1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
23 #include <crypto/algapi.h>
24 #include <crypto/internal/des.h>
25 #include <crypto/internal/skcipher.h>
27 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
28 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
29 MODULE_PARM_DESC(hifn_pll_ref,
30 "PLL reference clock (pci[freq] or ext[freq], default ext)");
32 static atomic_t hifn_dev_number;
34 #define ACRYPTO_OP_DECRYPT 0
35 #define ACRYPTO_OP_ENCRYPT 1
36 #define ACRYPTO_OP_HMAC 2
37 #define ACRYPTO_OP_RNG 3
39 #define ACRYPTO_MODE_ECB 0
40 #define ACRYPTO_MODE_CBC 1
41 #define ACRYPTO_MODE_CFB 2
42 #define ACRYPTO_MODE_OFB 3
44 #define ACRYPTO_TYPE_AES_128 0
45 #define ACRYPTO_TYPE_AES_192 1
46 #define ACRYPTO_TYPE_AES_256 2
47 #define ACRYPTO_TYPE_3DES 3
48 #define ACRYPTO_TYPE_DES 4
50 #define PCI_VENDOR_ID_HIFN 0x13A3
51 #define PCI_DEVICE_ID_HIFN_7955 0x0020
52 #define PCI_DEVICE_ID_HIFN_7956 0x001d
54 /* I/O region sizes */
56 #define HIFN_BAR0_SIZE 0x1000
57 #define HIFN_BAR1_SIZE 0x2000
58 #define HIFN_BAR2_SIZE 0x8000
62 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
63 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
64 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
65 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
66 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
67 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
68 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
69 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
70 #define HIFN_CHIP_ID 0x98 /* Chip ID */
73 * Processing Unit Registers (offset from BASEREG0)
75 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
76 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
77 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
78 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
79 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
80 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
81 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
82 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
83 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
85 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
86 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
87 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
88 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
89 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
90 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
92 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
93 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
94 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
95 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
96 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
97 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
98 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
99 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
100 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
101 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
102 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
104 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
105 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
106 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
107 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
108 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
109 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
110 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
111 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
112 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
113 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
114 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
115 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
117 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
118 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
120 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
121 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
122 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
123 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
124 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
125 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
126 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
127 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
129 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
130 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
131 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
132 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
133 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
134 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
135 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
136 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
137 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
138 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
139 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
141 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
142 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
143 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
144 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
146 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
147 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
148 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
149 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
150 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
151 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
152 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
153 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
154 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
155 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
156 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
157 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
158 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
160 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
161 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
162 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
164 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
165 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
168 * DMA Interface Registers (offset from BASEREG1)
170 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
171 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
172 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
173 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
174 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
175 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
176 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
177 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
178 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
179 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
180 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
181 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
182 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
183 #define HIFN_1_REVID 0x98 /* Revision ID */
184 #define HIFN_1_UNLOCK_SECRET1 0xf4
185 #define HIFN_1_UNLOCK_SECRET2 0xfc
186 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
187 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
188 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
189 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
190 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
191 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
192 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
193 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
194 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
195 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
197 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
198 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
199 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
200 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
201 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
202 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
203 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
204 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
205 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
206 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
207 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
208 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
209 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
210 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
211 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
212 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
213 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
214 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
215 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
216 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
217 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
218 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
219 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
220 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
221 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
222 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
223 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
224 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
225 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
226 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
227 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
228 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
229 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
230 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
231 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
232 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
233 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
234 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
235 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
237 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
238 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
239 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
240 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
241 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
242 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
243 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
244 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
245 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
246 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
247 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
248 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
249 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
250 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
251 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
252 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
253 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
254 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
255 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
256 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
257 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
258 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
259 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
261 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
262 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
263 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
264 #define HIFN_DMACNFG_UNLOCK 0x00000800
265 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
266 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
267 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
268 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
269 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
271 /* PLL configuration register */
272 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
273 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
274 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
275 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
276 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
277 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
278 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
279 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
280 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
281 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
282 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
283 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
284 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
285 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
286 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
287 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
288 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
290 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
292 /* Public key reset register (HIFN_1_PUB_RESET) */
293 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
295 /* Public base address register (HIFN_1_PUB_BASE) */
296 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
298 /* Public operand length register (HIFN_1_PUB_OPLEN) */
299 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
300 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
301 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
302 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
303 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
304 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
306 /* Public operation register (HIFN_1_PUB_OP) */
307 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
308 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
309 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
310 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
311 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
312 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
313 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
314 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
315 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
316 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
317 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
318 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
319 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
320 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
321 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
322 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
323 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
324 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
325 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
326 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
328 /* Public status register (HIFN_1_PUB_STATUS) */
329 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
330 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
332 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
333 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
335 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
336 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
338 #define HIFN_NAMESIZE 32
339 #define HIFN_MAX_RESULT_ORDER 5
341 #define HIFN_D_CMD_RSIZE (24 * 1)
342 #define HIFN_D_SRC_RSIZE (80 * 1)
343 #define HIFN_D_DST_RSIZE (80 * 1)
344 #define HIFN_D_RES_RSIZE (24 * 1)
346 #define HIFN_D_DST_DALIGN 4
348 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
350 #define AES_MIN_KEY_SIZE 16
351 #define AES_MAX_KEY_SIZE 32
353 #define HIFN_DES_KEY_LENGTH 8
354 #define HIFN_3DES_KEY_LENGTH 24
355 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
356 #define HIFN_IV_LENGTH 8
357 #define HIFN_AES_IV_LENGTH 16
358 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
360 #define HIFN_MAC_KEY_LENGTH 64
361 #define HIFN_MD5_LENGTH 16
362 #define HIFN_SHA1_LENGTH 20
363 #define HIFN_MAC_TRUNC_LENGTH 12
365 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
366 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
367 #define HIFN_USED_RESULT 12
375 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE + 1];
376 struct hifn_desc srcr[HIFN_D_SRC_RSIZE + 1];
377 struct hifn_desc dstr[HIFN_D_DST_RSIZE + 1];
378 struct hifn_desc resr[HIFN_D_RES_RSIZE + 1];
380 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
381 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
384 * Our current positions for insertion and removal from the descriptor
387 volatile int cmdi, srci, dsti, resi;
388 volatile int cmdu, srcu, dstu, resu;
389 int cmdk, srck, dstk, resk;
392 #define HIFN_FLAG_CMD_BUSY (1 << 0)
393 #define HIFN_FLAG_SRC_BUSY (1 << 1)
394 #define HIFN_FLAG_DST_BUSY (1 << 2)
395 #define HIFN_FLAG_RES_BUSY (1 << 3)
396 #define HIFN_FLAG_OLD_KEY (1 << 4)
398 #define HIFN_DEFAULT_ACTIVE_NUM 5
401 char name[HIFN_NAMESIZE];
405 struct pci_dev *pdev;
406 void __iomem *bar[3];
413 void *sa[HIFN_D_RES_RSIZE];
419 struct delayed_work work;
421 unsigned long success;
422 unsigned long prev_success;
426 struct tasklet_struct tasklet;
428 struct crypto_queue queue;
429 struct list_head alg_list;
431 unsigned int pk_clk_freq;
433 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
434 unsigned int rng_wait_time;
440 #define HIFN_D_LENGTH 0x0000ffff
441 #define HIFN_D_NOINVALID 0x01000000
442 #define HIFN_D_MASKDONEIRQ 0x02000000
443 #define HIFN_D_DESTOVER 0x04000000
444 #define HIFN_D_OVER 0x08000000
445 #define HIFN_D_LAST 0x20000000
446 #define HIFN_D_JUMP 0x40000000
447 #define HIFN_D_VALID 0x80000000
449 struct hifn_base_command {
450 volatile __le16 masks;
451 volatile __le16 session_num;
452 volatile __le16 total_source_count;
453 volatile __le16 total_dest_count;
456 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
457 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
458 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
459 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
460 #define HIFN_BASE_CMD_DECODE 0x2000
461 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
462 #define HIFN_BASE_CMD_SRCLEN_S 14
463 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
464 #define HIFN_BASE_CMD_DSTLEN_S 12
465 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
466 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
469 * Structure to help build up the command data structure.
471 struct hifn_crypt_command {
472 volatile __le16 masks;
473 volatile __le16 header_skip;
474 volatile __le16 source_count;
475 volatile __le16 reserved;
478 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
479 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
480 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
481 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
482 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
483 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
484 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
485 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
486 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
487 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
488 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
489 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
490 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
491 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
492 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
493 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
494 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
495 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
496 #define HIFN_CRYPT_CMD_SRCLEN_S 14
499 * Structure to help build up the command data structure.
501 struct hifn_mac_command {
502 volatile __le16 masks;
503 volatile __le16 header_skip;
504 volatile __le16 source_count;
505 volatile __le16 reserved;
508 #define HIFN_MAC_CMD_ALG_MASK 0x0001
509 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
510 #define HIFN_MAC_CMD_ALG_MD5 0x0001
511 #define HIFN_MAC_CMD_MODE_MASK 0x000c
512 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
513 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
514 #define HIFN_MAC_CMD_MODE_HASH 0x0008
515 #define HIFN_MAC_CMD_MODE_FULL 0x0004
516 #define HIFN_MAC_CMD_TRUNC 0x0010
517 #define HIFN_MAC_CMD_RESULT 0x0020
518 #define HIFN_MAC_CMD_APPEND 0x0040
519 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
520 #define HIFN_MAC_CMD_SRCLEN_S 14
523 * MAC POS IPsec initiates authentication after encryption on encodes
524 * and before decryption on decodes.
526 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
527 #define HIFN_MAC_CMD_NEW_KEY 0x0800
529 struct hifn_comp_command {
530 volatile __le16 masks;
531 volatile __le16 header_skip;
532 volatile __le16 source_count;
533 volatile __le16 reserved;
536 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
537 #define HIFN_COMP_CMD_SRCLEN_S 14
538 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
539 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
540 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
541 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
542 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
543 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
544 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
545 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
547 struct hifn_base_result {
548 volatile __le16 flags;
549 volatile __le16 session;
550 volatile __le16 src_cnt; /* 15:0 of source count */
551 volatile __le16 dst_cnt; /* 15:0 of dest count */
554 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
555 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
556 #define HIFN_BASE_RES_SRCLEN_S 14
557 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
558 #define HIFN_BASE_RES_DSTLEN_S 12
560 struct hifn_comp_result {
561 volatile __le16 flags;
565 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
566 #define HIFN_COMP_RES_LCB_S 8
567 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
568 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
569 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
571 struct hifn_mac_result {
572 volatile __le16 flags;
573 volatile __le16 reserved;
574 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
577 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
578 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
580 struct hifn_crypt_result {
581 volatile __le16 flags;
582 volatile __le16 reserved;
585 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
587 #ifndef HIFN_POLL_FREQUENCY
588 #define HIFN_POLL_FREQUENCY 0x1
591 #ifndef HIFN_POLL_SCALAR
592 #define HIFN_POLL_SCALAR 0x0
595 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
596 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
598 struct hifn_crypto_alg {
599 struct list_head entry;
600 struct skcipher_alg alg;
601 struct hifn_device *dev;
604 #define ASYNC_SCATTERLIST_CACHE 16
606 #define ASYNC_FLAGS_MISALIGNED (1 << 0)
608 struct hifn_cipher_walk {
609 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
614 struct hifn_context {
615 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
616 struct hifn_device *dev;
617 unsigned int keysize;
620 struct hifn_request_context {
623 u8 op, type, mode, unused;
624 struct hifn_cipher_walk walk;
627 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
629 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
631 return readl(dev->bar[0] + reg);
634 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
636 return readl(dev->bar[1] + reg);
639 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
641 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
644 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
646 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
649 static void hifn_wait_puc(struct hifn_device *dev)
654 for (i = 10000; i > 0; --i) {
655 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
656 if (!(ret & HIFN_PUCTRL_RESET))
663 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
666 static void hifn_reset_puc(struct hifn_device *dev)
668 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
672 static void hifn_stop_device(struct hifn_device *dev)
674 hifn_write_1(dev, HIFN_1_DMA_CSR,
675 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
676 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
677 hifn_write_0(dev, HIFN_0_PUIER, 0);
678 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
681 static void hifn_reset_dma(struct hifn_device *dev, int full)
683 hifn_stop_device(dev);
686 * Setting poll frequency and others to 0.
688 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
689 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
696 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
699 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
700 HIFN_DMACNFG_MSTRESET);
704 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
705 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
710 static u32 hifn_next_signature(u32 a, u_int cnt)
715 for (i = 0; i < cnt; i++) {
724 a = (v & 1) ^ (a << 1);
730 static struct pci2id {
737 PCI_DEVICE_ID_HIFN_7955,
738 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
739 0x00, 0x00, 0x00, 0x00, 0x00 }
743 PCI_DEVICE_ID_HIFN_7956,
744 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
745 0x00, 0x00, 0x00, 0x00, 0x00 }
749 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
750 static int hifn_rng_data_present(struct hwrng *rng, int wait)
752 struct hifn_device *dev = (struct hifn_device *)rng->priv;
755 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
756 nsec -= dev->rng_wait_time;
765 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
767 struct hifn_device *dev = (struct hifn_device *)rng->priv;
769 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
770 dev->rngtime = ktime_get();
774 static int hifn_register_rng(struct hifn_device *dev)
777 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
779 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
780 dev->pk_clk_freq) * 256;
782 dev->rng.name = dev->name;
783 dev->rng.data_present = hifn_rng_data_present,
784 dev->rng.data_read = hifn_rng_data_read,
785 dev->rng.priv = (unsigned long)dev;
787 return hwrng_register(&dev->rng);
790 static void hifn_unregister_rng(struct hifn_device *dev)
792 hwrng_unregister(&dev->rng);
795 #define hifn_register_rng(dev) 0
796 #define hifn_unregister_rng(dev)
799 static int hifn_init_pubrng(struct hifn_device *dev)
803 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
806 for (i = 100; i > 0; --i) {
809 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
814 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
816 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
817 dev->dmareg |= HIFN_DMAIER_PUBDONE;
818 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
820 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
823 /* Enable RNG engine. */
825 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
826 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
827 dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
829 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
830 /* First value must be discarded */
831 hifn_read_1(dev, HIFN_1_RNG_DATA);
832 dev->rngtime = ktime_get();
837 static int hifn_enable_crypto(struct hifn_device *dev)
843 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
844 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
845 pci2id[i].pci_prod == dev->pdev->device) {
846 offtbl = pci2id[i].card_id;
852 dev_err(&dev->pdev->dev, "Unknown card!\n");
856 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
858 hifn_write_1(dev, HIFN_1_DMA_CNFG,
859 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
860 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
862 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
864 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
867 for (i = 0; i < 12; ++i) {
868 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
869 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
873 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
875 dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
880 static void hifn_init_dma(struct hifn_device *dev)
882 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
883 u32 dptr = dev->desc_dma;
886 for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
887 dma->cmdr[i].p = __cpu_to_le32(dptr +
888 offsetof(struct hifn_dma, command_bufs[i][0]));
889 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
890 dma->resr[i].p = __cpu_to_le32(dptr +
891 offsetof(struct hifn_dma, result_bufs[i][0]));
893 /* Setup LAST descriptors. */
894 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
895 offsetof(struct hifn_dma, cmdr[0]));
896 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
897 offsetof(struct hifn_dma, srcr[0]));
898 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
899 offsetof(struct hifn_dma, dstr[0]));
900 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
901 offsetof(struct hifn_dma, resr[0]));
903 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
904 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
905 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
909 * Initialize the PLL. We need to know the frequency of the reference clock
910 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
911 * allows us to operate without the risk of overclocking the chip. If it
912 * actually uses 33MHz, the chip will operate at half the speed, this can be
913 * overridden by specifying the frequency as module parameter (pci33).
915 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
916 * stable clock and the PCI clock frequency may vary, so the default is the
917 * external clock. There is no way to find out its frequency, we default to
918 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
919 * has an external crystal populated at 66MHz.
921 static void hifn_init_pll(struct hifn_device *dev)
923 unsigned int freq, m;
926 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
928 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
929 pllcfg |= HIFN_PLL_REF_CLK_PLL;
931 pllcfg |= HIFN_PLL_REF_CLK_HBI;
933 if (hifn_pll_ref[3] != '\0')
934 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
937 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
941 m = HIFN_PLL_FCK_MAX / freq;
943 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
945 pllcfg |= HIFN_PLL_IS_1_8;
947 pllcfg |= HIFN_PLL_IS_9_12;
949 /* Select clock source and enable clock bypass */
950 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
951 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
953 /* Let the chip lock to the input clock */
956 /* Disable clock bypass */
957 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
958 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
960 /* Switch the engines to the PLL */
961 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
962 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
965 * The Fpk_clk runs at half the total speed. Its frequency is needed to
966 * calculate the minimum time between two reads of the rng. Since 33MHz
967 * is actually 33.333... we overestimate the frequency here, resulting
968 * in slightly larger intervals.
970 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
973 static void hifn_init_registers(struct hifn_device *dev)
975 u32 dptr = dev->desc_dma;
977 /* Initialization magic... */
978 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
979 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
980 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
982 /* write all 4 ring address registers */
983 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
984 offsetof(struct hifn_dma, cmdr[0]));
985 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
986 offsetof(struct hifn_dma, srcr[0]));
987 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
988 offsetof(struct hifn_dma, dstr[0]));
989 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
990 offsetof(struct hifn_dma, resr[0]));
994 hifn_write_1(dev, HIFN_1_DMA_CSR,
995 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
996 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
997 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
998 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
999 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1000 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1001 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1002 HIFN_DMACSR_S_WAIT |
1003 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1004 HIFN_DMACSR_C_WAIT |
1005 HIFN_DMACSR_ENGINE |
1006 HIFN_DMACSR_PUBDONE);
1008 hifn_write_1(dev, HIFN_1_DMA_CSR,
1009 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1010 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1011 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1012 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1013 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1014 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1015 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1016 HIFN_DMACSR_S_WAIT |
1017 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1018 HIFN_DMACSR_C_WAIT |
1019 HIFN_DMACSR_ENGINE |
1020 HIFN_DMACSR_PUBDONE);
1022 hifn_read_1(dev, HIFN_1_DMA_CSR);
1024 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1025 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1026 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1028 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1030 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1031 hifn_read_1(dev, HIFN_1_DMA_IER);
1033 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1034 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1035 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1038 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1042 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1043 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1044 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1045 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1046 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1049 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1050 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1052 struct hifn_base_command *base_cmd;
1055 base_cmd = (struct hifn_base_command *)buf_pos;
1056 base_cmd->masks = __cpu_to_le16(mask);
1057 base_cmd->total_source_count =
1058 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1059 base_cmd->total_dest_count =
1060 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1064 base_cmd->session_num = __cpu_to_le16(snum |
1065 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1066 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1068 return sizeof(struct hifn_base_command);
1071 static int hifn_setup_crypto_command(struct hifn_device *dev,
1072 u8 *buf, unsigned dlen, unsigned slen,
1073 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1075 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1076 struct hifn_crypt_command *cry_cmd;
1080 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1082 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1084 cry_cmd->masks = __cpu_to_le16(mode |
1085 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1086 HIFN_CRYPT_CMD_SRCLEN_M));
1087 cry_cmd->header_skip = 0;
1088 cry_cmd->reserved = 0;
1090 buf_pos += sizeof(struct hifn_crypt_command);
1093 if (dma->cmdu > 1) {
1094 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1095 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1099 memcpy(buf_pos, key, keylen);
1103 memcpy(buf_pos, iv, ivsize);
1107 cmd_len = buf_pos - buf;
1112 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1113 struct hifn_context *ctx, struct hifn_request_context *rctx,
1114 void *priv, unsigned int nbytes)
1116 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1117 int cmd_len, sa_idx;
1122 buf_pos = buf = dma->command_bufs[dma->cmdi];
1126 case ACRYPTO_OP_DECRYPT:
1127 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1129 case ACRYPTO_OP_ENCRYPT:
1130 mask = HIFN_BASE_CMD_CRYPT;
1132 case ACRYPTO_OP_HMAC:
1133 mask = HIFN_BASE_CMD_MAC;
1139 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1140 nbytes, mask, dev->snum);
1142 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1146 md |= HIFN_CRYPT_CMD_NEW_KEY;
1147 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1148 md |= HIFN_CRYPT_CMD_NEW_IV;
1150 switch (rctx->mode) {
1151 case ACRYPTO_MODE_ECB:
1152 md |= HIFN_CRYPT_CMD_MODE_ECB;
1154 case ACRYPTO_MODE_CBC:
1155 md |= HIFN_CRYPT_CMD_MODE_CBC;
1157 case ACRYPTO_MODE_CFB:
1158 md |= HIFN_CRYPT_CMD_MODE_CFB;
1160 case ACRYPTO_MODE_OFB:
1161 md |= HIFN_CRYPT_CMD_MODE_OFB;
1167 switch (rctx->type) {
1168 case ACRYPTO_TYPE_AES_128:
1169 if (ctx->keysize != 16)
1171 md |= HIFN_CRYPT_CMD_KSZ_128 |
1172 HIFN_CRYPT_CMD_ALG_AES;
1174 case ACRYPTO_TYPE_AES_192:
1175 if (ctx->keysize != 24)
1177 md |= HIFN_CRYPT_CMD_KSZ_192 |
1178 HIFN_CRYPT_CMD_ALG_AES;
1180 case ACRYPTO_TYPE_AES_256:
1181 if (ctx->keysize != 32)
1183 md |= HIFN_CRYPT_CMD_KSZ_256 |
1184 HIFN_CRYPT_CMD_ALG_AES;
1186 case ACRYPTO_TYPE_3DES:
1187 if (ctx->keysize != 24)
1189 md |= HIFN_CRYPT_CMD_ALG_3DES;
1191 case ACRYPTO_TYPE_DES:
1192 if (ctx->keysize != 8)
1194 md |= HIFN_CRYPT_CMD_ALG_DES;
1200 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1201 nbytes, nbytes, ctx->key, ctx->keysize,
1202 rctx->iv, rctx->ivsize, md);
1205 dev->sa[sa_idx] = priv;
1208 cmd_len = buf_pos - buf;
1209 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1210 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1212 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1213 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1214 HIFN_D_VALID | HIFN_D_LAST |
1215 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1218 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1221 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1222 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1223 dev->flags |= HIFN_FLAG_CMD_BUSY;
1231 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1232 unsigned int offset, unsigned int size, int last)
1234 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1238 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1242 dma->srcr[idx].p = __cpu_to_le32(addr);
1243 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1244 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1246 if (++idx == HIFN_D_SRC_RSIZE) {
1247 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1248 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1249 (last ? HIFN_D_LAST : 0));
1256 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1257 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1258 dev->flags |= HIFN_FLAG_SRC_BUSY;
1264 static void hifn_setup_res_desc(struct hifn_device *dev)
1266 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1268 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1269 HIFN_D_VALID | HIFN_D_LAST);
1271 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1275 if (++dma->resi == HIFN_D_RES_RSIZE) {
1276 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1277 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1283 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1284 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1285 dev->flags |= HIFN_FLAG_RES_BUSY;
1289 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1290 unsigned offset, unsigned size, int last)
1292 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1296 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1299 dma->dstr[idx].p = __cpu_to_le32(addr);
1300 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1301 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1303 if (++idx == HIFN_D_DST_RSIZE) {
1304 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1305 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1306 (last ? HIFN_D_LAST : 0));
1312 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1313 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1314 dev->flags |= HIFN_FLAG_DST_BUSY;
1318 static int hifn_setup_dma(struct hifn_device *dev,
1319 struct hifn_context *ctx, struct hifn_request_context *rctx,
1320 struct scatterlist *src, struct scatterlist *dst,
1321 unsigned int nbytes, void *priv)
1323 struct scatterlist *t;
1324 struct page *spage, *dpage;
1325 unsigned int soff, doff;
1326 unsigned int n, len;
1330 spage = sg_page(src);
1332 len = min(src->length, n);
1334 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1340 t = &rctx->walk.cache[0];
1343 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1344 BUG_ON(!sg_page(t));
1349 BUG_ON(!sg_page(dst));
1350 dpage = sg_page(dst);
1356 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1363 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1364 hifn_setup_res_desc(dev);
1368 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1369 int num, gfp_t gfp_flags)
1373 num = min(ASYNC_SCATTERLIST_CACHE, num);
1374 sg_init_table(w->cache, num);
1377 for (i = 0; i < num; ++i) {
1378 struct page *page = alloc_page(gfp_flags);
1379 struct scatterlist *s;
1386 sg_set_page(s, page, PAGE_SIZE, 0);
1393 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1397 for (i = 0; i < w->num; ++i) {
1398 struct scatterlist *s = &w->cache[i];
1400 __free_page(sg_page(s));
1408 static int skcipher_add(unsigned int *drestp, struct scatterlist *dst,
1409 unsigned int size, unsigned int *nbytesp)
1411 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1414 if (drest < size || size > nbytes)
1418 copy = min3(drest, size, dst->length);
1424 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1425 __func__, copy, size, drest, nbytes);
1437 static int hifn_cipher_walk(struct skcipher_request *req,
1438 struct hifn_cipher_walk *w)
1440 struct scatterlist *dst, *t;
1441 unsigned int nbytes = req->cryptlen, offset, copy, diff;
1447 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1450 dst = &req->dst[idx];
1452 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1453 __func__, dst->length, dst->offset, offset, nbytes);
1455 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1456 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1458 unsigned slen = min(dst->length - offset, nbytes);
1459 unsigned dlen = PAGE_SIZE;
1463 err = skcipher_add(&dlen, dst, slen, &nbytes);
1469 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1470 diff = slen & (HIFN_D_DST_DALIGN - 1);
1472 if (dlen < nbytes) {
1474 * Destination page does not have enough space
1475 * to put there additional blocksized chunk,
1476 * so we mark that page as containing only
1477 * blocksize aligned chunks:
1478 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1479 * and increase number of bytes to be processed
1486 * Temporary of course...
1487 * Kick author if you will catch this one.
1489 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1490 __func__, dlen, nbytes, slen, offset);
1491 pr_err("%s: please contact author to fix this "
1492 "issue, generally you should not catch "
1493 "this path under any condition but who "
1494 "knows how did you use crypto code.\n"
1495 "Thank you.\n", __func__);
1498 copy += diff + nbytes;
1500 dst = &req->dst[idx];
1502 err = skcipher_add(&dlen, dst, nbytes, &nbytes);
1512 nbytes -= min(dst->length, nbytes);
1522 static int hifn_setup_session(struct skcipher_request *req)
1524 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1525 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1526 struct hifn_device *dev = ctx->dev;
1527 unsigned long dlen, flags;
1528 unsigned int nbytes = req->cryptlen, idx = 0;
1529 int err = -EINVAL, sg_num;
1530 struct scatterlist *dst;
1532 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1535 rctx->walk.flags = 0;
1538 dst = &req->dst[idx];
1539 dlen = min(dst->length, nbytes);
1541 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1542 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1543 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1549 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1550 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1555 sg_num = hifn_cipher_walk(req, &rctx->walk);
1561 spin_lock_irqsave(&dev->lock, flags);
1562 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1567 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->cryptlen, req);
1573 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1574 spin_unlock_irqrestore(&dev->lock, flags);
1579 spin_unlock_irqrestore(&dev->lock, flags);
1582 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1583 "type: %u, err: %d.\n",
1584 rctx->iv, rctx->ivsize,
1585 ctx->key, ctx->keysize,
1586 rctx->mode, rctx->op, rctx->type, err);
1592 static int hifn_start_device(struct hifn_device *dev)
1596 dev->started = dev->active = 0;
1597 hifn_reset_dma(dev, 1);
1599 err = hifn_enable_crypto(dev);
1603 hifn_reset_puc(dev);
1607 hifn_init_registers(dev);
1609 hifn_init_pubrng(dev);
1614 static int skcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1615 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1617 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1621 if (srest < size || size > nbytes)
1625 copy = min3(srest, dst->length, size);
1627 daddr = kmap_atomic(sg_page(dst));
1628 memcpy(daddr + dst->offset + offset, saddr, copy);
1629 kunmap_atomic(daddr);
1637 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1638 __func__, copy, size, srest, nbytes);
1650 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1652 unsigned long flags;
1654 spin_lock_irqsave(&dev->lock, flags);
1657 if (dev->started < 0)
1658 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1660 spin_unlock_irqrestore(&dev->lock, flags);
1661 BUG_ON(dev->started < 0);
1664 static void hifn_process_ready(struct skcipher_request *req, int error)
1666 struct hifn_request_context *rctx = skcipher_request_ctx(req);
1668 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1669 unsigned int nbytes = req->cryptlen;
1671 struct scatterlist *dst, *t;
1675 t = &rctx->walk.cache[idx];
1676 dst = &req->dst[idx];
1678 pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1679 "sg_page(dst): %p, dst->length: %u, "
1681 __func__, sg_page(t), t->length,
1682 sg_page(dst), dst->length, nbytes);
1685 nbytes -= min(dst->length, nbytes);
1690 saddr = kmap_atomic(sg_page(t));
1692 err = skcipher_get(saddr, &t->length, t->offset,
1693 dst, nbytes, &nbytes);
1695 kunmap_atomic(saddr);
1700 kunmap_atomic(saddr);
1703 hifn_cipher_walk_exit(&rctx->walk);
1706 req->base.complete(&req->base, error);
1709 static void hifn_clear_rings(struct hifn_device *dev, int error)
1711 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1714 dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1715 "k: %d.%d.%d.%d.\n",
1716 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1717 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1718 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1720 i = dma->resk; u = dma->resu;
1722 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1728 hifn_process_ready(dev->sa[i], error);
1729 hifn_complete_sa(dev, i);
1732 if (++i == HIFN_D_RES_RSIZE)
1736 dma->resk = i; dma->resu = u;
1738 i = dma->srck; u = dma->srcu;
1740 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1742 if (++i == HIFN_D_SRC_RSIZE)
1746 dma->srck = i; dma->srcu = u;
1748 i = dma->cmdk; u = dma->cmdu;
1750 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1752 if (++i == HIFN_D_CMD_RSIZE)
1756 dma->cmdk = i; dma->cmdu = u;
1758 i = dma->dstk; u = dma->dstu;
1760 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1762 if (++i == HIFN_D_DST_RSIZE)
1766 dma->dstk = i; dma->dstu = u;
1768 dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1769 "k: %d.%d.%d.%d.\n",
1770 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1771 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1772 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1775 static void hifn_work(struct work_struct *work)
1777 struct delayed_work *dw = to_delayed_work(work);
1778 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1779 unsigned long flags;
1783 spin_lock_irqsave(&dev->lock, flags);
1784 if (dev->active == 0) {
1785 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1787 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1788 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1789 r |= HIFN_DMACSR_C_CTRL_DIS;
1791 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1792 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1793 r |= HIFN_DMACSR_S_CTRL_DIS;
1795 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1796 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1797 r |= HIFN_DMACSR_D_CTRL_DIS;
1799 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1800 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1801 r |= HIFN_DMACSR_R_CTRL_DIS;
1804 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1808 if ((dev->prev_success == dev->success) && dev->started)
1810 dev->prev_success = dev->success;
1811 spin_unlock_irqrestore(&dev->lock, flags);
1814 if (++dev->reset >= 5) {
1816 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1818 dev_info(&dev->pdev->dev,
1819 "r: %08x, active: %d, started: %d, "
1820 "success: %lu: qlen: %u/%u, reset: %d.\n",
1821 r, dev->active, dev->started,
1822 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1825 dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1826 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1827 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1829 hifn_process_ready(dev->sa[i], -ENODEV);
1830 hifn_complete_sa(dev, i);
1835 hifn_reset_dma(dev, 1);
1836 hifn_stop_device(dev);
1837 hifn_start_device(dev);
1841 tasklet_schedule(&dev->tasklet);
1844 schedule_delayed_work(&dev->work, HZ);
1847 static irqreturn_t hifn_interrupt(int irq, void *data)
1849 struct hifn_device *dev = (struct hifn_device *)data;
1850 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1851 u32 dmacsr, restart;
1853 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1855 dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1856 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1857 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1858 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1859 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1861 if ((dmacsr & dev->dmareg) == 0)
1864 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1866 if (dmacsr & HIFN_DMACSR_ENGINE)
1867 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1868 if (dmacsr & HIFN_DMACSR_PUBDONE)
1869 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1870 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1872 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1874 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1876 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1877 !!(dmacsr & HIFN_DMACSR_R_OVER),
1878 !!(dmacsr & HIFN_DMACSR_D_OVER),
1879 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1880 if (!!(puisr & HIFN_PUISR_DSTOVER))
1881 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1882 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1883 HIFN_DMACSR_D_OVER));
1886 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1887 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1889 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1890 !!(dmacsr & HIFN_DMACSR_C_ABORT),
1891 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1892 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1893 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1894 hifn_reset_dma(dev, 1);
1896 hifn_init_registers(dev);
1899 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1900 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1901 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1902 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1905 tasklet_schedule(&dev->tasklet);
1910 static void hifn_flush(struct hifn_device *dev)
1912 unsigned long flags;
1913 struct crypto_async_request *async_req;
1914 struct skcipher_request *req;
1915 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1918 for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1919 struct hifn_desc *d = &dma->resr[i];
1922 hifn_process_ready(dev->sa[i],
1923 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1924 hifn_complete_sa(dev, i);
1928 spin_lock_irqsave(&dev->lock, flags);
1929 while ((async_req = crypto_dequeue_request(&dev->queue))) {
1930 req = skcipher_request_cast(async_req);
1931 spin_unlock_irqrestore(&dev->lock, flags);
1933 hifn_process_ready(req, -ENODEV);
1935 spin_lock_irqsave(&dev->lock, flags);
1937 spin_unlock_irqrestore(&dev->lock, flags);
1940 static int hifn_setkey(struct crypto_skcipher *cipher, const u8 *key,
1943 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1944 struct hifn_device *dev = ctx->dev;
1947 err = verify_skcipher_des_key(cipher, key);
1951 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1953 memcpy(ctx->key, key, len);
1959 static int hifn_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
1962 struct hifn_context *ctx = crypto_skcipher_ctx(cipher);
1963 struct hifn_device *dev = ctx->dev;
1966 err = verify_skcipher_des3_key(cipher, key);
1970 dev->flags &= ~HIFN_FLAG_OLD_KEY;
1972 memcpy(ctx->key, key, len);
1978 static int hifn_handle_req(struct skcipher_request *req)
1980 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1981 struct hifn_device *dev = ctx->dev;
1984 if (dev->started + DIV_ROUND_UP(req->cryptlen, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
1985 err = hifn_setup_session(req);
1987 if (err == -EAGAIN) {
1988 unsigned long flags;
1990 spin_lock_irqsave(&dev->lock, flags);
1991 err = crypto_enqueue_request(&dev->queue, &req->base);
1992 spin_unlock_irqrestore(&dev->lock, flags);
1998 static int hifn_setup_crypto_req(struct skcipher_request *req, u8 op,
2001 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2002 struct hifn_request_context *rctx = skcipher_request_ctx(req);
2005 ivsize = crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
2007 if (req->iv && mode != ACRYPTO_MODE_ECB) {
2008 if (type == ACRYPTO_TYPE_AES_128)
2009 ivsize = HIFN_AES_IV_LENGTH;
2010 else if (type == ACRYPTO_TYPE_DES)
2011 ivsize = HIFN_DES_KEY_LENGTH;
2012 else if (type == ACRYPTO_TYPE_3DES)
2013 ivsize = HIFN_3DES_KEY_LENGTH;
2016 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2017 if (ctx->keysize == 24)
2018 type = ACRYPTO_TYPE_AES_192;
2019 else if (ctx->keysize == 32)
2020 type = ACRYPTO_TYPE_AES_256;
2027 rctx->ivsize = ivsize;
2030 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2031 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2032 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2035 return hifn_handle_req(req);
2038 static int hifn_process_queue(struct hifn_device *dev)
2040 struct crypto_async_request *async_req, *backlog;
2041 struct skcipher_request *req;
2042 unsigned long flags;
2045 while (dev->started < HIFN_QUEUE_LENGTH) {
2046 spin_lock_irqsave(&dev->lock, flags);
2047 backlog = crypto_get_backlog(&dev->queue);
2048 async_req = crypto_dequeue_request(&dev->queue);
2049 spin_unlock_irqrestore(&dev->lock, flags);
2055 backlog->complete(backlog, -EINPROGRESS);
2057 req = skcipher_request_cast(async_req);
2059 err = hifn_handle_req(req);
2067 static int hifn_setup_crypto(struct skcipher_request *req, u8 op,
2071 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2072 struct hifn_device *dev = ctx->dev;
2074 err = hifn_setup_crypto_req(req, op, type, mode);
2078 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2079 hifn_process_queue(dev);
2081 return -EINPROGRESS;
2085 * AES ecryption functions.
2087 static inline int hifn_encrypt_aes_ecb(struct skcipher_request *req)
2089 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2090 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2092 static inline int hifn_encrypt_aes_cbc(struct skcipher_request *req)
2094 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2095 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2097 static inline int hifn_encrypt_aes_cfb(struct skcipher_request *req)
2099 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2100 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2102 static inline int hifn_encrypt_aes_ofb(struct skcipher_request *req)
2104 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2109 * AES decryption functions.
2111 static inline int hifn_decrypt_aes_ecb(struct skcipher_request *req)
2113 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2114 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2116 static inline int hifn_decrypt_aes_cbc(struct skcipher_request *req)
2118 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2119 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2121 static inline int hifn_decrypt_aes_cfb(struct skcipher_request *req)
2123 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2124 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2126 static inline int hifn_decrypt_aes_ofb(struct skcipher_request *req)
2128 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2133 * DES ecryption functions.
2135 static inline int hifn_encrypt_des_ecb(struct skcipher_request *req)
2137 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2138 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2140 static inline int hifn_encrypt_des_cbc(struct skcipher_request *req)
2142 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2143 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2145 static inline int hifn_encrypt_des_cfb(struct skcipher_request *req)
2147 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2148 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2150 static inline int hifn_encrypt_des_ofb(struct skcipher_request *req)
2152 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2157 * DES decryption functions.
2159 static inline int hifn_decrypt_des_ecb(struct skcipher_request *req)
2161 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2162 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2164 static inline int hifn_decrypt_des_cbc(struct skcipher_request *req)
2166 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2167 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2169 static inline int hifn_decrypt_des_cfb(struct skcipher_request *req)
2171 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2172 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2174 static inline int hifn_decrypt_des_ofb(struct skcipher_request *req)
2176 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2181 * 3DES ecryption functions.
2183 static inline int hifn_encrypt_3des_ecb(struct skcipher_request *req)
2185 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2186 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2188 static inline int hifn_encrypt_3des_cbc(struct skcipher_request *req)
2190 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2191 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2193 static inline int hifn_encrypt_3des_cfb(struct skcipher_request *req)
2195 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2196 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2198 static inline int hifn_encrypt_3des_ofb(struct skcipher_request *req)
2200 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2204 /* 3DES decryption functions. */
2205 static inline int hifn_decrypt_3des_ecb(struct skcipher_request *req)
2207 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2208 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2210 static inline int hifn_decrypt_3des_cbc(struct skcipher_request *req)
2212 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2213 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2215 static inline int hifn_decrypt_3des_cfb(struct skcipher_request *req)
2217 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2218 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2220 static inline int hifn_decrypt_3des_ofb(struct skcipher_request *req)
2222 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2226 struct hifn_alg_template {
2227 char name[CRYPTO_MAX_ALG_NAME];
2228 char drv_name[CRYPTO_MAX_ALG_NAME];
2230 struct skcipher_alg skcipher;
2233 static const struct hifn_alg_template hifn_alg_templates[] = {
2235 * 3DES ECB, CBC, CFB and OFB modes.
2238 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2240 .min_keysize = HIFN_3DES_KEY_LENGTH,
2241 .max_keysize = HIFN_3DES_KEY_LENGTH,
2242 .setkey = hifn_des3_setkey,
2243 .encrypt = hifn_encrypt_3des_cfb,
2244 .decrypt = hifn_decrypt_3des_cfb,
2248 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2250 .min_keysize = HIFN_3DES_KEY_LENGTH,
2251 .max_keysize = HIFN_3DES_KEY_LENGTH,
2252 .setkey = hifn_des3_setkey,
2253 .encrypt = hifn_encrypt_3des_ofb,
2254 .decrypt = hifn_decrypt_3des_ofb,
2258 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2260 .ivsize = HIFN_IV_LENGTH,
2261 .min_keysize = HIFN_3DES_KEY_LENGTH,
2262 .max_keysize = HIFN_3DES_KEY_LENGTH,
2263 .setkey = hifn_des3_setkey,
2264 .encrypt = hifn_encrypt_3des_cbc,
2265 .decrypt = hifn_decrypt_3des_cbc,
2269 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2271 .min_keysize = HIFN_3DES_KEY_LENGTH,
2272 .max_keysize = HIFN_3DES_KEY_LENGTH,
2273 .setkey = hifn_des3_setkey,
2274 .encrypt = hifn_encrypt_3des_ecb,
2275 .decrypt = hifn_decrypt_3des_ecb,
2280 * DES ECB, CBC, CFB and OFB modes.
2283 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2285 .min_keysize = HIFN_DES_KEY_LENGTH,
2286 .max_keysize = HIFN_DES_KEY_LENGTH,
2287 .setkey = hifn_setkey,
2288 .encrypt = hifn_encrypt_des_cfb,
2289 .decrypt = hifn_decrypt_des_cfb,
2293 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2295 .min_keysize = HIFN_DES_KEY_LENGTH,
2296 .max_keysize = HIFN_DES_KEY_LENGTH,
2297 .setkey = hifn_setkey,
2298 .encrypt = hifn_encrypt_des_ofb,
2299 .decrypt = hifn_decrypt_des_ofb,
2303 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2305 .ivsize = HIFN_IV_LENGTH,
2306 .min_keysize = HIFN_DES_KEY_LENGTH,
2307 .max_keysize = HIFN_DES_KEY_LENGTH,
2308 .setkey = hifn_setkey,
2309 .encrypt = hifn_encrypt_des_cbc,
2310 .decrypt = hifn_decrypt_des_cbc,
2314 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2316 .min_keysize = HIFN_DES_KEY_LENGTH,
2317 .max_keysize = HIFN_DES_KEY_LENGTH,
2318 .setkey = hifn_setkey,
2319 .encrypt = hifn_encrypt_des_ecb,
2320 .decrypt = hifn_decrypt_des_ecb,
2325 * AES ECB, CBC, CFB and OFB modes.
2328 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2330 .min_keysize = AES_MIN_KEY_SIZE,
2331 .max_keysize = AES_MAX_KEY_SIZE,
2332 .setkey = hifn_setkey,
2333 .encrypt = hifn_encrypt_aes_ecb,
2334 .decrypt = hifn_decrypt_aes_ecb,
2338 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2340 .ivsize = HIFN_AES_IV_LENGTH,
2341 .min_keysize = AES_MIN_KEY_SIZE,
2342 .max_keysize = AES_MAX_KEY_SIZE,
2343 .setkey = hifn_setkey,
2344 .encrypt = hifn_encrypt_aes_cbc,
2345 .decrypt = hifn_decrypt_aes_cbc,
2349 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2351 .min_keysize = AES_MIN_KEY_SIZE,
2352 .max_keysize = AES_MAX_KEY_SIZE,
2353 .setkey = hifn_setkey,
2354 .encrypt = hifn_encrypt_aes_cfb,
2355 .decrypt = hifn_decrypt_aes_cfb,
2359 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2361 .min_keysize = AES_MIN_KEY_SIZE,
2362 .max_keysize = AES_MAX_KEY_SIZE,
2363 .setkey = hifn_setkey,
2364 .encrypt = hifn_encrypt_aes_ofb,
2365 .decrypt = hifn_decrypt_aes_ofb,
2370 static int hifn_init_tfm(struct crypto_skcipher *tfm)
2372 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
2373 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2374 struct hifn_context *ctx = crypto_skcipher_ctx(tfm);
2377 crypto_skcipher_set_reqsize(tfm, sizeof(struct hifn_request_context));
2382 static int hifn_alg_alloc(struct hifn_device *dev, const struct hifn_alg_template *t)
2384 struct hifn_crypto_alg *alg;
2387 alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2391 alg->alg = t->skcipher;
2392 alg->alg.init = hifn_init_tfm;
2394 snprintf(alg->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2395 snprintf(alg->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2396 t->drv_name, dev->name);
2398 alg->alg.base.cra_priority = 300;
2399 alg->alg.base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2400 alg->alg.base.cra_blocksize = t->bsize;
2401 alg->alg.base.cra_ctxsize = sizeof(struct hifn_context);
2402 alg->alg.base.cra_alignmask = 0;
2403 alg->alg.base.cra_module = THIS_MODULE;
2407 list_add_tail(&alg->entry, &dev->alg_list);
2409 err = crypto_register_skcipher(&alg->alg);
2411 list_del(&alg->entry);
2418 static void hifn_unregister_alg(struct hifn_device *dev)
2420 struct hifn_crypto_alg *a, *n;
2422 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2423 list_del(&a->entry);
2424 crypto_unregister_skcipher(&a->alg);
2429 static int hifn_register_alg(struct hifn_device *dev)
2433 for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2434 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2442 hifn_unregister_alg(dev);
2446 static void hifn_tasklet_callback(unsigned long data)
2448 struct hifn_device *dev = (struct hifn_device *)data;
2451 * This is ok to call this without lock being held,
2452 * althogh it modifies some parameters used in parallel,
2453 * (like dev->success), but they are used in process
2454 * context or update is atomic (like setting dev->sa[i] to NULL).
2456 hifn_clear_rings(dev, 0);
2458 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2459 hifn_process_queue(dev);
2462 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2465 struct hifn_device *dev;
2468 err = pci_enable_device(pdev);
2471 pci_set_master(pdev);
2473 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2475 goto err_out_disable_pci_device;
2477 snprintf(name, sizeof(name), "hifn%d",
2478 atomic_inc_return(&hifn_dev_number) - 1);
2480 err = pci_request_regions(pdev, name);
2482 goto err_out_disable_pci_device;
2484 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2485 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2486 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2487 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2489 goto err_out_free_regions;
2492 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2496 goto err_out_free_regions;
2499 INIT_LIST_HEAD(&dev->alg_list);
2501 snprintf(dev->name, sizeof(dev->name), "%s", name);
2502 spin_lock_init(&dev->lock);
2504 for (i = 0; i < 3; ++i) {
2505 unsigned long addr, size;
2507 addr = pci_resource_start(pdev, i);
2508 size = pci_resource_len(pdev, i);
2510 dev->bar[i] = ioremap_nocache(addr, size);
2513 goto err_out_unmap_bars;
2517 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2519 if (!dev->desc_virt) {
2520 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2522 goto err_out_unmap_bars;
2526 dev->irq = pdev->irq;
2528 for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2531 pci_set_drvdata(pdev, dev);
2533 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2535 crypto_init_queue(&dev->queue, 1);
2537 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2539 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2542 goto err_out_free_desc;
2545 err = hifn_start_device(dev);
2547 goto err_out_free_irq;
2549 err = hifn_register_rng(dev);
2551 goto err_out_stop_device;
2553 err = hifn_register_alg(dev);
2555 goto err_out_unregister_rng;
2557 INIT_DELAYED_WORK(&dev->work, hifn_work);
2558 schedule_delayed_work(&dev->work, HZ);
2560 dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2561 "successfully registered as %s.\n",
2562 pci_name(pdev), dev->name);
2566 err_out_unregister_rng:
2567 hifn_unregister_rng(dev);
2568 err_out_stop_device:
2569 hifn_reset_dma(dev, 1);
2570 hifn_stop_device(dev);
2572 free_irq(dev->irq, dev);
2573 tasklet_kill(&dev->tasklet);
2575 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2576 dev->desc_virt, dev->desc_dma);
2579 for (i = 0; i < 3; ++i)
2581 iounmap(dev->bar[i]);
2584 err_out_free_regions:
2585 pci_release_regions(pdev);
2587 err_out_disable_pci_device:
2588 pci_disable_device(pdev);
2593 static void hifn_remove(struct pci_dev *pdev)
2596 struct hifn_device *dev;
2598 dev = pci_get_drvdata(pdev);
2601 cancel_delayed_work_sync(&dev->work);
2603 hifn_unregister_rng(dev);
2604 hifn_unregister_alg(dev);
2605 hifn_reset_dma(dev, 1);
2606 hifn_stop_device(dev);
2608 free_irq(dev->irq, dev);
2609 tasklet_kill(&dev->tasklet);
2613 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2614 dev->desc_virt, dev->desc_dma);
2615 for (i = 0; i < 3; ++i)
2617 iounmap(dev->bar[i]);
2622 pci_release_regions(pdev);
2623 pci_disable_device(pdev);
2626 static struct pci_device_id hifn_pci_tbl[] = {
2627 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2628 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2631 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2633 static struct pci_driver hifn_pci_driver = {
2635 .id_table = hifn_pci_tbl,
2636 .probe = hifn_probe,
2637 .remove = hifn_remove,
2640 static int __init hifn_init(void)
2645 /* HIFN supports only 32-bit addresses */
2646 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2648 if (strncmp(hifn_pll_ref, "ext", 3) &&
2649 strncmp(hifn_pll_ref, "pci", 3)) {
2650 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2655 * For the 7955/7956 the reference clock frequency must be in the
2656 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2657 * but this chip is currently not supported.
2659 if (hifn_pll_ref[3] != '\0') {
2660 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2661 if (freq < 20 || freq > 100) {
2662 pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2663 "be in the range of 20-100");
2668 err = pci_register_driver(&hifn_pci_driver);
2670 pr_err("Failed to register PCI driver for %s device.\n",
2671 hifn_pci_driver.name);
2675 pr_info("Driver for HIFN 795x crypto accelerator chip "
2676 "has been successfully registered.\n");
2681 static void __exit hifn_fini(void)
2683 pci_unregister_driver(&hifn_pci_driver);
2685 pr_info("Driver for HIFN 795x crypto accelerator chip "
2686 "has been successfully unregistered.\n");
2689 module_init(hifn_init);
2690 module_exit(hifn_fini);
2692 MODULE_LICENSE("GPL");
2693 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2694 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");