drm/amd/amdgpu:flush ttm delayed work before cancel_sync
[linux-2.6-microblaze.git] / drivers / crypto / ixp4xx_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18 #include <linux/of.h>
19
20 #include <crypto/ctr.h>
21 #include <crypto/internal/des.h>
22 #include <crypto/aes.h>
23 #include <crypto/hmac.h>
24 #include <crypto/sha1.h>
25 #include <crypto/algapi.h>
26 #include <crypto/internal/aead.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/authenc.h>
29 #include <crypto/scatterwalk.h>
30
31 #include <linux/soc/ixp4xx/npe.h>
32 #include <linux/soc/ixp4xx/qmgr.h>
33
34 /* Intermittent includes, delete this after v5.14-rc1 */
35 #include <linux/soc/ixp4xx/cpu.h>
36 #include <mach/ixp4xx-regs.h>
37
38 #define MAX_KEYLEN 32
39
40 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
41 #define NPE_CTX_LEN 80
42 #define AES_BLOCK128 16
43
44 #define NPE_OP_HASH_VERIFY   0x01
45 #define NPE_OP_CCM_ENABLE    0x04
46 #define NPE_OP_CRYPT_ENABLE  0x08
47 #define NPE_OP_HASH_ENABLE   0x10
48 #define NPE_OP_NOT_IN_PLACE  0x20
49 #define NPE_OP_HMAC_DISABLE  0x40
50 #define NPE_OP_CRYPT_ENCRYPT 0x80
51
52 #define NPE_OP_CCM_GEN_MIC   0xcc
53 #define NPE_OP_HASH_GEN_ICV  0x50
54 #define NPE_OP_ENC_GEN_KEY   0xc9
55
56 #define MOD_ECB     0x0000
57 #define MOD_CTR     0x1000
58 #define MOD_CBC_ENC 0x2000
59 #define MOD_CBC_DEC 0x3000
60 #define MOD_CCM_ENC 0x4000
61 #define MOD_CCM_DEC 0x5000
62
63 #define KEYLEN_128  4
64 #define KEYLEN_192  6
65 #define KEYLEN_256  8
66
67 #define CIPH_DECR   0x0000
68 #define CIPH_ENCR   0x0400
69
70 #define MOD_DES     0x0000
71 #define MOD_TDEA2   0x0100
72 #define MOD_3DES   0x0200
73 #define MOD_AES     0x0800
74 #define MOD_AES128  (0x0800 | KEYLEN_128)
75 #define MOD_AES192  (0x0900 | KEYLEN_192)
76 #define MOD_AES256  (0x0a00 | KEYLEN_256)
77
78 #define MAX_IVLEN   16
79 #define NPE_QLEN    16
80 /* Space for registering when the first
81  * NPE_QLEN crypt_ctl are busy */
82 #define NPE_QLEN_TOTAL 64
83
84 #define CTL_FLAG_UNUSED         0x0000
85 #define CTL_FLAG_USED           0x1000
86 #define CTL_FLAG_PERFORM_ABLK   0x0001
87 #define CTL_FLAG_GEN_ICV        0x0002
88 #define CTL_FLAG_GEN_REVAES     0x0004
89 #define CTL_FLAG_PERFORM_AEAD   0x0008
90 #define CTL_FLAG_MASK           0x000f
91
92 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
93
94 #define MD5_DIGEST_SIZE   16
95
96 struct buffer_desc {
97         u32 phys_next;
98 #ifdef __ARMEB__
99         u16 buf_len;
100         u16 pkt_len;
101 #else
102         u16 pkt_len;
103         u16 buf_len;
104 #endif
105         dma_addr_t phys_addr;
106         u32 __reserved[4];
107         struct buffer_desc *next;
108         enum dma_data_direction dir;
109 };
110
111 struct crypt_ctl {
112 #ifdef __ARMEB__
113         u8 mode;                /* NPE_OP_*  operation mode */
114         u8 init_len;
115         u16 reserved;
116 #else
117         u16 reserved;
118         u8 init_len;
119         u8 mode;                /* NPE_OP_*  operation mode */
120 #endif
121         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
122         dma_addr_t icv_rev_aes; /* icv or rev aes */
123         dma_addr_t src_buf;
124         dma_addr_t dst_buf;
125 #ifdef __ARMEB__
126         u16 auth_offs;          /* Authentication start offset */
127         u16 auth_len;           /* Authentication data length */
128         u16 crypt_offs;         /* Cryption start offset */
129         u16 crypt_len;          /* Cryption data length */
130 #else
131         u16 auth_len;           /* Authentication data length */
132         u16 auth_offs;          /* Authentication start offset */
133         u16 crypt_len;          /* Cryption data length */
134         u16 crypt_offs;         /* Cryption start offset */
135 #endif
136         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
137         u32 crypto_ctx;         /* NPE Crypto Param structure address */
138
139         /* Used by Host: 4*4 bytes*/
140         unsigned int ctl_flags;
141         union {
142                 struct skcipher_request *ablk_req;
143                 struct aead_request *aead_req;
144                 struct crypto_tfm *tfm;
145         } data;
146         struct buffer_desc *regist_buf;
147         u8 *regist_ptr;
148 };
149
150 struct ablk_ctx {
151         struct buffer_desc *src;
152         struct buffer_desc *dst;
153         u8 iv[MAX_IVLEN];
154         bool encrypt;
155         struct skcipher_request fallback_req;   // keep at the end
156 };
157
158 struct aead_ctx {
159         struct buffer_desc *src;
160         struct buffer_desc *dst;
161         struct scatterlist ivlist;
162         /* used when the hmac is not on one sg entry */
163         u8 *hmac_virt;
164         int encrypt;
165 };
166
167 struct ix_hash_algo {
168         u32 cfgword;
169         unsigned char *icv;
170 };
171
172 struct ix_sa_dir {
173         unsigned char *npe_ctx;
174         dma_addr_t npe_ctx_phys;
175         int npe_ctx_idx;
176         u8 npe_mode;
177 };
178
179 struct ixp_ctx {
180         struct ix_sa_dir encrypt;
181         struct ix_sa_dir decrypt;
182         int authkey_len;
183         u8 authkey[MAX_KEYLEN];
184         int enckey_len;
185         u8 enckey[MAX_KEYLEN];
186         u8 salt[MAX_IVLEN];
187         u8 nonce[CTR_RFC3686_NONCE_SIZE];
188         unsigned int salted;
189         atomic_t configuring;
190         struct completion completion;
191         struct crypto_skcipher *fallback_tfm;
192 };
193
194 struct ixp_alg {
195         struct skcipher_alg crypto;
196         const struct ix_hash_algo *hash;
197         u32 cfg_enc;
198         u32 cfg_dec;
199
200         int registered;
201 };
202
203 struct ixp_aead_alg {
204         struct aead_alg crypto;
205         const struct ix_hash_algo *hash;
206         u32 cfg_enc;
207         u32 cfg_dec;
208
209         int registered;
210 };
211
212 static const struct ix_hash_algo hash_alg_md5 = {
213         .cfgword        = 0xAA010004,
214         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
215                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
216 };
217
218 static const struct ix_hash_algo hash_alg_sha1 = {
219         .cfgword        = 0x00000005,
220         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
221                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
222 };
223
224 static struct npe *npe_c;
225
226 static unsigned int send_qid;
227 static unsigned int recv_qid;
228 static struct dma_pool *buffer_pool;
229 static struct dma_pool *ctx_pool;
230
231 static struct crypt_ctl *crypt_virt;
232 static dma_addr_t crypt_phys;
233
234 static int support_aes = 1;
235
236 static struct platform_device *pdev;
237
238 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
239 {
240         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
241 }
242
243 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
244 {
245         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
246 }
247
248 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
249 {
250         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_enc;
251 }
252
253 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
254 {
255         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->cfg_dec;
256 }
257
258 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
259 {
260         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
261 }
262
263 static int setup_crypt_desc(void)
264 {
265         struct device *dev = &pdev->dev;
266
267         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
268         crypt_virt = dma_alloc_coherent(dev,
269                                         NPE_QLEN * sizeof(struct crypt_ctl),
270                                         &crypt_phys, GFP_ATOMIC);
271         if (!crypt_virt)
272                 return -ENOMEM;
273         return 0;
274 }
275
276 static DEFINE_SPINLOCK(desc_lock);
277 static struct crypt_ctl *get_crypt_desc(void)
278 {
279         int i;
280         static int idx;
281         unsigned long flags;
282
283         spin_lock_irqsave(&desc_lock, flags);
284
285         if (unlikely(!crypt_virt))
286                 setup_crypt_desc();
287         if (unlikely(!crypt_virt)) {
288                 spin_unlock_irqrestore(&desc_lock, flags);
289                 return NULL;
290         }
291         i = idx;
292         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
293                 if (++idx >= NPE_QLEN)
294                         idx = 0;
295                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
296                 spin_unlock_irqrestore(&desc_lock, flags);
297                 return crypt_virt + i;
298         } else {
299                 spin_unlock_irqrestore(&desc_lock, flags);
300                 return NULL;
301         }
302 }
303
304 static DEFINE_SPINLOCK(emerg_lock);
305 static struct crypt_ctl *get_crypt_desc_emerg(void)
306 {
307         int i;
308         static int idx = NPE_QLEN;
309         struct crypt_ctl *desc;
310         unsigned long flags;
311
312         desc = get_crypt_desc();
313         if (desc)
314                 return desc;
315         if (unlikely(!crypt_virt))
316                 return NULL;
317
318         spin_lock_irqsave(&emerg_lock, flags);
319         i = idx;
320         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
321                 if (++idx >= NPE_QLEN_TOTAL)
322                         idx = NPE_QLEN;
323                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
324                 spin_unlock_irqrestore(&emerg_lock, flags);
325                 return crypt_virt + i;
326         } else {
327                 spin_unlock_irqrestore(&emerg_lock, flags);
328                 return NULL;
329         }
330 }
331
332 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
333                            dma_addr_t phys)
334 {
335         while (buf) {
336                 struct buffer_desc *buf1;
337                 u32 phys1;
338
339                 buf1 = buf->next;
340                 phys1 = buf->phys_next;
341                 dma_unmap_single(dev, buf->phys_addr, buf->buf_len, buf->dir);
342                 dma_pool_free(buffer_pool, buf, phys);
343                 buf = buf1;
344                 phys = phys1;
345         }
346 }
347
348 static struct tasklet_struct crypto_done_tasklet;
349
350 static void finish_scattered_hmac(struct crypt_ctl *crypt)
351 {
352         struct aead_request *req = crypt->data.aead_req;
353         struct aead_ctx *req_ctx = aead_request_ctx(req);
354         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
355         int authsize = crypto_aead_authsize(tfm);
356         int decryptlen = req->assoclen + req->cryptlen - authsize;
357
358         if (req_ctx->encrypt) {
359                 scatterwalk_map_and_copy(req_ctx->hmac_virt, req->dst,
360                                          decryptlen, authsize, 1);
361         }
362         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
363 }
364
365 static void one_packet(dma_addr_t phys)
366 {
367         struct device *dev = &pdev->dev;
368         struct crypt_ctl *crypt;
369         struct ixp_ctx *ctx;
370         int failed;
371
372         failed = phys & 0x1 ? -EBADMSG : 0;
373         phys &= ~0x3;
374         crypt = crypt_phys2virt(phys);
375
376         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
377         case CTL_FLAG_PERFORM_AEAD: {
378                 struct aead_request *req = crypt->data.aead_req;
379                 struct aead_ctx *req_ctx = aead_request_ctx(req);
380
381                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
382                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
383                 if (req_ctx->hmac_virt)
384                         finish_scattered_hmac(crypt);
385
386                 req->base.complete(&req->base, failed);
387                 break;
388         }
389         case CTL_FLAG_PERFORM_ABLK: {
390                 struct skcipher_request *req = crypt->data.ablk_req;
391                 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
392                 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
393                 unsigned int ivsize = crypto_skcipher_ivsize(tfm);
394                 unsigned int offset;
395
396                 if (ivsize > 0) {
397                         offset = req->cryptlen - ivsize;
398                         if (req_ctx->encrypt) {
399                                 scatterwalk_map_and_copy(req->iv, req->dst,
400                                                          offset, ivsize, 0);
401                         } else {
402                                 memcpy(req->iv, req_ctx->iv, ivsize);
403                                 memzero_explicit(req_ctx->iv, ivsize);
404                         }
405                 }
406
407                 if (req_ctx->dst)
408                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
409
410                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
411                 req->base.complete(&req->base, failed);
412                 break;
413         }
414         case CTL_FLAG_GEN_ICV:
415                 ctx = crypto_tfm_ctx(crypt->data.tfm);
416                 dma_pool_free(ctx_pool, crypt->regist_ptr,
417                               crypt->regist_buf->phys_addr);
418                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
419                 if (atomic_dec_and_test(&ctx->configuring))
420                         complete(&ctx->completion);
421                 break;
422         case CTL_FLAG_GEN_REVAES:
423                 ctx = crypto_tfm_ctx(crypt->data.tfm);
424                 *(u32 *)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
425                 if (atomic_dec_and_test(&ctx->configuring))
426                         complete(&ctx->completion);
427                 break;
428         default:
429                 BUG();
430         }
431         crypt->ctl_flags = CTL_FLAG_UNUSED;
432 }
433
434 static void irqhandler(void *_unused)
435 {
436         tasklet_schedule(&crypto_done_tasklet);
437 }
438
439 static void crypto_done_action(unsigned long arg)
440 {
441         int i;
442
443         for (i = 0; i < 4; i++) {
444                 dma_addr_t phys = qmgr_get_entry(recv_qid);
445                 if (!phys)
446                         return;
447                 one_packet(phys);
448         }
449         tasklet_schedule(&crypto_done_tasklet);
450 }
451
452 static int init_ixp_crypto(struct device *dev)
453 {
454         struct device_node *np = dev->of_node;
455         u32 msg[2] = { 0, 0 };
456         int ret = -ENODEV;
457         u32 npe_id;
458
459         dev_info(dev, "probing...\n");
460
461         /* Locate the NPE and queue manager to use from device tree */
462         if (IS_ENABLED(CONFIG_OF) && np) {
463                 struct of_phandle_args queue_spec;
464                 struct of_phandle_args npe_spec;
465
466                 ret = of_parse_phandle_with_fixed_args(np, "intel,npe-handle",
467                                                        1, 0, &npe_spec);
468                 if (ret) {
469                         dev_err(dev, "no NPE engine specified\n");
470                         return -ENODEV;
471                 }
472                 npe_id = npe_spec.args[0];
473
474                 ret = of_parse_phandle_with_fixed_args(np, "queue-rx", 1, 0,
475                                                        &queue_spec);
476                 if (ret) {
477                         dev_err(dev, "no rx queue phandle\n");
478                         return -ENODEV;
479                 }
480                 recv_qid = queue_spec.args[0];
481
482                 ret = of_parse_phandle_with_fixed_args(np, "queue-txready", 1, 0,
483                                                        &queue_spec);
484                 if (ret) {
485                         dev_err(dev, "no txready queue phandle\n");
486                         return -ENODEV;
487                 }
488                 send_qid = queue_spec.args[0];
489         } else {
490                 /*
491                  * Hardcoded engine when using platform data, this goes away
492                  * when we switch to using DT only.
493                  */
494                 npe_id = 2;
495                 send_qid = 29;
496                 recv_qid = 30;
497         }
498
499         npe_c = npe_request(npe_id);
500         if (!npe_c)
501                 return ret;
502
503         if (!npe_running(npe_c)) {
504                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
505                 if (ret)
506                         goto npe_release;
507                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
508                         goto npe_error;
509         } else {
510                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
511                         goto npe_error;
512
513                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
514                         goto npe_error;
515         }
516
517         switch ((msg[1] >> 16) & 0xff) {
518         case 3:
519                 dev_warn(dev, "Firmware of %s lacks AES support\n", npe_name(npe_c));
520                 support_aes = 0;
521                 break;
522         case 4:
523         case 5:
524                 support_aes = 1;
525                 break;
526         default:
527                 dev_err(dev, "Firmware of %s lacks crypto support\n", npe_name(npe_c));
528                 ret = -ENODEV;
529                 goto npe_release;
530         }
531         /* buffer_pool will also be used to sometimes store the hmac,
532          * so assure it is large enough
533          */
534         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
535         buffer_pool = dma_pool_create("buffer", dev, sizeof(struct buffer_desc),
536                                       32, 0);
537         ret = -ENOMEM;
538         if (!buffer_pool)
539                 goto err;
540
541         ctx_pool = dma_pool_create("context", dev, NPE_CTX_LEN, 16, 0);
542         if (!ctx_pool)
543                 goto err;
544
545         ret = qmgr_request_queue(send_qid, NPE_QLEN_TOTAL, 0, 0,
546                                  "ixp_crypto:out", NULL);
547         if (ret)
548                 goto err;
549         ret = qmgr_request_queue(recv_qid, NPE_QLEN, 0, 0,
550                                  "ixp_crypto:in", NULL);
551         if (ret) {
552                 qmgr_release_queue(send_qid);
553                 goto err;
554         }
555         qmgr_set_irq(recv_qid, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
556         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
557
558         qmgr_enable_irq(recv_qid);
559         return 0;
560
561 npe_error:
562         dev_err(dev, "%s not responding\n", npe_name(npe_c));
563         ret = -EIO;
564 err:
565         dma_pool_destroy(ctx_pool);
566         dma_pool_destroy(buffer_pool);
567 npe_release:
568         npe_release(npe_c);
569         return ret;
570 }
571
572 static void release_ixp_crypto(struct device *dev)
573 {
574         qmgr_disable_irq(recv_qid);
575         tasklet_kill(&crypto_done_tasklet);
576
577         qmgr_release_queue(send_qid);
578         qmgr_release_queue(recv_qid);
579
580         dma_pool_destroy(ctx_pool);
581         dma_pool_destroy(buffer_pool);
582
583         npe_release(npe_c);
584
585         if (crypt_virt)
586                 dma_free_coherent(dev, NPE_QLEN * sizeof(struct crypt_ctl),
587                                   crypt_virt, crypt_phys);
588 }
589
590 static void reset_sa_dir(struct ix_sa_dir *dir)
591 {
592         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
593         dir->npe_ctx_idx = 0;
594         dir->npe_mode = 0;
595 }
596
597 static int init_sa_dir(struct ix_sa_dir *dir)
598 {
599         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
600         if (!dir->npe_ctx)
601                 return -ENOMEM;
602
603         reset_sa_dir(dir);
604         return 0;
605 }
606
607 static void free_sa_dir(struct ix_sa_dir *dir)
608 {
609         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
610         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
611 }
612
613 static int init_tfm(struct crypto_tfm *tfm)
614 {
615         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
616         int ret;
617
618         atomic_set(&ctx->configuring, 0);
619         ret = init_sa_dir(&ctx->encrypt);
620         if (ret)
621                 return ret;
622         ret = init_sa_dir(&ctx->decrypt);
623         if (ret)
624                 free_sa_dir(&ctx->encrypt);
625
626         return ret;
627 }
628
629 static int init_tfm_ablk(struct crypto_skcipher *tfm)
630 {
631         struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
632         struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
633         const char *name = crypto_tfm_alg_name(ctfm);
634
635         ctx->fallback_tfm = crypto_alloc_skcipher(name, 0, CRYPTO_ALG_NEED_FALLBACK);
636         if (IS_ERR(ctx->fallback_tfm)) {
637                 pr_err("ERROR: Cannot allocate fallback for %s %ld\n",
638                         name, PTR_ERR(ctx->fallback_tfm));
639                 return PTR_ERR(ctx->fallback_tfm);
640         }
641
642         pr_info("Fallback for %s is %s\n",
643                  crypto_tfm_alg_driver_name(&tfm->base),
644                  crypto_tfm_alg_driver_name(crypto_skcipher_tfm(ctx->fallback_tfm))
645                  );
646
647         crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx) + crypto_skcipher_reqsize(ctx->fallback_tfm));
648         return init_tfm(crypto_skcipher_tfm(tfm));
649 }
650
651 static int init_tfm_aead(struct crypto_aead *tfm)
652 {
653         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
654         return init_tfm(crypto_aead_tfm(tfm));
655 }
656
657 static void exit_tfm(struct crypto_tfm *tfm)
658 {
659         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
660
661         free_sa_dir(&ctx->encrypt);
662         free_sa_dir(&ctx->decrypt);
663 }
664
665 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
666 {
667         struct crypto_tfm *ctfm = crypto_skcipher_tfm(tfm);
668         struct ixp_ctx *ctx = crypto_tfm_ctx(ctfm);
669
670         crypto_free_skcipher(ctx->fallback_tfm);
671         exit_tfm(crypto_skcipher_tfm(tfm));
672 }
673
674 static void exit_tfm_aead(struct crypto_aead *tfm)
675 {
676         exit_tfm(crypto_aead_tfm(tfm));
677 }
678
679 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
680                               int init_len, u32 ctx_addr, const u8 *key,
681                               int key_len)
682 {
683         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
684         struct crypt_ctl *crypt;
685         struct buffer_desc *buf;
686         int i;
687         u8 *pad;
688         dma_addr_t pad_phys, buf_phys;
689
690         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
691         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
692         if (!pad)
693                 return -ENOMEM;
694         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
695         if (!buf) {
696                 dma_pool_free(ctx_pool, pad, pad_phys);
697                 return -ENOMEM;
698         }
699         crypt = get_crypt_desc_emerg();
700         if (!crypt) {
701                 dma_pool_free(ctx_pool, pad, pad_phys);
702                 dma_pool_free(buffer_pool, buf, buf_phys);
703                 return -EAGAIN;
704         }
705
706         memcpy(pad, key, key_len);
707         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
708         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++)
709                 pad[i] ^= xpad;
710
711         crypt->data.tfm = tfm;
712         crypt->regist_ptr = pad;
713         crypt->regist_buf = buf;
714
715         crypt->auth_offs = 0;
716         crypt->auth_len = HMAC_PAD_BLOCKLEN;
717         crypt->crypto_ctx = ctx_addr;
718         crypt->src_buf = buf_phys;
719         crypt->icv_rev_aes = target;
720         crypt->mode = NPE_OP_HASH_GEN_ICV;
721         crypt->init_len = init_len;
722         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
723
724         buf->next = 0;
725         buf->buf_len = HMAC_PAD_BLOCKLEN;
726         buf->pkt_len = 0;
727         buf->phys_addr = pad_phys;
728
729         atomic_inc(&ctx->configuring);
730         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
731         BUG_ON(qmgr_stat_overflow(send_qid));
732         return 0;
733 }
734
735 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned int authsize,
736                       const u8 *key, int key_len, unsigned int digest_len)
737 {
738         u32 itarget, otarget, npe_ctx_addr;
739         unsigned char *cinfo;
740         int init_len, ret = 0;
741         u32 cfgword;
742         struct ix_sa_dir *dir;
743         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
744         const struct ix_hash_algo *algo;
745
746         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
747         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
748         algo = ix_hash(tfm);
749
750         /* write cfg word to cryptinfo */
751         cfgword = algo->cfgword | (authsize << 6); /* (authsize/4) << 8 */
752 #ifndef __ARMEB__
753         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
754 #endif
755         *(u32 *)cinfo = cpu_to_be32(cfgword);
756         cinfo += sizeof(cfgword);
757
758         /* write ICV to cryptinfo */
759         memcpy(cinfo, algo->icv, digest_len);
760         cinfo += digest_len;
761
762         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
763                                 + sizeof(algo->cfgword);
764         otarget = itarget + digest_len;
765         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
766         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
767
768         dir->npe_ctx_idx += init_len;
769         dir->npe_mode |= NPE_OP_HASH_ENABLE;
770
771         if (!encrypt)
772                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
773
774         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
775                                  init_len, npe_ctx_addr, key, key_len);
776         if (ret)
777                 return ret;
778         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
779                                   init_len, npe_ctx_addr, key, key_len);
780 }
781
782 static int gen_rev_aes_key(struct crypto_tfm *tfm)
783 {
784         struct crypt_ctl *crypt;
785         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
786         struct ix_sa_dir *dir = &ctx->decrypt;
787
788         crypt = get_crypt_desc_emerg();
789         if (!crypt)
790                 return -EAGAIN;
791
792         *(u32 *)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
793
794         crypt->data.tfm = tfm;
795         crypt->crypt_offs = 0;
796         crypt->crypt_len = AES_BLOCK128;
797         crypt->src_buf = 0;
798         crypt->crypto_ctx = dir->npe_ctx_phys;
799         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
800         crypt->mode = NPE_OP_ENC_GEN_KEY;
801         crypt->init_len = dir->npe_ctx_idx;
802         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
803
804         atomic_inc(&ctx->configuring);
805         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
806         BUG_ON(qmgr_stat_overflow(send_qid));
807         return 0;
808 }
809
810 static int setup_cipher(struct crypto_tfm *tfm, int encrypt, const u8 *key,
811                         int key_len)
812 {
813         u8 *cinfo;
814         u32 cipher_cfg;
815         u32 keylen_cfg = 0;
816         struct ix_sa_dir *dir;
817         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
818         int err;
819
820         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
821         cinfo = dir->npe_ctx;
822
823         if (encrypt) {
824                 cipher_cfg = cipher_cfg_enc(tfm);
825                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
826         } else {
827                 cipher_cfg = cipher_cfg_dec(tfm);
828         }
829         if (cipher_cfg & MOD_AES) {
830                 switch (key_len) {
831                 case 16:
832                         keylen_cfg = MOD_AES128;
833                         break;
834                 case 24:
835                         keylen_cfg = MOD_AES192;
836                         break;
837                 case 32:
838                         keylen_cfg = MOD_AES256;
839                         break;
840                 default:
841                         return -EINVAL;
842                 }
843                 cipher_cfg |= keylen_cfg;
844         } else {
845                 err = crypto_des_verify_key(tfm, key);
846                 if (err)
847                         return err;
848         }
849         /* write cfg word to cryptinfo */
850         *(u32 *)cinfo = cpu_to_be32(cipher_cfg);
851         cinfo += sizeof(cipher_cfg);
852
853         /* write cipher key to cryptinfo */
854         memcpy(cinfo, key, key_len);
855         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
856         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
857                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE - key_len);
858                 key_len = DES3_EDE_KEY_SIZE;
859         }
860         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
861         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
862         if ((cipher_cfg & MOD_AES) && !encrypt)
863                 return gen_rev_aes_key(tfm);
864
865         return 0;
866 }
867
868 static struct buffer_desc *chainup_buffers(struct device *dev,
869                 struct scatterlist *sg, unsigned int nbytes,
870                 struct buffer_desc *buf, gfp_t flags,
871                 enum dma_data_direction dir)
872 {
873         for (; nbytes > 0; sg = sg_next(sg)) {
874                 unsigned int len = min(nbytes, sg->length);
875                 struct buffer_desc *next_buf;
876                 dma_addr_t next_buf_phys;
877                 void *ptr;
878
879                 nbytes -= len;
880                 ptr = sg_virt(sg);
881                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
882                 if (!next_buf) {
883                         buf = NULL;
884                         break;
885                 }
886                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
887                 buf->next = next_buf;
888                 buf->phys_next = next_buf_phys;
889                 buf = next_buf;
890
891                 buf->phys_addr = sg_dma_address(sg);
892                 buf->buf_len = len;
893                 buf->dir = dir;
894         }
895         buf->next = NULL;
896         buf->phys_next = 0;
897         return buf;
898 }
899
900 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
901                        unsigned int key_len)
902 {
903         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
904         int ret;
905
906         init_completion(&ctx->completion);
907         atomic_inc(&ctx->configuring);
908
909         reset_sa_dir(&ctx->encrypt);
910         reset_sa_dir(&ctx->decrypt);
911
912         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
913         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
914
915         ret = setup_cipher(&tfm->base, 0, key, key_len);
916         if (ret)
917                 goto out;
918         ret = setup_cipher(&tfm->base, 1, key, key_len);
919 out:
920         if (!atomic_dec_and_test(&ctx->configuring))
921                 wait_for_completion(&ctx->completion);
922         if (ret)
923                 return ret;
924         crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
925         crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
926
927         return crypto_skcipher_setkey(ctx->fallback_tfm, key, key_len);
928 }
929
930 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
931                             unsigned int key_len)
932 {
933         return verify_skcipher_des3_key(tfm, key) ?:
934                ablk_setkey(tfm, key, key_len);
935 }
936
937 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
938                                unsigned int key_len)
939 {
940         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
941
942         /* the nonce is stored in bytes at end of key */
943         if (key_len < CTR_RFC3686_NONCE_SIZE)
944                 return -EINVAL;
945
946         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
947                CTR_RFC3686_NONCE_SIZE);
948
949         key_len -= CTR_RFC3686_NONCE_SIZE;
950         return ablk_setkey(tfm, key, key_len);
951 }
952
953 static int ixp4xx_cipher_fallback(struct skcipher_request *areq, int encrypt)
954 {
955         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(areq);
956         struct ixp_ctx *op = crypto_skcipher_ctx(tfm);
957         struct ablk_ctx *rctx = skcipher_request_ctx(areq);
958         int err;
959
960         skcipher_request_set_tfm(&rctx->fallback_req, op->fallback_tfm);
961         skcipher_request_set_callback(&rctx->fallback_req, areq->base.flags,
962                                       areq->base.complete, areq->base.data);
963         skcipher_request_set_crypt(&rctx->fallback_req, areq->src, areq->dst,
964                                    areq->cryptlen, areq->iv);
965         if (encrypt)
966                 err = crypto_skcipher_encrypt(&rctx->fallback_req);
967         else
968                 err = crypto_skcipher_decrypt(&rctx->fallback_req);
969         return err;
970 }
971
972 static int ablk_perform(struct skcipher_request *req, int encrypt)
973 {
974         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
975         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
976         unsigned int ivsize = crypto_skcipher_ivsize(tfm);
977         struct ix_sa_dir *dir;
978         struct crypt_ctl *crypt;
979         unsigned int nbytes = req->cryptlen;
980         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
981         struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
982         struct buffer_desc src_hook;
983         struct device *dev = &pdev->dev;
984         unsigned int offset;
985         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
986                                 GFP_KERNEL : GFP_ATOMIC;
987
988         if (sg_nents(req->src) > 1 || sg_nents(req->dst) > 1)
989                 return ixp4xx_cipher_fallback(req, encrypt);
990
991         if (qmgr_stat_full(send_qid))
992                 return -EAGAIN;
993         if (atomic_read(&ctx->configuring))
994                 return -EAGAIN;
995
996         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
997         req_ctx->encrypt = encrypt;
998
999         crypt = get_crypt_desc();
1000         if (!crypt)
1001                 return -ENOMEM;
1002
1003         crypt->data.ablk_req = req;
1004         crypt->crypto_ctx = dir->npe_ctx_phys;
1005         crypt->mode = dir->npe_mode;
1006         crypt->init_len = dir->npe_ctx_idx;
1007
1008         crypt->crypt_offs = 0;
1009         crypt->crypt_len = nbytes;
1010
1011         BUG_ON(ivsize && !req->iv);
1012         memcpy(crypt->iv, req->iv, ivsize);
1013         if (ivsize > 0 && !encrypt) {
1014                 offset = req->cryptlen - ivsize;
1015                 scatterwalk_map_and_copy(req_ctx->iv, req->src, offset, ivsize, 0);
1016         }
1017         if (req->src != req->dst) {
1018                 struct buffer_desc dst_hook;
1019
1020                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1021                 /* This was never tested by Intel
1022                  * for more than one dst buffer, I think. */
1023                 req_ctx->dst = NULL;
1024                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
1025                                      flags, DMA_FROM_DEVICE))
1026                         goto free_buf_dest;
1027                 src_direction = DMA_TO_DEVICE;
1028                 req_ctx->dst = dst_hook.next;
1029                 crypt->dst_buf = dst_hook.phys_next;
1030         } else {
1031                 req_ctx->dst = NULL;
1032         }
1033         req_ctx->src = NULL;
1034         if (!chainup_buffers(dev, req->src, nbytes, &src_hook, flags,
1035                              src_direction))
1036                 goto free_buf_src;
1037
1038         req_ctx->src = src_hook.next;
1039         crypt->src_buf = src_hook.phys_next;
1040         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
1041         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1042         BUG_ON(qmgr_stat_overflow(send_qid));
1043         return -EINPROGRESS;
1044
1045 free_buf_src:
1046         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1047 free_buf_dest:
1048         if (req->src != req->dst)
1049                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1050
1051         crypt->ctl_flags = CTL_FLAG_UNUSED;
1052         return -ENOMEM;
1053 }
1054
1055 static int ablk_encrypt(struct skcipher_request *req)
1056 {
1057         return ablk_perform(req, 1);
1058 }
1059
1060 static int ablk_decrypt(struct skcipher_request *req)
1061 {
1062         return ablk_perform(req, 0);
1063 }
1064
1065 static int ablk_rfc3686_crypt(struct skcipher_request *req)
1066 {
1067         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
1068         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
1069         u8 iv[CTR_RFC3686_BLOCK_SIZE];
1070         u8 *info = req->iv;
1071         int ret;
1072
1073         /* set up counter block */
1074         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
1075         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
1076
1077         /* initialize counter portion of counter block */
1078         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
1079                 cpu_to_be32(1);
1080
1081         req->iv = iv;
1082         ret = ablk_perform(req, 1);
1083         req->iv = info;
1084         return ret;
1085 }
1086
1087 static int aead_perform(struct aead_request *req, int encrypt,
1088                         int cryptoffset, int eff_cryptlen, u8 *iv)
1089 {
1090         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1091         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1092         unsigned int ivsize = crypto_aead_ivsize(tfm);
1093         unsigned int authsize = crypto_aead_authsize(tfm);
1094         struct ix_sa_dir *dir;
1095         struct crypt_ctl *crypt;
1096         unsigned int cryptlen;
1097         struct buffer_desc *buf, src_hook;
1098         struct aead_ctx *req_ctx = aead_request_ctx(req);
1099         struct device *dev = &pdev->dev;
1100         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1101                                 GFP_KERNEL : GFP_ATOMIC;
1102         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1103         unsigned int lastlen;
1104
1105         if (qmgr_stat_full(send_qid))
1106                 return -EAGAIN;
1107         if (atomic_read(&ctx->configuring))
1108                 return -EAGAIN;
1109
1110         if (encrypt) {
1111                 dir = &ctx->encrypt;
1112                 cryptlen = req->cryptlen;
1113         } else {
1114                 dir = &ctx->decrypt;
1115                 /* req->cryptlen includes the authsize when decrypting */
1116                 cryptlen = req->cryptlen - authsize;
1117                 eff_cryptlen -= authsize;
1118         }
1119         crypt = get_crypt_desc();
1120         if (!crypt)
1121                 return -ENOMEM;
1122
1123         crypt->data.aead_req = req;
1124         crypt->crypto_ctx = dir->npe_ctx_phys;
1125         crypt->mode = dir->npe_mode;
1126         crypt->init_len = dir->npe_ctx_idx;
1127
1128         crypt->crypt_offs = cryptoffset;
1129         crypt->crypt_len = eff_cryptlen;
1130
1131         crypt->auth_offs = 0;
1132         crypt->auth_len = req->assoclen + cryptlen;
1133         BUG_ON(ivsize && !req->iv);
1134         memcpy(crypt->iv, req->iv, ivsize);
1135
1136         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1137                               &src_hook, flags, src_direction);
1138         req_ctx->src = src_hook.next;
1139         crypt->src_buf = src_hook.phys_next;
1140         if (!buf)
1141                 goto free_buf_src;
1142
1143         lastlen = buf->buf_len;
1144         if (lastlen >= authsize)
1145                 crypt->icv_rev_aes = buf->phys_addr +
1146                                      buf->buf_len - authsize;
1147
1148         req_ctx->dst = NULL;
1149
1150         if (req->src != req->dst) {
1151                 struct buffer_desc dst_hook;
1152
1153                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1154                 src_direction = DMA_TO_DEVICE;
1155
1156                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1157                                       &dst_hook, flags, DMA_FROM_DEVICE);
1158                 req_ctx->dst = dst_hook.next;
1159                 crypt->dst_buf = dst_hook.phys_next;
1160
1161                 if (!buf)
1162                         goto free_buf_dst;
1163
1164                 if (encrypt) {
1165                         lastlen = buf->buf_len;
1166                         if (lastlen >= authsize)
1167                                 crypt->icv_rev_aes = buf->phys_addr +
1168                                                      buf->buf_len - authsize;
1169                 }
1170         }
1171
1172         if (unlikely(lastlen < authsize)) {
1173                 /* The 12 hmac bytes are scattered,
1174                  * we need to copy them into a safe buffer */
1175                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1176                                                     &crypt->icv_rev_aes);
1177                 if (unlikely(!req_ctx->hmac_virt))
1178                         goto free_buf_dst;
1179                 if (!encrypt) {
1180                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1181                                                  req->src, cryptlen, authsize, 0);
1182                 }
1183                 req_ctx->encrypt = encrypt;
1184         } else {
1185                 req_ctx->hmac_virt = NULL;
1186         }
1187
1188         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1189         qmgr_put_entry(send_qid, crypt_virt2phys(crypt));
1190         BUG_ON(qmgr_stat_overflow(send_qid));
1191         return -EINPROGRESS;
1192
1193 free_buf_dst:
1194         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1195 free_buf_src:
1196         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1197         crypt->ctl_flags = CTL_FLAG_UNUSED;
1198         return -ENOMEM;
1199 }
1200
1201 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1202 {
1203         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1204         unsigned int digest_len = crypto_aead_maxauthsize(tfm);
1205         int ret;
1206
1207         if (!ctx->enckey_len && !ctx->authkey_len)
1208                 return 0;
1209         init_completion(&ctx->completion);
1210         atomic_inc(&ctx->configuring);
1211
1212         reset_sa_dir(&ctx->encrypt);
1213         reset_sa_dir(&ctx->decrypt);
1214
1215         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1216         if (ret)
1217                 goto out;
1218         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1219         if (ret)
1220                 goto out;
1221         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1222                          ctx->authkey_len, digest_len);
1223         if (ret)
1224                 goto out;
1225         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1226                          ctx->authkey_len, digest_len);
1227 out:
1228         if (!atomic_dec_and_test(&ctx->configuring))
1229                 wait_for_completion(&ctx->completion);
1230         return ret;
1231 }
1232
1233 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1234 {
1235         int max = crypto_aead_maxauthsize(tfm) >> 2;
1236
1237         if ((authsize >> 2) < 1 || (authsize >> 2) > max || (authsize & 3))
1238                 return -EINVAL;
1239         return aead_setup(tfm, authsize);
1240 }
1241
1242 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1243                        unsigned int keylen)
1244 {
1245         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1246         struct crypto_authenc_keys keys;
1247
1248         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1249                 goto badkey;
1250
1251         if (keys.authkeylen > sizeof(ctx->authkey))
1252                 goto badkey;
1253
1254         if (keys.enckeylen > sizeof(ctx->enckey))
1255                 goto badkey;
1256
1257         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1258         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1259         ctx->authkey_len = keys.authkeylen;
1260         ctx->enckey_len = keys.enckeylen;
1261
1262         memzero_explicit(&keys, sizeof(keys));
1263         return aead_setup(tfm, crypto_aead_authsize(tfm));
1264 badkey:
1265         memzero_explicit(&keys, sizeof(keys));
1266         return -EINVAL;
1267 }
1268
1269 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1270                             unsigned int keylen)
1271 {
1272         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1273         struct crypto_authenc_keys keys;
1274         int err;
1275
1276         err = crypto_authenc_extractkeys(&keys, key, keylen);
1277         if (unlikely(err))
1278                 goto badkey;
1279
1280         err = -EINVAL;
1281         if (keys.authkeylen > sizeof(ctx->authkey))
1282                 goto badkey;
1283
1284         err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1285         if (err)
1286                 goto badkey;
1287
1288         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1289         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1290         ctx->authkey_len = keys.authkeylen;
1291         ctx->enckey_len = keys.enckeylen;
1292
1293         memzero_explicit(&keys, sizeof(keys));
1294         return aead_setup(tfm, crypto_aead_authsize(tfm));
1295 badkey:
1296         memzero_explicit(&keys, sizeof(keys));
1297         return err;
1298 }
1299
1300 static int aead_encrypt(struct aead_request *req)
1301 {
1302         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1303 }
1304
1305 static int aead_decrypt(struct aead_request *req)
1306 {
1307         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1308 }
1309
1310 static struct ixp_alg ixp4xx_algos[] = {
1311 {
1312         .crypto = {
1313                 .base.cra_name          = "cbc(des)",
1314                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1315
1316                 .min_keysize            = DES_KEY_SIZE,
1317                 .max_keysize            = DES_KEY_SIZE,
1318                 .ivsize                 = DES_BLOCK_SIZE,
1319         },
1320         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1321         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1322
1323 }, {
1324         .crypto = {
1325                 .base.cra_name          = "ecb(des)",
1326                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1327                 .min_keysize            = DES_KEY_SIZE,
1328                 .max_keysize            = DES_KEY_SIZE,
1329         },
1330         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1331         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1332 }, {
1333         .crypto = {
1334                 .base.cra_name          = "cbc(des3_ede)",
1335                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1336
1337                 .min_keysize            = DES3_EDE_KEY_SIZE,
1338                 .max_keysize            = DES3_EDE_KEY_SIZE,
1339                 .ivsize                 = DES3_EDE_BLOCK_SIZE,
1340                 .setkey                 = ablk_des3_setkey,
1341         },
1342         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1343         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1344 }, {
1345         .crypto = {
1346                 .base.cra_name          = "ecb(des3_ede)",
1347                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1348
1349                 .min_keysize            = DES3_EDE_KEY_SIZE,
1350                 .max_keysize            = DES3_EDE_KEY_SIZE,
1351                 .setkey                 = ablk_des3_setkey,
1352         },
1353         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1354         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1355 }, {
1356         .crypto = {
1357                 .base.cra_name          = "cbc(aes)",
1358                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1359
1360                 .min_keysize            = AES_MIN_KEY_SIZE,
1361                 .max_keysize            = AES_MAX_KEY_SIZE,
1362                 .ivsize                 = AES_BLOCK_SIZE,
1363         },
1364         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1365         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1366 }, {
1367         .crypto = {
1368                 .base.cra_name          = "ecb(aes)",
1369                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1370
1371                 .min_keysize            = AES_MIN_KEY_SIZE,
1372                 .max_keysize            = AES_MAX_KEY_SIZE,
1373         },
1374         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1375         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1376 }, {
1377         .crypto = {
1378                 .base.cra_name          = "ctr(aes)",
1379                 .base.cra_blocksize     = 1,
1380
1381                 .min_keysize            = AES_MIN_KEY_SIZE,
1382                 .max_keysize            = AES_MAX_KEY_SIZE,
1383                 .ivsize                 = AES_BLOCK_SIZE,
1384         },
1385         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1386         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1387 }, {
1388         .crypto = {
1389                 .base.cra_name          = "rfc3686(ctr(aes))",
1390                 .base.cra_blocksize     = 1,
1391
1392                 .min_keysize            = AES_MIN_KEY_SIZE,
1393                 .max_keysize            = AES_MAX_KEY_SIZE,
1394                 .ivsize                 = AES_BLOCK_SIZE,
1395                 .setkey                 = ablk_rfc3686_setkey,
1396                 .encrypt                = ablk_rfc3686_crypt,
1397                 .decrypt                = ablk_rfc3686_crypt,
1398         },
1399         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1400         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1401 } };
1402
1403 static struct ixp_aead_alg ixp4xx_aeads[] = {
1404 {
1405         .crypto = {
1406                 .base = {
1407                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1408                         .cra_blocksize  = DES_BLOCK_SIZE,
1409                 },
1410                 .ivsize         = DES_BLOCK_SIZE,
1411                 .maxauthsize    = MD5_DIGEST_SIZE,
1412         },
1413         .hash = &hash_alg_md5,
1414         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1415         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1416 }, {
1417         .crypto = {
1418                 .base = {
1419                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1420                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1421                 },
1422                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1423                 .maxauthsize    = MD5_DIGEST_SIZE,
1424                 .setkey         = des3_aead_setkey,
1425         },
1426         .hash = &hash_alg_md5,
1427         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1428         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1429 }, {
1430         .crypto = {
1431                 .base = {
1432                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1433                         .cra_blocksize  = DES_BLOCK_SIZE,
1434                 },
1435                         .ivsize         = DES_BLOCK_SIZE,
1436                         .maxauthsize    = SHA1_DIGEST_SIZE,
1437         },
1438         .hash = &hash_alg_sha1,
1439         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1440         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1441 }, {
1442         .crypto = {
1443                 .base = {
1444                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1445                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1446                 },
1447                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1448                 .maxauthsize    = SHA1_DIGEST_SIZE,
1449                 .setkey         = des3_aead_setkey,
1450         },
1451         .hash = &hash_alg_sha1,
1452         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1453         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1454 }, {
1455         .crypto = {
1456                 .base = {
1457                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1458                         .cra_blocksize  = AES_BLOCK_SIZE,
1459                 },
1460                 .ivsize         = AES_BLOCK_SIZE,
1461                 .maxauthsize    = MD5_DIGEST_SIZE,
1462         },
1463         .hash = &hash_alg_md5,
1464         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1465         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1466 }, {
1467         .crypto = {
1468                 .base = {
1469                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1470                         .cra_blocksize  = AES_BLOCK_SIZE,
1471                 },
1472                 .ivsize         = AES_BLOCK_SIZE,
1473                 .maxauthsize    = SHA1_DIGEST_SIZE,
1474         },
1475         .hash = &hash_alg_sha1,
1476         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1477         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1478 } };
1479
1480 #define IXP_POSTFIX "-ixp4xx"
1481
1482 static int ixp_crypto_probe(struct platform_device *_pdev)
1483 {
1484         struct device *dev = &_pdev->dev;
1485         int num = ARRAY_SIZE(ixp4xx_algos);
1486         int i, err;
1487
1488         pdev = _pdev;
1489
1490         err = init_ixp_crypto(dev);
1491         if (err)
1492                 return err;
1493
1494         for (i = 0; i < num; i++) {
1495                 struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1496
1497                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1498                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1499                              CRYPTO_MAX_ALG_NAME)
1500                         continue;
1501                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1502                         continue;
1503
1504                 /* block ciphers */
1505                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1506                                       CRYPTO_ALG_ASYNC |
1507                                       CRYPTO_ALG_ALLOCATES_MEMORY |
1508                                       CRYPTO_ALG_NEED_FALLBACK;
1509                 if (!cra->setkey)
1510                         cra->setkey = ablk_setkey;
1511                 if (!cra->encrypt)
1512                         cra->encrypt = ablk_encrypt;
1513                 if (!cra->decrypt)
1514                         cra->decrypt = ablk_decrypt;
1515                 cra->init = init_tfm_ablk;
1516                 cra->exit = exit_tfm_ablk;
1517
1518                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1519                 cra->base.cra_module = THIS_MODULE;
1520                 cra->base.cra_alignmask = 3;
1521                 cra->base.cra_priority = 300;
1522                 if (crypto_register_skcipher(cra))
1523                         dev_err(&pdev->dev, "Failed to register '%s'\n",
1524                                 cra->base.cra_name);
1525                 else
1526                         ixp4xx_algos[i].registered = 1;
1527         }
1528
1529         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1530                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1531
1532                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1533                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1534                     CRYPTO_MAX_ALG_NAME)
1535                         continue;
1536                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1537                         continue;
1538
1539                 /* authenc */
1540                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1541                                       CRYPTO_ALG_ASYNC |
1542                                       CRYPTO_ALG_ALLOCATES_MEMORY;
1543                 cra->setkey = cra->setkey ?: aead_setkey;
1544                 cra->setauthsize = aead_setauthsize;
1545                 cra->encrypt = aead_encrypt;
1546                 cra->decrypt = aead_decrypt;
1547                 cra->init = init_tfm_aead;
1548                 cra->exit = exit_tfm_aead;
1549
1550                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1551                 cra->base.cra_module = THIS_MODULE;
1552                 cra->base.cra_alignmask = 3;
1553                 cra->base.cra_priority = 300;
1554
1555                 if (crypto_register_aead(cra))
1556                         dev_err(&pdev->dev, "Failed to register '%s'\n",
1557                                 cra->base.cra_driver_name);
1558                 else
1559                         ixp4xx_aeads[i].registered = 1;
1560         }
1561         return 0;
1562 }
1563
1564 static int ixp_crypto_remove(struct platform_device *pdev)
1565 {
1566         int num = ARRAY_SIZE(ixp4xx_algos);
1567         int i;
1568
1569         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1570                 if (ixp4xx_aeads[i].registered)
1571                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1572         }
1573
1574         for (i = 0; i < num; i++) {
1575                 if (ixp4xx_algos[i].registered)
1576                         crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1577         }
1578         release_ixp_crypto(&pdev->dev);
1579
1580         return 0;
1581 }
1582 static const struct of_device_id ixp4xx_crypto_of_match[] = {
1583         {
1584                 .compatible = "intel,ixp4xx-crypto",
1585         },
1586         {},
1587 };
1588
1589 static struct platform_driver ixp_crypto_driver = {
1590         .probe = ixp_crypto_probe,
1591         .remove = ixp_crypto_remove,
1592         .driver = {
1593                 .name = "ixp4xx_crypto",
1594                 .of_match_table = ixp4xx_crypto_of_match,
1595         },
1596 };
1597 module_platform_driver(ixp_crypto_driver);
1598
1599 MODULE_LICENSE("GPL");
1600 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1601 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1602