drm/i915/guc: Use correct name for last CT fence
[linux-2.6-microblaze.git] / drivers / crypto / ixp4xx_crypto.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel IXP4xx NPE-C crypto driver
4  *
5  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6  */
7
8 #include <linux/platform_device.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/dmapool.h>
11 #include <linux/crypto.h>
12 #include <linux/kernel.h>
13 #include <linux/rtnetlink.h>
14 #include <linux/interrupt.h>
15 #include <linux/spinlock.h>
16 #include <linux/gfp.h>
17 #include <linux/module.h>
18
19 #include <crypto/ctr.h>
20 #include <crypto/internal/des.h>
21 #include <crypto/aes.h>
22 #include <crypto/hmac.h>
23 #include <crypto/sha.h>
24 #include <crypto/algapi.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/internal/skcipher.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29
30 #include <linux/soc/ixp4xx/npe.h>
31 #include <linux/soc/ixp4xx/qmgr.h>
32
33 #define MAX_KEYLEN 32
34
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79
80 #define SEND_QID    29
81 #define RECV_QID    30
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
92
93 #define MD5_DIGEST_SIZE   16
94
95 struct buffer_desc {
96         u32 phys_next;
97 #ifdef __ARMEB__
98         u16 buf_len;
99         u16 pkt_len;
100 #else
101         u16 pkt_len;
102         u16 buf_len;
103 #endif
104         dma_addr_t phys_addr;
105         u32 __reserved[4];
106         struct buffer_desc *next;
107         enum dma_data_direction dir;
108 };
109
110 struct crypt_ctl {
111 #ifdef __ARMEB__
112         u8 mode;                /* NPE_OP_*  operation mode */
113         u8 init_len;
114         u16 reserved;
115 #else
116         u16 reserved;
117         u8 init_len;
118         u8 mode;                /* NPE_OP_*  operation mode */
119 #endif
120         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
121         dma_addr_t icv_rev_aes; /* icv or rev aes */
122         dma_addr_t src_buf;
123         dma_addr_t dst_buf;
124 #ifdef __ARMEB__
125         u16 auth_offs;          /* Authentication start offset */
126         u16 auth_len;           /* Authentication data length */
127         u16 crypt_offs;         /* Cryption start offset */
128         u16 crypt_len;          /* Cryption data length */
129 #else
130         u16 auth_len;           /* Authentication data length */
131         u16 auth_offs;          /* Authentication start offset */
132         u16 crypt_len;          /* Cryption data length */
133         u16 crypt_offs;         /* Cryption start offset */
134 #endif
135         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
136         u32 crypto_ctx;         /* NPE Crypto Param structure address */
137
138         /* Used by Host: 4*4 bytes*/
139         unsigned ctl_flags;
140         union {
141                 struct skcipher_request *ablk_req;
142                 struct aead_request *aead_req;
143                 struct crypto_tfm *tfm;
144         } data;
145         struct buffer_desc *regist_buf;
146         u8 *regist_ptr;
147 };
148
149 struct ablk_ctx {
150         struct buffer_desc *src;
151         struct buffer_desc *dst;
152 };
153
154 struct aead_ctx {
155         struct buffer_desc *src;
156         struct buffer_desc *dst;
157         struct scatterlist ivlist;
158         /* used when the hmac is not on one sg entry */
159         u8 *hmac_virt;
160         int encrypt;
161 };
162
163 struct ix_hash_algo {
164         u32 cfgword;
165         unsigned char *icv;
166 };
167
168 struct ix_sa_dir {
169         unsigned char *npe_ctx;
170         dma_addr_t npe_ctx_phys;
171         int npe_ctx_idx;
172         u8 npe_mode;
173 };
174
175 struct ixp_ctx {
176         struct ix_sa_dir encrypt;
177         struct ix_sa_dir decrypt;
178         int authkey_len;
179         u8 authkey[MAX_KEYLEN];
180         int enckey_len;
181         u8 enckey[MAX_KEYLEN];
182         u8 salt[MAX_IVLEN];
183         u8 nonce[CTR_RFC3686_NONCE_SIZE];
184         unsigned salted;
185         atomic_t configuring;
186         struct completion completion;
187 };
188
189 struct ixp_alg {
190         struct skcipher_alg crypto;
191         const struct ix_hash_algo *hash;
192         u32 cfg_enc;
193         u32 cfg_dec;
194
195         int registered;
196 };
197
198 struct ixp_aead_alg {
199         struct aead_alg crypto;
200         const struct ix_hash_algo *hash;
201         u32 cfg_enc;
202         u32 cfg_dec;
203
204         int registered;
205 };
206
207 static const struct ix_hash_algo hash_alg_md5 = {
208         .cfgword        = 0xAA010004,
209         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
210                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
211 };
212 static const struct ix_hash_algo hash_alg_sha1 = {
213         .cfgword        = 0x00000005,
214         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
215                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
216 };
217
218 static struct npe *npe_c;
219 static struct dma_pool *buffer_pool = NULL;
220 static struct dma_pool *ctx_pool = NULL;
221
222 static struct crypt_ctl *crypt_virt = NULL;
223 static dma_addr_t crypt_phys;
224
225 static int support_aes = 1;
226
227 #define DRIVER_NAME "ixp4xx_crypto"
228
229 static struct platform_device *pdev;
230
231 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
232 {
233         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
234 }
235
236 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
237 {
238         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
239 }
240
241 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
242 {
243         return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_enc;
244 }
245
246 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
247 {
248         return container_of(tfm->__crt_alg, struct ixp_alg,crypto.base)->cfg_dec;
249 }
250
251 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
252 {
253         return container_of(tfm->__crt_alg, struct ixp_alg, crypto.base)->hash;
254 }
255
256 static int setup_crypt_desc(void)
257 {
258         struct device *dev = &pdev->dev;
259         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
260         crypt_virt = dma_alloc_coherent(dev,
261                                         NPE_QLEN * sizeof(struct crypt_ctl),
262                                         &crypt_phys, GFP_ATOMIC);
263         if (!crypt_virt)
264                 return -ENOMEM;
265         return 0;
266 }
267
268 static spinlock_t desc_lock;
269 static struct crypt_ctl *get_crypt_desc(void)
270 {
271         int i;
272         static int idx = 0;
273         unsigned long flags;
274
275         spin_lock_irqsave(&desc_lock, flags);
276
277         if (unlikely(!crypt_virt))
278                 setup_crypt_desc();
279         if (unlikely(!crypt_virt)) {
280                 spin_unlock_irqrestore(&desc_lock, flags);
281                 return NULL;
282         }
283         i = idx;
284         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
285                 if (++idx >= NPE_QLEN)
286                         idx = 0;
287                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
288                 spin_unlock_irqrestore(&desc_lock, flags);
289                 return crypt_virt +i;
290         } else {
291                 spin_unlock_irqrestore(&desc_lock, flags);
292                 return NULL;
293         }
294 }
295
296 static spinlock_t emerg_lock;
297 static struct crypt_ctl *get_crypt_desc_emerg(void)
298 {
299         int i;
300         static int idx = NPE_QLEN;
301         struct crypt_ctl *desc;
302         unsigned long flags;
303
304         desc = get_crypt_desc();
305         if (desc)
306                 return desc;
307         if (unlikely(!crypt_virt))
308                 return NULL;
309
310         spin_lock_irqsave(&emerg_lock, flags);
311         i = idx;
312         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
313                 if (++idx >= NPE_QLEN_TOTAL)
314                         idx = NPE_QLEN;
315                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
316                 spin_unlock_irqrestore(&emerg_lock, flags);
317                 return crypt_virt +i;
318         } else {
319                 spin_unlock_irqrestore(&emerg_lock, flags);
320                 return NULL;
321         }
322 }
323
324 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,
325                            dma_addr_t phys)
326 {
327         while (buf) {
328                 struct buffer_desc *buf1;
329                 u32 phys1;
330
331                 buf1 = buf->next;
332                 phys1 = buf->phys_next;
333                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
334                 dma_pool_free(buffer_pool, buf, phys);
335                 buf = buf1;
336                 phys = phys1;
337         }
338 }
339
340 static struct tasklet_struct crypto_done_tasklet;
341
342 static void finish_scattered_hmac(struct crypt_ctl *crypt)
343 {
344         struct aead_request *req = crypt->data.aead_req;
345         struct aead_ctx *req_ctx = aead_request_ctx(req);
346         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
347         int authsize = crypto_aead_authsize(tfm);
348         int decryptlen = req->assoclen + req->cryptlen - authsize;
349
350         if (req_ctx->encrypt) {
351                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
352                         req->dst, decryptlen, authsize, 1);
353         }
354         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
355 }
356
357 static void one_packet(dma_addr_t phys)
358 {
359         struct device *dev = &pdev->dev;
360         struct crypt_ctl *crypt;
361         struct ixp_ctx *ctx;
362         int failed;
363
364         failed = phys & 0x1 ? -EBADMSG : 0;
365         phys &= ~0x3;
366         crypt = crypt_phys2virt(phys);
367
368         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
369         case CTL_FLAG_PERFORM_AEAD: {
370                 struct aead_request *req = crypt->data.aead_req;
371                 struct aead_ctx *req_ctx = aead_request_ctx(req);
372
373                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
374                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
375                 if (req_ctx->hmac_virt) {
376                         finish_scattered_hmac(crypt);
377                 }
378                 req->base.complete(&req->base, failed);
379                 break;
380         }
381         case CTL_FLAG_PERFORM_ABLK: {
382                 struct skcipher_request *req = crypt->data.ablk_req;
383                 struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
384
385                 if (req_ctx->dst) {
386                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
387                 }
388                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
389                 req->base.complete(&req->base, failed);
390                 break;
391         }
392         case CTL_FLAG_GEN_ICV:
393                 ctx = crypto_tfm_ctx(crypt->data.tfm);
394                 dma_pool_free(ctx_pool, crypt->regist_ptr,
395                                 crypt->regist_buf->phys_addr);
396                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
397                 if (atomic_dec_and_test(&ctx->configuring))
398                         complete(&ctx->completion);
399                 break;
400         case CTL_FLAG_GEN_REVAES:
401                 ctx = crypto_tfm_ctx(crypt->data.tfm);
402                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
403                 if (atomic_dec_and_test(&ctx->configuring))
404                         complete(&ctx->completion);
405                 break;
406         default:
407                 BUG();
408         }
409         crypt->ctl_flags = CTL_FLAG_UNUSED;
410 }
411
412 static void irqhandler(void *_unused)
413 {
414         tasklet_schedule(&crypto_done_tasklet);
415 }
416
417 static void crypto_done_action(unsigned long arg)
418 {
419         int i;
420
421         for(i=0; i<4; i++) {
422                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
423                 if (!phys)
424                         return;
425                 one_packet(phys);
426         }
427         tasklet_schedule(&crypto_done_tasklet);
428 }
429
430 static int init_ixp_crypto(struct device *dev)
431 {
432         int ret = -ENODEV;
433         u32 msg[2] = { 0, 0 };
434
435         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
436                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
437                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
438                 return ret;
439         }
440         npe_c = npe_request(NPE_ID);
441         if (!npe_c)
442                 return ret;
443
444         if (!npe_running(npe_c)) {
445                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
446                 if (ret)
447                         goto npe_release;
448                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
449                         goto npe_error;
450         } else {
451                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
452                         goto npe_error;
453
454                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
455                         goto npe_error;
456         }
457
458         switch ((msg[1]>>16) & 0xff) {
459         case 3:
460                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
461                                 npe_name(npe_c));
462                 support_aes = 0;
463                 break;
464         case 4:
465         case 5:
466                 support_aes = 1;
467                 break;
468         default:
469                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
470                         npe_name(npe_c));
471                 ret = -ENODEV;
472                 goto npe_release;
473         }
474         /* buffer_pool will also be used to sometimes store the hmac,
475          * so assure it is large enough
476          */
477         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
478         buffer_pool = dma_pool_create("buffer", dev,
479                         sizeof(struct buffer_desc), 32, 0);
480         ret = -ENOMEM;
481         if (!buffer_pool) {
482                 goto err;
483         }
484         ctx_pool = dma_pool_create("context", dev,
485                         NPE_CTX_LEN, 16, 0);
486         if (!ctx_pool) {
487                 goto err;
488         }
489         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
490                                  "ixp_crypto:out", NULL);
491         if (ret)
492                 goto err;
493         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
494                                  "ixp_crypto:in", NULL);
495         if (ret) {
496                 qmgr_release_queue(SEND_QID);
497                 goto err;
498         }
499         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
500         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
501
502         qmgr_enable_irq(RECV_QID);
503         return 0;
504
505 npe_error:
506         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
507         ret = -EIO;
508 err:
509         dma_pool_destroy(ctx_pool);
510         dma_pool_destroy(buffer_pool);
511 npe_release:
512         npe_release(npe_c);
513         return ret;
514 }
515
516 static void release_ixp_crypto(struct device *dev)
517 {
518         qmgr_disable_irq(RECV_QID);
519         tasklet_kill(&crypto_done_tasklet);
520
521         qmgr_release_queue(SEND_QID);
522         qmgr_release_queue(RECV_QID);
523
524         dma_pool_destroy(ctx_pool);
525         dma_pool_destroy(buffer_pool);
526
527         npe_release(npe_c);
528
529         if (crypt_virt) {
530                 dma_free_coherent(dev,
531                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
532                         crypt_virt, crypt_phys);
533         }
534 }
535
536 static void reset_sa_dir(struct ix_sa_dir *dir)
537 {
538         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
539         dir->npe_ctx_idx = 0;
540         dir->npe_mode = 0;
541 }
542
543 static int init_sa_dir(struct ix_sa_dir *dir)
544 {
545         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
546         if (!dir->npe_ctx) {
547                 return -ENOMEM;
548         }
549         reset_sa_dir(dir);
550         return 0;
551 }
552
553 static void free_sa_dir(struct ix_sa_dir *dir)
554 {
555         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
556         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
557 }
558
559 static int init_tfm(struct crypto_tfm *tfm)
560 {
561         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
562         int ret;
563
564         atomic_set(&ctx->configuring, 0);
565         ret = init_sa_dir(&ctx->encrypt);
566         if (ret)
567                 return ret;
568         ret = init_sa_dir(&ctx->decrypt);
569         if (ret) {
570                 free_sa_dir(&ctx->encrypt);
571         }
572         return ret;
573 }
574
575 static int init_tfm_ablk(struct crypto_skcipher *tfm)
576 {
577         crypto_skcipher_set_reqsize(tfm, sizeof(struct ablk_ctx));
578         return init_tfm(crypto_skcipher_tfm(tfm));
579 }
580
581 static int init_tfm_aead(struct crypto_aead *tfm)
582 {
583         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
584         return init_tfm(crypto_aead_tfm(tfm));
585 }
586
587 static void exit_tfm(struct crypto_tfm *tfm)
588 {
589         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
590         free_sa_dir(&ctx->encrypt);
591         free_sa_dir(&ctx->decrypt);
592 }
593
594 static void exit_tfm_ablk(struct crypto_skcipher *tfm)
595 {
596         exit_tfm(crypto_skcipher_tfm(tfm));
597 }
598
599 static void exit_tfm_aead(struct crypto_aead *tfm)
600 {
601         exit_tfm(crypto_aead_tfm(tfm));
602 }
603
604 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
605                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
606 {
607         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
608         struct crypt_ctl *crypt;
609         struct buffer_desc *buf;
610         int i;
611         u8 *pad;
612         dma_addr_t pad_phys, buf_phys;
613
614         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
615         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
616         if (!pad)
617                 return -ENOMEM;
618         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
619         if (!buf) {
620                 dma_pool_free(ctx_pool, pad, pad_phys);
621                 return -ENOMEM;
622         }
623         crypt = get_crypt_desc_emerg();
624         if (!crypt) {
625                 dma_pool_free(ctx_pool, pad, pad_phys);
626                 dma_pool_free(buffer_pool, buf, buf_phys);
627                 return -EAGAIN;
628         }
629
630         memcpy(pad, key, key_len);
631         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
632         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
633                 pad[i] ^= xpad;
634         }
635
636         crypt->data.tfm = tfm;
637         crypt->regist_ptr = pad;
638         crypt->regist_buf = buf;
639
640         crypt->auth_offs = 0;
641         crypt->auth_len = HMAC_PAD_BLOCKLEN;
642         crypt->crypto_ctx = ctx_addr;
643         crypt->src_buf = buf_phys;
644         crypt->icv_rev_aes = target;
645         crypt->mode = NPE_OP_HASH_GEN_ICV;
646         crypt->init_len = init_len;
647         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
648
649         buf->next = 0;
650         buf->buf_len = HMAC_PAD_BLOCKLEN;
651         buf->pkt_len = 0;
652         buf->phys_addr = pad_phys;
653
654         atomic_inc(&ctx->configuring);
655         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
656         BUG_ON(qmgr_stat_overflow(SEND_QID));
657         return 0;
658 }
659
660 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
661                 const u8 *key, int key_len, unsigned digest_len)
662 {
663         u32 itarget, otarget, npe_ctx_addr;
664         unsigned char *cinfo;
665         int init_len, ret = 0;
666         u32 cfgword;
667         struct ix_sa_dir *dir;
668         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
669         const struct ix_hash_algo *algo;
670
671         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
672         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
673         algo = ix_hash(tfm);
674
675         /* write cfg word to cryptinfo */
676         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
677 #ifndef __ARMEB__
678         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
679 #endif
680         *(u32*)cinfo = cpu_to_be32(cfgword);
681         cinfo += sizeof(cfgword);
682
683         /* write ICV to cryptinfo */
684         memcpy(cinfo, algo->icv, digest_len);
685         cinfo += digest_len;
686
687         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
688                                 + sizeof(algo->cfgword);
689         otarget = itarget + digest_len;
690         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
691         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
692
693         dir->npe_ctx_idx += init_len;
694         dir->npe_mode |= NPE_OP_HASH_ENABLE;
695
696         if (!encrypt)
697                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
698
699         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
700                         init_len, npe_ctx_addr, key, key_len);
701         if (ret)
702                 return ret;
703         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
704                         init_len, npe_ctx_addr, key, key_len);
705 }
706
707 static int gen_rev_aes_key(struct crypto_tfm *tfm)
708 {
709         struct crypt_ctl *crypt;
710         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
711         struct ix_sa_dir *dir = &ctx->decrypt;
712
713         crypt = get_crypt_desc_emerg();
714         if (!crypt) {
715                 return -EAGAIN;
716         }
717         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
718
719         crypt->data.tfm = tfm;
720         crypt->crypt_offs = 0;
721         crypt->crypt_len = AES_BLOCK128;
722         crypt->src_buf = 0;
723         crypt->crypto_ctx = dir->npe_ctx_phys;
724         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
725         crypt->mode = NPE_OP_ENC_GEN_KEY;
726         crypt->init_len = dir->npe_ctx_idx;
727         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
728
729         atomic_inc(&ctx->configuring);
730         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
731         BUG_ON(qmgr_stat_overflow(SEND_QID));
732         return 0;
733 }
734
735 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
736                 const u8 *key, int key_len)
737 {
738         u8 *cinfo;
739         u32 cipher_cfg;
740         u32 keylen_cfg = 0;
741         struct ix_sa_dir *dir;
742         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
743         u32 *flags = &tfm->crt_flags;
744
745         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
746         cinfo = dir->npe_ctx;
747
748         if (encrypt) {
749                 cipher_cfg = cipher_cfg_enc(tfm);
750                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
751         } else {
752                 cipher_cfg = cipher_cfg_dec(tfm);
753         }
754         if (cipher_cfg & MOD_AES) {
755                 switch (key_len) {
756                 case 16: keylen_cfg = MOD_AES128; break;
757                 case 24: keylen_cfg = MOD_AES192; break;
758                 case 32: keylen_cfg = MOD_AES256; break;
759                 default:
760                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
761                         return -EINVAL;
762                 }
763                 cipher_cfg |= keylen_cfg;
764         } else {
765                 crypto_des_verify_key(tfm, key);
766         }
767         /* write cfg word to cryptinfo */
768         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
769         cinfo += sizeof(cipher_cfg);
770
771         /* write cipher key to cryptinfo */
772         memcpy(cinfo, key, key_len);
773         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
774         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
775                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
776                 key_len = DES3_EDE_KEY_SIZE;
777         }
778         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
779         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
780         if ((cipher_cfg & MOD_AES) && !encrypt) {
781                 return gen_rev_aes_key(tfm);
782         }
783         return 0;
784 }
785
786 static struct buffer_desc *chainup_buffers(struct device *dev,
787                 struct scatterlist *sg, unsigned nbytes,
788                 struct buffer_desc *buf, gfp_t flags,
789                 enum dma_data_direction dir)
790 {
791         for (; nbytes > 0; sg = sg_next(sg)) {
792                 unsigned len = min(nbytes, sg->length);
793                 struct buffer_desc *next_buf;
794                 dma_addr_t next_buf_phys;
795                 void *ptr;
796
797                 nbytes -= len;
798                 ptr = sg_virt(sg);
799                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
800                 if (!next_buf) {
801                         buf = NULL;
802                         break;
803                 }
804                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
805                 buf->next = next_buf;
806                 buf->phys_next = next_buf_phys;
807                 buf = next_buf;
808
809                 buf->phys_addr = sg_dma_address(sg);
810                 buf->buf_len = len;
811                 buf->dir = dir;
812         }
813         buf->next = NULL;
814         buf->phys_next = 0;
815         return buf;
816 }
817
818 static int ablk_setkey(struct crypto_skcipher *tfm, const u8 *key,
819                         unsigned int key_len)
820 {
821         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
822         u32 *flags = &tfm->base.crt_flags;
823         int ret;
824
825         init_completion(&ctx->completion);
826         atomic_inc(&ctx->configuring);
827
828         reset_sa_dir(&ctx->encrypt);
829         reset_sa_dir(&ctx->decrypt);
830
831         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
832         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
833
834         ret = setup_cipher(&tfm->base, 0, key, key_len);
835         if (ret)
836                 goto out;
837         ret = setup_cipher(&tfm->base, 1, key, key_len);
838         if (ret)
839                 goto out;
840
841         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
842                 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
843                         ret = -EINVAL;
844                 } else {
845                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
846                 }
847         }
848 out:
849         if (!atomic_dec_and_test(&ctx->configuring))
850                 wait_for_completion(&ctx->completion);
851         return ret;
852 }
853
854 static int ablk_des3_setkey(struct crypto_skcipher *tfm, const u8 *key,
855                             unsigned int key_len)
856 {
857         return verify_skcipher_des3_key(tfm, key) ?:
858                ablk_setkey(tfm, key, key_len);
859 }
860
861 static int ablk_rfc3686_setkey(struct crypto_skcipher *tfm, const u8 *key,
862                 unsigned int key_len)
863 {
864         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
865
866         /* the nonce is stored in bytes at end of key */
867         if (key_len < CTR_RFC3686_NONCE_SIZE)
868                 return -EINVAL;
869
870         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
871                         CTR_RFC3686_NONCE_SIZE);
872
873         key_len -= CTR_RFC3686_NONCE_SIZE;
874         return ablk_setkey(tfm, key, key_len);
875 }
876
877 static int ablk_perform(struct skcipher_request *req, int encrypt)
878 {
879         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
880         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
881         unsigned ivsize = crypto_skcipher_ivsize(tfm);
882         struct ix_sa_dir *dir;
883         struct crypt_ctl *crypt;
884         unsigned int nbytes = req->cryptlen;
885         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
886         struct ablk_ctx *req_ctx = skcipher_request_ctx(req);
887         struct buffer_desc src_hook;
888         struct device *dev = &pdev->dev;
889         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
890                                 GFP_KERNEL : GFP_ATOMIC;
891
892         if (qmgr_stat_full(SEND_QID))
893                 return -EAGAIN;
894         if (atomic_read(&ctx->configuring))
895                 return -EAGAIN;
896
897         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
898
899         crypt = get_crypt_desc();
900         if (!crypt)
901                 return -ENOMEM;
902
903         crypt->data.ablk_req = req;
904         crypt->crypto_ctx = dir->npe_ctx_phys;
905         crypt->mode = dir->npe_mode;
906         crypt->init_len = dir->npe_ctx_idx;
907
908         crypt->crypt_offs = 0;
909         crypt->crypt_len = nbytes;
910
911         BUG_ON(ivsize && !req->iv);
912         memcpy(crypt->iv, req->iv, ivsize);
913         if (req->src != req->dst) {
914                 struct buffer_desc dst_hook;
915                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
916                 /* This was never tested by Intel
917                  * for more than one dst buffer, I think. */
918                 req_ctx->dst = NULL;
919                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
920                                         flags, DMA_FROM_DEVICE))
921                         goto free_buf_dest;
922                 src_direction = DMA_TO_DEVICE;
923                 req_ctx->dst = dst_hook.next;
924                 crypt->dst_buf = dst_hook.phys_next;
925         } else {
926                 req_ctx->dst = NULL;
927         }
928         req_ctx->src = NULL;
929         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
930                                 flags, src_direction))
931                 goto free_buf_src;
932
933         req_ctx->src = src_hook.next;
934         crypt->src_buf = src_hook.phys_next;
935         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
936         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
937         BUG_ON(qmgr_stat_overflow(SEND_QID));
938         return -EINPROGRESS;
939
940 free_buf_src:
941         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
942 free_buf_dest:
943         if (req->src != req->dst) {
944                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
945         }
946         crypt->ctl_flags = CTL_FLAG_UNUSED;
947         return -ENOMEM;
948 }
949
950 static int ablk_encrypt(struct skcipher_request *req)
951 {
952         return ablk_perform(req, 1);
953 }
954
955 static int ablk_decrypt(struct skcipher_request *req)
956 {
957         return ablk_perform(req, 0);
958 }
959
960 static int ablk_rfc3686_crypt(struct skcipher_request *req)
961 {
962         struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
963         struct ixp_ctx *ctx = crypto_skcipher_ctx(tfm);
964         u8 iv[CTR_RFC3686_BLOCK_SIZE];
965         u8 *info = req->iv;
966         int ret;
967
968         /* set up counter block */
969         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
970         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
971
972         /* initialize counter portion of counter block */
973         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
974                 cpu_to_be32(1);
975
976         req->iv = iv;
977         ret = ablk_perform(req, 1);
978         req->iv = info;
979         return ret;
980 }
981
982 static int aead_perform(struct aead_request *req, int encrypt,
983                 int cryptoffset, int eff_cryptlen, u8 *iv)
984 {
985         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
986         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
987         unsigned ivsize = crypto_aead_ivsize(tfm);
988         unsigned authsize = crypto_aead_authsize(tfm);
989         struct ix_sa_dir *dir;
990         struct crypt_ctl *crypt;
991         unsigned int cryptlen;
992         struct buffer_desc *buf, src_hook;
993         struct aead_ctx *req_ctx = aead_request_ctx(req);
994         struct device *dev = &pdev->dev;
995         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
996                                 GFP_KERNEL : GFP_ATOMIC;
997         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
998         unsigned int lastlen;
999
1000         if (qmgr_stat_full(SEND_QID))
1001                 return -EAGAIN;
1002         if (atomic_read(&ctx->configuring))
1003                 return -EAGAIN;
1004
1005         if (encrypt) {
1006                 dir = &ctx->encrypt;
1007                 cryptlen = req->cryptlen;
1008         } else {
1009                 dir = &ctx->decrypt;
1010                 /* req->cryptlen includes the authsize when decrypting */
1011                 cryptlen = req->cryptlen -authsize;
1012                 eff_cryptlen -= authsize;
1013         }
1014         crypt = get_crypt_desc();
1015         if (!crypt)
1016                 return -ENOMEM;
1017
1018         crypt->data.aead_req = req;
1019         crypt->crypto_ctx = dir->npe_ctx_phys;
1020         crypt->mode = dir->npe_mode;
1021         crypt->init_len = dir->npe_ctx_idx;
1022
1023         crypt->crypt_offs = cryptoffset;
1024         crypt->crypt_len = eff_cryptlen;
1025
1026         crypt->auth_offs = 0;
1027         crypt->auth_len = req->assoclen + cryptlen;
1028         BUG_ON(ivsize && !req->iv);
1029         memcpy(crypt->iv, req->iv, ivsize);
1030
1031         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1032                               &src_hook, flags, src_direction);
1033         req_ctx->src = src_hook.next;
1034         crypt->src_buf = src_hook.phys_next;
1035         if (!buf)
1036                 goto free_buf_src;
1037
1038         lastlen = buf->buf_len;
1039         if (lastlen >= authsize)
1040                 crypt->icv_rev_aes = buf->phys_addr +
1041                                      buf->buf_len - authsize;
1042
1043         req_ctx->dst = NULL;
1044
1045         if (req->src != req->dst) {
1046                 struct buffer_desc dst_hook;
1047
1048                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1049                 src_direction = DMA_TO_DEVICE;
1050
1051                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1052                                       &dst_hook, flags, DMA_FROM_DEVICE);
1053                 req_ctx->dst = dst_hook.next;
1054                 crypt->dst_buf = dst_hook.phys_next;
1055
1056                 if (!buf)
1057                         goto free_buf_dst;
1058
1059                 if (encrypt) {
1060                         lastlen = buf->buf_len;
1061                         if (lastlen >= authsize)
1062                                 crypt->icv_rev_aes = buf->phys_addr +
1063                                                      buf->buf_len - authsize;
1064                 }
1065         }
1066
1067         if (unlikely(lastlen < authsize)) {
1068                 /* The 12 hmac bytes are scattered,
1069                  * we need to copy them into a safe buffer */
1070                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1071                                 &crypt->icv_rev_aes);
1072                 if (unlikely(!req_ctx->hmac_virt))
1073                         goto free_buf_dst;
1074                 if (!encrypt) {
1075                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1076                                 req->src, cryptlen, authsize, 0);
1077                 }
1078                 req_ctx->encrypt = encrypt;
1079         } else {
1080                 req_ctx->hmac_virt = NULL;
1081         }
1082
1083         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1084         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1085         BUG_ON(qmgr_stat_overflow(SEND_QID));
1086         return -EINPROGRESS;
1087
1088 free_buf_dst:
1089         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1090 free_buf_src:
1091         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1092         crypt->ctl_flags = CTL_FLAG_UNUSED;
1093         return -ENOMEM;
1094 }
1095
1096 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1097 {
1098         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1099         u32 *flags = &tfm->base.crt_flags;
1100         unsigned digest_len = crypto_aead_maxauthsize(tfm);
1101         int ret;
1102
1103         if (!ctx->enckey_len && !ctx->authkey_len)
1104                 return 0;
1105         init_completion(&ctx->completion);
1106         atomic_inc(&ctx->configuring);
1107
1108         reset_sa_dir(&ctx->encrypt);
1109         reset_sa_dir(&ctx->decrypt);
1110
1111         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1112         if (ret)
1113                 goto out;
1114         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1115         if (ret)
1116                 goto out;
1117         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1118                         ctx->authkey_len, digest_len);
1119         if (ret)
1120                 goto out;
1121         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1122                         ctx->authkey_len, digest_len);
1123         if (ret)
1124                 goto out;
1125
1126         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1127                 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
1128                         ret = -EINVAL;
1129                         goto out;
1130                 } else {
1131                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1132                 }
1133         }
1134 out:
1135         if (!atomic_dec_and_test(&ctx->configuring))
1136                 wait_for_completion(&ctx->completion);
1137         return ret;
1138 }
1139
1140 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1141 {
1142         int max = crypto_aead_maxauthsize(tfm) >> 2;
1143
1144         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1145                 return -EINVAL;
1146         return aead_setup(tfm, authsize);
1147 }
1148
1149 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1150                         unsigned int keylen)
1151 {
1152         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1153         struct crypto_authenc_keys keys;
1154
1155         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1156                 goto badkey;
1157
1158         if (keys.authkeylen > sizeof(ctx->authkey))
1159                 goto badkey;
1160
1161         if (keys.enckeylen > sizeof(ctx->enckey))
1162                 goto badkey;
1163
1164         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1165         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1166         ctx->authkey_len = keys.authkeylen;
1167         ctx->enckey_len = keys.enckeylen;
1168
1169         memzero_explicit(&keys, sizeof(keys));
1170         return aead_setup(tfm, crypto_aead_authsize(tfm));
1171 badkey:
1172         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1173         memzero_explicit(&keys, sizeof(keys));
1174         return -EINVAL;
1175 }
1176
1177 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1178                             unsigned int keylen)
1179 {
1180         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1181         struct crypto_authenc_keys keys;
1182         int err;
1183
1184         err = crypto_authenc_extractkeys(&keys, key, keylen);
1185         if (unlikely(err))
1186                 goto badkey;
1187
1188         err = -EINVAL;
1189         if (keys.authkeylen > sizeof(ctx->authkey))
1190                 goto badkey;
1191
1192         err = verify_aead_des3_key(tfm, keys.enckey, keys.enckeylen);
1193         if (err)
1194                 goto badkey;
1195
1196         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1197         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1198         ctx->authkey_len = keys.authkeylen;
1199         ctx->enckey_len = keys.enckeylen;
1200
1201         memzero_explicit(&keys, sizeof(keys));
1202         return aead_setup(tfm, crypto_aead_authsize(tfm));
1203 badkey:
1204         memzero_explicit(&keys, sizeof(keys));
1205         return err;
1206 }
1207
1208 static int aead_encrypt(struct aead_request *req)
1209 {
1210         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1211 }
1212
1213 static int aead_decrypt(struct aead_request *req)
1214 {
1215         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1216 }
1217
1218 static struct ixp_alg ixp4xx_algos[] = {
1219 {
1220         .crypto = {
1221                 .base.cra_name          = "cbc(des)",
1222                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1223
1224                 .min_keysize            = DES_KEY_SIZE,
1225                 .max_keysize            = DES_KEY_SIZE,
1226                 .ivsize                 = DES_BLOCK_SIZE,
1227         },
1228         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1229         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1230
1231 }, {
1232         .crypto = {
1233                 .base.cra_name          = "ecb(des)",
1234                 .base.cra_blocksize     = DES_BLOCK_SIZE,
1235                 .min_keysize            = DES_KEY_SIZE,
1236                 .max_keysize            = DES_KEY_SIZE,
1237         },
1238         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1239         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1240 }, {
1241         .crypto = {
1242                 .base.cra_name          = "cbc(des3_ede)",
1243                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1244
1245                 .min_keysize            = DES3_EDE_KEY_SIZE,
1246                 .max_keysize            = DES3_EDE_KEY_SIZE,
1247                 .ivsize                 = DES3_EDE_BLOCK_SIZE,
1248                 .setkey                 = ablk_des3_setkey,
1249         },
1250         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1251         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1252 }, {
1253         .crypto = {
1254                 .base.cra_name          = "ecb(des3_ede)",
1255                 .base.cra_blocksize     = DES3_EDE_BLOCK_SIZE,
1256
1257                 .min_keysize            = DES3_EDE_KEY_SIZE,
1258                 .max_keysize            = DES3_EDE_KEY_SIZE,
1259                 .setkey                 = ablk_des3_setkey,
1260         },
1261         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1262         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1263 }, {
1264         .crypto = {
1265                 .base.cra_name          = "cbc(aes)",
1266                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1267
1268                 .min_keysize            = AES_MIN_KEY_SIZE,
1269                 .max_keysize            = AES_MAX_KEY_SIZE,
1270                 .ivsize                 = AES_BLOCK_SIZE,
1271         },
1272         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1273         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1274 }, {
1275         .crypto = {
1276                 .base.cra_name          = "ecb(aes)",
1277                 .base.cra_blocksize     = AES_BLOCK_SIZE,
1278
1279                 .min_keysize            = AES_MIN_KEY_SIZE,
1280                 .max_keysize            = AES_MAX_KEY_SIZE,
1281         },
1282         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1283         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1284 }, {
1285         .crypto = {
1286                 .base.cra_name          = "ctr(aes)",
1287                 .base.cra_blocksize     = 1,
1288
1289                 .min_keysize            = AES_MIN_KEY_SIZE,
1290                 .max_keysize            = AES_MAX_KEY_SIZE,
1291                 .ivsize                 = AES_BLOCK_SIZE,
1292         },
1293         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1294         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1295 }, {
1296         .crypto = {
1297                 .base.cra_name          = "rfc3686(ctr(aes))",
1298                 .base.cra_blocksize     = 1,
1299
1300                 .min_keysize            = AES_MIN_KEY_SIZE,
1301                 .max_keysize            = AES_MAX_KEY_SIZE,
1302                 .ivsize                 = AES_BLOCK_SIZE,
1303                 .setkey                 = ablk_rfc3686_setkey,
1304                 .encrypt                = ablk_rfc3686_crypt,
1305                 .decrypt                = ablk_rfc3686_crypt,
1306         },
1307         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1308         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1309 } };
1310
1311 static struct ixp_aead_alg ixp4xx_aeads[] = {
1312 {
1313         .crypto = {
1314                 .base = {
1315                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1316                         .cra_blocksize  = DES_BLOCK_SIZE,
1317                 },
1318                 .ivsize         = DES_BLOCK_SIZE,
1319                 .maxauthsize    = MD5_DIGEST_SIZE,
1320         },
1321         .hash = &hash_alg_md5,
1322         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1323         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1324 }, {
1325         .crypto = {
1326                 .base = {
1327                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1328                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1329                 },
1330                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1331                 .maxauthsize    = MD5_DIGEST_SIZE,
1332                 .setkey         = des3_aead_setkey,
1333         },
1334         .hash = &hash_alg_md5,
1335         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1336         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1337 }, {
1338         .crypto = {
1339                 .base = {
1340                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1341                         .cra_blocksize  = DES_BLOCK_SIZE,
1342                 },
1343                         .ivsize         = DES_BLOCK_SIZE,
1344                         .maxauthsize    = SHA1_DIGEST_SIZE,
1345         },
1346         .hash = &hash_alg_sha1,
1347         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1348         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1349 }, {
1350         .crypto = {
1351                 .base = {
1352                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1353                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1354                 },
1355                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1356                 .maxauthsize    = SHA1_DIGEST_SIZE,
1357                 .setkey         = des3_aead_setkey,
1358         },
1359         .hash = &hash_alg_sha1,
1360         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1361         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1362 }, {
1363         .crypto = {
1364                 .base = {
1365                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1366                         .cra_blocksize  = AES_BLOCK_SIZE,
1367                 },
1368                 .ivsize         = AES_BLOCK_SIZE,
1369                 .maxauthsize    = MD5_DIGEST_SIZE,
1370         },
1371         .hash = &hash_alg_md5,
1372         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1373         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1374 }, {
1375         .crypto = {
1376                 .base = {
1377                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1378                         .cra_blocksize  = AES_BLOCK_SIZE,
1379                 },
1380                 .ivsize         = AES_BLOCK_SIZE,
1381                 .maxauthsize    = SHA1_DIGEST_SIZE,
1382         },
1383         .hash = &hash_alg_sha1,
1384         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1385         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1386 } };
1387
1388 #define IXP_POSTFIX "-ixp4xx"
1389
1390 static const struct platform_device_info ixp_dev_info __initdata = {
1391         .name           = DRIVER_NAME,
1392         .id             = 0,
1393         .dma_mask       = DMA_BIT_MASK(32),
1394 };
1395
1396 static int __init ixp_module_init(void)
1397 {
1398         int num = ARRAY_SIZE(ixp4xx_algos);
1399         int i, err;
1400
1401         pdev = platform_device_register_full(&ixp_dev_info);
1402         if (IS_ERR(pdev))
1403                 return PTR_ERR(pdev);
1404
1405         spin_lock_init(&desc_lock);
1406         spin_lock_init(&emerg_lock);
1407
1408         err = init_ixp_crypto(&pdev->dev);
1409         if (err) {
1410                 platform_device_unregister(pdev);
1411                 return err;
1412         }
1413         for (i=0; i< num; i++) {
1414                 struct skcipher_alg *cra = &ixp4xx_algos[i].crypto;
1415
1416                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1417                         "%s"IXP_POSTFIX, cra->base.cra_name) >=
1418                         CRYPTO_MAX_ALG_NAME)
1419                 {
1420                         continue;
1421                 }
1422                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1423                         continue;
1424                 }
1425
1426                 /* block ciphers */
1427                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1428                                       CRYPTO_ALG_ASYNC;
1429                 if (!cra->setkey)
1430                         cra->setkey = ablk_setkey;
1431                 if (!cra->encrypt)
1432                         cra->encrypt = ablk_encrypt;
1433                 if (!cra->decrypt)
1434                         cra->decrypt = ablk_decrypt;
1435                 cra->init = init_tfm_ablk;
1436                 cra->exit = exit_tfm_ablk;
1437
1438                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1439                 cra->base.cra_module = THIS_MODULE;
1440                 cra->base.cra_alignmask = 3;
1441                 cra->base.cra_priority = 300;
1442                 if (crypto_register_skcipher(cra))
1443                         printk(KERN_ERR "Failed to register '%s'\n",
1444                                 cra->base.cra_name);
1445                 else
1446                         ixp4xx_algos[i].registered = 1;
1447         }
1448
1449         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1450                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1451
1452                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1453                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1454                     CRYPTO_MAX_ALG_NAME)
1455                         continue;
1456                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1457                         continue;
1458
1459                 /* authenc */
1460                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1461                                       CRYPTO_ALG_ASYNC;
1462                 cra->setkey = cra->setkey ?: aead_setkey;
1463                 cra->setauthsize = aead_setauthsize;
1464                 cra->encrypt = aead_encrypt;
1465                 cra->decrypt = aead_decrypt;
1466                 cra->init = init_tfm_aead;
1467                 cra->exit = exit_tfm_aead;
1468
1469                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1470                 cra->base.cra_module = THIS_MODULE;
1471                 cra->base.cra_alignmask = 3;
1472                 cra->base.cra_priority = 300;
1473
1474                 if (crypto_register_aead(cra))
1475                         printk(KERN_ERR "Failed to register '%s'\n",
1476                                 cra->base.cra_driver_name);
1477                 else
1478                         ixp4xx_aeads[i].registered = 1;
1479         }
1480         return 0;
1481 }
1482
1483 static void __exit ixp_module_exit(void)
1484 {
1485         int num = ARRAY_SIZE(ixp4xx_algos);
1486         int i;
1487
1488         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1489                 if (ixp4xx_aeads[i].registered)
1490                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1491         }
1492
1493         for (i=0; i< num; i++) {
1494                 if (ixp4xx_algos[i].registered)
1495                         crypto_unregister_skcipher(&ixp4xx_algos[i].crypto);
1496         }
1497         release_ixp_crypto(&pdev->dev);
1498         platform_device_unregister(pdev);
1499 }
1500
1501 module_init(ixp_module_init);
1502 module_exit(ixp_module_exit);
1503
1504 MODULE_LICENSE("GPL");
1505 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1506 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1507