1171
1172         return err;
1173 }
1174
1175 static void mtk_aes_record_free(struct mtk_cryp *cryp)
1176 {
1177         int i;
1178
1179         for (i = 0; i < MTK_REC_NUM; i++) {
1180                 tasklet_kill(&cryp->aes[i]->done_task);
1181                 tasklet_kill(&cryp->aes[i]->queue_task);
1182
1183                 free_page((unsigned long)cryp->aes[i]->buf);
1184                 kfree(cryp->aes[i]);
1185         }
1186 }
1187
1188 static void mtk_aes_unregister_algs(void)
1189 {
1190         int i;
1191
1192         crypto_unregister_aead(&aes_gcm_alg);
1193
1194         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1195                 crypto_unregister_skcipher(&aes_algs[i]);
1196 }
1197
1198 static int mtk_aes_register_algs(void)
1199 {
1200         int err, i;
1201
1202         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1203                 err = crypto_register_skcipher(&aes_algs[i]);
1204                 if (err)
1205                         goto err_aes_algs;
1206         }
1207
1208         err = crypto_register_aead(&aes_gcm_alg);
1209         if (err)
1210                 goto err_aes_algs;
1211
1212         return 0;
1213
1214 err_aes_algs:
1215         for (; i--; )
1216                 crypto_unregister_skcipher(&aes_algs[i]);
1217
1218         return err;
1219 }
1220
1221 int mtk_cipher_alg_register(struct mtk_cryp *cryp)
1222 {
1223         int ret;
1224
1225         INIT_LIST_HEAD(&cryp->aes_list);
1226
1227         /* Initialize two cipher records */
1228         ret = mtk_aes_record_init(cryp);
1229         if (ret)
1230                 goto err_record;
1231
1232         ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq,
1233                                0, "mtk-aes", cryp->aes[0]);
1234         if (ret) {
1235                 dev_err(cryp->dev, "unable to request AES irq.\n");
1236                 goto err_res;
1237         }
1238
1239         ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq,
1240                                0, "mtk-aes", cryp->aes[1]);
1241         if (ret) {
1242                 dev_err(cryp->dev, "unable to request AES irq.\n");
1243                 goto err_res;
1244         }
1245
1246         /* Enable ring0 and ring1 interrupt */
1247         mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0);
1248         mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1);
1249
1250         spin_lock(&mtk_aes.lock);
1251         list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
1252         spin_unlock(&mtk_aes.lock);
1253
1254         ret = mtk_aes_register_algs();
1255         if (ret)
1256                 goto err_algs;
1257
1258         return 0;
1259
1260 err_algs:
1261         spin_lock(&mtk_aes.lock);
1262         list_del(&cryp->aes_list);
1263         spin_unlock(&mtk_aes.lock);
1264 err_res:
1265         mtk_aes_record_free(cryp);
1266 err_record:
1267
1268         dev_err(cryp->dev, "mtk-aes initialization failed.\n");
1269         return ret;
1270 }
1271
1272 void mtk_cipher_alg_release(struct mtk_cryp *cryp)
1273 {
1274         spin_lock(&mtk_aes.lock);
1275         list_del(&cryp->aes_list);
1276         spin_unlock(&mtk_aes.lock);
1277
1278         mtk_aes_unregister_algs();
1279         mtk_aes_record_free(cryp);
1280 }