Merge tag 'gpio-fixes-for-v5.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / crypto / ixp4xx_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19
20 #include <crypto/ctr.h>
21 #include <crypto/internal/des.h>
22 #include <crypto/aes.h>
23 #include <crypto/hmac.h>
24 #include <crypto/sha1.h>
25 #include <crypto/algapi.h>
26 #include <crypto/internal/aead.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <linux/soc/ixp4xx/npe.h>
32 #include <linux/soc/ixp4xx/qmgr.h>
33
34 /* Intermittent includes, delete this after v5.14-rc1 */
35 #include <linux/soc/ixp4xx/cpu.h>
36
37 #define MAX_KEYLEN 32
38
39 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
40 #define NPE_CTX_LEN 80
41 #define AES_BLOCK128 16
42
43 #define NPE_OP_HASH_VERIFY   0x01
44 #define NPE_OP_CCM_ENABLE    0x04
45 #define NPE_OP_CRYPT_ENABLE  0x08
46 #define NPE_OP_HASH_ENABLE   0x10
47 #define NPE_OP_NOT_IN_PLACE  0x20
48 #define NPE_OP_HMAC_DISABLE  0x40
49 #define NPE_OP_CRYPT_ENCRYPT 0x80
50
51 #define NPE_OP_CCM_GEN_MIC   0xcc
52 #define NPE_OP_HASH_GEN_ICV  0x50
53 #define NPE_OP_ENC_GEN_KEY   0xc9
54
55 #define MOD_ECB     0x0000
56 #define MOD_CTR     0x1000
57 #define MOD_CBC_ENC 0x2000
58 #define MOD_CBC_DEC 0x3000
59 #define MOD_CCM_ENC 0x4000
60 #define MOD_CCM_DEC 0x5000
61
62 #define KEYLEN_128  4
63 #define KEYLEN_192  6
64 #define KEYLEN_256  8
65
66 #define CIPH_DECR   0x0000
67 #define CIPH_ENCR   0x0400
68
69 #define MOD_DES     0x0000
70 #define MOD_TDEA2   0x0100
71 #define MOD_3DES   0x0200
72 #define MOD_AES     0x0800
73 #define MOD_AES128  (0x0800 | KEYLEN_128)
74 #define MOD_AES192  (0x0900 | KEYLEN_192)
75 #define MOD_AES256  (0x0a00 | KEYLEN_256)
76
77 #define MAX_IVLEN   16
78 #define NPE_QLEN    16
79 /* Space for registering when the first
80  * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92
93 #define MD5_DIGEST_SIZE   16
94
95 struct buffer_desc {
96         u32 phys_next;
97 #ifdef __ARMEB__
98         u16 buf_len;
99         u16 pkt_len;
100 #else
101         u16 pkt_len;
102         u16 buf_len;
103 #endif
104         dma_addr_t phys_addr;
105         u32 __reserved[4];
106         struct buffer_desc *next;
107         enum dma_data_direction dir;
108 };
109
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112         u8 mode;                /* NPE_OP_*  operation mode */
113         u8 init_len;
114         u16 reserved;
115 #else
116         u16 reserved;
117         u8 init_len;
118         u8 mode;                /* NPE_OP_*  operation mode */
119 #endif
120         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
121         dma_addr_t icv_rev_aes; /* icv or rev aes */
122         dma_addr_t src_buf;
123         dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125         u16 auth_offs;          /* Authentication start offset */
126         u16 auth_len;           /* Authentication data length */
127         u16 crypt_offs;         /* Cryption start offset */
128         u16 crypt_len;          /* Cryption data length */
129 #else
130         u16 auth_len;           /* Authentication data length */
131         u16 auth_offs;          /* Authentication start offset */
132         u16 crypt_len;          /* Cryption data length */
133         u16 crypt_offs;         /* Cryption start offset */
134 #endif
135         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
136         u32 crypto_ctx;         /* NPE Crypto Param structure address */
137
138         /* Used by Host: 4*4 bytes*/
139         unsigned int ctl_flags;
140         union {
141                 struct skcipher_request *ablk_req;
142                 struct aead_request *aead_req;
143                 struct crypto_tfm *tfm;
144         } data;
145         struct buffer_desc *regist_buf;
146         u8 *regist_ptr;
147 };
148
149 struct ablk_ctx {
150         struct buffer_desc *src;
151         struct buffer_desc *dst;
152         u8 iv[MAX_IVLEN];
153         bool encrypt;
154         struct skcipher_request fallback_req;   // keep at the end
155 };
156
157 struct aead_ctx {
158         struct buffer_desc *src;
159         struct buffer_desc *dst;
160         struct scatterlist ivlist;
161         /* used when the hmac is not on one sg entry */
162         u8 *hmac_virt;
163         int encrypt;
164 };
165
166 struct ix_hash_algo {
167         u32 cfgword;
168         unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172         unsigned char *npe_ctx;
173         dma_addr_t npe_ctx_phys;
174         int npe_ctx_idx;
175         u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179         struct ix_sa_dir encrypt;
180         struct ix_sa_dir decrypt;
181         int authkey_len;
182         u8 authkey[MAX_KEYLEN];
183         int enckey_len;
184         u8 enckey[MAX_KEYLEN];
185         u8 salt[MAX_IVLEN];
186         u8 nonce[CTR_RFC3686_NONCE_SIZE];
187         unsigned int salted;
188         atomic_t configuring;
189         struct completion completion;
190         struct crypto_skcipher *fallback_tfm;
191 };
192
193 struct ixp_alg {
194         struct skcipher_alg crypto;
195         const struct ix_hash_algo *hash;
196         u32 cfg_enc;
197         u32 cfg_dec;
198
199         int registered;
200 };
201
202 struct ixp_aead_alg {
203         struct aead_alg crypto;
204         const struct ix_hash_algo *hash;
205         u32 cfg_enc;
206         u32 cfg_dec;
207
208         int registered;
209 };
210
211 static const struct ix_hash_algo hash_alg_md5 = {
212         .cfgword        = 0xAA010004,
213         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
214                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
215 };
216
217 static const struct ix_hash_algo hash_alg_sha1 = {
218         .cfgword        = 0x00000005,
219         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
220                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
221 };
222
223 static struct npe *npe_c;
224
225 static unsigned int send_qid;
226 static unsigned int recv_qid;
227 static struct dma_pool *buffer_pool;
228 static struct dma_pool *ctx_pool;
229
230 static struct crypt_ctl *crypt_virt;
231 static dma_addr_t crypt_phys;
232
233 static int support_aes = 1;
234
235 static struct platform_device *pdev;
236
237 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
238 {
239         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
240 }
241
242 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
243 {
244         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
245 }
246
247 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
248 {
249         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
250 }
251
252 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
253 {
254         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
255 }
256
257 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
258 {
259         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
260 }
261
262 static int setup_crypt_desc(void)
263 {
264         struct device *dev = &pdev->dev;
265
266         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
267         crypt_virt = dma_alloc_coherent(dev,
268                                         NPE_QLEN * sizeof(struct crypt_ctl),
269                                         &crypt_phys, GFP_ATOMIC);
270         if (!crypt_virt)
271                 return -ENOMEM;
272         return 0;
273 }
274
275 static DEFINE_SPINLOCK(desc_lock);
276 static struct crypt_ctl *get_crypt_desc(void)
277 {
278         int i;
279         static int idx;
280         unsigned long flags;
281
282         spin_lock_irqsave(&desc_lock, flags);
283
284         if (unlikely(!crypt_virt))
285                 setup_crypt_desc();
286         if (unlikely(!crypt_virt)) {
287                 spin_unlock_irqrestore(&desc_lock, flags);
288                 return NULL;
289         }
290         i = idx;
291         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
292                 if (++idx >= NPE_QLEN)
293                         idx = 0;
294                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
295                 spin_unlock_irqrestore(&desc_lock, flags);
296                 return crypt_virt + i;
297         } else {
298                 spin_unlock_irqrestore(&desc_lock, flags);
299                 return NULL;
300         }
301 }
302
303 static DEFINE_SPINLOCK(emerg_lock);
304 static struct crypt_ctl *get_crypt_desc_emerg(void)
305 {
306         int i;
307         static int idx = NPE_QLEN;
308         struct crypt_ctl *desc;
309         unsigned long flags;
310
311         desc = get_crypt_desc();
312         if (desc)
313                 return desc;
314         if (unlikely(!crypt_virt))
315                 return NULL;
316
317         spin_lock_irqsave(&emerg_lock, flags);
318         i = idx;
319         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
320                 if (++idx >= NPE_QLEN_TOTAL)
321                         idx = NPE_QLEN;
322                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
323                 spin_unlock_irqrestore(&emerg_lock, flags);
324                 return crypt_virt + i;
325         } else {
326                 spin_unlock_irqrestore(&emerg_lock, flags);
327                 return NULL;
328         }
329 }
330
331 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
332                            dma_addr_t phys)
333 {
334         while (buf) {
335                 struct buffer_desc *buf1;
336                 u32 phys1;
337
338                 buf1 = buf->next;
339                 phys1 = buf->phys_next;
340                 dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
341                 dma_pool_free(buffer_pool, buf, phys);
342                 buf = buf1;
343                 phys = phys1;
344         }
345 }
346
347 static struct tasklet_struct crypto_done_tasklet;
348
349 static void finish_scattered_hmac(struct crypt_ctl *crypt)
350 {
351         struct aead_request *req = crypt->data.aead_req;
352         struct aead_ctx *req_ctx = aead_request_ctx(req);
353         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
354         int authsize = crypto_aead_authsize(tfm);
355         int decryptlen = req->assoclen + req->cryptlen - authsize;
356
357         if (req_ctx->encrypt) {
358                 scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
359                                          decryptlen, authsize, 1);
360         }
361         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
362 }
363
364 static void one_packet(dma_addr_t phys)
365 {
366         struct device *dev = &pdev->dev;
367         struct crypt_ctl *crypt;
368         struct ixp_ctx *ctx;
369         int failed;
370
371         failed = phys & 0x1 ? -EBADMSG : 0;
372         phys &= ~0x3;
373         crypt = crypt_phys2virt(phys);
374
375         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
376         case CTL_FLAG_PERFORM_AEAD: {
377                 struct aead_request *req = crypt->data.aead_req;
378                 struct aead_ctx *req_ctx = aead_request_ctx(req);
379
380                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
381                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
382                 if (req_ctx->hmac_virt)
383                         finish_scattered_hmac(crypt);
384
385                 req->base.complete(&req->base, failed);
386                 break;
387         }
388         case CTL_FLAG_PERFORM_ABLK: {
389                 struct skcipher_request *req = crypt->data.ablk_req;
390                 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
391                 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
392                 unsigned int ivsize = crypto_skcipher_ivsize(tfm);
393                 unsigned int offset;
394
395                 if (ivsize > 0) {
396                         offset = req->cryptlen - ivsize;
397                         if (req_ctx->encrypt) {
398                                 scatterwalk_map_and_copy(req->iv, req->dst,
399                                                          offset, ivsize, 0);
400                         } else {
401                                 memcpy(req->iv, req_ctx->iv, ivsize);
402                                 memzero_explicit(req_ctx->iv, ivsize);
403                         }
404                 }
405
406                 if (req_ctx->dst)
407                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
408
409                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
410                 req->base.complete(&req->base, failed);
411                 break;
412         }
413         case CTL_FLAG_GEN_ICV:
414                 ctx = crypto_tfm_ctx(crypt->data.tfm);
415                 dma_pool_free(ctx_pool, crypt->regist_ptr,
416                               crypt->regist_buf->phys_addr);
417                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
418                 if (atomic_dec_and_test(&ctx->configuring))
419                         complete(&ctx->completion);
420                 break;
421         case CTL_FLAG_GEN_REVAES:
422                 ctx = crypto_tfm_ctx(crypt->data.tfm);
423                 *(u32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
424                 if (atomic_dec_and_test(&ctx->configuring))
425                         complete(&ctx->completion);
426                 break;
427         default:
428                 BUG();
429         }
430         crypt->ctl_flags = CTL_FLAG_UNUSED;
431 }
432
433 static void irqhandler(void *_unused)
434 {
435         tasklet_schedule(&crypto_done_tasklet);
436 }
437
438 static void crypto_done_action(unsigned long arg)
439 {
440         int i;
441
442         for (i = 0; i < 4; i++) {
443                 dma_addr_t phys = qmgr_get_entry(recv_qid);
444                 if (!phys)
445                         return;
446                 one_packet(phys);
447         }
448         tasklet_schedule(&crypto_done_tasklet);
449 }
450
451 static int init_ixp_crypto(struct device *dev)
452 {
453         struct device_node *np = dev->of_node;
454         u32 msg[2] = { 0, 0 };
455         int ret = -ENODEV;
456         u32 npe_id;
457
458         dev_info(dev, "probing...\n");
459
460         /* Locate the NPE and queue manager to use from device tree */
461         if (IS_ENABLED(CONFIG_OF) && np) {
462                 struct of_phandle_args queue_spec;
463                 struct of_phandle_args npe_spec;
464
465                 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
466                                                        1, 0, &npe_spec);
467                 if (ret) {
468                         dev_err(dev, "no NPE engine specified\n");
469                         return -ENODEV;
470                 }
471                 npe_id = npe_spec.args[0];
472
473                 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
474                                                        &queue_spec);
475                 if (ret) {
476                         dev_err(dev, "no rx queue phandle\n");
477                         return -ENODEV;
478                 }
479                 recv_qid = queue_spec.args[0];
480
481                 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
482                                                        &queue_spec);
483                 if (ret) {
484                         dev_err(dev, "no txready queue phandle\n");
485                         return -ENODEV;
486                 }
487                 send_qid = queue_spec.args[0];
488         } else {
489                 /*
490                  * Hardcoded engine when using platform data, this goes away
491                  * when we switch to using DT only.
492                  */
493                 npe_id = 2;
494                 send_qid = 29;
495                 recv_qid = 30;
496         }
497
498         npe_c = npe_request(npe_id);
499         if (!npe_c)
500                 return ret;
501
502         if (!npe_running(npe_c)) {
503                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
504                 if (ret)
505                         goto npe_release;
506                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
507                         goto npe_error;
508         } else {
509                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
510                         goto npe_error;
511
512                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
513                         goto npe_error;
514         }
515
516         switch ((msg[1] >> 16) & 0xff) {
517         case 3:
518                 dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
519                 support_aes = 0;
520                 break;
521         case 4:
522         case 5:
523                 support_aes = 1;
524                 break;
525         default:
526                 dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
527                 ret = -ENODEV;
528                 goto npe_release;
529         }
530         /* buffer_pool will also be used to sometimes store the hmac,
531          * so assure it is large enough
532          */
533         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
534         buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
535                                       32, 0);
536         ret = -ENOMEM;
537         if (!buffer_pool)
538                 goto err;
539
540         ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
541         if (!ctx_pool)
542                 goto err;
543
544         ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
545                                  "ixp_crypto:out", NULL);
546         if (ret)
547                 goto err;
548         ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
549                                  "ixp_crypto:in", NULL);
550         if (ret) {
551                 qmgr_release_queue(send_qid);
552                 goto err;
553         }
554         qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
555         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
556
557         qmgr_enable_irq(recv_qid);
558         return 0;
559
560 npe_error:
561         dev_err(dev, "%s not responding\n", npe_name(npe_c));
562         ret = -EIO;
563 err:
564         dma_pool_destroy(ctx_pool);
565         dma_pool_destroy(buffer_pool);
566 npe_release:
567         npe_release(npe_c);
568         return ret;
569 }
570
571 static void release_ixp_crypto(struct device *dev)
572 {
573         qmgr_disable_irq(recv_qid);
574         tasklet_kill(&crypto_done_tasklet);
575
576         qmgr_release_queue(send_qid);
577         qmgr_release_queue(recv_qid);
578
579         dma_pool_destroy(ctx_pool);
580         dma_pool_destroy(buffer_pool);
581
582         npe_release(npe_c);
583
584         if (crypt_virt)
585                 dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
586                                   crypt_virt, crypt_phys);
587 }
588
589 static void reset_sa_dir(struct ix_sa_dir *dir)
590 {
591         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
592         dir->npe_ctx_idx = 0;
593         dir->npe_mode = 0;
594 }
595
596 static int init_sa_dir(struct ix_sa_dir *dir)
597 {
598         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
599         if (!dir->npe_ctx)
600                 return -ENOMEM;
601
602         reset_sa_dir(dir);
603         return 0;
604 }
605
606 static void free_sa_dir(struct ix_sa_dir *dir)
607 {
608         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
609         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
610 }
611
612 static int init_tfm(struct crypto_tfm *tfm)
613 {
614         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
615         int ret;
616
617         atomic_set(&ctx->configuring, 0);
618         ret = init_sa_dir(&ctx->encrypt);
619         if (ret)
620                 return ret;
621         ret = init_sa_dir(&ctx->decrypt);
622         if (ret)
623                 free_sa_dir(&ctx->encrypt);
624
625         return ret;
626 }
627
628 static int init_tfm_ablk(struct crypto_skcipher *tfm)
629 {
630         struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
631         struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
632         const char *name = crypto_tfm_alg_name(ctfm);
633
634         ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
635         if (IS_ERR(ctx->fallback_tfm)) {
636                 pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
637                         name, PTR_ERR(ctx->fallback_tfm));
638                 return PTR_ERR(ctx->fallback_tfm);
639         }
640
641         pr_info("Fallback for %s is %s\n",
642                  crypto_tfm_alg_driver_name(&tfm->base),
643                  crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
644                  );
645
646         crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
647         return init_tfm(crypto_skcipher_tfm(tfm));
648 }
649
650 static int init_tfm_aead(struct crypto_aead *tfm)
651 {
652         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
653         return init_tfm(crypto_aead_tfm(tfm));
654 }
655
656 static void exit_tfm(struct crypto_tfm *tfm)
657 {
658         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
659
660         free_sa_dir(&ctx->encrypt);
661         free_sa_dir(&ctx->decrypt);
662 }
663
664 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
665 {
666         struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
667         struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
668
669         crypto_free_skcipher(ctx->fallback_tfm);
670         exit_tfm(crypto_skcipher_tfm(tfm));
671 }
672
673 static void exit_tfm_aead(struct crypto_aead *tfm)
674 {
675         exit_tfm(crypto_aead_tfm(tfm));
676 }
677
678 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
679                               int init_len, u32 ctx_addr, const u8 *key,
680                               int key_len)
681 {
682         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
683         struct crypt_ctl *crypt;
684         struct buffer_desc *buf;
685         int i;
686         u8 *pad;
687         dma_addr_t pad_phys, buf_phys;
688
689         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
690         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
691         if (!pad)
692                 return -ENOMEM;
693         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
694         if (!buf) {
695                 dma_pool_free(ctx_pool, pad, pad_phys);
696                 return -ENOMEM;
697         }
698         crypt = get_crypt_desc_emerg();
699         if (!crypt) {
700                 dma_pool_free(ctx_pool, pad, pad_phys);
701                 dma_pool_free(buffer_pool, buf, buf_phys);
702                 return -EAGAIN;
703         }
704
705         memcpy(pad, key, key_len);
706         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
707         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
708                 pad[i] ^= xpad;
709
710         crypt->data.tfm = tfm;
711         crypt->regist_ptr = pad;
712         crypt->regist_buf = buf;
713
714         crypt->auth_offs = 0;
715         crypt->auth_len = HMAC_PAD_BLOCKLEN;
716         crypt->crypto_ctx = ctx_addr;
717         crypt->src_buf = buf_phys;
718         crypt->icv_rev_aes = target;
719         crypt->mode = NPE_OP_HASH_GEN_ICV;
720         crypt->init_len = init_len;
721         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
722
723         buf->next = 0;
724         buf->buf_len = HMAC_PAD_BLOCKLEN;
725         buf->pkt_len = 0;
726         buf->phys_addr = pad_phys;
727
728         atomic_inc(&ctx->configuring);
729         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
730         BUG_ON(qmgr_stat_overflow(send_qid));
731         return 0;
732 }
733
734 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
735                       const u8 *key, int key_len, unsigned int digest_len)
736 {
737         u32 itarget, otarget, npe_ctx_addr;
738         unsigned char *cinfo;
739         int init_len, ret = 0;
740         u32 cfgword;
741         struct ix_sa_dir *dir;
742         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743         const struct ix_hash_algo *algo;
744
745         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
747         algo = ix_hash(tfm);
748
749         /* write cfg word to cryptinfo */
750         cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
751 #ifndef __ARMEB__
752         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
753 #endif
754         *(u32 *)cinfo = cpu_to_be32(cfgword);
755         cinfo += sizeof(cfgword);
756
757         /* write ICV to cryptinfo */
758         memcpy(cinfo, algo->icv, digest_len);
759         cinfo += digest_len;
760
761         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
762                                 + sizeof(algo->cfgword);
763         otarget = itarget + digest_len;
764         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
765         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
766
767         dir->npe_ctx_idx += init_len;
768         dir->npe_mode |= NPE_OP_HASH_ENABLE;
769
770         if (!encrypt)
771                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
772
773         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
774                                  init_len, npe_ctx_addr, key, key_len);
775         if (ret)
776                 return ret;
777         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
778                                   init_len, npe_ctx_addr, key, key_len);
779 }
780
781 static int gen_rev_aes_key(struct crypto_tfm *tfm)
782 {
783         struct crypt_ctl *crypt;
784         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
785         struct ix_sa_dir *dir = &ctx->decrypt;
786
787         crypt = get_crypt_desc_emerg();
788         if (!crypt)
789                 return -EAGAIN;
790
791         *(u32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
792
793         crypt->data.tfm = tfm;
794         crypt->crypt_offs = 0;
795         crypt->crypt_len = AES_BLOCK128;
796         crypt->src_buf = 0;
797         crypt->crypto_ctx = dir->npe_ctx_phys;
798         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
799         crypt->mode = NPE_OP_ENC_GEN_KEY;
800         crypt->init_len = dir->npe_ctx_idx;
801         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
802
803         atomic_inc(&ctx->configuring);
804         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
805         BUG_ON(qmgr_stat_overflow(send_qid));
806         return 0;
807 }
808
809 static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
810                         int key_len)
811 {
812         u8 *cinfo;
813         u32 cipher_cfg;
814         u32 keylen_cfg = 0;
815         struct ix_sa_dir *dir;
816         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
817         int err;
818
819         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
820         cinfo = dir->npe_ctx;
821
822         if (encrypt) {
823                 cipher_cfg = cipher_cfg_enc(tfm);
824                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
825         } else {
826                 cipher_cfg = cipher_cfg_dec(tfm);
827         }
828         if (cipher_cfg & MOD_AES) {
829                 switch (key_len) {
830                 case 16:
831                         keylen_cfg = MOD_AES128;
832                         break;
833                 case 24:
834                         keylen_cfg = MOD_AES192;
835                         break;
836                 case 32:
837                         keylen_cfg = MOD_AES256;
838                         break;
839                 default:
840                         return -EINVAL;
841                 }
842                 cipher_cfg |= keylen_cfg;
843         } else {
844                 err = crypto_des_verify_key(tfm, key);
845                 if (err)
846                         return err;
847         }
848         /* write cfg word to cryptinfo */
849         *(u32 *)cinfo = cpu_to_be32(cipher_cfg);
850         cinfo += sizeof(cipher_cfg);
851
852         /* write cipher key to cryptinfo */
853         memcpy(cinfo, key, key_len);
854         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
855         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
856                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
857                 key_len = DES3_EDE_KEY_SIZE;
858         }
859         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
860         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
861         if ((cipher_cfg & MOD_AES) && !encrypt)
862                 return gen_rev_aes_key(tfm);
863
864         return 0;
865 }
866
867 static struct buffer_desc *chainup_buffers(struct device *dev,
868                 struct scatterlist *sg, unsigned int nbytes,
869                 struct buffer_desc *buf, gfp_t flags,
870                 enum dma_data_direction dir)
871 {
872         for (; nbytes > 0; sg = sg_next(sg)) {
873                 unsigned int len = min(nbytes, sg->length);
874                 struct buffer_desc *next_buf;
875                 dma_addr_t next_buf_phys;
876                 void *ptr;
877
878                 nbytes -= len;
879                 ptr = sg_virt(sg);
880                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
881                 if (!next_buf) {
882                         buf = NULL;
883                         break;
884                 }
885                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
886                 buf->next = next_buf;
887                 buf->phys_next = next_buf_phys;
888                 buf = next_buf;
889
890                 buf->phys_addr = sg_dma_address(sg);
891                 buf->buf_len = len;
892                 buf->dir = dir;
893         }
894         buf->next = NULL;
895         buf->phys_next = 0;
896         return buf;
897 }
898
899 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
900                        unsigned int key_len)
901 {
902         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
903         int ret;
904
905         init_completion(&ctx->completion);
906         atomic_inc(&ctx->configuring);
907
908         reset_sa_dir(&ctx->encrypt);
909         reset_sa_dir(&ctx->decrypt);
910
911         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
912         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
913
914         ret = setup_cipher(&tfm->base, 0, key, key_len);
915         if (ret)
916                 goto out;
917         ret = setup_cipher(&tfm->base, 1, key, key_len);
918 out:
919         if (!atomic_dec_and_test(&ctx->configuring))
920                 wait_for_completion(&ctx->completion);
921         if (ret)
922                 return ret;
923         crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
924         crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
925
926         return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
927 }
928
929 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
930                             unsigned int key_len)
931 {
932         return verify_skcipher_des3_key(tfm, key) ?:
933                ablk_setkey(tfm, key, key_len);
934 }
935
936 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
937                                unsigned int key_len)
938 {
939         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
940
941         /* the nonce is stored in bytes at end of key */
942         if (key_len < CTR_RFC3686_NONCE_SIZE)
943                 return -EINVAL;
944
945         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
946                CTR_RFC3686_NONCE_SIZE);
947
948         key_len -= CTR_RFC3686_NONCE_SIZE;
949         return ablk_setkey(tfm, key, key_len);
950 }
951
952 static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
953 {
954         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
955         struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
956         struct ablk_ctx *rctx = skcipher_request_ctx(areq);
957         int err;
958
959         skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
960         skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
961                                       areq->base.complete, areq->base.data);
962         skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
963                                    areq->cryptlen, areq->iv);
964         if (encrypt)
965                 err = crypto_skcipher_encrypt(&rctx->fallback_req);
966         else
967                 err = crypto_skcipher_decrypt(&rctx->fallback_req);
968         return err;
969 }
970
971 static int ablk_perform(struct skcipher_request *req, int encrypt)
972 {
973         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
974         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
975         unsigned int ivsize = crypto_skcipher_ivsize(tfm);
976         struct ix_sa_dir *dir;
977         struct crypt_ctl *crypt;
978         unsigned int nbytes = req->cryptlen;
979         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
980         struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
981         struct buffer_desc src_hook;
982         struct device *dev = &pdev->dev;
983         unsigned int offset;
984         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
985                                 GFP_KERNEL : GFP_ATOMIC;
986
987         if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
988                 return ixp4xx_cipher_fallback(req, encrypt);
989
990         if (qmgr_stat_full(send_qid))
991                 return -EAGAIN;
992         if (atomic_read(&ctx->configuring))
993                 return -EAGAIN;
994
995         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
996         req_ctx->encrypt = encrypt;
997
998         crypt = get_crypt_desc();
999         if (!crypt)
1000                 return -ENOMEM;
1001
1002         crypt->data.ablk_req = req;
1003         crypt->crypto_ctx = dir->npe_ctx_phys;
1004         crypt->mode = dir->npe_mode;
1005         crypt->init_len = dir->npe_ctx_idx;
1006
1007         crypt->crypt_offs = 0;
1008         crypt->crypt_len = nbytes;
1009
1010         BUG_ON(ivsize && !req->iv);
1011         memcpy(crypt->iv, req->iv, ivsize);
1012         if (ivsize > 0 && !encrypt) {
1013                 offset = req->cryptlen - ivsize;
1014                 scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1015         }
1016         if (req->src != req->dst) {
1017                 struct buffer_desc dst_hook;
1018
1019                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1020                 /* This was never tested by Intel
1021                  * for more than one dst buffer, I think. */
1022                 req_ctx->dst = NULL;
1023                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1024                                      flags, DMA_FROM_DEVICE))
1025                         goto free_buf_dest;
1026                 src_direction = DMA_TO_DEVICE;
1027                 req_ctx->dst = dst_hook.next;
1028                 crypt->dst_buf = dst_hook.phys_next;
1029         } else {
1030                 req_ctx->dst = NULL;
1031         }
1032         req_ctx->src = NULL;
1033         if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1034                              src_direction))
1035                 goto free_buf_src;
1036
1037         req_ctx->src = src_hook.next;
1038         crypt->src_buf = src_hook.phys_next;
1039         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1040         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1041         BUG_ON(qmgr_stat_overflow(send_qid));
1042         return -EINPROGRESS;
1043
1044 free_buf_src:
1045         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1046 free_buf_dest:
1047         if (req->src != req->dst)
1048                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1049
1050         crypt->ctl_flags = CTL_FLAG_UNUSED;
1051         return -ENOMEM;
1052 }
1053
1054 static int ablk_encrypt(struct skcipher_request *req)
1055 {
1056         return ablk_perform(req, 1);
1057 }
1058
1059 static int ablk_decrypt(struct skcipher_request *req)
1060 {
1061         return ablk_perform(req, 0);
1062 }
1063
1064 static int ablk_rfc3686_crypt(struct skcipher_request *req)
1065 {
1066         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1067         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1068         u8 iv[CTR_RFC3686_BLOCK_SIZE];
1069         u8 *info = req->iv;
1070         int ret;
1071
1072         /* set up counter block */
1073         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1074         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1075
1076         /* initialize counter portion of counter block */
1077         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1078                 cpu_to_be32(1);
1079
1080         req->iv = iv;
1081         ret = ablk_perform(req, 1);
1082         req->iv = info;
1083         return ret;
1084 }
1085
1086 static int aead_perform(struct aead_request *req, int encrypt,
1087                         int cryptoffset, int eff_cryptlen, u8 *iv)
1088 {
1089         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1090         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1091         unsigned int ivsize = crypto_aead_ivsize(tfm);
1092         unsigned int authsize = crypto_aead_authsize(tfm);
1093         struct ix_sa_dir *dir;
1094         struct crypt_ctl *crypt;
1095         unsigned int cryptlen;
1096         struct buffer_desc *buf, src_hook;
1097         struct aead_ctx *req_ctx = aead_request_ctx(req);
1098         struct device *dev = &pdev->dev;
1099         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1100                                 GFP_KERNEL : GFP_ATOMIC;
1101         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1102         unsigned int lastlen;
1103
1104         if (qmgr_stat_full(send_qid))
1105                 return -EAGAIN;
1106         if (atomic_read(&ctx->configuring))
1107                 return -EAGAIN;
1108
1109         if (encrypt) {
1110                 dir = &ctx->encrypt;
1111                 cryptlen = req->cryptlen;
1112         } else {
1113                 dir = &ctx->decrypt;
1114                 /* req->cryptlen includes the authsize when decrypting */
1115                 cryptlen = req->cryptlen - authsize;
1116                 eff_cryptlen -= authsize;
1117         }
1118         crypt = get_crypt_desc();
1119         if (!crypt)
1120                 return -ENOMEM;
1121
1122         crypt->data.aead_req = req;
1123         crypt->crypto_ctx = dir->npe_ctx_phys;
1124         crypt->mode = dir->npe_mode;
1125         crypt->init_len = dir->npe_ctx_idx;
1126
1127         crypt->crypt_offs = cryptoffset;
1128         crypt->crypt_len = eff_cryptlen;
1129
1130         crypt->auth_offs = 0;
1131         crypt->auth_len = req->assoclen + cryptlen;
1132         BUG_ON(ivsize && !req->iv);
1133         memcpy(crypt->iv, req->iv, ivsize);
1134
1135         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1136                               &src_hook, flags, src_direction);
1137         req_ctx->src = src_hook.next;
1138         crypt->src_buf = src_hook.phys_next;
1139         if (!buf)
1140                 goto free_buf_src;
1141
1142         lastlen = buf->buf_len;
1143         if (lastlen >= authsize)
1144                 crypt->icv_rev_aes = buf->phys_addr +
1145                                      buf->buf_len - authsize;
1146
1147         req_ctx->dst = NULL;
1148
1149         if (req->src != req->dst) {
1150                 struct buffer_desc dst_hook;
1151
1152                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1153                 src_direction = DMA_TO_DEVICE;
1154
1155                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1156                                       &dst_hook, flags, DMA_FROM_DEVICE);
1157                 req_ctx->dst = dst_hook.next;
1158                 crypt->dst_buf = dst_hook.phys_next;
1159
1160                 if (!buf)
1161                         goto free_buf_dst;
1162
1163                 if (encrypt) {
1164                         lastlen = buf->buf_len;
1165                         if (lastlen >= authsize)
1166                                 crypt->icv_rev_aes = buf->phys_addr +
1167                                                      buf->buf_len - authsize;
1168                 }
1169         }
1170
1171         if (unlikely(lastlen < authsize)) {
1172                 /* The 12 hmac bytes are scattered,
1173                  * we need to copy them into a safe buffer */
1174                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1175                                                     &crypt->icv_rev_aes);
1176                 if (unlikely(!req_ctx->hmac_virt))
1177                         goto free_buf_dst;
1178                 if (!encrypt) {
1179                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1180                                                  req->src, cryptlen, authsize, 0);
1181                 }
1182                 req_ctx->encrypt = encrypt;
1183         } else {
1184                 req_ctx->hmac_virt = NULL;
1185         }
1186
1187         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1188         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1189         BUG_ON(qmgr_stat_overflow(send_qid));
1190         return -EINPROGRESS;
1191
1192 free_buf_dst:
1193         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1194 free_buf_src:
1195         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1196         crypt->ctl_flags = CTL_FLAG_UNUSED;
1197         return -ENOMEM;
1198 }
1199
1200 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1201 {
1202         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1203         unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1204         int ret;
1205
1206         if (!ctx->enckey_len && !ctx->authkey_len)
1207                 return 0;
1208         init_completion(&ctx->completion);
1209         atomic_inc(&ctx->configuring);
1210
1211         reset_sa_dir(&ctx->encrypt);
1212         reset_sa_dir(&ctx->decrypt);
1213
1214         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1215         if (ret)
1216                 goto out;
1217         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1218         if (ret)
1219                 goto out;
1220         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1221                          ctx->authkey_len, digest_len);
1222         if (ret)
1223                 goto out;
1224         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1225                          ctx->authkey_len, digest_len);
1226 out:
1227         if (!atomic_dec_and_test(&ctx->configuring))
1228                 wait_for_completion(&ctx->completion);
1229         return ret;
1230 }
1231
1232 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1233 {
1234         int max = crypto_aead_maxauthsize(tfm) >> 2;
1235
1236         if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1237                 return -EINVAL;
1238         return aead_setup(tfm, authsize);
1239 }
1240
1241 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1242                        unsigned int keylen)
1243 {
1244         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1245         struct crypto_authenc_keys keys;
1246
1247         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1248                 goto badkey;
1249
1250         if (keys.authkeylen > sizeof(ctx->authkey))
1251                 goto badkey;
1252
1253         if (keys.enckeylen > sizeof(ctx->enckey))
1254                 goto badkey;
1255
1256         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1257         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1258         ctx->authkey_len = keys.authkeylen;
1259         ctx->enckey_len = keys.enckeylen;
1260
1261         memzero_explicit(&keys, sizeof(keys));
1262         return aead_setup(tfm, crypto_aead_authsize(tfm));
1263 badkey:
1264         memzero_explicit(&keys, sizeof(keys));
1265         return -EINVAL;
1266 }
1267
1268 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1269                             unsigned int keylen)
1270 {
1271         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1272         struct crypto_authenc_keys keys;
1273         int err;
1274
1275         err = crypto_authenc_extractkeys(&keys, key, keylen);
1276         if (unlikely(err))
1277                 goto badkey;
1278
1279         err = -EINVAL;
1280         if (keys.authkeylen > sizeof(ctx->authkey))
1281                 goto badkey;
1282
1283         err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1284         if (err)
1285                 goto badkey;
1286
1287         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1288         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1289         ctx->authkey_len = keys.authkeylen;
1290         ctx->enckey_len = keys.enckeylen;
1291
1292         memzero_explicit(&keys, sizeof(keys));
1293         return aead_setup(tfm, crypto_aead_authsize(tfm));
1294 badkey:
1295         memzero_explicit(&keys, sizeof(keys));
1296         return err;
1297 }
1298
1299 static int aead_encrypt(struct aead_request *req)
1300 {
1301         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1302 }
1303
1304 static int aead_decrypt(struct aead_request *req)
1305 {
1306         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1307 }
1308
1309 static struct ixp_alg ixp4xx_algos[] = {
1310 {
1311         .crypto = {
1312                 .base.cra_name          = "cbc(des)",
1313                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1314
1315                 .min_keysize            = DES_KEY_SIZE,
1316                 .max_keysize            = DES_KEY_SIZE,
1317                 .ivsize                 = DES_BLOCK_SIZE,
1318         },
1319         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1320         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1321
1322 }, {
1323         .crypto = {
1324                 .base.cra_name          = "ecb(des)",
1325                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1326                 .min_keysize            = DES_KEY_SIZE,
1327                 .max_keysize            = DES_KEY_SIZE,
1328         },
1329         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1330         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1331 }, {
1332         .crypto = {
1333                 .base.cra_name          = "cbc(des3_ede)",
1334                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1335
1336                 .min_keysize            = DES3_EDE_KEY_SIZE,
1337                 .max_keysize            = DES3_EDE_KEY_SIZE,
1338                 .ivsize                 = DES3_EDE_BLOCK_SIZE,
1339                 .setkey                 = ablk_des3_setkey,
1340         },
1341         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1342         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1343 }, {
1344         .crypto = {
1345                 .base.cra_name          = "ecb(des3_ede)",
1346                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1347
1348                 .min_keysize            = DES3_EDE_KEY_SIZE,
1349                 .max_keysize            = DES3_EDE_KEY_SIZE,
1350                 .setkey                 = ablk_des3_setkey,
1351         },
1352         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1353         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1354 }, {
1355         .crypto = {
1356                 .base.cra_name          = "cbc(aes)",
1357                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1358
1359                 .min_keysize            = AES_MIN_KEY_SIZE,
1360                 .max_keysize            = AES_MAX_KEY_SIZE,
1361                 .ivsize                 = AES_BLOCK_SIZE,
1362         },
1363         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1364         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1365 }, {
1366         .crypto = {
1367                 .base.cra_name          = "ecb(aes)",
1368                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1369
1370                 .min_keysize            = AES_MIN_KEY_SIZE,
1371                 .max_keysize            = AES_MAX_KEY_SIZE,
1372         },
1373         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1374         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1375 }, {
1376         .crypto = {
1377                 .base.cra_name          = "ctr(aes)",
1378                 .base.cra_blocksize     = 1,
1379
1380                 .min_keysize            = AES_MIN_KEY_SIZE,
1381                 .max_keysize            = AES_MAX_KEY_SIZE,
1382                 .ivsize                 = AES_BLOCK_SIZE,
1383         },
1384         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1385         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1386 }, {
1387         .crypto = {
1388                 .base.cra_name          = "rfc3686(ctr(aes))",
1389                 .base.cra_blocksize     = 1,
1390
1391                 .min_keysize            = AES_MIN_KEY_SIZE,
1392                 .max_keysize            = AES_MAX_KEY_SIZE,
1393                 .ivsize                 = AES_BLOCK_SIZE,
1394                 .setkey                 = ablk_rfc3686_setkey,
1395                 .encrypt                = ablk_rfc3686_crypt,
1396                 .decrypt                = ablk_rfc3686_crypt,
1397         },
1398         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1399         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1400 } };
1401
1402 static struct ixp_aead_alg ixp4xx_aeads[] = {
1403 {
1404         .crypto = {
1405                 .base = {
1406                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1407                         .cra_blocksize  = DES_BLOCK_SIZE,
1408                 },
1409                 .ivsize         = DES_BLOCK_SIZE,
1410                 .maxauthsize    = MD5_DIGEST_SIZE,
1411         },
1412         .hash = &hash_alg_md5,
1413         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1414         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1415 }, {
1416         .crypto = {
1417                 .base = {
1418                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1419                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1420                 },
1421                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1422                 .maxauthsize    = MD5_DIGEST_SIZE,
1423                 .setkey         = des3_aead_setkey,
1424         },
1425         .hash = &hash_alg_md5,
1426         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1427         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1428 }, {
1429         .crypto = {
1430                 .base = {
1431                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1432                         .cra_blocksize  = DES_BLOCK_SIZE,
1433                 },
1434                         .ivsize         = DES_BLOCK_SIZE,
1435                         .maxauthsize    = SHA1_DIGEST_SIZE,
1436         },
1437         .hash = &hash_alg_sha1,
1438         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1439         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1440 }, {
1441         .crypto = {
1442                 .base = {
1443                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1444                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1445                 },
1446                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1447                 .maxauthsize    = SHA1_DIGEST_SIZE,
1448                 .setkey         = des3_aead_setkey,
1449         },
1450         .hash = &hash_alg_sha1,
1451         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1452         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1453 }, {
1454         .crypto = {
1455                 .base = {
1456                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1457                         .cra_blocksize  = AES_BLOCK_SIZE,
1458                 },
1459                 .ivsize         = AES_BLOCK_SIZE,
1460                 .maxauthsize    = MD5_DIGEST_SIZE,
1461         },
1462         .hash = &hash_alg_md5,
1463         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1464         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1465 }, {
1466         .crypto = {
1467                 .base = {
1468                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1469                         .cra_blocksize  = AES_BLOCK_SIZE,
1470                 },
1471                 .ivsize         = AES_BLOCK_SIZE,
1472                 .maxauthsize    = SHA1_DIGEST_SIZE,
1473         },
1474         .hash = &hash_alg_sha1,
1475         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1476         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1477 } };
1478
1479 #define IXP_POSTFIX "-ixp4xx"
1480
1481 static int ixp_crypto_probe(struct platform_device *_pdev)
1482 {
1483         struct device *dev = &_pdev->dev;
1484         int num = ARRAY_SIZE(ixp4xx_algos);
1485         int i, err;
1486
1487         pdev = _pdev;
1488
1489         err = init_ixp_crypto(dev);
1490         if (err)
1491                 return err;
1492
1493         for (i = 0; i < num; i++) {
1494                 struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1495
1496                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1497                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1498                              CRYPTO_MAX_ALG_NAME)
1499                         continue;
1500                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1501                         continue;
1502
1503                 /* block ciphers */
1504                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1505                                       CRYPTO_ALG_ASYNC |
1506                                       CRYPTO_ALG_ALLOCATES_MEMORY |
1507                                       CRYPTO_ALG_NEED_FALLBACK;
1508                 if (!cra->setkey)
1509                         cra->setkey = ablk_setkey;
1510                 if (!cra->encrypt)
1511                         cra->encrypt = ablk_encrypt;
1512                 if (!cra->decrypt)
1513                         cra->decrypt = ablk_decrypt;
1514                 cra->init = init_tfm_ablk;
1515                 cra->exit = exit_tfm_ablk;
1516
1517                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1518                 cra->base.cra_module = THIS_MODULE;
1519                 cra->base.cra_alignmask = 3;
1520                 cra->base.cra_priority = 300;
1521                 if (crypto_register_skcipher(cra))
1522                         dev_err(&pdev->dev, "Failed to register '%s'\n",
1523                                 cra->base.cra_name);
1524                 else
1525                         ixp4xx_algos[i].registered = 1;
1526         }
1527
1528         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1529                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1530
1531                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1532                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1533                     CRYPTO_MAX_ALG_NAME)
1534                         continue;
1535                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1536                         continue;
1537
1538                 /* authenc */
1539                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1540                                       CRYPTO_ALG_ASYNC |
1541                                       CRYPTO_ALG_ALLOCATES_MEMORY;
1542                 cra->setkey = cra->setkey ?: aead_setkey;
1543                 cra->setauthsize = aead_setauthsize;
1544                 cra->encrypt = aead_encrypt;
1545                 cra->decrypt = aead_decrypt;
1546                 cra->init = init_tfm_aead;
1547                 cra->exit = exit_tfm_aead;
1548
1549                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1550                 cra->base.cra_module = THIS_MODULE;
1551                 cra->base.cra_alignmask = 3;
1552                 cra->base.cra_priority = 300;
1553
1554                 if (crypto_register_aead(cra))
1555                         dev_err(&pdev->dev, "Failed to register '%s'\n",
1556                                 cra->base.cra_driver_name);
1557                 else
1558                         ixp4xx_aeads[i].registered = 1;
1559         }
1560         return 0;
1561 }
1562
1563 static int ixp_crypto_remove(struct platform_device *pdev)
1564 {
1565         int num = ARRAY_SIZE(ixp4xx_algos);
1566         int i;
1567
1568         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1569                 if (ixp4xx_aeads[i].registered)
1570                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1571         }
1572
1573         for (i = 0; i < num; i++) {
1574                 if (ixp4xx_algos[i].registered)
1575                         crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1576         }
1577         release_ixp_crypto(&pdev->dev);
1578
1579         return 0;
1580 }
1581 static const struct of_device_id ixp4xx_crypto_of_match[] = {
1582         {
1583                 .compatible = "intel,ixp4xx-crypto",
1584         },
1585         {},
1586 };
1587
1588 static struct platform_driver ixp_crypto_driver = {
1589         .probe = ixp_crypto_probe,
1590         .remove = ixp_crypto_remove,
1591         .driver = {
1592                 .name = "ixp4xx_crypto",
1593                 .of_match_table = ixp4xx_crypto_of_match,
1594         },
1595 };
1596 module_platform_driver(ixp_crypto_driver);
1597
1598 MODULE_LICENSE("GPL");
1599 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1600 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1601