Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[linux-2.6-microblaze.git] / drivers / crypto / ccree / cc_aead.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2012-2019 ARM Limited (or its affiliates). */
3
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <crypto/algapi.h>
7 #include <crypto/internal/aead.h>
8 #include <crypto/authenc.h>
9 #include <crypto/gcm.h>
10 #include <linux/rtnetlink.h>
11 #include <crypto/internal/des.h>
12 #include "cc_driver.h"
13 #include "cc_buffer_mgr.h"
14 #include "cc_aead.h"
15 #include "cc_request_mgr.h"
16 #include "cc_hash.h"
17 #include "cc_sram_mgr.h"
18
19 #define template_aead   template_u.aead
20
21 #define MAX_AEAD_SETKEY_SEQ 12
22 #define MAX_AEAD_PROCESS_SEQ 23
23
24 #define MAX_HMAC_DIGEST_SIZE (SHA256_DIGEST_SIZE)
25 #define MAX_HMAC_BLOCK_SIZE (SHA256_BLOCK_SIZE)
26
27 #define MAX_NONCE_SIZE CTR_RFC3686_NONCE_SIZE
28
29 struct cc_aead_handle {
30         u32 sram_workspace_addr;
31         struct list_head aead_list;
32 };
33
34 struct cc_hmac_s {
35         u8 *padded_authkey;
36         u8 *ipad_opad; /* IPAD, OPAD*/
37         dma_addr_t padded_authkey_dma_addr;
38         dma_addr_t ipad_opad_dma_addr;
39 };
40
41 struct cc_xcbc_s {
42         u8 *xcbc_keys; /* K1,K2,K3 */
43         dma_addr_t xcbc_keys_dma_addr;
44 };
45
46 struct cc_aead_ctx {
47         struct cc_drvdata *drvdata;
48         u8 ctr_nonce[MAX_NONCE_SIZE]; /* used for ctr3686 iv and aes ccm */
49         u8 *enckey;
50         dma_addr_t enckey_dma_addr;
51         union {
52                 struct cc_hmac_s hmac;
53                 struct cc_xcbc_s xcbc;
54         } auth_state;
55         unsigned int enc_keylen;
56         unsigned int auth_keylen;
57         unsigned int authsize; /* Actual (reduced?) size of the MAC/ICv */
58         unsigned int hash_len;
59         enum drv_cipher_mode cipher_mode;
60         enum cc_flow_mode flow_mode;
61         enum drv_hash_mode auth_mode;
62 };
63
64 static void cc_aead_exit(struct crypto_aead *tfm)
65 {
66         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
67         struct device *dev = drvdata_to_dev(ctx->drvdata);
68
69         dev_dbg(dev, "Clearing context @%p for %s\n", crypto_aead_ctx(tfm),
70                 crypto_tfm_alg_name(&tfm->base));
71
72         /* Unmap enckey buffer */
73         if (ctx->enckey) {
74                 dma_free_coherent(dev, AES_MAX_KEY_SIZE, ctx->enckey,
75                                   ctx->enckey_dma_addr);
76                 dev_dbg(dev, "Freed enckey DMA buffer enckey_dma_addr=%pad\n",
77                         &ctx->enckey_dma_addr);
78                 ctx->enckey_dma_addr = 0;
79                 ctx->enckey = NULL;
80         }
81
82         if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
83                 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
84
85                 if (xcbc->xcbc_keys) {
86                         dma_free_coherent(dev, CC_AES_128_BIT_KEY_SIZE * 3,
87                                           xcbc->xcbc_keys,
88                                           xcbc->xcbc_keys_dma_addr);
89                 }
90                 dev_dbg(dev, "Freed xcbc_keys DMA buffer xcbc_keys_dma_addr=%pad\n",
91                         &xcbc->xcbc_keys_dma_addr);
92                 xcbc->xcbc_keys_dma_addr = 0;
93                 xcbc->xcbc_keys = NULL;
94         } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC auth. */
95                 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
96
97                 if (hmac->ipad_opad) {
98                         dma_free_coherent(dev, 2 * MAX_HMAC_DIGEST_SIZE,
99                                           hmac->ipad_opad,
100                                           hmac->ipad_opad_dma_addr);
101                         dev_dbg(dev, "Freed ipad_opad DMA buffer ipad_opad_dma_addr=%pad\n",
102                                 &hmac->ipad_opad_dma_addr);
103                         hmac->ipad_opad_dma_addr = 0;
104                         hmac->ipad_opad = NULL;
105                 }
106                 if (hmac->padded_authkey) {
107                         dma_free_coherent(dev, MAX_HMAC_BLOCK_SIZE,
108                                           hmac->padded_authkey,
109                                           hmac->padded_authkey_dma_addr);
110                         dev_dbg(dev, "Freed padded_authkey DMA buffer padded_authkey_dma_addr=%pad\n",
111                                 &hmac->padded_authkey_dma_addr);
112                         hmac->padded_authkey_dma_addr = 0;
113                         hmac->padded_authkey = NULL;
114                 }
115         }
116 }
117
118 static unsigned int cc_get_aead_hash_len(struct crypto_aead *tfm)
119 {
120         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
121
122         return cc_get_default_hash_len(ctx->drvdata);
123 }
124
125 static int cc_aead_init(struct crypto_aead *tfm)
126 {
127         struct aead_alg *alg = crypto_aead_alg(tfm);
128         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
129         struct cc_crypto_alg *cc_alg =
130                         container_of(alg, struct cc_crypto_alg, aead_alg);
131         struct device *dev = drvdata_to_dev(cc_alg->drvdata);
132
133         dev_dbg(dev, "Initializing context @%p for %s\n", ctx,
134                 crypto_tfm_alg_name(&tfm->base));
135
136         /* Initialize modes in instance */
137         ctx->cipher_mode = cc_alg->cipher_mode;
138         ctx->flow_mode = cc_alg->flow_mode;
139         ctx->auth_mode = cc_alg->auth_mode;
140         ctx->drvdata = cc_alg->drvdata;
141         crypto_aead_set_reqsize(tfm, sizeof(struct aead_req_ctx));
142
143         /* Allocate key buffer, cache line aligned */
144         ctx->enckey = dma_alloc_coherent(dev, AES_MAX_KEY_SIZE,
145                                          &ctx->enckey_dma_addr, GFP_KERNEL);
146         if (!ctx->enckey) {
147                 dev_err(dev, "Failed allocating key buffer\n");
148                 goto init_failed;
149         }
150         dev_dbg(dev, "Allocated enckey buffer in context ctx->enckey=@%p\n",
151                 ctx->enckey);
152
153         /* Set default authlen value */
154
155         if (ctx->auth_mode == DRV_HASH_XCBC_MAC) { /* XCBC authetication */
156                 struct cc_xcbc_s *xcbc = &ctx->auth_state.xcbc;
157                 const unsigned int key_size = CC_AES_128_BIT_KEY_SIZE * 3;
158
159                 /* Allocate dma-coherent buffer for XCBC's K1+K2+K3 */
160                 /* (and temporary for user key - up to 256b) */
161                 xcbc->xcbc_keys = dma_alloc_coherent(dev, key_size,
162                                                      &xcbc->xcbc_keys_dma_addr,
163                                                      GFP_KERNEL);
164                 if (!xcbc->xcbc_keys) {
165                         dev_err(dev, "Failed allocating buffer for XCBC keys\n");
166                         goto init_failed;
167                 }
168         } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC authentication */
169                 struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
170                 const unsigned int digest_size = 2 * MAX_HMAC_DIGEST_SIZE;
171                 dma_addr_t *pkey_dma = &hmac->padded_authkey_dma_addr;
172
173                 /* Allocate dma-coherent buffer for IPAD + OPAD */
174                 hmac->ipad_opad = dma_alloc_coherent(dev, digest_size,
175                                                      &hmac->ipad_opad_dma_addr,
176                                                      GFP_KERNEL);
177
178                 if (!hmac->ipad_opad) {
179                         dev_err(dev, "Failed allocating IPAD/OPAD buffer\n");
180                         goto init_failed;
181                 }
182
183                 dev_dbg(dev, "Allocated authkey buffer in context ctx->authkey=@%p\n",
184                         hmac->ipad_opad);
185
186                 hmac->padded_authkey = dma_alloc_coherent(dev,
187                                                           MAX_HMAC_BLOCK_SIZE,
188                                                           pkey_dma,
189                                                           GFP_KERNEL);
190
191                 if (!hmac->padded_authkey) {
192                         dev_err(dev, "failed to allocate padded_authkey\n");
193                         goto init_failed;
194                 }
195         } else {
196                 ctx->auth_state.hmac.ipad_opad = NULL;
197                 ctx->auth_state.hmac.padded_authkey = NULL;
198         }
199         ctx->hash_len = cc_get_aead_hash_len(tfm);
200
201         return 0;
202
203 init_failed:
204         cc_aead_exit(tfm);
205         return -ENOMEM;
206 }
207
208 static void cc_aead_complete(struct device *dev, void *cc_req, int err)
209 {
210         struct aead_request *areq = (struct aead_request *)cc_req;
211         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
212         struct crypto_aead *tfm = crypto_aead_reqtfm(cc_req);
213         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
214
215         /* BACKLOG notification */
216         if (err == -EINPROGRESS)
217                 goto done;
218
219         cc_unmap_aead_request(dev, areq);
220
221         /* Restore ordinary iv pointer */
222         areq->iv = areq_ctx->backup_iv;
223
224         if (err)
225                 goto done;
226
227         if (areq_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
228                 if (memcmp(areq_ctx->mac_buf, areq_ctx->icv_virt_addr,
229                            ctx->authsize) != 0) {
230                         dev_dbg(dev, "Payload authentication failure, (auth-size=%d, cipher=%d)\n",
231                                 ctx->authsize, ctx->cipher_mode);
232                         /* In case of payload authentication failure, MUST NOT
233                          * revealed the decrypted message --> zero its memory.
234                          */
235                         sg_zero_buffer(areq->dst, sg_nents(areq->dst),
236                                        areq->cryptlen, areq->assoclen);
237                         err = -EBADMSG;
238                 }
239         /*ENCRYPT*/
240         } else if (areq_ctx->is_icv_fragmented) {
241                 u32 skip = areq->cryptlen + areq_ctx->dst_offset;
242
243                 cc_copy_sg_portion(dev, areq_ctx->mac_buf, areq_ctx->dst_sgl,
244                                    skip, (skip + ctx->authsize),
245                                    CC_SG_FROM_BUF);
246         }
247 done:
248         aead_request_complete(areq, err);
249 }
250
251 static unsigned int xcbc_setkey(struct cc_hw_desc *desc,
252                                 struct cc_aead_ctx *ctx)
253 {
254         /* Load the AES key */
255         hw_desc_init(&desc[0]);
256         /* We are using for the source/user key the same buffer
257          * as for the output keys, * because after this key loading it
258          * is not needed anymore
259          */
260         set_din_type(&desc[0], DMA_DLLI,
261                      ctx->auth_state.xcbc.xcbc_keys_dma_addr, ctx->auth_keylen,
262                      NS_BIT);
263         set_cipher_mode(&desc[0], DRV_CIPHER_ECB);
264         set_cipher_config0(&desc[0], DRV_CRYPTO_DIRECTION_ENCRYPT);
265         set_key_size_aes(&desc[0], ctx->auth_keylen);
266         set_flow_mode(&desc[0], S_DIN_to_AES);
267         set_setup_mode(&desc[0], SETUP_LOAD_KEY0);
268
269         hw_desc_init(&desc[1]);
270         set_din_const(&desc[1], 0x01010101, CC_AES_128_BIT_KEY_SIZE);
271         set_flow_mode(&desc[1], DIN_AES_DOUT);
272         set_dout_dlli(&desc[1], ctx->auth_state.xcbc.xcbc_keys_dma_addr,
273                       AES_KEYSIZE_128, NS_BIT, 0);
274
275         hw_desc_init(&desc[2]);
276         set_din_const(&desc[2], 0x02020202, CC_AES_128_BIT_KEY_SIZE);
277         set_flow_mode(&desc[2], DIN_AES_DOUT);
278         set_dout_dlli(&desc[2], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
279                                          + AES_KEYSIZE_128),
280                               AES_KEYSIZE_128, NS_BIT, 0);
281
282         hw_desc_init(&desc[3]);
283         set_din_const(&desc[3], 0x03030303, CC_AES_128_BIT_KEY_SIZE);
284         set_flow_mode(&desc[3], DIN_AES_DOUT);
285         set_dout_dlli(&desc[3], (ctx->auth_state.xcbc.xcbc_keys_dma_addr
286                                           + 2 * AES_KEYSIZE_128),
287                               AES_KEYSIZE_128, NS_BIT, 0);
288
289         return 4;
290 }
291
292 static unsigned int hmac_setkey(struct cc_hw_desc *desc,
293                                 struct cc_aead_ctx *ctx)
294 {
295         unsigned int hmac_pad_const[2] = { HMAC_IPAD_CONST, HMAC_OPAD_CONST };
296         unsigned int digest_ofs = 0;
297         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
298                         DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
299         unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
300                         CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
301         struct cc_hmac_s *hmac = &ctx->auth_state.hmac;
302
303         unsigned int idx = 0;
304         int i;
305
306         /* calc derived HMAC key */
307         for (i = 0; i < 2; i++) {
308                 /* Load hash initial state */
309                 hw_desc_init(&desc[idx]);
310                 set_cipher_mode(&desc[idx], hash_mode);
311                 set_din_sram(&desc[idx],
312                              cc_larval_digest_addr(ctx->drvdata,
313                                                    ctx->auth_mode),
314                              digest_size);
315                 set_flow_mode(&desc[idx], S_DIN_to_HASH);
316                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
317                 idx++;
318
319                 /* Load the hash current length*/
320                 hw_desc_init(&desc[idx]);
321                 set_cipher_mode(&desc[idx], hash_mode);
322                 set_din_const(&desc[idx], 0, ctx->hash_len);
323                 set_flow_mode(&desc[idx], S_DIN_to_HASH);
324                 set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
325                 idx++;
326
327                 /* Prepare ipad key */
328                 hw_desc_init(&desc[idx]);
329                 set_xor_val(&desc[idx], hmac_pad_const[i]);
330                 set_cipher_mode(&desc[idx], hash_mode);
331                 set_flow_mode(&desc[idx], S_DIN_to_HASH);
332                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
333                 idx++;
334
335                 /* Perform HASH update */
336                 hw_desc_init(&desc[idx]);
337                 set_din_type(&desc[idx], DMA_DLLI,
338                              hmac->padded_authkey_dma_addr,
339                              SHA256_BLOCK_SIZE, NS_BIT);
340                 set_cipher_mode(&desc[idx], hash_mode);
341                 set_xor_active(&desc[idx]);
342                 set_flow_mode(&desc[idx], DIN_HASH);
343                 idx++;
344
345                 /* Get the digset */
346                 hw_desc_init(&desc[idx]);
347                 set_cipher_mode(&desc[idx], hash_mode);
348                 set_dout_dlli(&desc[idx],
349                               (hmac->ipad_opad_dma_addr + digest_ofs),
350                               digest_size, NS_BIT, 0);
351                 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
352                 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
353                 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
354                 idx++;
355
356                 digest_ofs += digest_size;
357         }
358
359         return idx;
360 }
361
362 static int validate_keys_sizes(struct cc_aead_ctx *ctx)
363 {
364         struct device *dev = drvdata_to_dev(ctx->drvdata);
365
366         dev_dbg(dev, "enc_keylen=%u  authkeylen=%u\n",
367                 ctx->enc_keylen, ctx->auth_keylen);
368
369         switch (ctx->auth_mode) {
370         case DRV_HASH_SHA1:
371         case DRV_HASH_SHA256:
372                 break;
373         case DRV_HASH_XCBC_MAC:
374                 if (ctx->auth_keylen != AES_KEYSIZE_128 &&
375                     ctx->auth_keylen != AES_KEYSIZE_192 &&
376                     ctx->auth_keylen != AES_KEYSIZE_256)
377                         return -ENOTSUPP;
378                 break;
379         case DRV_HASH_NULL: /* Not authenc (e.g., CCM) - no auth_key) */
380                 if (ctx->auth_keylen > 0)
381                         return -EINVAL;
382                 break;
383         default:
384                 dev_dbg(dev, "Invalid auth_mode=%d\n", ctx->auth_mode);
385                 return -EINVAL;
386         }
387         /* Check cipher key size */
388         if (ctx->flow_mode == S_DIN_to_DES) {
389                 if (ctx->enc_keylen != DES3_EDE_KEY_SIZE) {
390                         dev_dbg(dev, "Invalid cipher(3DES) key size: %u\n",
391                                 ctx->enc_keylen);
392                         return -EINVAL;
393                 }
394         } else { /* Default assumed to be AES ciphers */
395                 if (ctx->enc_keylen != AES_KEYSIZE_128 &&
396                     ctx->enc_keylen != AES_KEYSIZE_192 &&
397                     ctx->enc_keylen != AES_KEYSIZE_256) {
398                         dev_dbg(dev, "Invalid cipher(AES) key size: %u\n",
399                                 ctx->enc_keylen);
400                         return -EINVAL;
401                 }
402         }
403
404         return 0; /* All tests of keys sizes passed */
405 }
406
407 /* This function prepers the user key so it can pass to the hmac processing
408  * (copy to intenral buffer or hash in case of key longer than block
409  */
410 static int cc_get_plain_hmac_key(struct crypto_aead *tfm, const u8 *authkey,
411                                  unsigned int keylen)
412 {
413         dma_addr_t key_dma_addr = 0;
414         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
415         struct device *dev = drvdata_to_dev(ctx->drvdata);
416         u32 larval_addr;
417         struct cc_crypto_req cc_req = {};
418         unsigned int blocksize;
419         unsigned int digestsize;
420         unsigned int hashmode;
421         unsigned int idx = 0;
422         int rc = 0;
423         u8 *key = NULL;
424         struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
425         dma_addr_t padded_authkey_dma_addr =
426                 ctx->auth_state.hmac.padded_authkey_dma_addr;
427
428         switch (ctx->auth_mode) { /* auth_key required and >0 */
429         case DRV_HASH_SHA1:
430                 blocksize = SHA1_BLOCK_SIZE;
431                 digestsize = SHA1_DIGEST_SIZE;
432                 hashmode = DRV_HASH_HW_SHA1;
433                 break;
434         case DRV_HASH_SHA256:
435         default:
436                 blocksize = SHA256_BLOCK_SIZE;
437                 digestsize = SHA256_DIGEST_SIZE;
438                 hashmode = DRV_HASH_HW_SHA256;
439         }
440
441         if (keylen != 0) {
442
443                 key = kmemdup(authkey, keylen, GFP_KERNEL);
444                 if (!key)
445                         return -ENOMEM;
446
447                 key_dma_addr = dma_map_single(dev, key, keylen, DMA_TO_DEVICE);
448                 if (dma_mapping_error(dev, key_dma_addr)) {
449                         dev_err(dev, "Mapping key va=0x%p len=%u for DMA failed\n",
450                                 key, keylen);
451                         kfree_sensitive(key);
452                         return -ENOMEM;
453                 }
454                 if (keylen > blocksize) {
455                         /* Load hash initial state */
456                         hw_desc_init(&desc[idx]);
457                         set_cipher_mode(&desc[idx], hashmode);
458                         larval_addr = cc_larval_digest_addr(ctx->drvdata,
459                                                             ctx->auth_mode);
460                         set_din_sram(&desc[idx], larval_addr, digestsize);
461                         set_flow_mode(&desc[idx], S_DIN_to_HASH);
462                         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
463                         idx++;
464
465                         /* Load the hash current length*/
466                         hw_desc_init(&desc[idx]);
467                         set_cipher_mode(&desc[idx], hashmode);
468                         set_din_const(&desc[idx], 0, ctx->hash_len);
469                         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
470                         set_flow_mode(&desc[idx], S_DIN_to_HASH);
471                         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
472                         idx++;
473
474                         hw_desc_init(&desc[idx]);
475                         set_din_type(&desc[idx], DMA_DLLI,
476                                      key_dma_addr, keylen, NS_BIT);
477                         set_flow_mode(&desc[idx], DIN_HASH);
478                         idx++;
479
480                         /* Get hashed key */
481                         hw_desc_init(&desc[idx]);
482                         set_cipher_mode(&desc[idx], hashmode);
483                         set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
484                                       digestsize, NS_BIT, 0);
485                         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
486                         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
487                         set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
488                         set_cipher_config0(&desc[idx],
489                                            HASH_DIGEST_RESULT_LITTLE_ENDIAN);
490                         idx++;
491
492                         hw_desc_init(&desc[idx]);
493                         set_din_const(&desc[idx], 0, (blocksize - digestsize));
494                         set_flow_mode(&desc[idx], BYPASS);
495                         set_dout_dlli(&desc[idx], (padded_authkey_dma_addr +
496                                       digestsize), (blocksize - digestsize),
497                                       NS_BIT, 0);
498                         idx++;
499                 } else {
500                         hw_desc_init(&desc[idx]);
501                         set_din_type(&desc[idx], DMA_DLLI, key_dma_addr,
502                                      keylen, NS_BIT);
503                         set_flow_mode(&desc[idx], BYPASS);
504                         set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
505                                       keylen, NS_BIT, 0);
506                         idx++;
507
508                         if ((blocksize - keylen) != 0) {
509                                 hw_desc_init(&desc[idx]);
510                                 set_din_const(&desc[idx], 0,
511                                               (blocksize - keylen));
512                                 set_flow_mode(&desc[idx], BYPASS);
513                                 set_dout_dlli(&desc[idx],
514                                               (padded_authkey_dma_addr +
515                                                keylen),
516                                               (blocksize - keylen), NS_BIT, 0);
517                                 idx++;
518                         }
519                 }
520         } else {
521                 hw_desc_init(&desc[idx]);
522                 set_din_const(&desc[idx], 0, (blocksize - keylen));
523                 set_flow_mode(&desc[idx], BYPASS);
524                 set_dout_dlli(&desc[idx], padded_authkey_dma_addr,
525                               blocksize, NS_BIT, 0);
526                 idx++;
527         }
528
529         rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, idx);
530         if (rc)
531                 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
532
533         if (key_dma_addr)
534                 dma_unmap_single(dev, key_dma_addr, keylen, DMA_TO_DEVICE);
535
536         kfree_sensitive(key);
537
538         return rc;
539 }
540
541 static int cc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
542                           unsigned int keylen)
543 {
544         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
545         struct cc_crypto_req cc_req = {};
546         struct cc_hw_desc desc[MAX_AEAD_SETKEY_SEQ];
547         unsigned int seq_len = 0;
548         struct device *dev = drvdata_to_dev(ctx->drvdata);
549         const u8 *enckey, *authkey;
550         int rc;
551
552         dev_dbg(dev, "Setting key in context @%p for %s. key=%p keylen=%u\n",
553                 ctx, crypto_tfm_alg_name(crypto_aead_tfm(tfm)), key, keylen);
554
555         /* STAT_PHASE_0: Init and sanity checks */
556
557         if (ctx->auth_mode != DRV_HASH_NULL) { /* authenc() alg. */
558                 struct crypto_authenc_keys keys;
559
560                 rc = crypto_authenc_extractkeys(&keys, key, keylen);
561                 if (rc)
562                         return rc;
563                 enckey = keys.enckey;
564                 authkey = keys.authkey;
565                 ctx->enc_keylen = keys.enckeylen;
566                 ctx->auth_keylen = keys.authkeylen;
567
568                 if (ctx->cipher_mode == DRV_CIPHER_CTR) {
569                         /* the nonce is stored in bytes at end of key */
570                         if (ctx->enc_keylen <
571                             (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE))
572                                 return -EINVAL;
573                         /* Copy nonce from last 4 bytes in CTR key to
574                          *  first 4 bytes in CTR IV
575                          */
576                         memcpy(ctx->ctr_nonce, enckey + ctx->enc_keylen -
577                                CTR_RFC3686_NONCE_SIZE, CTR_RFC3686_NONCE_SIZE);
578                         /* Set CTR key size */
579                         ctx->enc_keylen -= CTR_RFC3686_NONCE_SIZE;
580                 }
581         } else { /* non-authenc - has just one key */
582                 enckey = key;
583                 authkey = NULL;
584                 ctx->enc_keylen = keylen;
585                 ctx->auth_keylen = 0;
586         }
587
588         rc = validate_keys_sizes(ctx);
589         if (rc)
590                 return rc;
591
592         /* STAT_PHASE_1: Copy key to ctx */
593
594         /* Get key material */
595         memcpy(ctx->enckey, enckey, ctx->enc_keylen);
596         if (ctx->enc_keylen == 24)
597                 memset(ctx->enckey + 24, 0, CC_AES_KEY_SIZE_MAX - 24);
598         if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
599                 memcpy(ctx->auth_state.xcbc.xcbc_keys, authkey,
600                        ctx->auth_keylen);
601         } else if (ctx->auth_mode != DRV_HASH_NULL) { /* HMAC */
602                 rc = cc_get_plain_hmac_key(tfm, authkey, ctx->auth_keylen);
603                 if (rc)
604                         return rc;
605         }
606
607         /* STAT_PHASE_2: Create sequence */
608
609         switch (ctx->auth_mode) {
610         case DRV_HASH_SHA1:
611         case DRV_HASH_SHA256:
612                 seq_len = hmac_setkey(desc, ctx);
613                 break;
614         case DRV_HASH_XCBC_MAC:
615                 seq_len = xcbc_setkey(desc, ctx);
616                 break;
617         case DRV_HASH_NULL: /* non-authenc modes, e.g., CCM */
618                 break; /* No auth. key setup */
619         default:
620                 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
621                 return -ENOTSUPP;
622         }
623
624         /* STAT_PHASE_3: Submit sequence to HW */
625
626         if (seq_len > 0) { /* For CCM there is no sequence to setup the key */
627                 rc = cc_send_sync_request(ctx->drvdata, &cc_req, desc, seq_len);
628                 if (rc) {
629                         dev_err(dev, "send_request() failed (rc=%d)\n", rc);
630                         return rc;
631                 }
632         }
633
634         /* Update STAT_PHASE_3 */
635         return rc;
636 }
637
638 static int cc_des3_aead_setkey(struct crypto_aead *aead, const u8 *key,
639                                unsigned int keylen)
640 {
641         struct crypto_authenc_keys keys;
642         int err;
643
644         err = crypto_authenc_extractkeys(&keys, key, keylen);
645         if (unlikely(err))
646                 return err;
647
648         err = verify_aead_des3_key(aead, keys.enckey, keys.enckeylen) ?:
649               cc_aead_setkey(aead, key, keylen);
650
651         memzero_explicit(&keys, sizeof(keys));
652         return err;
653 }
654
655 static int cc_rfc4309_ccm_setkey(struct crypto_aead *tfm, const u8 *key,
656                                  unsigned int keylen)
657 {
658         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
659
660         if (keylen < 3)
661                 return -EINVAL;
662
663         keylen -= 3;
664         memcpy(ctx->ctr_nonce, key + keylen, 3);
665
666         return cc_aead_setkey(tfm, key, keylen);
667 }
668
669 static int cc_aead_setauthsize(struct crypto_aead *authenc,
670                                unsigned int authsize)
671 {
672         struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
673         struct device *dev = drvdata_to_dev(ctx->drvdata);
674
675         /* Unsupported auth. sizes */
676         if (authsize == 0 ||
677             authsize > crypto_aead_maxauthsize(authenc)) {
678                 return -ENOTSUPP;
679         }
680
681         ctx->authsize = authsize;
682         dev_dbg(dev, "authlen=%d\n", ctx->authsize);
683
684         return 0;
685 }
686
687 static int cc_rfc4309_ccm_setauthsize(struct crypto_aead *authenc,
688                                       unsigned int authsize)
689 {
690         switch (authsize) {
691         case 8:
692         case 12:
693         case 16:
694                 break;
695         default:
696                 return -EINVAL;
697         }
698
699         return cc_aead_setauthsize(authenc, authsize);
700 }
701
702 static int cc_ccm_setauthsize(struct crypto_aead *authenc,
703                               unsigned int authsize)
704 {
705         switch (authsize) {
706         case 4:
707         case 6:
708         case 8:
709         case 10:
710         case 12:
711         case 14:
712         case 16:
713                 break;
714         default:
715                 return -EINVAL;
716         }
717
718         return cc_aead_setauthsize(authenc, authsize);
719 }
720
721 static void cc_set_assoc_desc(struct aead_request *areq, unsigned int flow_mode,
722                               struct cc_hw_desc desc[], unsigned int *seq_size)
723 {
724         struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
725         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
727         enum cc_req_dma_buf_type assoc_dma_type = areq_ctx->assoc_buff_type;
728         unsigned int idx = *seq_size;
729         struct device *dev = drvdata_to_dev(ctx->drvdata);
730
731         switch (assoc_dma_type) {
732         case CC_DMA_BUF_DLLI:
733                 dev_dbg(dev, "ASSOC buffer type DLLI\n");
734                 hw_desc_init(&desc[idx]);
735                 set_din_type(&desc[idx], DMA_DLLI, sg_dma_address(areq->src),
736                              areq_ctx->assoclen, NS_BIT);
737                 set_flow_mode(&desc[idx], flow_mode);
738                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
739                     areq_ctx->cryptlen > 0)
740                         set_din_not_last_indication(&desc[idx]);
741                 break;
742         case CC_DMA_BUF_MLLI:
743                 dev_dbg(dev, "ASSOC buffer type MLLI\n");
744                 hw_desc_init(&desc[idx]);
745                 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->assoc.sram_addr,
746                              areq_ctx->assoc.mlli_nents, NS_BIT);
747                 set_flow_mode(&desc[idx], flow_mode);
748                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC &&
749                     areq_ctx->cryptlen > 0)
750                         set_din_not_last_indication(&desc[idx]);
751                 break;
752         case CC_DMA_BUF_NULL:
753         default:
754                 dev_err(dev, "Invalid ASSOC buffer type\n");
755         }
756
757         *seq_size = (++idx);
758 }
759
760 static void cc_proc_authen_desc(struct aead_request *areq,
761                                 unsigned int flow_mode,
762                                 struct cc_hw_desc desc[],
763                                 unsigned int *seq_size, int direct)
764 {
765         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
766         enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
767         unsigned int idx = *seq_size;
768         struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
769         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
770         struct device *dev = drvdata_to_dev(ctx->drvdata);
771
772         switch (data_dma_type) {
773         case CC_DMA_BUF_DLLI:
774         {
775                 struct scatterlist *cipher =
776                         (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
777                         areq_ctx->dst_sgl : areq_ctx->src_sgl;
778
779                 unsigned int offset =
780                         (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ?
781                         areq_ctx->dst_offset : areq_ctx->src_offset;
782                 dev_dbg(dev, "AUTHENC: SRC/DST buffer type DLLI\n");
783                 hw_desc_init(&desc[idx]);
784                 set_din_type(&desc[idx], DMA_DLLI,
785                              (sg_dma_address(cipher) + offset),
786                              areq_ctx->cryptlen, NS_BIT);
787                 set_flow_mode(&desc[idx], flow_mode);
788                 break;
789         }
790         case CC_DMA_BUF_MLLI:
791         {
792                 /* DOUBLE-PASS flow (as default)
793                  * assoc. + iv + data -compact in one table
794                  * if assoclen is ZERO only IV perform
795                  */
796                 u32 mlli_addr = areq_ctx->assoc.sram_addr;
797                 u32 mlli_nents = areq_ctx->assoc.mlli_nents;
798
799                 if (areq_ctx->is_single_pass) {
800                         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
801                                 mlli_addr = areq_ctx->dst.sram_addr;
802                                 mlli_nents = areq_ctx->dst.mlli_nents;
803                         } else {
804                                 mlli_addr = areq_ctx->src.sram_addr;
805                                 mlli_nents = areq_ctx->src.mlli_nents;
806                         }
807                 }
808
809                 dev_dbg(dev, "AUTHENC: SRC/DST buffer type MLLI\n");
810                 hw_desc_init(&desc[idx]);
811                 set_din_type(&desc[idx], DMA_MLLI, mlli_addr, mlli_nents,
812                              NS_BIT);
813                 set_flow_mode(&desc[idx], flow_mode);
814                 break;
815         }
816         case CC_DMA_BUF_NULL:
817         default:
818                 dev_err(dev, "AUTHENC: Invalid SRC/DST buffer type\n");
819         }
820
821         *seq_size = (++idx);
822 }
823
824 static void cc_proc_cipher_desc(struct aead_request *areq,
825                                 unsigned int flow_mode,
826                                 struct cc_hw_desc desc[],
827                                 unsigned int *seq_size)
828 {
829         unsigned int idx = *seq_size;
830         struct aead_req_ctx *areq_ctx = aead_request_ctx(areq);
831         enum cc_req_dma_buf_type data_dma_type = areq_ctx->data_buff_type;
832         struct crypto_aead *tfm = crypto_aead_reqtfm(areq);
833         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
834         struct device *dev = drvdata_to_dev(ctx->drvdata);
835
836         if (areq_ctx->cryptlen == 0)
837                 return; /*null processing*/
838
839         switch (data_dma_type) {
840         case CC_DMA_BUF_DLLI:
841                 dev_dbg(dev, "CIPHER: SRC/DST buffer type DLLI\n");
842                 hw_desc_init(&desc[idx]);
843                 set_din_type(&desc[idx], DMA_DLLI,
844                              (sg_dma_address(areq_ctx->src_sgl) +
845                               areq_ctx->src_offset), areq_ctx->cryptlen,
846                               NS_BIT);
847                 set_dout_dlli(&desc[idx],
848                               (sg_dma_address(areq_ctx->dst_sgl) +
849                                areq_ctx->dst_offset),
850                               areq_ctx->cryptlen, NS_BIT, 0);
851                 set_flow_mode(&desc[idx], flow_mode);
852                 break;
853         case CC_DMA_BUF_MLLI:
854                 dev_dbg(dev, "CIPHER: SRC/DST buffer type MLLI\n");
855                 hw_desc_init(&desc[idx]);
856                 set_din_type(&desc[idx], DMA_MLLI, areq_ctx->src.sram_addr,
857                              areq_ctx->src.mlli_nents, NS_BIT);
858                 set_dout_mlli(&desc[idx], areq_ctx->dst.sram_addr,
859                               areq_ctx->dst.mlli_nents, NS_BIT, 0);
860                 set_flow_mode(&desc[idx], flow_mode);
861                 break;
862         case CC_DMA_BUF_NULL:
863         default:
864                 dev_err(dev, "CIPHER: Invalid SRC/DST buffer type\n");
865         }
866
867         *seq_size = (++idx);
868 }
869
870 static void cc_proc_digest_desc(struct aead_request *req,
871                                 struct cc_hw_desc desc[],
872                                 unsigned int *seq_size)
873 {
874         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
875         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
876         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
877         unsigned int idx = *seq_size;
878         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
879                                 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
880         int direct = req_ctx->gen_ctx.op_type;
881
882         /* Get final ICV result */
883         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
884                 hw_desc_init(&desc[idx]);
885                 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
886                 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
887                 set_dout_dlli(&desc[idx], req_ctx->icv_dma_addr, ctx->authsize,
888                               NS_BIT, 1);
889                 set_queue_last_ind(ctx->drvdata, &desc[idx]);
890                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
891                         set_aes_not_hash_mode(&desc[idx]);
892                         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
893                 } else {
894                         set_cipher_config0(&desc[idx],
895                                            HASH_DIGEST_RESULT_LITTLE_ENDIAN);
896                         set_cipher_mode(&desc[idx], hash_mode);
897                 }
898         } else { /*Decrypt*/
899                 /* Get ICV out from hardware */
900                 hw_desc_init(&desc[idx]);
901                 set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
902                 set_flow_mode(&desc[idx], S_HASH_to_DOUT);
903                 set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr,
904                               ctx->authsize, NS_BIT, 1);
905                 set_queue_last_ind(ctx->drvdata, &desc[idx]);
906                 set_cipher_config0(&desc[idx],
907                                    HASH_DIGEST_RESULT_LITTLE_ENDIAN);
908                 set_cipher_config1(&desc[idx], HASH_PADDING_DISABLED);
909                 if (ctx->auth_mode == DRV_HASH_XCBC_MAC) {
910                         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
911                         set_aes_not_hash_mode(&desc[idx]);
912                 } else {
913                         set_cipher_mode(&desc[idx], hash_mode);
914                 }
915         }
916
917         *seq_size = (++idx);
918 }
919
920 static void cc_set_cipher_desc(struct aead_request *req,
921                                struct cc_hw_desc desc[],
922                                unsigned int *seq_size)
923 {
924         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
925         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
926         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
927         unsigned int hw_iv_size = req_ctx->hw_iv_size;
928         unsigned int idx = *seq_size;
929         int direct = req_ctx->gen_ctx.op_type;
930
931         /* Setup cipher state */
932         hw_desc_init(&desc[idx]);
933         set_cipher_config0(&desc[idx], direct);
934         set_flow_mode(&desc[idx], ctx->flow_mode);
935         set_din_type(&desc[idx], DMA_DLLI, req_ctx->gen_ctx.iv_dma_addr,
936                      hw_iv_size, NS_BIT);
937         if (ctx->cipher_mode == DRV_CIPHER_CTR)
938                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
939         else
940                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
941         set_cipher_mode(&desc[idx], ctx->cipher_mode);
942         idx++;
943
944         /* Setup enc. key */
945         hw_desc_init(&desc[idx]);
946         set_cipher_config0(&desc[idx], direct);
947         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
948         set_flow_mode(&desc[idx], ctx->flow_mode);
949         if (ctx->flow_mode == S_DIN_to_AES) {
950                 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
951                              ((ctx->enc_keylen == 24) ? CC_AES_KEY_SIZE_MAX :
952                               ctx->enc_keylen), NS_BIT);
953                 set_key_size_aes(&desc[idx], ctx->enc_keylen);
954         } else {
955                 set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
956                              ctx->enc_keylen, NS_BIT);
957                 set_key_size_des(&desc[idx], ctx->enc_keylen);
958         }
959         set_cipher_mode(&desc[idx], ctx->cipher_mode);
960         idx++;
961
962         *seq_size = idx;
963 }
964
965 static void cc_proc_cipher(struct aead_request *req, struct cc_hw_desc desc[],
966                            unsigned int *seq_size, unsigned int data_flow_mode)
967 {
968         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
969         int direct = req_ctx->gen_ctx.op_type;
970         unsigned int idx = *seq_size;
971
972         if (req_ctx->cryptlen == 0)
973                 return; /*null processing*/
974
975         cc_set_cipher_desc(req, desc, &idx);
976         cc_proc_cipher_desc(req, data_flow_mode, desc, &idx);
977         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
978                 /* We must wait for DMA to write all cipher */
979                 hw_desc_init(&desc[idx]);
980                 set_din_no_dma(&desc[idx], 0, 0xfffff0);
981                 set_dout_no_dma(&desc[idx], 0, 0, 1);
982                 idx++;
983         }
984
985         *seq_size = idx;
986 }
987
988 static void cc_set_hmac_desc(struct aead_request *req, struct cc_hw_desc desc[],
989                              unsigned int *seq_size)
990 {
991         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
993         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
994                                 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
995         unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
996                                 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
997         unsigned int idx = *seq_size;
998
999         /* Loading hash ipad xor key state */
1000         hw_desc_init(&desc[idx]);
1001         set_cipher_mode(&desc[idx], hash_mode);
1002         set_din_type(&desc[idx], DMA_DLLI,
1003                      ctx->auth_state.hmac.ipad_opad_dma_addr, digest_size,
1004                      NS_BIT);
1005         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1006         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1007         idx++;
1008
1009         /* Load init. digest len (64 bytes) */
1010         hw_desc_init(&desc[idx]);
1011         set_cipher_mode(&desc[idx], hash_mode);
1012         set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1013                      ctx->hash_len);
1014         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1015         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1016         idx++;
1017
1018         *seq_size = idx;
1019 }
1020
1021 static void cc_set_xcbc_desc(struct aead_request *req, struct cc_hw_desc desc[],
1022                              unsigned int *seq_size)
1023 {
1024         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1025         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1026         unsigned int idx = *seq_size;
1027
1028         /* Loading MAC state */
1029         hw_desc_init(&desc[idx]);
1030         set_din_const(&desc[idx], 0, CC_AES_BLOCK_SIZE);
1031         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1032         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1033         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1034         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1035         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1036         set_aes_not_hash_mode(&desc[idx]);
1037         idx++;
1038
1039         /* Setup XCBC MAC K1 */
1040         hw_desc_init(&desc[idx]);
1041         set_din_type(&desc[idx], DMA_DLLI,
1042                      ctx->auth_state.xcbc.xcbc_keys_dma_addr,
1043                      AES_KEYSIZE_128, NS_BIT);
1044         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1045         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1046         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1047         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1048         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1049         set_aes_not_hash_mode(&desc[idx]);
1050         idx++;
1051
1052         /* Setup XCBC MAC K2 */
1053         hw_desc_init(&desc[idx]);
1054         set_din_type(&desc[idx], DMA_DLLI,
1055                      (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1056                       AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1057         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1058         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1059         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1060         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1061         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1062         set_aes_not_hash_mode(&desc[idx]);
1063         idx++;
1064
1065         /* Setup XCBC MAC K3 */
1066         hw_desc_init(&desc[idx]);
1067         set_din_type(&desc[idx], DMA_DLLI,
1068                      (ctx->auth_state.xcbc.xcbc_keys_dma_addr +
1069                       2 * AES_KEYSIZE_128), AES_KEYSIZE_128, NS_BIT);
1070         set_setup_mode(&desc[idx], SETUP_LOAD_STATE2);
1071         set_cipher_mode(&desc[idx], DRV_CIPHER_XCBC_MAC);
1072         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1073         set_key_size_aes(&desc[idx], CC_AES_128_BIT_KEY_SIZE);
1074         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1075         set_aes_not_hash_mode(&desc[idx]);
1076         idx++;
1077
1078         *seq_size = idx;
1079 }
1080
1081 static void cc_proc_header_desc(struct aead_request *req,
1082                                 struct cc_hw_desc desc[],
1083                                 unsigned int *seq_size)
1084 {
1085         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1086         unsigned int idx = *seq_size;
1087
1088         /* Hash associated data */
1089         if (areq_ctx->assoclen > 0)
1090                 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1091
1092         /* Hash IV */
1093         *seq_size = idx;
1094 }
1095
1096 static void cc_proc_scheme_desc(struct aead_request *req,
1097                                 struct cc_hw_desc desc[],
1098                                 unsigned int *seq_size)
1099 {
1100         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1101         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1102         struct cc_aead_handle *aead_handle = ctx->drvdata->aead_handle;
1103         unsigned int hash_mode = (ctx->auth_mode == DRV_HASH_SHA1) ?
1104                                 DRV_HASH_HW_SHA1 : DRV_HASH_HW_SHA256;
1105         unsigned int digest_size = (ctx->auth_mode == DRV_HASH_SHA1) ?
1106                                 CC_SHA1_DIGEST_SIZE : CC_SHA256_DIGEST_SIZE;
1107         unsigned int idx = *seq_size;
1108
1109         hw_desc_init(&desc[idx]);
1110         set_cipher_mode(&desc[idx], hash_mode);
1111         set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1112                       ctx->hash_len);
1113         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1114         set_setup_mode(&desc[idx], SETUP_WRITE_STATE1);
1115         set_cipher_do(&desc[idx], DO_PAD);
1116         idx++;
1117
1118         /* Get final ICV result */
1119         hw_desc_init(&desc[idx]);
1120         set_dout_sram(&desc[idx], aead_handle->sram_workspace_addr,
1121                       digest_size);
1122         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1123         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1124         set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1125         set_cipher_mode(&desc[idx], hash_mode);
1126         idx++;
1127
1128         /* Loading hash opad xor key state */
1129         hw_desc_init(&desc[idx]);
1130         set_cipher_mode(&desc[idx], hash_mode);
1131         set_din_type(&desc[idx], DMA_DLLI,
1132                      (ctx->auth_state.hmac.ipad_opad_dma_addr + digest_size),
1133                      digest_size, NS_BIT);
1134         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1135         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1136         idx++;
1137
1138         /* Load init. digest len (64 bytes) */
1139         hw_desc_init(&desc[idx]);
1140         set_cipher_mode(&desc[idx], hash_mode);
1141         set_din_sram(&desc[idx], cc_digest_len_addr(ctx->drvdata, hash_mode),
1142                      ctx->hash_len);
1143         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1144         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1145         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1146         idx++;
1147
1148         /* Perform HASH update */
1149         hw_desc_init(&desc[idx]);
1150         set_din_sram(&desc[idx], aead_handle->sram_workspace_addr,
1151                      digest_size);
1152         set_flow_mode(&desc[idx], DIN_HASH);
1153         idx++;
1154
1155         *seq_size = idx;
1156 }
1157
1158 static void cc_mlli_to_sram(struct aead_request *req,
1159                             struct cc_hw_desc desc[], unsigned int *seq_size)
1160 {
1161         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1162         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1163         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1164         struct device *dev = drvdata_to_dev(ctx->drvdata);
1165
1166         if ((req_ctx->assoc_buff_type == CC_DMA_BUF_MLLI ||
1167             req_ctx->data_buff_type == CC_DMA_BUF_MLLI ||
1168             !req_ctx->is_single_pass) && req_ctx->mlli_params.mlli_len) {
1169                 dev_dbg(dev, "Copy-to-sram: mlli_dma=%08x, mlli_size=%u\n",
1170                         ctx->drvdata->mlli_sram_addr,
1171                         req_ctx->mlli_params.mlli_len);
1172                 /* Copy MLLI table host-to-sram */
1173                 hw_desc_init(&desc[*seq_size]);
1174                 set_din_type(&desc[*seq_size], DMA_DLLI,
1175                              req_ctx->mlli_params.mlli_dma_addr,
1176                              req_ctx->mlli_params.mlli_len, NS_BIT);
1177                 set_dout_sram(&desc[*seq_size],
1178                               ctx->drvdata->mlli_sram_addr,
1179                               req_ctx->mlli_params.mlli_len);
1180                 set_flow_mode(&desc[*seq_size], BYPASS);
1181                 (*seq_size)++;
1182         }
1183 }
1184
1185 static enum cc_flow_mode cc_get_data_flow(enum drv_crypto_direction direct,
1186                                           enum cc_flow_mode setup_flow_mode,
1187                                           bool is_single_pass)
1188 {
1189         enum cc_flow_mode data_flow_mode;
1190
1191         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1192                 if (setup_flow_mode == S_DIN_to_AES)
1193                         data_flow_mode = is_single_pass ?
1194                                 AES_to_HASH_and_DOUT : DIN_AES_DOUT;
1195                 else
1196                         data_flow_mode = is_single_pass ?
1197                                 DES_to_HASH_and_DOUT : DIN_DES_DOUT;
1198         } else { /* Decrypt */
1199                 if (setup_flow_mode == S_DIN_to_AES)
1200                         data_flow_mode = is_single_pass ?
1201                                 AES_and_HASH : DIN_AES_DOUT;
1202                 else
1203                         data_flow_mode = is_single_pass ?
1204                                 DES_and_HASH : DIN_DES_DOUT;
1205         }
1206
1207         return data_flow_mode;
1208 }
1209
1210 static void cc_hmac_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1211                             unsigned int *seq_size)
1212 {
1213         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1214         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1215         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1216         int direct = req_ctx->gen_ctx.op_type;
1217         unsigned int data_flow_mode =
1218                 cc_get_data_flow(direct, ctx->flow_mode,
1219                                  req_ctx->is_single_pass);
1220
1221         if (req_ctx->is_single_pass) {
1222                 /*
1223                  * Single-pass flow
1224                  */
1225                 cc_set_hmac_desc(req, desc, seq_size);
1226                 cc_set_cipher_desc(req, desc, seq_size);
1227                 cc_proc_header_desc(req, desc, seq_size);
1228                 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1229                 cc_proc_scheme_desc(req, desc, seq_size);
1230                 cc_proc_digest_desc(req, desc, seq_size);
1231                 return;
1232         }
1233
1234         /*
1235          * Double-pass flow
1236          * Fallback for unsupported single-pass modes,
1237          * i.e. using assoc. data of non-word-multiple
1238          */
1239         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1240                 /* encrypt first.. */
1241                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1242                 /* authenc after..*/
1243                 cc_set_hmac_desc(req, desc, seq_size);
1244                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1245                 cc_proc_scheme_desc(req, desc, seq_size);
1246                 cc_proc_digest_desc(req, desc, seq_size);
1247
1248         } else { /*DECRYPT*/
1249                 /* authenc first..*/
1250                 cc_set_hmac_desc(req, desc, seq_size);
1251                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1252                 cc_proc_scheme_desc(req, desc, seq_size);
1253                 /* decrypt after.. */
1254                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1255                 /* read the digest result with setting the completion bit
1256                  * must be after the cipher operation
1257                  */
1258                 cc_proc_digest_desc(req, desc, seq_size);
1259         }
1260 }
1261
1262 static void
1263 cc_xcbc_authenc(struct aead_request *req, struct cc_hw_desc desc[],
1264                 unsigned int *seq_size)
1265 {
1266         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1267         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1268         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1269         int direct = req_ctx->gen_ctx.op_type;
1270         unsigned int data_flow_mode =
1271                 cc_get_data_flow(direct, ctx->flow_mode,
1272                                  req_ctx->is_single_pass);
1273
1274         if (req_ctx->is_single_pass) {
1275                 /*
1276                  * Single-pass flow
1277                  */
1278                 cc_set_xcbc_desc(req, desc, seq_size);
1279                 cc_set_cipher_desc(req, desc, seq_size);
1280                 cc_proc_header_desc(req, desc, seq_size);
1281                 cc_proc_cipher_desc(req, data_flow_mode, desc, seq_size);
1282                 cc_proc_digest_desc(req, desc, seq_size);
1283                 return;
1284         }
1285
1286         /*
1287          * Double-pass flow
1288          * Fallback for unsupported single-pass modes,
1289          * i.e. using assoc. data of non-word-multiple
1290          */
1291         if (direct == DRV_CRYPTO_DIRECTION_ENCRYPT) {
1292                 /* encrypt first.. */
1293                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1294                 /* authenc after.. */
1295                 cc_set_xcbc_desc(req, desc, seq_size);
1296                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1297                 cc_proc_digest_desc(req, desc, seq_size);
1298         } else { /*DECRYPT*/
1299                 /* authenc first.. */
1300                 cc_set_xcbc_desc(req, desc, seq_size);
1301                 cc_proc_authen_desc(req, DIN_HASH, desc, seq_size, direct);
1302                 /* decrypt after..*/
1303                 cc_proc_cipher(req, desc, seq_size, data_flow_mode);
1304                 /* read the digest result with setting the completion bit
1305                  * must be after the cipher operation
1306                  */
1307                 cc_proc_digest_desc(req, desc, seq_size);
1308         }
1309 }
1310
1311 static int validate_data_size(struct cc_aead_ctx *ctx,
1312                               enum drv_crypto_direction direct,
1313                               struct aead_request *req)
1314 {
1315         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1316         struct device *dev = drvdata_to_dev(ctx->drvdata);
1317         unsigned int assoclen = areq_ctx->assoclen;
1318         unsigned int cipherlen = (direct == DRV_CRYPTO_DIRECTION_DECRYPT) ?
1319                         (req->cryptlen - ctx->authsize) : req->cryptlen;
1320
1321         if (direct == DRV_CRYPTO_DIRECTION_DECRYPT &&
1322             req->cryptlen < ctx->authsize)
1323                 goto data_size_err;
1324
1325         areq_ctx->is_single_pass = true; /*defaulted to fast flow*/
1326
1327         switch (ctx->flow_mode) {
1328         case S_DIN_to_AES:
1329                 if (ctx->cipher_mode == DRV_CIPHER_CBC &&
1330                     !IS_ALIGNED(cipherlen, AES_BLOCK_SIZE))
1331                         goto data_size_err;
1332                 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1333                         break;
1334                 if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1335                         if (areq_ctx->plaintext_authenticate_only)
1336                                 areq_ctx->is_single_pass = false;
1337                         break;
1338                 }
1339
1340                 if (!IS_ALIGNED(assoclen, sizeof(u32)))
1341                         areq_ctx->is_single_pass = false;
1342
1343                 if (ctx->cipher_mode == DRV_CIPHER_CTR &&
1344                     !IS_ALIGNED(cipherlen, sizeof(u32)))
1345                         areq_ctx->is_single_pass = false;
1346
1347                 break;
1348         case S_DIN_to_DES:
1349                 if (!IS_ALIGNED(cipherlen, DES_BLOCK_SIZE))
1350                         goto data_size_err;
1351                 if (!IS_ALIGNED(assoclen, DES_BLOCK_SIZE))
1352                         areq_ctx->is_single_pass = false;
1353                 break;
1354         default:
1355                 dev_err(dev, "Unexpected flow mode (%d)\n", ctx->flow_mode);
1356                 goto data_size_err;
1357         }
1358
1359         return 0;
1360
1361 data_size_err:
1362         return -EINVAL;
1363 }
1364
1365 static unsigned int format_ccm_a0(u8 *pa0_buff, u32 header_size)
1366 {
1367         unsigned int len = 0;
1368
1369         if (header_size == 0)
1370                 return 0;
1371
1372         if (header_size < ((1UL << 16) - (1UL << 8))) {
1373                 len = 2;
1374
1375                 pa0_buff[0] = (header_size >> 8) & 0xFF;
1376                 pa0_buff[1] = header_size & 0xFF;
1377         } else {
1378                 len = 6;
1379
1380                 pa0_buff[0] = 0xFF;
1381                 pa0_buff[1] = 0xFE;
1382                 pa0_buff[2] = (header_size >> 24) & 0xFF;
1383                 pa0_buff[3] = (header_size >> 16) & 0xFF;
1384                 pa0_buff[4] = (header_size >> 8) & 0xFF;
1385                 pa0_buff[5] = header_size & 0xFF;
1386         }
1387
1388         return len;
1389 }
1390
1391 static int set_msg_len(u8 *block, unsigned int msglen, unsigned int csize)
1392 {
1393         __be32 data;
1394
1395         memset(block, 0, csize);
1396         block += csize;
1397
1398         if (csize >= 4)
1399                 csize = 4;
1400         else if (msglen > (1 << (8 * csize)))
1401                 return -EOVERFLOW;
1402
1403         data = cpu_to_be32(msglen);
1404         memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
1405
1406         return 0;
1407 }
1408
1409 static int cc_ccm(struct aead_request *req, struct cc_hw_desc desc[],
1410                   unsigned int *seq_size)
1411 {
1412         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1413         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1414         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1415         unsigned int idx = *seq_size;
1416         unsigned int cipher_flow_mode;
1417         dma_addr_t mac_result;
1418
1419         if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1420                 cipher_flow_mode = AES_to_HASH_and_DOUT;
1421                 mac_result = req_ctx->mac_buf_dma_addr;
1422         } else { /* Encrypt */
1423                 cipher_flow_mode = AES_and_HASH;
1424                 mac_result = req_ctx->icv_dma_addr;
1425         }
1426
1427         /* load key */
1428         hw_desc_init(&desc[idx]);
1429         set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1430         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1431                      ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1432                       ctx->enc_keylen), NS_BIT);
1433         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1434         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1435         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1436         set_flow_mode(&desc[idx], S_DIN_to_AES);
1437         idx++;
1438
1439         /* load ctr state */
1440         hw_desc_init(&desc[idx]);
1441         set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1442         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1443         set_din_type(&desc[idx], DMA_DLLI,
1444                      req_ctx->gen_ctx.iv_dma_addr, AES_BLOCK_SIZE, NS_BIT);
1445         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1446         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1447         set_flow_mode(&desc[idx], S_DIN_to_AES);
1448         idx++;
1449
1450         /* load MAC key */
1451         hw_desc_init(&desc[idx]);
1452         set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1453         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1454                      ((ctx->enc_keylen == 24) ?  CC_AES_KEY_SIZE_MAX :
1455                       ctx->enc_keylen), NS_BIT);
1456         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1457         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1458         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1459         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1460         set_aes_not_hash_mode(&desc[idx]);
1461         idx++;
1462
1463         /* load MAC state */
1464         hw_desc_init(&desc[idx]);
1465         set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1466         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1467         set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1468                      AES_BLOCK_SIZE, NS_BIT);
1469         set_cipher_config0(&desc[idx], DESC_DIRECTION_ENCRYPT_ENCRYPT);
1470         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1471         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1472         set_aes_not_hash_mode(&desc[idx]);
1473         idx++;
1474
1475         /* process assoc data */
1476         if (req_ctx->assoclen > 0) {
1477                 cc_set_assoc_desc(req, DIN_HASH, desc, &idx);
1478         } else {
1479                 hw_desc_init(&desc[idx]);
1480                 set_din_type(&desc[idx], DMA_DLLI,
1481                              sg_dma_address(&req_ctx->ccm_adata_sg),
1482                              AES_BLOCK_SIZE + req_ctx->ccm_hdr_size, NS_BIT);
1483                 set_flow_mode(&desc[idx], DIN_HASH);
1484                 idx++;
1485         }
1486
1487         /* process the cipher */
1488         if (req_ctx->cryptlen)
1489                 cc_proc_cipher_desc(req, cipher_flow_mode, desc, &idx);
1490
1491         /* Read temporal MAC */
1492         hw_desc_init(&desc[idx]);
1493         set_cipher_mode(&desc[idx], DRV_CIPHER_CBC_MAC);
1494         set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, ctx->authsize,
1495                       NS_BIT, 0);
1496         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1497         set_cipher_config0(&desc[idx], HASH_DIGEST_RESULT_LITTLE_ENDIAN);
1498         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1499         set_aes_not_hash_mode(&desc[idx]);
1500         idx++;
1501
1502         /* load AES-CTR state (for last MAC calculation)*/
1503         hw_desc_init(&desc[idx]);
1504         set_cipher_mode(&desc[idx], DRV_CIPHER_CTR);
1505         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1506         set_din_type(&desc[idx], DMA_DLLI, req_ctx->ccm_iv0_dma_addr,
1507                      AES_BLOCK_SIZE, NS_BIT);
1508         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1509         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1510         set_flow_mode(&desc[idx], S_DIN_to_AES);
1511         idx++;
1512
1513         hw_desc_init(&desc[idx]);
1514         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1515         set_dout_no_dma(&desc[idx], 0, 0, 1);
1516         idx++;
1517
1518         /* encrypt the "T" value and store MAC in mac_state */
1519         hw_desc_init(&desc[idx]);
1520         set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1521                      ctx->authsize, NS_BIT);
1522         set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1523         set_queue_last_ind(ctx->drvdata, &desc[idx]);
1524         set_flow_mode(&desc[idx], DIN_AES_DOUT);
1525         idx++;
1526
1527         *seq_size = idx;
1528         return 0;
1529 }
1530
1531 static int config_ccm_adata(struct aead_request *req)
1532 {
1533         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1534         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1535         struct device *dev = drvdata_to_dev(ctx->drvdata);
1536         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1537         //unsigned int size_of_a = 0, rem_a_size = 0;
1538         unsigned int lp = req->iv[0];
1539         /* Note: The code assume that req->iv[0] already contains the value
1540          * of L' of RFC3610
1541          */
1542         unsigned int l = lp + 1;  /* This is L' of RFC 3610. */
1543         unsigned int m = ctx->authsize;  /* This is M' of RFC 3610. */
1544         u8 *b0 = req_ctx->ccm_config + CCM_B0_OFFSET;
1545         u8 *a0 = req_ctx->ccm_config + CCM_A0_OFFSET;
1546         u8 *ctr_count_0 = req_ctx->ccm_config + CCM_CTR_COUNT_0_OFFSET;
1547         unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1548                                  DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1549                                 req->cryptlen :
1550                                 (req->cryptlen - ctx->authsize);
1551         int rc;
1552
1553         memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1554         memset(req_ctx->ccm_config, 0, AES_BLOCK_SIZE * 3);
1555
1556         /* taken from crypto/ccm.c */
1557         /* 2 <= L <= 8, so 1 <= L' <= 7. */
1558         if (l < 2 || l > 8) {
1559                 dev_dbg(dev, "illegal iv value %X\n", req->iv[0]);
1560                 return -EINVAL;
1561         }
1562         memcpy(b0, req->iv, AES_BLOCK_SIZE);
1563
1564         /* format control info per RFC 3610 and
1565          * NIST Special Publication 800-38C
1566          */
1567         *b0 |= (8 * ((m - 2) / 2));
1568         if (req_ctx->assoclen > 0)
1569                 *b0 |= 64;  /* Enable bit 6 if Adata exists. */
1570
1571         rc = set_msg_len(b0 + 16 - l, cryptlen, l);  /* Write L'. */
1572         if (rc) {
1573                 dev_err(dev, "message len overflow detected");
1574                 return rc;
1575         }
1576          /* END of "taken from crypto/ccm.c" */
1577
1578         /* l(a) - size of associated data. */
1579         req_ctx->ccm_hdr_size = format_ccm_a0(a0, req_ctx->assoclen);
1580
1581         memset(req->iv + 15 - req->iv[0], 0, req->iv[0] + 1);
1582         req->iv[15] = 1;
1583
1584         memcpy(ctr_count_0, req->iv, AES_BLOCK_SIZE);
1585         ctr_count_0[15] = 0;
1586
1587         return 0;
1588 }
1589
1590 static void cc_proc_rfc4309_ccm(struct aead_request *req)
1591 {
1592         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1593         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1594         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1595
1596         /* L' */
1597         memset(areq_ctx->ctr_iv, 0, AES_BLOCK_SIZE);
1598         /* For RFC 4309, always use 4 bytes for message length
1599          * (at most 2^32-1 bytes).
1600          */
1601         areq_ctx->ctr_iv[0] = 3;
1602
1603         /* In RFC 4309 there is an 11-bytes nonce+IV part,
1604          * that we build here.
1605          */
1606         memcpy(areq_ctx->ctr_iv + CCM_BLOCK_NONCE_OFFSET, ctx->ctr_nonce,
1607                CCM_BLOCK_NONCE_SIZE);
1608         memcpy(areq_ctx->ctr_iv + CCM_BLOCK_IV_OFFSET, req->iv,
1609                CCM_BLOCK_IV_SIZE);
1610         req->iv = areq_ctx->ctr_iv;
1611 }
1612
1613 static void cc_set_ghash_desc(struct aead_request *req,
1614                               struct cc_hw_desc desc[], unsigned int *seq_size)
1615 {
1616         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1617         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1618         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1619         unsigned int idx = *seq_size;
1620
1621         /* load key to AES*/
1622         hw_desc_init(&desc[idx]);
1623         set_cipher_mode(&desc[idx], DRV_CIPHER_ECB);
1624         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1625         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1626                      ctx->enc_keylen, NS_BIT);
1627         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1628         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1629         set_flow_mode(&desc[idx], S_DIN_to_AES);
1630         idx++;
1631
1632         /* process one zero block to generate hkey */
1633         hw_desc_init(&desc[idx]);
1634         set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1635         set_dout_dlli(&desc[idx], req_ctx->hkey_dma_addr, AES_BLOCK_SIZE,
1636                       NS_BIT, 0);
1637         set_flow_mode(&desc[idx], DIN_AES_DOUT);
1638         idx++;
1639
1640         /* Memory Barrier */
1641         hw_desc_init(&desc[idx]);
1642         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1643         set_dout_no_dma(&desc[idx], 0, 0, 1);
1644         idx++;
1645
1646         /* Load GHASH subkey */
1647         hw_desc_init(&desc[idx]);
1648         set_din_type(&desc[idx], DMA_DLLI, req_ctx->hkey_dma_addr,
1649                      AES_BLOCK_SIZE, NS_BIT);
1650         set_dout_no_dma(&desc[idx], 0, 0, 1);
1651         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1652         set_aes_not_hash_mode(&desc[idx]);
1653         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1654         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1655         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1656         idx++;
1657
1658         /* Configure Hash Engine to work with GHASH.
1659          * Since it was not possible to extend HASH submodes to add GHASH,
1660          * The following command is necessary in order to
1661          * select GHASH (according to HW designers)
1662          */
1663         hw_desc_init(&desc[idx]);
1664         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1665         set_dout_no_dma(&desc[idx], 0, 0, 1);
1666         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1667         set_aes_not_hash_mode(&desc[idx]);
1668         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1669         set_cipher_do(&desc[idx], 1); //1=AES_SK RKEK
1670         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1671         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1672         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1673         idx++;
1674
1675         /* Load GHASH initial STATE (which is 0). (for any hash there is an
1676          * initial state)
1677          */
1678         hw_desc_init(&desc[idx]);
1679         set_din_const(&desc[idx], 0x0, AES_BLOCK_SIZE);
1680         set_dout_no_dma(&desc[idx], 0, 0, 1);
1681         set_flow_mode(&desc[idx], S_DIN_to_HASH);
1682         set_aes_not_hash_mode(&desc[idx]);
1683         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1684         set_cipher_config1(&desc[idx], HASH_PADDING_ENABLED);
1685         set_setup_mode(&desc[idx], SETUP_LOAD_STATE0);
1686         idx++;
1687
1688         *seq_size = idx;
1689 }
1690
1691 static void cc_set_gctr_desc(struct aead_request *req, struct cc_hw_desc desc[],
1692                              unsigned int *seq_size)
1693 {
1694         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1695         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1696         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1697         unsigned int idx = *seq_size;
1698
1699         /* load key to AES*/
1700         hw_desc_init(&desc[idx]);
1701         set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1702         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1703         set_din_type(&desc[idx], DMA_DLLI, ctx->enckey_dma_addr,
1704                      ctx->enc_keylen, NS_BIT);
1705         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1706         set_setup_mode(&desc[idx], SETUP_LOAD_KEY0);
1707         set_flow_mode(&desc[idx], S_DIN_to_AES);
1708         idx++;
1709
1710         if (req_ctx->cryptlen && !req_ctx->plaintext_authenticate_only) {
1711                 /* load AES/CTR initial CTR value inc by 2*/
1712                 hw_desc_init(&desc[idx]);
1713                 set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1714                 set_key_size_aes(&desc[idx], ctx->enc_keylen);
1715                 set_din_type(&desc[idx], DMA_DLLI,
1716                              req_ctx->gcm_iv_inc2_dma_addr, AES_BLOCK_SIZE,
1717                              NS_BIT);
1718                 set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1719                 set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1720                 set_flow_mode(&desc[idx], S_DIN_to_AES);
1721                 idx++;
1722         }
1723
1724         *seq_size = idx;
1725 }
1726
1727 static void cc_proc_gcm_result(struct aead_request *req,
1728                                struct cc_hw_desc desc[],
1729                                unsigned int *seq_size)
1730 {
1731         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1732         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1733         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1734         dma_addr_t mac_result;
1735         unsigned int idx = *seq_size;
1736
1737         if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1738                 mac_result = req_ctx->mac_buf_dma_addr;
1739         } else { /* Encrypt */
1740                 mac_result = req_ctx->icv_dma_addr;
1741         }
1742
1743         /* process(ghash) gcm_block_len */
1744         hw_desc_init(&desc[idx]);
1745         set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_block_len_dma_addr,
1746                      AES_BLOCK_SIZE, NS_BIT);
1747         set_flow_mode(&desc[idx], DIN_HASH);
1748         idx++;
1749
1750         /* Store GHASH state after GHASH(Associated Data + Cipher +LenBlock) */
1751         hw_desc_init(&desc[idx]);
1752         set_cipher_mode(&desc[idx], DRV_HASH_HW_GHASH);
1753         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1754         set_dout_dlli(&desc[idx], req_ctx->mac_buf_dma_addr, AES_BLOCK_SIZE,
1755                       NS_BIT, 0);
1756         set_setup_mode(&desc[idx], SETUP_WRITE_STATE0);
1757         set_flow_mode(&desc[idx], S_HASH_to_DOUT);
1758         set_aes_not_hash_mode(&desc[idx]);
1759
1760         idx++;
1761
1762         /* load AES/CTR initial CTR value inc by 1*/
1763         hw_desc_init(&desc[idx]);
1764         set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1765         set_key_size_aes(&desc[idx], ctx->enc_keylen);
1766         set_din_type(&desc[idx], DMA_DLLI, req_ctx->gcm_iv_inc1_dma_addr,
1767                      AES_BLOCK_SIZE, NS_BIT);
1768         set_cipher_config0(&desc[idx], DRV_CRYPTO_DIRECTION_ENCRYPT);
1769         set_setup_mode(&desc[idx], SETUP_LOAD_STATE1);
1770         set_flow_mode(&desc[idx], S_DIN_to_AES);
1771         idx++;
1772
1773         /* Memory Barrier */
1774         hw_desc_init(&desc[idx]);
1775         set_din_no_dma(&desc[idx], 0, 0xfffff0);
1776         set_dout_no_dma(&desc[idx], 0, 0, 1);
1777         idx++;
1778
1779         /* process GCTR on stored GHASH and store MAC in mac_state*/
1780         hw_desc_init(&desc[idx]);
1781         set_cipher_mode(&desc[idx], DRV_CIPHER_GCTR);
1782         set_din_type(&desc[idx], DMA_DLLI, req_ctx->mac_buf_dma_addr,
1783                      AES_BLOCK_SIZE, NS_BIT);
1784         set_dout_dlli(&desc[idx], mac_result, ctx->authsize, NS_BIT, 1);
1785         set_queue_last_ind(ctx->drvdata, &desc[idx]);
1786         set_flow_mode(&desc[idx], DIN_AES_DOUT);
1787         idx++;
1788
1789         *seq_size = idx;
1790 }
1791
1792 static int cc_gcm(struct aead_request *req, struct cc_hw_desc desc[],
1793                   unsigned int *seq_size)
1794 {
1795         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1796         unsigned int cipher_flow_mode;
1797
1798         //in RFC4543 no data to encrypt. just copy data from src to dest.
1799         if (req_ctx->plaintext_authenticate_only) {
1800                 cc_proc_cipher_desc(req, BYPASS, desc, seq_size);
1801                 cc_set_ghash_desc(req, desc, seq_size);
1802                 /* process(ghash) assoc data */
1803                 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1804                 cc_set_gctr_desc(req, desc, seq_size);
1805                 cc_proc_gcm_result(req, desc, seq_size);
1806                 return 0;
1807         }
1808
1809         if (req_ctx->gen_ctx.op_type == DRV_CRYPTO_DIRECTION_DECRYPT) {
1810                 cipher_flow_mode = AES_and_HASH;
1811         } else { /* Encrypt */
1812                 cipher_flow_mode = AES_to_HASH_and_DOUT;
1813         }
1814
1815         // for gcm and rfc4106.
1816         cc_set_ghash_desc(req, desc, seq_size);
1817         /* process(ghash) assoc data */
1818         if (req_ctx->assoclen > 0)
1819                 cc_set_assoc_desc(req, DIN_HASH, desc, seq_size);
1820         cc_set_gctr_desc(req, desc, seq_size);
1821         /* process(gctr+ghash) */
1822         if (req_ctx->cryptlen)
1823                 cc_proc_cipher_desc(req, cipher_flow_mode, desc, seq_size);
1824         cc_proc_gcm_result(req, desc, seq_size);
1825
1826         return 0;
1827 }
1828
1829 static int config_gcm_context(struct aead_request *req)
1830 {
1831         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1832         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1833         struct aead_req_ctx *req_ctx = aead_request_ctx(req);
1834         struct device *dev = drvdata_to_dev(ctx->drvdata);
1835
1836         unsigned int cryptlen = (req_ctx->gen_ctx.op_type ==
1837                                  DRV_CRYPTO_DIRECTION_ENCRYPT) ?
1838                                 req->cryptlen :
1839                                 (req->cryptlen - ctx->authsize);
1840         __be32 counter = cpu_to_be32(2);
1841
1842         dev_dbg(dev, "%s() cryptlen = %d, req_ctx->assoclen = %d ctx->authsize = %d\n",
1843                 __func__, cryptlen, req_ctx->assoclen, ctx->authsize);
1844
1845         memset(req_ctx->hkey, 0, AES_BLOCK_SIZE);
1846
1847         memset(req_ctx->mac_buf, 0, AES_BLOCK_SIZE);
1848
1849         memcpy(req->iv + 12, &counter, 4);
1850         memcpy(req_ctx->gcm_iv_inc2, req->iv, 16);
1851
1852         counter = cpu_to_be32(1);
1853         memcpy(req->iv + 12, &counter, 4);
1854         memcpy(req_ctx->gcm_iv_inc1, req->iv, 16);
1855
1856         if (!req_ctx->plaintext_authenticate_only) {
1857                 __be64 temp64;
1858
1859                 temp64 = cpu_to_be64(req_ctx->assoclen * 8);
1860                 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1861                 temp64 = cpu_to_be64(cryptlen * 8);
1862                 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1863         } else {
1864                 /* rfc4543=>  all data(AAD,IV,Plain) are considered additional
1865                  * data that is nothing is encrypted.
1866                  */
1867                 __be64 temp64;
1868
1869                 temp64 = cpu_to_be64((req_ctx->assoclen + cryptlen) * 8);
1870                 memcpy(&req_ctx->gcm_len_block.len_a, &temp64, sizeof(temp64));
1871                 temp64 = 0;
1872                 memcpy(&req_ctx->gcm_len_block.len_c, &temp64, 8);
1873         }
1874
1875         return 0;
1876 }
1877
1878 static void cc_proc_rfc4_gcm(struct aead_request *req)
1879 {
1880         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1881         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1882         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1883
1884         memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_NONCE_OFFSET,
1885                ctx->ctr_nonce, GCM_BLOCK_RFC4_NONCE_SIZE);
1886         memcpy(areq_ctx->ctr_iv + GCM_BLOCK_RFC4_IV_OFFSET, req->iv,
1887                GCM_BLOCK_RFC4_IV_SIZE);
1888         req->iv = areq_ctx->ctr_iv;
1889 }
1890
1891 static int cc_proc_aead(struct aead_request *req,
1892                         enum drv_crypto_direction direct)
1893 {
1894         int rc = 0;
1895         int seq_len = 0;
1896         struct cc_hw_desc desc[MAX_AEAD_PROCESS_SEQ];
1897         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1898         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
1899         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
1900         struct device *dev = drvdata_to_dev(ctx->drvdata);
1901         struct cc_crypto_req cc_req = {};
1902
1903         dev_dbg(dev, "%s context=%p req=%p iv=%p src=%p src_ofs=%d dst=%p dst_ofs=%d cryptolen=%d\n",
1904                 ((direct == DRV_CRYPTO_DIRECTION_ENCRYPT) ? "Enc" : "Dec"),
1905                 ctx, req, req->iv, sg_virt(req->src), req->src->offset,
1906                 sg_virt(req->dst), req->dst->offset, req->cryptlen);
1907
1908         /* STAT_PHASE_0: Init and sanity checks */
1909
1910         /* Check data length according to mode */
1911         if (validate_data_size(ctx, direct, req)) {
1912                 dev_err(dev, "Unsupported crypt/assoc len %d/%d.\n",
1913                         req->cryptlen, areq_ctx->assoclen);
1914                 return -EINVAL;
1915         }
1916
1917         /* Setup request structure */
1918         cc_req.user_cb = cc_aead_complete;
1919         cc_req.user_arg = req;
1920
1921         /* Setup request context */
1922         areq_ctx->gen_ctx.op_type = direct;
1923         areq_ctx->req_authsize = ctx->authsize;
1924         areq_ctx->cipher_mode = ctx->cipher_mode;
1925
1926         /* STAT_PHASE_1: Map buffers */
1927
1928         if (ctx->cipher_mode == DRV_CIPHER_CTR) {
1929                 /* Build CTR IV - Copy nonce from last 4 bytes in
1930                  * CTR key to first 4 bytes in CTR IV
1931                  */
1932                 memcpy(areq_ctx->ctr_iv, ctx->ctr_nonce,
1933                        CTR_RFC3686_NONCE_SIZE);
1934                 memcpy(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE, req->iv,
1935                        CTR_RFC3686_IV_SIZE);
1936                 /* Initialize counter portion of counter block */
1937                 *(__be32 *)(areq_ctx->ctr_iv + CTR_RFC3686_NONCE_SIZE +
1938                             CTR_RFC3686_IV_SIZE) = cpu_to_be32(1);
1939
1940                 /* Replace with counter iv */
1941                 req->iv = areq_ctx->ctr_iv;
1942                 areq_ctx->hw_iv_size = CTR_RFC3686_BLOCK_SIZE;
1943         } else if ((ctx->cipher_mode == DRV_CIPHER_CCM) ||
1944                    (ctx->cipher_mode == DRV_CIPHER_GCTR)) {
1945                 areq_ctx->hw_iv_size = AES_BLOCK_SIZE;
1946                 if (areq_ctx->ctr_iv != req->iv) {
1947                         memcpy(areq_ctx->ctr_iv, req->iv,
1948                                crypto_aead_ivsize(tfm));
1949                         req->iv = areq_ctx->ctr_iv;
1950                 }
1951         }  else {
1952                 areq_ctx->hw_iv_size = crypto_aead_ivsize(tfm);
1953         }
1954
1955         if (ctx->cipher_mode == DRV_CIPHER_CCM) {
1956                 rc = config_ccm_adata(req);
1957                 if (rc) {
1958                         dev_dbg(dev, "config_ccm_adata() returned with a failure %d!",
1959                                 rc);
1960                         goto exit;
1961                 }
1962         } else {
1963                 areq_ctx->ccm_hdr_size = ccm_header_size_null;
1964         }
1965
1966         if (ctx->cipher_mode == DRV_CIPHER_GCTR) {
1967                 rc = config_gcm_context(req);
1968                 if (rc) {
1969                         dev_dbg(dev, "config_gcm_context() returned with a failure %d!",
1970                                 rc);
1971                         goto exit;
1972                 }
1973         }
1974
1975         rc = cc_map_aead_request(ctx->drvdata, req);
1976         if (rc) {
1977                 dev_err(dev, "map_request() failed\n");
1978                 goto exit;
1979         }
1980
1981         /* STAT_PHASE_2: Create sequence */
1982
1983         /* Load MLLI tables to SRAM if necessary */
1984         cc_mlli_to_sram(req, desc, &seq_len);
1985
1986         switch (ctx->auth_mode) {
1987         case DRV_HASH_SHA1:
1988         case DRV_HASH_SHA256:
1989                 cc_hmac_authenc(req, desc, &seq_len);
1990                 break;
1991         case DRV_HASH_XCBC_MAC:
1992                 cc_xcbc_authenc(req, desc, &seq_len);
1993                 break;
1994         case DRV_HASH_NULL:
1995                 if (ctx->cipher_mode == DRV_CIPHER_CCM)
1996                         cc_ccm(req, desc, &seq_len);
1997                 if (ctx->cipher_mode == DRV_CIPHER_GCTR)
1998                         cc_gcm(req, desc, &seq_len);
1999                 break;
2000         default:
2001                 dev_err(dev, "Unsupported authenc (%d)\n", ctx->auth_mode);
2002                 cc_unmap_aead_request(dev, req);
2003                 rc = -ENOTSUPP;
2004                 goto exit;
2005         }
2006
2007         /* STAT_PHASE_3: Lock HW and push sequence */
2008
2009         rc = cc_send_request(ctx->drvdata, &cc_req, desc, seq_len, &req->base);
2010
2011         if (rc != -EINPROGRESS && rc != -EBUSY) {
2012                 dev_err(dev, "send_request() failed (rc=%d)\n", rc);
2013                 cc_unmap_aead_request(dev, req);
2014         }
2015
2016 exit:
2017         return rc;
2018 }
2019
2020 static int cc_aead_encrypt(struct aead_request *req)
2021 {
2022         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2023         int rc;
2024
2025         memset(areq_ctx, 0, sizeof(*areq_ctx));
2026
2027         /* No generated IV required */
2028         areq_ctx->backup_iv = req->iv;
2029         areq_ctx->assoclen = req->assoclen;
2030
2031         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2032         if (rc != -EINPROGRESS && rc != -EBUSY)
2033                 req->iv = areq_ctx->backup_iv;
2034
2035         return rc;
2036 }
2037
2038 static int cc_rfc4309_ccm_encrypt(struct aead_request *req)
2039 {
2040         /* Very similar to cc_aead_encrypt() above. */
2041
2042         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2043         int rc;
2044
2045         rc = crypto_ipsec_check_assoclen(req->assoclen);
2046         if (rc)
2047                 goto out;
2048
2049         memset(areq_ctx, 0, sizeof(*areq_ctx));
2050
2051         /* No generated IV required */
2052         areq_ctx->backup_iv = req->iv;
2053         areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2054
2055         cc_proc_rfc4309_ccm(req);
2056
2057         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2058         if (rc != -EINPROGRESS && rc != -EBUSY)
2059                 req->iv = areq_ctx->backup_iv;
2060 out:
2061         return rc;
2062 }
2063
2064 static int cc_aead_decrypt(struct aead_request *req)
2065 {
2066         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2067         int rc;
2068
2069         memset(areq_ctx, 0, sizeof(*areq_ctx));
2070
2071         /* No generated IV required */
2072         areq_ctx->backup_iv = req->iv;
2073         areq_ctx->assoclen = req->assoclen;
2074
2075         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2076         if (rc != -EINPROGRESS && rc != -EBUSY)
2077                 req->iv = areq_ctx->backup_iv;
2078
2079         return rc;
2080 }
2081
2082 static int cc_rfc4309_ccm_decrypt(struct aead_request *req)
2083 {
2084         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2085         int rc;
2086
2087         rc = crypto_ipsec_check_assoclen(req->assoclen);
2088         if (rc)
2089                 goto out;
2090
2091         memset(areq_ctx, 0, sizeof(*areq_ctx));
2092
2093         /* No generated IV required */
2094         areq_ctx->backup_iv = req->iv;
2095         areq_ctx->assoclen = req->assoclen - CCM_BLOCK_IV_SIZE;
2096
2097         cc_proc_rfc4309_ccm(req);
2098
2099         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2100         if (rc != -EINPROGRESS && rc != -EBUSY)
2101                 req->iv = areq_ctx->backup_iv;
2102
2103 out:
2104         return rc;
2105 }
2106
2107 static int cc_rfc4106_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2108                                  unsigned int keylen)
2109 {
2110         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2111         struct device *dev = drvdata_to_dev(ctx->drvdata);
2112
2113         dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2114
2115         if (keylen < 4)
2116                 return -EINVAL;
2117
2118         keylen -= 4;
2119         memcpy(ctx->ctr_nonce, key + keylen, 4);
2120
2121         return cc_aead_setkey(tfm, key, keylen);
2122 }
2123
2124 static int cc_rfc4543_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
2125                                  unsigned int keylen)
2126 {
2127         struct cc_aead_ctx *ctx = crypto_aead_ctx(tfm);
2128         struct device *dev = drvdata_to_dev(ctx->drvdata);
2129
2130         dev_dbg(dev, "%s()  keylen %d, key %p\n", __func__, keylen, key);
2131
2132         if (keylen < 4)
2133                 return -EINVAL;
2134
2135         keylen -= 4;
2136         memcpy(ctx->ctr_nonce, key + keylen, 4);
2137
2138         return cc_aead_setkey(tfm, key, keylen);
2139 }
2140
2141 static int cc_gcm_setauthsize(struct crypto_aead *authenc,
2142                               unsigned int authsize)
2143 {
2144         switch (authsize) {
2145         case 4:
2146         case 8:
2147         case 12:
2148         case 13:
2149         case 14:
2150         case 15:
2151         case 16:
2152                 break;
2153         default:
2154                 return -EINVAL;
2155         }
2156
2157         return cc_aead_setauthsize(authenc, authsize);
2158 }
2159
2160 static int cc_rfc4106_gcm_setauthsize(struct crypto_aead *authenc,
2161                                       unsigned int authsize)
2162 {
2163         struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2164         struct device *dev = drvdata_to_dev(ctx->drvdata);
2165
2166         dev_dbg(dev, "authsize %d\n", authsize);
2167
2168         switch (authsize) {
2169         case 8:
2170         case 12:
2171         case 16:
2172                 break;
2173         default:
2174                 return -EINVAL;
2175         }
2176
2177         return cc_aead_setauthsize(authenc, authsize);
2178 }
2179
2180 static int cc_rfc4543_gcm_setauthsize(struct crypto_aead *authenc,
2181                                       unsigned int authsize)
2182 {
2183         struct cc_aead_ctx *ctx = crypto_aead_ctx(authenc);
2184         struct device *dev = drvdata_to_dev(ctx->drvdata);
2185
2186         dev_dbg(dev, "authsize %d\n", authsize);
2187
2188         if (authsize != 16)
2189                 return -EINVAL;
2190
2191         return cc_aead_setauthsize(authenc, authsize);
2192 }
2193
2194 static int cc_rfc4106_gcm_encrypt(struct aead_request *req)
2195 {
2196         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2197         int rc;
2198
2199         rc = crypto_ipsec_check_assoclen(req->assoclen);
2200         if (rc)
2201                 goto out;
2202
2203         memset(areq_ctx, 0, sizeof(*areq_ctx));
2204
2205         /* No generated IV required */
2206         areq_ctx->backup_iv = req->iv;
2207         areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2208
2209         cc_proc_rfc4_gcm(req);
2210
2211         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2212         if (rc != -EINPROGRESS && rc != -EBUSY)
2213                 req->iv = areq_ctx->backup_iv;
2214 out:
2215         return rc;
2216 }
2217
2218 static int cc_rfc4543_gcm_encrypt(struct aead_request *req)
2219 {
2220         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2221         int rc;
2222
2223         rc = crypto_ipsec_check_assoclen(req->assoclen);
2224         if (rc)
2225                 goto out;
2226
2227         memset(areq_ctx, 0, sizeof(*areq_ctx));
2228
2229         //plaintext is not encryped with rfc4543
2230         areq_ctx->plaintext_authenticate_only = true;
2231
2232         /* No generated IV required */
2233         areq_ctx->backup_iv = req->iv;
2234         areq_ctx->assoclen = req->assoclen;
2235
2236         cc_proc_rfc4_gcm(req);
2237
2238         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_ENCRYPT);
2239         if (rc != -EINPROGRESS && rc != -EBUSY)
2240                 req->iv = areq_ctx->backup_iv;
2241 out:
2242         return rc;
2243 }
2244
2245 static int cc_rfc4106_gcm_decrypt(struct aead_request *req)
2246 {
2247         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2248         int rc;
2249
2250         rc = crypto_ipsec_check_assoclen(req->assoclen);
2251         if (rc)
2252                 goto out;
2253
2254         memset(areq_ctx, 0, sizeof(*areq_ctx));
2255
2256         /* No generated IV required */
2257         areq_ctx->backup_iv = req->iv;
2258         areq_ctx->assoclen = req->assoclen - GCM_BLOCK_RFC4_IV_SIZE;
2259
2260         cc_proc_rfc4_gcm(req);
2261
2262         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2263         if (rc != -EINPROGRESS && rc != -EBUSY)
2264                 req->iv = areq_ctx->backup_iv;
2265 out:
2266         return rc;
2267 }
2268
2269 static int cc_rfc4543_gcm_decrypt(struct aead_request *req)
2270 {
2271         struct aead_req_ctx *areq_ctx = aead_request_ctx(req);
2272         int rc;
2273
2274         rc = crypto_ipsec_check_assoclen(req->assoclen);
2275         if (rc)
2276                 goto out;
2277
2278         memset(areq_ctx, 0, sizeof(*areq_ctx));
2279
2280         //plaintext is not decryped with rfc4543
2281         areq_ctx->plaintext_authenticate_only = true;
2282
2283         /* No generated IV required */
2284         areq_ctx->backup_iv = req->iv;
2285         areq_ctx->assoclen = req->assoclen;
2286
2287         cc_proc_rfc4_gcm(req);
2288
2289         rc = cc_proc_aead(req, DRV_CRYPTO_DIRECTION_DECRYPT);
2290         if (rc != -EINPROGRESS && rc != -EBUSY)
2291                 req->iv = areq_ctx->backup_iv;
2292 out:
2293         return rc;
2294 }
2295
2296 /* aead alg */
2297 static struct cc_alg_template aead_algs[] = {
2298         {
2299                 .name = "authenc(hmac(sha1),cbc(aes))",
2300                 .driver_name = "authenc-hmac-sha1-cbc-aes-ccree",
2301                 .blocksize = AES_BLOCK_SIZE,
2302                 .template_aead = {
2303                         .setkey = cc_aead_setkey,
2304                         .setauthsize = cc_aead_setauthsize,
2305                         .encrypt = cc_aead_encrypt,
2306                         .decrypt = cc_aead_decrypt,
2307                         .init = cc_aead_init,
2308                         .exit = cc_aead_exit,
2309                         .ivsize = AES_BLOCK_SIZE,
2310                         .maxauthsize = SHA1_DIGEST_SIZE,
2311                 },
2312                 .cipher_mode = DRV_CIPHER_CBC,
2313                 .flow_mode = S_DIN_to_AES,
2314                 .auth_mode = DRV_HASH_SHA1,
2315                 .min_hw_rev = CC_HW_REV_630,
2316                 .std_body = CC_STD_NIST,
2317         },
2318         {
2319                 .name = "authenc(hmac(sha1),cbc(des3_ede))",
2320                 .driver_name = "authenc-hmac-sha1-cbc-des3-ccree",
2321                 .blocksize = DES3_EDE_BLOCK_SIZE,
2322                 .template_aead = {
2323                         .setkey = cc_des3_aead_setkey,
2324                         .setauthsize = cc_aead_setauthsize,
2325                         .encrypt = cc_aead_encrypt,
2326                         .decrypt = cc_aead_decrypt,
2327                         .init = cc_aead_init,
2328                         .exit = cc_aead_exit,
2329                         .ivsize = DES3_EDE_BLOCK_SIZE,
2330                         .maxauthsize = SHA1_DIGEST_SIZE,
2331                 },
2332                 .cipher_mode = DRV_CIPHER_CBC,
2333                 .flow_mode = S_DIN_to_DES,
2334                 .auth_mode = DRV_HASH_SHA1,
2335                 .min_hw_rev = CC_HW_REV_630,
2336                 .std_body = CC_STD_NIST,
2337         },
2338         {
2339                 .name = "authenc(hmac(sha256),cbc(aes))",
2340                 .driver_name = "authenc-hmac-sha256-cbc-aes-ccree",
2341                 .blocksize = AES_BLOCK_SIZE,
2342                 .template_aead = {
2343                         .setkey = cc_aead_setkey,
2344                         .setauthsize = cc_aead_setauthsize,
2345                         .encrypt = cc_aead_encrypt,
2346                         .decrypt = cc_aead_decrypt,
2347                         .init = cc_aead_init,
2348                         .exit = cc_aead_exit,
2349                         .ivsize = AES_BLOCK_SIZE,
2350                         .maxauthsize = SHA256_DIGEST_SIZE,
2351                 },
2352                 .cipher_mode = DRV_CIPHER_CBC,
2353                 .flow_mode = S_DIN_to_AES,
2354                 .auth_mode = DRV_HASH_SHA256,
2355                 .min_hw_rev = CC_HW_REV_630,
2356                 .std_body = CC_STD_NIST,
2357         },
2358         {
2359                 .name = "authenc(hmac(sha256),cbc(des3_ede))",
2360                 .driver_name = "authenc-hmac-sha256-cbc-des3-ccree",
2361                 .blocksize = DES3_EDE_BLOCK_SIZE,
2362                 .template_aead = {
2363                         .setkey = cc_des3_aead_setkey,
2364                         .setauthsize = cc_aead_setauthsize,
2365                         .encrypt = cc_aead_encrypt,
2366                         .decrypt = cc_aead_decrypt,
2367                         .init = cc_aead_init,
2368                         .exit = cc_aead_exit,
2369                         .ivsize = DES3_EDE_BLOCK_SIZE,
2370                         .maxauthsize = SHA256_DIGEST_SIZE,
2371                 },
2372                 .cipher_mode = DRV_CIPHER_CBC,
2373                 .flow_mode = S_DIN_to_DES,
2374                 .auth_mode = DRV_HASH_SHA256,
2375                 .min_hw_rev = CC_HW_REV_630,
2376                 .std_body = CC_STD_NIST,
2377         },
2378         {
2379                 .name = "authenc(xcbc(aes),cbc(aes))",
2380                 .driver_name = "authenc-xcbc-aes-cbc-aes-ccree",
2381                 .blocksize = AES_BLOCK_SIZE,
2382                 .template_aead = {
2383                         .setkey = cc_aead_setkey,
2384                         .setauthsize = cc_aead_setauthsize,
2385                         .encrypt = cc_aead_encrypt,
2386                         .decrypt = cc_aead_decrypt,
2387                         .init = cc_aead_init,
2388                         .exit = cc_aead_exit,
2389                         .ivsize = AES_BLOCK_SIZE,
2390                         .maxauthsize = AES_BLOCK_SIZE,
2391                 },
2392                 .cipher_mode = DRV_CIPHER_CBC,
2393                 .flow_mode = S_DIN_to_AES,
2394                 .auth_mode = DRV_HASH_XCBC_MAC,
2395                 .min_hw_rev = CC_HW_REV_630,
2396                 .std_body = CC_STD_NIST,
2397         },
2398         {
2399                 .name = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
2400                 .driver_name = "authenc-hmac-sha1-rfc3686-ctr-aes-ccree",
2401                 .blocksize = 1,
2402                 .template_aead = {
2403                         .setkey = cc_aead_setkey,
2404                         .setauthsize = cc_aead_setauthsize,
2405                         .encrypt = cc_aead_encrypt,
2406                         .decrypt = cc_aead_decrypt,
2407                         .init = cc_aead_init,
2408                         .exit = cc_aead_exit,
2409                         .ivsize = CTR_RFC3686_IV_SIZE,
2410                         .maxauthsize = SHA1_DIGEST_SIZE,
2411                 },
2412                 .cipher_mode = DRV_CIPHER_CTR,
2413                 .flow_mode = S_DIN_to_AES,
2414                 .auth_mode = DRV_HASH_SHA1,
2415                 .min_hw_rev = CC_HW_REV_630,
2416                 .std_body = CC_STD_NIST,
2417         },
2418         {
2419                 .name = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
2420                 .driver_name = "authenc-hmac-sha256-rfc3686-ctr-aes-ccree",
2421                 .blocksize = 1,
2422                 .template_aead = {
2423                         .setkey = cc_aead_setkey,
2424                         .setauthsize = cc_aead_setauthsize,
2425                         .encrypt = cc_aead_encrypt,
2426                         .decrypt = cc_aead_decrypt,
2427                         .init = cc_aead_init,
2428                         .exit = cc_aead_exit,
2429                         .ivsize = CTR_RFC3686_IV_SIZE,
2430                         .maxauthsize = SHA256_DIGEST_SIZE,
2431                 },
2432                 .cipher_mode = DRV_CIPHER_CTR,
2433                 .flow_mode = S_DIN_to_AES,
2434                 .auth_mode = DRV_HASH_SHA256,
2435                 .min_hw_rev = CC_HW_REV_630,
2436                 .std_body = CC_STD_NIST,
2437         },
2438         {
2439                 .name = "authenc(xcbc(aes),rfc3686(ctr(aes)))",
2440                 .driver_name = "authenc-xcbc-aes-rfc3686-ctr-aes-ccree",
2441                 .blocksize = 1,
2442                 .template_aead = {
2443                         .setkey = cc_aead_setkey,
2444                         .setauthsize = cc_aead_setauthsize,
2445                         .encrypt = cc_aead_encrypt,
2446                         .decrypt = cc_aead_decrypt,
2447                         .init = cc_aead_init,
2448                         .exit = cc_aead_exit,
2449                         .ivsize = CTR_RFC3686_IV_SIZE,
2450                         .maxauthsize = AES_BLOCK_SIZE,
2451                 },
2452                 .cipher_mode = DRV_CIPHER_CTR,
2453                 .flow_mode = S_DIN_to_AES,
2454                 .auth_mode = DRV_HASH_XCBC_MAC,
2455                 .min_hw_rev = CC_HW_REV_630,
2456                 .std_body = CC_STD_NIST,
2457         },
2458         {
2459                 .name = "ccm(aes)",
2460                 .driver_name = "ccm-aes-ccree",
2461                 .blocksize = 1,
2462                 .template_aead = {
2463                         .setkey = cc_aead_setkey,
2464                         .setauthsize = cc_ccm_setauthsize,
2465                         .encrypt = cc_aead_encrypt,
2466                         .decrypt = cc_aead_decrypt,
2467                         .init = cc_aead_init,
2468                         .exit = cc_aead_exit,
2469                         .ivsize = AES_BLOCK_SIZE,
2470                         .maxauthsize = AES_BLOCK_SIZE,
2471                 },
2472                 .cipher_mode = DRV_CIPHER_CCM,
2473                 .flow_mode = S_DIN_to_AES,
2474                 .auth_mode = DRV_HASH_NULL,
2475                 .min_hw_rev = CC_HW_REV_630,
2476                 .std_body = CC_STD_NIST,
2477         },
2478         {
2479                 .name = "rfc4309(ccm(aes))",
2480                 .driver_name = "rfc4309-ccm-aes-ccree",
2481                 .blocksize = 1,
2482                 .template_aead = {
2483                         .setkey = cc_rfc4309_ccm_setkey,
2484                         .setauthsize = cc_rfc4309_ccm_setauthsize,
2485                         .encrypt = cc_rfc4309_ccm_encrypt,
2486                         .decrypt = cc_rfc4309_ccm_decrypt,
2487                         .init = cc_aead_init,
2488                         .exit = cc_aead_exit,
2489                         .ivsize = CCM_BLOCK_IV_SIZE,
2490                         .maxauthsize = AES_BLOCK_SIZE,
2491                 },
2492                 .cipher_mode = DRV_CIPHER_CCM,
2493                 .flow_mode = S_DIN_to_AES,
2494                 .auth_mode = DRV_HASH_NULL,
2495                 .min_hw_rev = CC_HW_REV_630,
2496                 .std_body = CC_STD_NIST,
2497         },
2498         {
2499                 .name = "gcm(aes)",
2500                 .driver_name = "gcm-aes-ccree",
2501                 .blocksize = 1,
2502                 .template_aead = {
2503                         .setkey = cc_aead_setkey,
2504                         .setauthsize = cc_gcm_setauthsize,
2505                         .encrypt = cc_aead_encrypt,
2506                         .decrypt = cc_aead_decrypt,
2507                         .init = cc_aead_init,
2508                         .exit = cc_aead_exit,
2509                         .ivsize = 12,
2510                         .maxauthsize = AES_BLOCK_SIZE,
2511                 },
2512                 .cipher_mode = DRV_CIPHER_GCTR,
2513                 .flow_mode = S_DIN_to_AES,
2514                 .auth_mode = DRV_HASH_NULL,
2515                 .min_hw_rev = CC_HW_REV_630,
2516                 .std_body = CC_STD_NIST,
2517         },
2518         {
2519                 .name = "rfc4106(gcm(aes))",
2520                 .driver_name = "rfc4106-gcm-aes-ccree",
2521                 .blocksize = 1,
2522                 .template_aead = {
2523                         .setkey = cc_rfc4106_gcm_setkey,
2524                         .setauthsize = cc_rfc4106_gcm_setauthsize,
2525                         .encrypt = cc_rfc4106_gcm_encrypt,
2526                         .decrypt = cc_rfc4106_gcm_decrypt,
2527                         .init = cc_aead_init,
2528                         .exit = cc_aead_exit,
2529                         .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2530                         .maxauthsize = AES_BLOCK_SIZE,
2531                 },
2532                 .cipher_mode = DRV_CIPHER_GCTR,
2533                 .flow_mode = S_DIN_to_AES,
2534                 .auth_mode = DRV_HASH_NULL,
2535                 .min_hw_rev = CC_HW_REV_630,
2536                 .std_body = CC_STD_NIST,
2537         },
2538         {
2539                 .name = "rfc4543(gcm(aes))",
2540                 .driver_name = "rfc4543-gcm-aes-ccree",
2541                 .blocksize = 1,
2542                 .template_aead = {
2543                         .setkey = cc_rfc4543_gcm_setkey,
2544                         .setauthsize = cc_rfc4543_gcm_setauthsize,
2545                         .encrypt = cc_rfc4543_gcm_encrypt,
2546                         .decrypt = cc_rfc4543_gcm_decrypt,
2547                         .init = cc_aead_init,
2548                         .exit = cc_aead_exit,
2549                         .ivsize = GCM_BLOCK_RFC4_IV_SIZE,
2550                         .maxauthsize = AES_BLOCK_SIZE,
2551                 },
2552                 .cipher_mode = DRV_CIPHER_GCTR,
2553                 .flow_mode = S_DIN_to_AES,
2554                 .auth_mode = DRV_HASH_NULL,
2555                 .min_hw_rev = CC_HW_REV_630,
2556                 .std_body = CC_STD_NIST,
2557         },
2558 };
2559
2560 static struct cc_crypto_alg *cc_create_aead_alg(struct cc_alg_template *tmpl,
2561                                                 struct device *dev)
2562 {
2563         struct cc_crypto_alg *t_alg;
2564         struct aead_alg *alg;
2565
2566         t_alg = devm_kzalloc(dev, sizeof(*t_alg), GFP_KERNEL);
2567         if (!t_alg)
2568                 return ERR_PTR(-ENOMEM);
2569
2570         alg = &tmpl->template_aead;
2571
2572         snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
2573         snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
2574                  tmpl->driver_name);
2575         alg->base.cra_module = THIS_MODULE;
2576         alg->base.cra_priority = CC_CRA_PRIO;
2577
2578         alg->base.cra_ctxsize = sizeof(struct cc_aead_ctx);
2579         alg->base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
2580         alg->base.cra_blocksize = tmpl->blocksize;
2581         alg->init = cc_aead_init;
2582         alg->exit = cc_aead_exit;
2583
2584         t_alg->aead_alg = *alg;
2585
2586         t_alg->cipher_mode = tmpl->cipher_mode;
2587         t_alg->flow_mode = tmpl->flow_mode;
2588         t_alg->auth_mode = tmpl->auth_mode;
2589
2590         return t_alg;
2591 }
2592
2593 int cc_aead_free(struct cc_drvdata *drvdata)
2594 {
2595         struct cc_crypto_alg *t_alg, *n;
2596         struct cc_aead_handle *aead_handle = drvdata->aead_handle;
2597
2598         /* Remove registered algs */
2599         list_for_each_entry_safe(t_alg, n, &aead_handle->aead_list, entry) {
2600                 crypto_unregister_aead(&t_alg->aead_alg);
2601                 list_del(&t_alg->entry);
2602         }
2603
2604         return 0;
2605 }
2606
2607 int cc_aead_alloc(struct cc_drvdata *drvdata)
2608 {
2609         struct cc_aead_handle *aead_handle;
2610         struct cc_crypto_alg *t_alg;
2611         int rc = -ENOMEM;
2612         int alg;
2613         struct device *dev = drvdata_to_dev(drvdata);
2614
2615         aead_handle = devm_kmalloc(dev, sizeof(*aead_handle), GFP_KERNEL);
2616         if (!aead_handle) {
2617                 rc = -ENOMEM;
2618                 goto fail0;
2619         }
2620
2621         INIT_LIST_HEAD(&aead_handle->aead_list);
2622         drvdata->aead_handle = aead_handle;
2623
2624         aead_handle->sram_workspace_addr = cc_sram_alloc(drvdata,
2625                                                          MAX_HMAC_DIGEST_SIZE);
2626
2627         if (aead_handle->sram_workspace_addr == NULL_SRAM_ADDR) {
2628                 rc = -ENOMEM;
2629                 goto fail1;
2630         }
2631
2632         /* Linux crypto */
2633         for (alg = 0; alg < ARRAY_SIZE(aead_algs); alg++) {
2634                 if ((aead_algs[alg].min_hw_rev > drvdata->hw_rev) ||
2635                     !(drvdata->std_bodies & aead_algs[alg].std_body))
2636                         continue;
2637
2638                 t_alg = cc_create_aead_alg(&aead_algs[alg], dev);
2639                 if (IS_ERR(t_alg)) {
2640                         rc = PTR_ERR(t_alg);
2641                         dev_err(dev, "%s alg allocation failed\n",
2642                                 aead_algs[alg].driver_name);
2643                         goto fail1;
2644                 }
2645                 t_alg->drvdata = drvdata;
2646                 rc = crypto_register_aead(&t_alg->aead_alg);
2647                 if (rc) {
2648                         dev_err(dev, "%s alg registration failed\n",
2649                                 t_alg->aead_alg.base.cra_driver_name);
2650                         goto fail1;
2651                 }
2652
2653                 list_add_tail(&t_alg->entry, &aead_handle->aead_list);
2654                 dev_dbg(dev, "Registered %s\n",
2655                         t_alg->aead_alg.base.cra_driver_name);
2656         }
2657
2658         return 0;
2659
2660 fail1:
2661         cc_aead_free(drvdata);
2662 fail0:
2663         return rc;
2664 }