Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux-2.6-microblaze.git] / drivers / crypto / bcm / cipher.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016 Broadcom
4  */
5
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/sha.h>
30 #include <crypto/md5.h>
31 #include <crypto/authenc.h>
32 #include <crypto/skcipher.h>
33 #include <crypto/hash.h>
34 #include <crypto/sha3.h>
35
36 #include "util.h"
37 #include "cipher.h"
38 #include "spu.h"
39 #include "spum.h"
40 #include "spu2.h"
41
42 /* ================= Device Structure ================== */
43
44 struct device_private iproc_priv;
45
46 /* ==================== Parameters ===================== */
47
48 int flow_debug_logging;
49 module_param(flow_debug_logging, int, 0644);
50 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
51
52 int packet_debug_logging;
53 module_param(packet_debug_logging, int, 0644);
54 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
55
56 int debug_logging_sleep;
57 module_param(debug_logging_sleep, int, 0644);
58 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
59
60 /*
61  * The value of these module parameters is used to set the priority for each
62  * algo type when this driver registers algos with the kernel crypto API.
63  * To use a priority other than the default, set the priority in the insmod or
64  * modprobe. Changing the module priority after init time has no effect.
65  *
66  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
67  * algos, but more preferred than generic software algos.
68  */
69 static int cipher_pri = 150;
70 module_param(cipher_pri, int, 0644);
71 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
72
73 static int hash_pri = 100;
74 module_param(hash_pri, int, 0644);
75 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
76
77 static int aead_pri = 150;
78 module_param(aead_pri, int, 0644);
79 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
80
81 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
82  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
83  * 0x60 - ring 0
84  * 0x68 - ring 1
85  * 0x70 - ring 2
86  * 0x78 - ring 3
87  */
88 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
89 /*
90  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
91  * is set dynamically after reading SPU type from device tree.
92  */
93 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
94
95 /* min and max time to sleep before retrying when mbox queue is full. usec */
96 #define MBOX_SLEEP_MIN  800
97 #define MBOX_SLEEP_MAX 1000
98
99 /**
100  * select_channel() - Select a SPU channel to handle a crypto request. Selects
101  * channel in round robin order.
102  *
103  * Return:  channel index
104  */
105 static u8 select_channel(void)
106 {
107         u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
108
109         return chan_idx % iproc_priv.spu.num_chan;
110 }
111
112 /**
113  * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
114  * receive a SPU response message for an skcipher request. Includes buffers to
115  * catch SPU message headers and the response data.
116  * @mssg:       mailbox message containing the receive sg
117  * @rctx:       crypto request context
118  * @rx_frag_num: number of scatterlist elements required to hold the
119  *              SPU response message
120  * @chunksize:  Number of bytes of response data expected
121  * @stat_pad_len: Number of bytes required to pad the STAT field to
122  *              a 4-byte boundary
123  *
124  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
125  * when the request completes, whether the request is handled successfully or
126  * there is an error.
127  *
128  * Returns:
129  *   0 if successful
130  *   < 0 if an error
131  */
132 static int
133 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
134                             struct iproc_reqctx_s *rctx,
135                             u8 rx_frag_num,
136                             unsigned int chunksize, u32 stat_pad_len)
137 {
138         struct spu_hw *spu = &iproc_priv.spu;
139         struct scatterlist *sg; /* used to build sgs in mbox message */
140         struct iproc_ctx_s *ctx = rctx->ctx;
141         u32 datalen;            /* Number of bytes of response data expected */
142
143         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
144                                 rctx->gfp);
145         if (!mssg->spu.dst)
146                 return -ENOMEM;
147
148         sg = mssg->spu.dst;
149         sg_init_table(sg, rx_frag_num);
150         /* Space for SPU message header */
151         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
152
153         /* If XTS tweak in payload, add buffer to receive encrypted tweak */
154         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
155             spu->spu_xts_tweak_in_payload())
156                 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
157                            SPU_XTS_TWEAK_SIZE);
158
159         /* Copy in each dst sg entry from request, up to chunksize */
160         datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
161                                  rctx->dst_nents, chunksize);
162         if (datalen < chunksize) {
163                 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
164                        __func__, chunksize, datalen);
165                 return -EFAULT;
166         }
167
168         if (stat_pad_len)
169                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
170
171         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
172         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
173
174         return 0;
175 }
176
177 /**
178  * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
179  * send a SPU request message for an skcipher request. Includes SPU message
180  * headers and the request data.
181  * @mssg:       mailbox message containing the transmit sg
182  * @rctx:       crypto request context
183  * @tx_frag_num: number of scatterlist elements required to construct the
184  *              SPU request message
185  * @chunksize:  Number of bytes of request data
186  * @pad_len:    Number of pad bytes
187  *
188  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
189  * when the request completes, whether the request is handled successfully or
190  * there is an error.
191  *
192  * Returns:
193  *   0 if successful
194  *   < 0 if an error
195  */
196 static int
197 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
198                             struct iproc_reqctx_s *rctx,
199                             u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
200 {
201         struct spu_hw *spu = &iproc_priv.spu;
202         struct scatterlist *sg; /* used to build sgs in mbox message */
203         struct iproc_ctx_s *ctx = rctx->ctx;
204         u32 datalen;            /* Number of bytes of response data expected */
205         u32 stat_len;
206
207         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
208                                 rctx->gfp);
209         if (unlikely(!mssg->spu.src))
210                 return -ENOMEM;
211
212         sg = mssg->spu.src;
213         sg_init_table(sg, tx_frag_num);
214
215         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
216                    BCM_HDR_LEN + ctx->spu_req_hdr_len);
217
218         /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
219         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
220             spu->spu_xts_tweak_in_payload())
221                 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
222
223         /* Copy in each src sg entry from request, up to chunksize */
224         datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
225                                  rctx->src_nents, chunksize);
226         if (unlikely(datalen < chunksize)) {
227                 pr_err("%s(): failed to copy src sg to mbox msg",
228                        __func__);
229                 return -EFAULT;
230         }
231
232         if (pad_len)
233                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
234
235         stat_len = spu->spu_tx_status_len();
236         if (stat_len) {
237                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
238                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
239         }
240         return 0;
241 }
242
243 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
244                                 u8 chan_idx)
245 {
246         int err;
247         int retry_cnt = 0;
248         struct device *dev = &(iproc_priv.pdev->dev);
249
250         err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
251         if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
252                 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
253                         /*
254                          * Mailbox queue is full. Since MAY_SLEEP is set, assume
255                          * not in atomic context and we can wait and try again.
256                          */
257                         retry_cnt++;
258                         usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
259                         err = mbox_send_message(iproc_priv.mbox[chan_idx],
260                                                 mssg);
261                         atomic_inc(&iproc_priv.mb_no_spc);
262                 }
263         }
264         if (err < 0) {
265                 atomic_inc(&iproc_priv.mb_send_fail);
266                 return err;
267         }
268
269         /* Check error returned by mailbox controller */
270         err = mssg->error;
271         if (unlikely(err < 0)) {
272                 dev_err(dev, "message error %d", err);
273                 /* Signal txdone for mailbox channel */
274         }
275
276         /* Signal txdone for mailbox channel */
277         mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
278         return err;
279 }
280
281 /**
282  * handle_skcipher_req() - Submit as much of a block cipher request as fits in
283  * a single SPU request message, starting at the current position in the request
284  * data.
285  * @rctx:       Crypto request context
286  *
287  * This may be called on the crypto API thread, or, when a request is so large
288  * it must be broken into multiple SPU messages, on the thread used to invoke
289  * the response callback. When requests are broken into multiple SPU
290  * messages, we assume subsequent messages depend on previous results, and
291  * thus always wait for previous results before submitting the next message.
292  * Because requests are submitted in lock step like this, there is no need
293  * to synchronize access to request data structures.
294  *
295  * Return: -EINPROGRESS: request has been accepted and result will be returned
296  *                       asynchronously
297  *         Any other value indicates an error
298  */
299 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
300 {
301         struct spu_hw *spu = &iproc_priv.spu;
302         struct crypto_async_request *areq = rctx->parent;
303         struct skcipher_request *req =
304             container_of(areq, struct skcipher_request, base);
305         struct iproc_ctx_s *ctx = rctx->ctx;
306         struct spu_cipher_parms cipher_parms;
307         int err;
308         unsigned int chunksize; /* Num bytes of request to submit */
309         int remaining;  /* Bytes of request still to process */
310         int chunk_start;        /* Beginning of data for current SPU msg */
311
312         /* IV or ctr value to use in this SPU msg */
313         u8 local_iv_ctr[MAX_IV_SIZE];
314         u32 stat_pad_len;       /* num bytes to align status field */
315         u32 pad_len;            /* total length of all padding */
316         struct brcm_message *mssg;      /* mailbox message */
317
318         /* number of entries in src and dst sg in mailbox message. */
319         u8 rx_frag_num = 2;     /* response header and STATUS */
320         u8 tx_frag_num = 1;     /* request header */
321
322         flow_log("%s\n", __func__);
323
324         cipher_parms.alg = ctx->cipher.alg;
325         cipher_parms.mode = ctx->cipher.mode;
326         cipher_parms.type = ctx->cipher_type;
327         cipher_parms.key_len = ctx->enckeylen;
328         cipher_parms.key_buf = ctx->enckey;
329         cipher_parms.iv_buf = local_iv_ctr;
330         cipher_parms.iv_len = rctx->iv_ctr_len;
331
332         mssg = &rctx->mb_mssg;
333         chunk_start = rctx->src_sent;
334         remaining = rctx->total_todo - chunk_start;
335
336         /* determine the chunk we are breaking off and update the indexes */
337         if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
338             (remaining > ctx->max_payload))
339                 chunksize = ctx->max_payload;
340         else
341                 chunksize = remaining;
342
343         rctx->src_sent += chunksize;
344         rctx->total_sent = rctx->src_sent;
345
346         /* Count number of sg entries to be included in this request */
347         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
348         rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
349
350         if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
351             rctx->is_encrypt && chunk_start)
352                 /*
353                  * Encrypting non-first first chunk. Copy last block of
354                  * previous result to IV for this chunk.
355                  */
356                 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
357                                     rctx->iv_ctr_len,
358                                     chunk_start - rctx->iv_ctr_len);
359
360         if (rctx->iv_ctr_len) {
361                 /* get our local copy of the iv */
362                 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
363                                  rctx->iv_ctr_len);
364
365                 /* generate the next IV if possible */
366                 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
367                     !rctx->is_encrypt) {
368                         /*
369                          * CBC Decrypt: next IV is the last ciphertext block in
370                          * this chunk
371                          */
372                         sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
373                                             rctx->iv_ctr_len,
374                                             rctx->src_sent - rctx->iv_ctr_len);
375                 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
376                         /*
377                          * The SPU hardware increments the counter once for
378                          * each AES block of 16 bytes. So update the counter
379                          * for the next chunk, if there is one. Note that for
380                          * this chunk, the counter has already been copied to
381                          * local_iv_ctr. We can assume a block size of 16,
382                          * because we only support CTR mode for AES, not for
383                          * any other cipher alg.
384                          */
385                         add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
386                 }
387         }
388
389         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
390                 flow_log("max_payload infinite\n");
391         else
392                 flow_log("max_payload %u\n", ctx->max_payload);
393
394         flow_log("sent:%u start:%u remains:%u size:%u\n",
395                  rctx->src_sent, chunk_start, remaining, chunksize);
396
397         /* Copy SPU header template created at setkey time */
398         memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
399                sizeof(rctx->msg_buf.bcm_spu_req_hdr));
400
401         spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
402                                    ctx->spu_req_hdr_len, !(rctx->is_encrypt),
403                                    &cipher_parms, chunksize);
404
405         atomic64_add(chunksize, &iproc_priv.bytes_out);
406
407         stat_pad_len = spu->spu_wordalign_padlen(chunksize);
408         if (stat_pad_len)
409                 rx_frag_num++;
410         pad_len = stat_pad_len;
411         if (pad_len) {
412                 tx_frag_num++;
413                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
414                                      0, ctx->auth.alg, ctx->auth.mode,
415                                      rctx->total_sent, stat_pad_len);
416         }
417
418         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
419                               ctx->spu_req_hdr_len);
420         packet_log("payload:\n");
421         dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
422         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
423
424         /*
425          * Build mailbox message containing SPU request msg and rx buffers
426          * to catch response message
427          */
428         memset(mssg, 0, sizeof(*mssg));
429         mssg->type = BRCM_MESSAGE_SPU;
430         mssg->ctx = rctx;       /* Will be returned in response */
431
432         /* Create rx scatterlist to catch result */
433         rx_frag_num += rctx->dst_nents;
434
435         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
436             spu->spu_xts_tweak_in_payload())
437                 rx_frag_num++;  /* extra sg to insert tweak */
438
439         err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
440                                           stat_pad_len);
441         if (err)
442                 return err;
443
444         /* Create tx scatterlist containing SPU request message */
445         tx_frag_num += rctx->src_nents;
446         if (spu->spu_tx_status_len())
447                 tx_frag_num++;
448
449         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
450             spu->spu_xts_tweak_in_payload())
451                 tx_frag_num++;  /* extra sg to insert tweak */
452
453         err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
454                                           pad_len);
455         if (err)
456                 return err;
457
458         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
459         if (unlikely(err < 0))
460                 return err;
461
462         return -EINPROGRESS;
463 }
464
465 /**
466  * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
467  * total received count for the request and updates global stats.
468  * @rctx:       Crypto request context
469  */
470 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
471 {
472         struct spu_hw *spu = &iproc_priv.spu;
473 #ifdef DEBUG
474         struct crypto_async_request *areq = rctx->parent;
475         struct skcipher_request *req = skcipher_request_cast(areq);
476 #endif
477         struct iproc_ctx_s *ctx = rctx->ctx;
478         u32 payload_len;
479
480         /* See how much data was returned */
481         payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
482
483         /*
484          * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
485          * encrypted tweak ("i") value; we don't count those.
486          */
487         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
488             spu->spu_xts_tweak_in_payload() &&
489             (payload_len >= SPU_XTS_TWEAK_SIZE))
490                 payload_len -= SPU_XTS_TWEAK_SIZE;
491
492         atomic64_add(payload_len, &iproc_priv.bytes_in);
493
494         flow_log("%s() offset: %u, bd_len: %u BD:\n",
495                  __func__, rctx->total_received, payload_len);
496
497         dump_sg(req->dst, rctx->total_received, payload_len);
498
499         rctx->total_received += payload_len;
500         if (rctx->total_received == rctx->total_todo) {
501                 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
502                 atomic_inc(
503                    &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
504         }
505 }
506
507 /**
508  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
509  * receive a SPU response message for an ahash request.
510  * @mssg:       mailbox message containing the receive sg
511  * @rctx:       crypto request context
512  * @rx_frag_num: number of scatterlist elements required to hold the
513  *              SPU response message
514  * @digestsize: length of hash digest, in bytes
515  * @stat_pad_len: Number of bytes required to pad the STAT field to
516  *              a 4-byte boundary
517  *
518  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
519  * when the request completes, whether the request is handled successfully or
520  * there is an error.
521  *
522  * Return:
523  *   0 if successful
524  *   < 0 if an error
525  */
526 static int
527 spu_ahash_rx_sg_create(struct brcm_message *mssg,
528                        struct iproc_reqctx_s *rctx,
529                        u8 rx_frag_num, unsigned int digestsize,
530                        u32 stat_pad_len)
531 {
532         struct spu_hw *spu = &iproc_priv.spu;
533         struct scatterlist *sg; /* used to build sgs in mbox message */
534         struct iproc_ctx_s *ctx = rctx->ctx;
535
536         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
537                                 rctx->gfp);
538         if (!mssg->spu.dst)
539                 return -ENOMEM;
540
541         sg = mssg->spu.dst;
542         sg_init_table(sg, rx_frag_num);
543         /* Space for SPU message header */
544         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
545
546         /* Space for digest */
547         sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
548
549         if (stat_pad_len)
550                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
551
552         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
553         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
554         return 0;
555 }
556
557 /**
558  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
559  * a SPU request message for an ahash request. Includes SPU message headers and
560  * the request data.
561  * @mssg:       mailbox message containing the transmit sg
562  * @rctx:       crypto request context
563  * @tx_frag_num: number of scatterlist elements required to construct the
564  *              SPU request message
565  * @spu_hdr_len: length in bytes of SPU message header
566  * @hash_carry_len: Number of bytes of data carried over from previous req
567  * @new_data_len: Number of bytes of new request data
568  * @pad_len:    Number of pad bytes
569  *
570  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
571  * when the request completes, whether the request is handled successfully or
572  * there is an error.
573  *
574  * Return:
575  *   0 if successful
576  *   < 0 if an error
577  */
578 static int
579 spu_ahash_tx_sg_create(struct brcm_message *mssg,
580                        struct iproc_reqctx_s *rctx,
581                        u8 tx_frag_num,
582                        u32 spu_hdr_len,
583                        unsigned int hash_carry_len,
584                        unsigned int new_data_len, u32 pad_len)
585 {
586         struct spu_hw *spu = &iproc_priv.spu;
587         struct scatterlist *sg; /* used to build sgs in mbox message */
588         u32 datalen;            /* Number of bytes of response data expected */
589         u32 stat_len;
590
591         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
592                                 rctx->gfp);
593         if (!mssg->spu.src)
594                 return -ENOMEM;
595
596         sg = mssg->spu.src;
597         sg_init_table(sg, tx_frag_num);
598
599         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
600                    BCM_HDR_LEN + spu_hdr_len);
601
602         if (hash_carry_len)
603                 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
604
605         if (new_data_len) {
606                 /* Copy in each src sg entry from request, up to chunksize */
607                 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
608                                          rctx->src_nents, new_data_len);
609                 if (datalen < new_data_len) {
610                         pr_err("%s(): failed to copy src sg to mbox msg",
611                                __func__);
612                         return -EFAULT;
613                 }
614         }
615
616         if (pad_len)
617                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
618
619         stat_len = spu->spu_tx_status_len();
620         if (stat_len) {
621                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
622                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
623         }
624
625         return 0;
626 }
627
628 /**
629  * handle_ahash_req() - Process an asynchronous hash request from the crypto
630  * API.
631  * @rctx:  Crypto request context
632  *
633  * Builds a SPU request message embedded in a mailbox message and submits the
634  * mailbox message on a selected mailbox channel. The SPU request message is
635  * constructed as a scatterlist, including entries from the crypto API's
636  * src scatterlist to avoid copying the data to be hashed. This function is
637  * called either on the thread from the crypto API, or, in the case that the
638  * crypto API request is too large to fit in a single SPU request message,
639  * on the thread that invokes the receive callback with a response message.
640  * Because some operations require the response from one chunk before the next
641  * chunk can be submitted, we always wait for the response for the previous
642  * chunk before submitting the next chunk. Because requests are submitted in
643  * lock step like this, there is no need to synchronize access to request data
644  * structures.
645  *
646  * Return:
647  *   -EINPROGRESS: request has been submitted to SPU and response will be
648  *                 returned asynchronously
649  *   -EAGAIN:      non-final request included a small amount of data, which for
650  *                 efficiency we did not submit to the SPU, but instead stored
651  *                 to be submitted to the SPU with the next part of the request
652  *   other:        an error code
653  */
654 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
655 {
656         struct spu_hw *spu = &iproc_priv.spu;
657         struct crypto_async_request *areq = rctx->parent;
658         struct ahash_request *req = ahash_request_cast(areq);
659         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
660         struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
661         unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
662         struct iproc_ctx_s *ctx = rctx->ctx;
663
664         /* number of bytes still to be hashed in this req */
665         unsigned int nbytes_to_hash = 0;
666         int err;
667         unsigned int chunksize = 0;     /* length of hash carry + new data */
668         /*
669          * length of new data, not from hash carry, to be submitted in
670          * this hw request
671          */
672         unsigned int new_data_len;
673
674         unsigned int __maybe_unused chunk_start = 0;
675         u32 db_size;     /* Length of data field, incl gcm and hash padding */
676         int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
677         u32 data_pad_len = 0;   /* length of GCM/CCM padding */
678         u32 stat_pad_len = 0;   /* length of padding to align STATUS word */
679         struct brcm_message *mssg;      /* mailbox message */
680         struct spu_request_opts req_opts;
681         struct spu_cipher_parms cipher_parms;
682         struct spu_hash_parms hash_parms;
683         struct spu_aead_parms aead_parms;
684         unsigned int local_nbuf;
685         u32 spu_hdr_len;
686         unsigned int digestsize;
687         u16 rem = 0;
688
689         /*
690          * number of entries in src and dst sg. Always includes SPU msg header.
691          * rx always includes a buffer to catch digest and STATUS.
692          */
693         u8 rx_frag_num = 3;
694         u8 tx_frag_num = 1;
695
696         flow_log("total_todo %u, total_sent %u\n",
697                  rctx->total_todo, rctx->total_sent);
698
699         memset(&req_opts, 0, sizeof(req_opts));
700         memset(&cipher_parms, 0, sizeof(cipher_parms));
701         memset(&hash_parms, 0, sizeof(hash_parms));
702         memset(&aead_parms, 0, sizeof(aead_parms));
703
704         req_opts.bd_suppress = true;
705         hash_parms.alg = ctx->auth.alg;
706         hash_parms.mode = ctx->auth.mode;
707         hash_parms.type = HASH_TYPE_NONE;
708         hash_parms.key_buf = (u8 *)ctx->authkey;
709         hash_parms.key_len = ctx->authkeylen;
710
711         /*
712          * For hash algorithms below assignment looks bit odd but
713          * it's needed for AES-XCBC and AES-CMAC hash algorithms
714          * to differentiate between 128, 192, 256 bit key values.
715          * Based on the key values, hash algorithm is selected.
716          * For example for 128 bit key, hash algorithm is AES-128.
717          */
718         cipher_parms.type = ctx->cipher_type;
719
720         mssg = &rctx->mb_mssg;
721         chunk_start = rctx->src_sent;
722
723         /*
724          * Compute the amount remaining to hash. This may include data
725          * carried over from previous requests.
726          */
727         nbytes_to_hash = rctx->total_todo - rctx->total_sent;
728         chunksize = nbytes_to_hash;
729         if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
730             (chunksize > ctx->max_payload))
731                 chunksize = ctx->max_payload;
732
733         /*
734          * If this is not a final request and the request data is not a multiple
735          * of a full block, then simply park the extra data and prefix it to the
736          * data for the next request.
737          */
738         if (!rctx->is_final) {
739                 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
740                 u16 new_len;  /* len of data to add to hash carry */
741
742                 rem = chunksize % blocksize;   /* remainder */
743                 if (rem) {
744                         /* chunksize not a multiple of blocksize */
745                         chunksize -= rem;
746                         if (chunksize == 0) {
747                                 /* Don't have a full block to submit to hw */
748                                 new_len = rem - rctx->hash_carry_len;
749                                 sg_copy_part_to_buf(req->src, dest, new_len,
750                                                     rctx->src_sent);
751                                 rctx->hash_carry_len = rem;
752                                 flow_log("Exiting with hash carry len: %u\n",
753                                          rctx->hash_carry_len);
754                                 packet_dump("  buf: ",
755                                             rctx->hash_carry,
756                                             rctx->hash_carry_len);
757                                 return -EAGAIN;
758                         }
759                 }
760         }
761
762         /* if we have hash carry, then prefix it to the data in this request */
763         local_nbuf = rctx->hash_carry_len;
764         rctx->hash_carry_len = 0;
765         if (local_nbuf)
766                 tx_frag_num++;
767         new_data_len = chunksize - local_nbuf;
768
769         /* Count number of sg entries to be used in this request */
770         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
771                                        new_data_len);
772
773         /* AES hashing keeps key size in type field, so need to copy it here */
774         if (hash_parms.alg == HASH_ALG_AES)
775                 hash_parms.type = (enum hash_type)cipher_parms.type;
776         else
777                 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
778
779         digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
780                                           hash_parms.type);
781         hash_parms.digestsize = digestsize;
782
783         /* update the indexes */
784         rctx->total_sent += chunksize;
785         /* if you sent a prebuf then that wasn't from this req->src */
786         rctx->src_sent += new_data_len;
787
788         if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
789                 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
790                                                            hash_parms.mode,
791                                                            chunksize,
792                                                            blocksize);
793
794         /*
795          * If a non-first chunk, then include the digest returned from the
796          * previous chunk so that hw can add to it (except for AES types).
797          */
798         if ((hash_parms.type == HASH_TYPE_UPDT) &&
799             (hash_parms.alg != HASH_ALG_AES)) {
800                 hash_parms.key_buf = rctx->incr_hash;
801                 hash_parms.key_len = digestsize;
802         }
803
804         atomic64_add(chunksize, &iproc_priv.bytes_out);
805
806         flow_log("%s() final: %u nbuf: %u ",
807                  __func__, rctx->is_final, local_nbuf);
808
809         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
810                 flow_log("max_payload infinite\n");
811         else
812                 flow_log("max_payload %u\n", ctx->max_payload);
813
814         flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
815
816         /* Prepend SPU header with type 3 BCM header */
817         memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
818
819         hash_parms.prebuf_len = local_nbuf;
820         spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
821                                               BCM_HDR_LEN,
822                                               &req_opts, &cipher_parms,
823                                               &hash_parms, &aead_parms,
824                                               new_data_len);
825
826         if (spu_hdr_len == 0) {
827                 pr_err("Failed to create SPU request header\n");
828                 return -EFAULT;
829         }
830
831         /*
832          * Determine total length of padding required. Put all padding in one
833          * buffer.
834          */
835         data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
836         db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
837                                    0, 0, hash_parms.pad_len);
838         if (spu->spu_tx_status_len())
839                 stat_pad_len = spu->spu_wordalign_padlen(db_size);
840         if (stat_pad_len)
841                 rx_frag_num++;
842         pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
843         if (pad_len) {
844                 tx_frag_num++;
845                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
846                                      hash_parms.pad_len, ctx->auth.alg,
847                                      ctx->auth.mode, rctx->total_sent,
848                                      stat_pad_len);
849         }
850
851         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
852                               spu_hdr_len);
853         packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
854         flow_log("Data:\n");
855         dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
856         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
857
858         /*
859          * Build mailbox message containing SPU request msg and rx buffers
860          * to catch response message
861          */
862         memset(mssg, 0, sizeof(*mssg));
863         mssg->type = BRCM_MESSAGE_SPU;
864         mssg->ctx = rctx;       /* Will be returned in response */
865
866         /* Create rx scatterlist to catch result */
867         err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
868                                      stat_pad_len);
869         if (err)
870                 return err;
871
872         /* Create tx scatterlist containing SPU request message */
873         tx_frag_num += rctx->src_nents;
874         if (spu->spu_tx_status_len())
875                 tx_frag_num++;
876         err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
877                                      local_nbuf, new_data_len, pad_len);
878         if (err)
879                 return err;
880
881         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
882         if (unlikely(err < 0))
883                 return err;
884
885         return -EINPROGRESS;
886 }
887
888 /**
889  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
890  * for an HMAC request.
891  * @req:  The HMAC request from the crypto API
892  * @ctx:  The session context
893  *
894  * Return: 0 if synchronous hash operation successful
895  *         -EINVAL if the hash algo is unrecognized
896  *         any other value indicates an error
897  */
898 static int spu_hmac_outer_hash(struct ahash_request *req,
899                                struct iproc_ctx_s *ctx)
900 {
901         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
902         unsigned int blocksize =
903                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
904         int rc;
905
906         switch (ctx->auth.alg) {
907         case HASH_ALG_MD5:
908                 rc = do_shash("md5", req->result, ctx->opad, blocksize,
909                               req->result, ctx->digestsize, NULL, 0);
910                 break;
911         case HASH_ALG_SHA1:
912                 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
913                               req->result, ctx->digestsize, NULL, 0);
914                 break;
915         case HASH_ALG_SHA224:
916                 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
917                               req->result, ctx->digestsize, NULL, 0);
918                 break;
919         case HASH_ALG_SHA256:
920                 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
921                               req->result, ctx->digestsize, NULL, 0);
922                 break;
923         case HASH_ALG_SHA384:
924                 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
925                               req->result, ctx->digestsize, NULL, 0);
926                 break;
927         case HASH_ALG_SHA512:
928                 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
929                               req->result, ctx->digestsize, NULL, 0);
930                 break;
931         default:
932                 pr_err("%s() Error : unknown hmac type\n", __func__);
933                 rc = -EINVAL;
934         }
935         return rc;
936 }
937
938 /**
939  * ahash_req_done() - Process a hash result from the SPU hardware.
940  * @rctx: Crypto request context
941  *
942  * Return: 0 if successful
943  *         < 0 if an error
944  */
945 static int ahash_req_done(struct iproc_reqctx_s *rctx)
946 {
947         struct spu_hw *spu = &iproc_priv.spu;
948         struct crypto_async_request *areq = rctx->parent;
949         struct ahash_request *req = ahash_request_cast(areq);
950         struct iproc_ctx_s *ctx = rctx->ctx;
951         int err;
952
953         memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
954
955         if (spu->spu_type == SPU_TYPE_SPUM) {
956                 /* byte swap the output from the UPDT function to network byte
957                  * order
958                  */
959                 if (ctx->auth.alg == HASH_ALG_MD5) {
960                         __swab32s((u32 *)req->result);
961                         __swab32s(((u32 *)req->result) + 1);
962                         __swab32s(((u32 *)req->result) + 2);
963                         __swab32s(((u32 *)req->result) + 3);
964                         __swab32s(((u32 *)req->result) + 4);
965                 }
966         }
967
968         flow_dump("  digest ", req->result, ctx->digestsize);
969
970         /* if this an HMAC then do the outer hash */
971         if (rctx->is_sw_hmac) {
972                 err = spu_hmac_outer_hash(req, ctx);
973                 if (err < 0)
974                         return err;
975                 flow_dump("  hmac: ", req->result, ctx->digestsize);
976         }
977
978         if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
979                 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
980                 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
981         } else {
982                 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
983                 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
984         }
985
986         return 0;
987 }
988
989 /**
990  * handle_ahash_resp() - Process a SPU response message for a hash request.
991  * Checks if the entire crypto API request has been processed, and if so,
992  * invokes post processing on the result.
993  * @rctx: Crypto request context
994  */
995 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
996 {
997         struct iproc_ctx_s *ctx = rctx->ctx;
998 #ifdef DEBUG
999         struct crypto_async_request *areq = rctx->parent;
1000         struct ahash_request *req = ahash_request_cast(areq);
1001         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1002         unsigned int blocksize =
1003                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1004 #endif
1005         /*
1006          * Save hash to use as input to next op if incremental. Might be copying
1007          * too much, but that's easier than figuring out actual digest size here
1008          */
1009         memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1010
1011         flow_log("%s() blocksize:%u digestsize:%u\n",
1012                  __func__, blocksize, ctx->digestsize);
1013
1014         atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1015
1016         if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1017                 ahash_req_done(rctx);
1018 }
1019
1020 /**
1021  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1022  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1023  * message headers and the response data.
1024  * @mssg:       mailbox message containing the receive sg
1025  * @rctx:       crypto request context
1026  * @rx_frag_num: number of scatterlist elements required to hold the
1027  *              SPU response message
1028  * @assoc_len:  Length of associated data included in the crypto request
1029  * @ret_iv_len: Length of IV returned in response
1030  * @resp_len:   Number of bytes of response data expected to be written to
1031  *              dst buffer from crypto API
1032  * @digestsize: Length of hash digest, in bytes
1033  * @stat_pad_len: Number of bytes required to pad the STAT field to
1034  *              a 4-byte boundary
1035  *
1036  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1037  * when the request completes, whether the request is handled successfully or
1038  * there is an error.
1039  *
1040  * Returns:
1041  *   0 if successful
1042  *   < 0 if an error
1043  */
1044 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1045                                  struct aead_request *req,
1046                                  struct iproc_reqctx_s *rctx,
1047                                  u8 rx_frag_num,
1048                                  unsigned int assoc_len,
1049                                  u32 ret_iv_len, unsigned int resp_len,
1050                                  unsigned int digestsize, u32 stat_pad_len)
1051 {
1052         struct spu_hw *spu = &iproc_priv.spu;
1053         struct scatterlist *sg; /* used to build sgs in mbox message */
1054         struct iproc_ctx_s *ctx = rctx->ctx;
1055         u32 datalen;            /* Number of bytes of response data expected */
1056         u32 assoc_buf_len;
1057         u8 data_padlen = 0;
1058
1059         if (ctx->is_rfc4543) {
1060                 /* RFC4543: only pad after data, not after AAD */
1061                 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1062                                                           assoc_len + resp_len);
1063                 assoc_buf_len = assoc_len;
1064         } else {
1065                 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1066                                                           resp_len);
1067                 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1068                                                 assoc_len, ret_iv_len,
1069                                                 rctx->is_encrypt);
1070         }
1071
1072         if (ctx->cipher.mode == CIPHER_MODE_CCM)
1073                 /* ICV (after data) must be in the next 32-bit word for CCM */
1074                 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1075                                                          resp_len +
1076                                                          data_padlen);
1077
1078         if (data_padlen)
1079                 /* have to catch gcm pad in separate buffer */
1080                 rx_frag_num++;
1081
1082         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1083                                 rctx->gfp);
1084         if (!mssg->spu.dst)
1085                 return -ENOMEM;
1086
1087         sg = mssg->spu.dst;
1088         sg_init_table(sg, rx_frag_num);
1089
1090         /* Space for SPU message header */
1091         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1092
1093         if (assoc_buf_len) {
1094                 /*
1095                  * Don't write directly to req->dst, because SPU may pad the
1096                  * assoc data in the response
1097                  */
1098                 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1099                 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1100         }
1101
1102         if (resp_len) {
1103                 /*
1104                  * Copy in each dst sg entry from request, up to chunksize.
1105                  * dst sg catches just the data. digest caught in separate buf.
1106                  */
1107                 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1108                                          rctx->dst_nents, resp_len);
1109                 if (datalen < (resp_len)) {
1110                         pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1111                                __func__, resp_len, datalen);
1112                         return -EFAULT;
1113                 }
1114         }
1115
1116         /* If GCM/CCM data is padded, catch padding in separate buffer */
1117         if (data_padlen) {
1118                 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1119                 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1120         }
1121
1122         /* Always catch ICV in separate buffer */
1123         sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1124
1125         flow_log("stat_pad_len %u\n", stat_pad_len);
1126         if (stat_pad_len) {
1127                 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1128                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1129         }
1130
1131         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1132         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1133
1134         return 0;
1135 }
1136
1137 /**
1138  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1139  * SPU request message for an AEAD request. Includes SPU message headers and the
1140  * request data.
1141  * @mssg:       mailbox message containing the transmit sg
1142  * @rctx:       crypto request context
1143  * @tx_frag_num: number of scatterlist elements required to construct the
1144  *              SPU request message
1145  * @spu_hdr_len: length of SPU message header in bytes
1146  * @assoc:      crypto API associated data scatterlist
1147  * @assoc_len:  length of associated data
1148  * @assoc_nents: number of scatterlist entries containing assoc data
1149  * @aead_iv_len: length of AEAD IV, if included
1150  * @chunksize:  Number of bytes of request data
1151  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1152  * @pad_len:    Number of pad bytes
1153  * @incl_icv:   If true, write separate ICV buffer after data and
1154  *              any padding
1155  *
1156  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1157  * when the request completes, whether the request is handled successfully or
1158  * there is an error.
1159  *
1160  * Return:
1161  *   0 if successful
1162  *   < 0 if an error
1163  */
1164 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1165                                  struct iproc_reqctx_s *rctx,
1166                                  u8 tx_frag_num,
1167                                  u32 spu_hdr_len,
1168                                  struct scatterlist *assoc,
1169                                  unsigned int assoc_len,
1170                                  int assoc_nents,
1171                                  unsigned int aead_iv_len,
1172                                  unsigned int chunksize,
1173                                  u32 aad_pad_len, u32 pad_len, bool incl_icv)
1174 {
1175         struct spu_hw *spu = &iproc_priv.spu;
1176         struct scatterlist *sg; /* used to build sgs in mbox message */
1177         struct scatterlist *assoc_sg = assoc;
1178         struct iproc_ctx_s *ctx = rctx->ctx;
1179         u32 datalen;            /* Number of bytes of data to write */
1180         u32 written;            /* Number of bytes of data written */
1181         u32 assoc_offset = 0;
1182         u32 stat_len;
1183
1184         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1185                                 rctx->gfp);
1186         if (!mssg->spu.src)
1187                 return -ENOMEM;
1188
1189         sg = mssg->spu.src;
1190         sg_init_table(sg, tx_frag_num);
1191
1192         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1193                    BCM_HDR_LEN + spu_hdr_len);
1194
1195         if (assoc_len) {
1196                 /* Copy in each associated data sg entry from request */
1197                 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1198                                          assoc_nents, assoc_len);
1199                 if (written < assoc_len) {
1200                         pr_err("%s(): failed to copy assoc sg to mbox msg",
1201                                __func__);
1202                         return -EFAULT;
1203                 }
1204         }
1205
1206         if (aead_iv_len)
1207                 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1208
1209         if (aad_pad_len) {
1210                 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1211                 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1212         }
1213
1214         datalen = chunksize;
1215         if ((chunksize > ctx->digestsize) && incl_icv)
1216                 datalen -= ctx->digestsize;
1217         if (datalen) {
1218                 /* For aead, a single msg should consume the entire src sg */
1219                 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1220                                          rctx->src_nents, datalen);
1221                 if (written < datalen) {
1222                         pr_err("%s(): failed to copy src sg to mbox msg",
1223                                __func__);
1224                         return -EFAULT;
1225                 }
1226         }
1227
1228         if (pad_len) {
1229                 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1230                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1231         }
1232
1233         if (incl_icv)
1234                 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1235
1236         stat_len = spu->spu_tx_status_len();
1237         if (stat_len) {
1238                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1239                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1240         }
1241         return 0;
1242 }
1243
1244 /**
1245  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1246  * current AEAD request.
1247  * @rctx:  Crypto request context
1248  *
1249  * Unlike other operation types, we assume the length of the request fits in
1250  * a single SPU request message. aead_enqueue() makes sure this is true.
1251  * Comments for other op types regarding threads applies here as well.
1252  *
1253  * Unlike incremental hash ops, where the spu returns the entire hash for
1254  * truncated algs like sha-224, the SPU returns just the truncated hash in
1255  * response to aead requests. So digestsize is always ctx->digestsize here.
1256  *
1257  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1258  *                       returned asynchronously
1259  *         Any other value indicates an error
1260  */
1261 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1262 {
1263         struct spu_hw *spu = &iproc_priv.spu;
1264         struct crypto_async_request *areq = rctx->parent;
1265         struct aead_request *req = container_of(areq,
1266                                                 struct aead_request, base);
1267         struct iproc_ctx_s *ctx = rctx->ctx;
1268         int err;
1269         unsigned int chunksize;
1270         unsigned int resp_len;
1271         u32 spu_hdr_len;
1272         u32 db_size;
1273         u32 stat_pad_len;
1274         u32 pad_len;
1275         struct brcm_message *mssg;      /* mailbox message */
1276         struct spu_request_opts req_opts;
1277         struct spu_cipher_parms cipher_parms;
1278         struct spu_hash_parms hash_parms;
1279         struct spu_aead_parms aead_parms;
1280         int assoc_nents = 0;
1281         bool incl_icv = false;
1282         unsigned int digestsize = ctx->digestsize;
1283
1284         /* number of entries in src and dst sg. Always includes SPU msg header.
1285          */
1286         u8 rx_frag_num = 2;     /* and STATUS */
1287         u8 tx_frag_num = 1;
1288
1289         /* doing the whole thing at once */
1290         chunksize = rctx->total_todo;
1291
1292         flow_log("%s: chunksize %u\n", __func__, chunksize);
1293
1294         memset(&req_opts, 0, sizeof(req_opts));
1295         memset(&hash_parms, 0, sizeof(hash_parms));
1296         memset(&aead_parms, 0, sizeof(aead_parms));
1297
1298         req_opts.is_inbound = !(rctx->is_encrypt);
1299         req_opts.auth_first = ctx->auth_first;
1300         req_opts.is_aead = true;
1301         req_opts.is_esp = ctx->is_esp;
1302
1303         cipher_parms.alg = ctx->cipher.alg;
1304         cipher_parms.mode = ctx->cipher.mode;
1305         cipher_parms.type = ctx->cipher_type;
1306         cipher_parms.key_buf = ctx->enckey;
1307         cipher_parms.key_len = ctx->enckeylen;
1308         cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1309         cipher_parms.iv_len = rctx->iv_ctr_len;
1310
1311         hash_parms.alg = ctx->auth.alg;
1312         hash_parms.mode = ctx->auth.mode;
1313         hash_parms.type = HASH_TYPE_NONE;
1314         hash_parms.key_buf = (u8 *)ctx->authkey;
1315         hash_parms.key_len = ctx->authkeylen;
1316         hash_parms.digestsize = digestsize;
1317
1318         if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1319             (ctx->authkeylen < SHA224_DIGEST_SIZE))
1320                 hash_parms.key_len = SHA224_DIGEST_SIZE;
1321
1322         aead_parms.assoc_size = req->assoclen;
1323         if (ctx->is_esp && !ctx->is_rfc4543) {
1324                 /*
1325                  * 8-byte IV is included assoc data in request. SPU2
1326                  * expects AAD to include just SPI and seqno. So
1327                  * subtract off the IV len.
1328                  */
1329                 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1330
1331                 if (rctx->is_encrypt) {
1332                         aead_parms.return_iv = true;
1333                         aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1334                         aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1335                 }
1336         } else {
1337                 aead_parms.ret_iv_len = 0;
1338         }
1339
1340         /*
1341          * Count number of sg entries from the crypto API request that are to
1342          * be included in this mailbox message. For dst sg, don't count space
1343          * for digest. Digest gets caught in a separate buffer and copied back
1344          * to dst sg when processing response.
1345          */
1346         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1347         rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1348         if (aead_parms.assoc_size)
1349                 assoc_nents = spu_sg_count(rctx->assoc, 0,
1350                                            aead_parms.assoc_size);
1351
1352         mssg = &rctx->mb_mssg;
1353
1354         rctx->total_sent = chunksize;
1355         rctx->src_sent = chunksize;
1356         if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1357                                     aead_parms.assoc_size,
1358                                     aead_parms.ret_iv_len,
1359                                     rctx->is_encrypt))
1360                 rx_frag_num++;
1361
1362         aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1363                                                 rctx->iv_ctr_len);
1364
1365         if (ctx->auth.alg == HASH_ALG_AES)
1366                 hash_parms.type = (enum hash_type)ctx->cipher_type;
1367
1368         /* General case AAD padding (CCM and RFC4543 special cases below) */
1369         aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1370                                                  aead_parms.assoc_size);
1371
1372         /* General case data padding (CCM decrypt special case below) */
1373         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1374                                                            chunksize);
1375
1376         if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1377                 /*
1378                  * for CCM, AAD len + 2 (rather than AAD len) needs to be
1379                  * 128-bit aligned
1380                  */
1381                 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1382                                          ctx->cipher.mode,
1383                                          aead_parms.assoc_size + 2);
1384
1385                 /*
1386                  * And when decrypting CCM, need to pad without including
1387                  * size of ICV which is tacked on to end of chunk
1388                  */
1389                 if (!rctx->is_encrypt)
1390                         aead_parms.data_pad_len =
1391                                 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1392                                                         chunksize - digestsize);
1393
1394                 /* CCM also requires software to rewrite portions of IV: */
1395                 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1396                                        chunksize, rctx->is_encrypt,
1397                                        ctx->is_esp);
1398         }
1399
1400         if (ctx->is_rfc4543) {
1401                 /*
1402                  * RFC4543: data is included in AAD, so don't pad after AAD
1403                  * and pad data based on both AAD + data size
1404                  */
1405                 aead_parms.aad_pad_len = 0;
1406                 if (!rctx->is_encrypt)
1407                         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1408                                         ctx->cipher.mode,
1409                                         aead_parms.assoc_size + chunksize -
1410                                         digestsize);
1411                 else
1412                         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1413                                         ctx->cipher.mode,
1414                                         aead_parms.assoc_size + chunksize);
1415
1416                 req_opts.is_rfc4543 = true;
1417         }
1418
1419         if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1420                 incl_icv = true;
1421                 tx_frag_num++;
1422                 /* Copy ICV from end of src scatterlist to digest buf */
1423                 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1424                                     req->assoclen + rctx->total_sent -
1425                                     digestsize);
1426         }
1427
1428         atomic64_add(chunksize, &iproc_priv.bytes_out);
1429
1430         flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1431
1432         /* Prepend SPU header with type 3 BCM header */
1433         memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1434
1435         spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1436                                               BCM_HDR_LEN, &req_opts,
1437                                               &cipher_parms, &hash_parms,
1438                                               &aead_parms, chunksize);
1439
1440         /* Determine total length of padding. Put all padding in one buffer. */
1441         db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1442                                    chunksize, aead_parms.aad_pad_len,
1443                                    aead_parms.data_pad_len, 0);
1444
1445         stat_pad_len = spu->spu_wordalign_padlen(db_size);
1446
1447         if (stat_pad_len)
1448                 rx_frag_num++;
1449         pad_len = aead_parms.data_pad_len + stat_pad_len;
1450         if (pad_len) {
1451                 tx_frag_num++;
1452                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1453                                      aead_parms.data_pad_len, 0,
1454                                      ctx->auth.alg, ctx->auth.mode,
1455                                      rctx->total_sent, stat_pad_len);
1456         }
1457
1458         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1459                               spu_hdr_len);
1460         dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1461         packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1462         packet_log("BD:\n");
1463         dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1464         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1465
1466         /*
1467          * Build mailbox message containing SPU request msg and rx buffers
1468          * to catch response message
1469          */
1470         memset(mssg, 0, sizeof(*mssg));
1471         mssg->type = BRCM_MESSAGE_SPU;
1472         mssg->ctx = rctx;       /* Will be returned in response */
1473
1474         /* Create rx scatterlist to catch result */
1475         rx_frag_num += rctx->dst_nents;
1476         resp_len = chunksize;
1477
1478         /*
1479          * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1480          * padding. Have to for SHA-224 and other truncated SHAs because SPU
1481          * sends entire digest back.
1482          */
1483         rx_frag_num++;
1484
1485         if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1486              (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1487                 /*
1488                  * Input is ciphertxt plus ICV, but ICV not incl
1489                  * in output.
1490                  */
1491                 resp_len -= ctx->digestsize;
1492                 if (resp_len == 0)
1493                         /* no rx frags to catch output data */
1494                         rx_frag_num -= rctx->dst_nents;
1495         }
1496
1497         err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1498                                     aead_parms.assoc_size,
1499                                     aead_parms.ret_iv_len, resp_len, digestsize,
1500                                     stat_pad_len);
1501         if (err)
1502                 return err;
1503
1504         /* Create tx scatterlist containing SPU request message */
1505         tx_frag_num += rctx->src_nents;
1506         tx_frag_num += assoc_nents;
1507         if (aead_parms.aad_pad_len)
1508                 tx_frag_num++;
1509         if (aead_parms.iv_len)
1510                 tx_frag_num++;
1511         if (spu->spu_tx_status_len())
1512                 tx_frag_num++;
1513         err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1514                                     rctx->assoc, aead_parms.assoc_size,
1515                                     assoc_nents, aead_parms.iv_len, chunksize,
1516                                     aead_parms.aad_pad_len, pad_len, incl_icv);
1517         if (err)
1518                 return err;
1519
1520         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1521         if (unlikely(err < 0))
1522                 return err;
1523
1524         return -EINPROGRESS;
1525 }
1526
1527 /**
1528  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1529  * @rctx:  Crypto request context
1530  */
1531 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1532 {
1533         struct spu_hw *spu = &iproc_priv.spu;
1534         struct crypto_async_request *areq = rctx->parent;
1535         struct aead_request *req = container_of(areq,
1536                                                 struct aead_request, base);
1537         struct iproc_ctx_s *ctx = rctx->ctx;
1538         u32 payload_len;
1539         unsigned int icv_offset;
1540         u32 result_len;
1541
1542         /* See how much data was returned */
1543         payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1544         flow_log("payload_len %u\n", payload_len);
1545
1546         /* only count payload */
1547         atomic64_add(payload_len, &iproc_priv.bytes_in);
1548
1549         if (req->assoclen)
1550                 packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1551                             req->assoclen);
1552
1553         /*
1554          * Copy the ICV back to the destination
1555          * buffer. In decrypt case, SPU gives us back the digest, but crypto
1556          * API doesn't expect ICV in dst buffer.
1557          */
1558         result_len = req->cryptlen;
1559         if (rctx->is_encrypt) {
1560                 icv_offset = req->assoclen + rctx->total_sent;
1561                 packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1562                 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1563                 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1564                                       ctx->digestsize, icv_offset);
1565                 result_len += ctx->digestsize;
1566         }
1567
1568         packet_log("response data:  ");
1569         dump_sg(req->dst, req->assoclen, result_len);
1570
1571         atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1572         if (ctx->cipher.alg == CIPHER_ALG_AES) {
1573                 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1574                         atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1575                 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1576                         atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1577                 else
1578                         atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1579         } else {
1580                 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1581         }
1582 }
1583
1584 /**
1585  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1586  * @rctx:  request context
1587  *
1588  * Mailbox scatterlists are allocated for each chunk. So free them after
1589  * processing each chunk.
1590  */
1591 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1592 {
1593         /* mailbox message used to tx request */
1594         struct brcm_message *mssg = &rctx->mb_mssg;
1595
1596         kfree(mssg->spu.src);
1597         kfree(mssg->spu.dst);
1598         memset(mssg, 0, sizeof(struct brcm_message));
1599 }
1600
1601 /**
1602  * finish_req() - Used to invoke the complete callback from the requester when
1603  * a request has been handled asynchronously.
1604  * @rctx:  Request context
1605  * @err:   Indicates whether the request was successful or not
1606  *
1607  * Ensures that cleanup has been done for request
1608  */
1609 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1610 {
1611         struct crypto_async_request *areq = rctx->parent;
1612
1613         flow_log("%s() err:%d\n\n", __func__, err);
1614
1615         /* No harm done if already called */
1616         spu_chunk_cleanup(rctx);
1617
1618         if (areq)
1619                 areq->complete(areq, err);
1620 }
1621
1622 /**
1623  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1624  * @cl:         mailbox client structure for SPU driver
1625  * @msg:        mailbox message containing SPU response
1626  */
1627 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1628 {
1629         struct spu_hw *spu = &iproc_priv.spu;
1630         struct brcm_message *mssg = msg;
1631         struct iproc_reqctx_s *rctx;
1632         int err;
1633
1634         rctx = mssg->ctx;
1635         if (unlikely(!rctx)) {
1636                 /* This is fatal */
1637                 pr_err("%s(): no request context", __func__);
1638                 err = -EFAULT;
1639                 goto cb_finish;
1640         }
1641
1642         /* process the SPU status */
1643         err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1644         if (err != 0) {
1645                 if (err == SPU_INVALID_ICV)
1646                         atomic_inc(&iproc_priv.bad_icv);
1647                 err = -EBADMSG;
1648                 goto cb_finish;
1649         }
1650
1651         /* Process the SPU response message */
1652         switch (rctx->ctx->alg->type) {
1653         case CRYPTO_ALG_TYPE_SKCIPHER:
1654                 handle_skcipher_resp(rctx);
1655                 break;
1656         case CRYPTO_ALG_TYPE_AHASH:
1657                 handle_ahash_resp(rctx);
1658                 break;
1659         case CRYPTO_ALG_TYPE_AEAD:
1660                 handle_aead_resp(rctx);
1661                 break;
1662         default:
1663                 err = -EINVAL;
1664                 goto cb_finish;
1665         }
1666
1667         /*
1668          * If this response does not complete the request, then send the next
1669          * request chunk.
1670          */
1671         if (rctx->total_sent < rctx->total_todo) {
1672                 /* Deallocate anything specific to previous chunk */
1673                 spu_chunk_cleanup(rctx);
1674
1675                 switch (rctx->ctx->alg->type) {
1676                 case CRYPTO_ALG_TYPE_SKCIPHER:
1677                         err = handle_skcipher_req(rctx);
1678                         break;
1679                 case CRYPTO_ALG_TYPE_AHASH:
1680                         err = handle_ahash_req(rctx);
1681                         if (err == -EAGAIN)
1682                                 /*
1683                                  * we saved data in hash carry, but tell crypto
1684                                  * API we successfully completed request.
1685                                  */
1686                                 err = 0;
1687                         break;
1688                 case CRYPTO_ALG_TYPE_AEAD:
1689                         err = handle_aead_req(rctx);
1690                         break;
1691                 default:
1692                         err = -EINVAL;
1693                 }
1694
1695                 if (err == -EINPROGRESS)
1696                         /* Successfully submitted request for next chunk */
1697                         return;
1698         }
1699
1700 cb_finish:
1701         finish_req(rctx, err);
1702 }
1703
1704 /* ==================== Kernel Cryptographic API ==================== */
1705
1706 /**
1707  * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1708  * @req:        Crypto API request
1709  * @encrypt:    true if encrypting; false if decrypting
1710  *
1711  * Return: -EINPROGRESS if request accepted and result will be returned
1712  *                      asynchronously
1713  *         < 0 if an error
1714  */
1715 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1716 {
1717         struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1718         struct iproc_ctx_s *ctx =
1719             crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1720         int err;
1721
1722         flow_log("%s() enc:%u\n", __func__, encrypt);
1723
1724         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1725                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1726         rctx->parent = &req->base;
1727         rctx->is_encrypt = encrypt;
1728         rctx->bd_suppress = false;
1729         rctx->total_todo = req->cryptlen;
1730         rctx->src_sent = 0;
1731         rctx->total_sent = 0;
1732         rctx->total_received = 0;
1733         rctx->ctx = ctx;
1734
1735         /* Initialize current position in src and dst scatterlists */
1736         rctx->src_sg = req->src;
1737         rctx->src_nents = 0;
1738         rctx->src_skip = 0;
1739         rctx->dst_sg = req->dst;
1740         rctx->dst_nents = 0;
1741         rctx->dst_skip = 0;
1742
1743         if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1744             ctx->cipher.mode == CIPHER_MODE_CTR ||
1745             ctx->cipher.mode == CIPHER_MODE_OFB ||
1746             ctx->cipher.mode == CIPHER_MODE_XTS ||
1747             ctx->cipher.mode == CIPHER_MODE_GCM ||
1748             ctx->cipher.mode == CIPHER_MODE_CCM) {
1749                 rctx->iv_ctr_len =
1750                     crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1751                 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1752         } else {
1753                 rctx->iv_ctr_len = 0;
1754         }
1755
1756         /* Choose a SPU to process this request */
1757         rctx->chan_idx = select_channel();
1758         err = handle_skcipher_req(rctx);
1759         if (err != -EINPROGRESS)
1760                 /* synchronous result */
1761                 spu_chunk_cleanup(rctx);
1762
1763         return err;
1764 }
1765
1766 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1767                       unsigned int keylen)
1768 {
1769         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1770         int err;
1771
1772         err = verify_skcipher_des_key(cipher, key);
1773         if (err)
1774                 return err;
1775
1776         ctx->cipher_type = CIPHER_TYPE_DES;
1777         return 0;
1778 }
1779
1780 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1781                            unsigned int keylen)
1782 {
1783         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1784         int err;
1785
1786         err = verify_skcipher_des3_key(cipher, key);
1787         if (err)
1788                 return err;
1789
1790         ctx->cipher_type = CIPHER_TYPE_3DES;
1791         return 0;
1792 }
1793
1794 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1795                       unsigned int keylen)
1796 {
1797         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1798
1799         if (ctx->cipher.mode == CIPHER_MODE_XTS)
1800                 /* XTS includes two keys of equal length */
1801                 keylen = keylen / 2;
1802
1803         switch (keylen) {
1804         case AES_KEYSIZE_128:
1805                 ctx->cipher_type = CIPHER_TYPE_AES128;
1806                 break;
1807         case AES_KEYSIZE_192:
1808                 ctx->cipher_type = CIPHER_TYPE_AES192;
1809                 break;
1810         case AES_KEYSIZE_256:
1811                 ctx->cipher_type = CIPHER_TYPE_AES256;
1812                 break;
1813         default:
1814                 return -EINVAL;
1815         }
1816         WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1817                 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1818         return 0;
1819 }
1820
1821 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1822                              unsigned int keylen)
1823 {
1824         struct spu_hw *spu = &iproc_priv.spu;
1825         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1826         struct spu_cipher_parms cipher_parms;
1827         u32 alloc_len = 0;
1828         int err;
1829
1830         flow_log("skcipher_setkey() keylen: %d\n", keylen);
1831         flow_dump("  key: ", key, keylen);
1832
1833         switch (ctx->cipher.alg) {
1834         case CIPHER_ALG_DES:
1835                 err = des_setkey(cipher, key, keylen);
1836                 break;
1837         case CIPHER_ALG_3DES:
1838                 err = threedes_setkey(cipher, key, keylen);
1839                 break;
1840         case CIPHER_ALG_AES:
1841                 err = aes_setkey(cipher, key, keylen);
1842                 break;
1843         default:
1844                 pr_err("%s() Error: unknown cipher alg\n", __func__);
1845                 err = -EINVAL;
1846         }
1847         if (err)
1848                 return err;
1849
1850         memcpy(ctx->enckey, key, keylen);
1851         ctx->enckeylen = keylen;
1852
1853         /* SPU needs XTS keys in the reverse order the crypto API presents */
1854         if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1855             (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1856                 unsigned int xts_keylen = keylen / 2;
1857
1858                 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1859                 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1860         }
1861
1862         if (spu->spu_type == SPU_TYPE_SPUM)
1863                 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1864         else if (spu->spu_type == SPU_TYPE_SPU2)
1865                 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1866         memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1867         cipher_parms.iv_buf = NULL;
1868         cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1869         flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1870
1871         cipher_parms.alg = ctx->cipher.alg;
1872         cipher_parms.mode = ctx->cipher.mode;
1873         cipher_parms.type = ctx->cipher_type;
1874         cipher_parms.key_buf = ctx->enckey;
1875         cipher_parms.key_len = ctx->enckeylen;
1876
1877         /* Prepend SPU request message with BCM header */
1878         memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1879         ctx->spu_req_hdr_len =
1880             spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1881                                      &cipher_parms);
1882
1883         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1884                                                           ctx->enckeylen,
1885                                                           false);
1886
1887         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1888
1889         return 0;
1890 }
1891
1892 static int skcipher_encrypt(struct skcipher_request *req)
1893 {
1894         flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1895
1896         return skcipher_enqueue(req, true);
1897 }
1898
1899 static int skcipher_decrypt(struct skcipher_request *req)
1900 {
1901         flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1902         return skcipher_enqueue(req, false);
1903 }
1904
1905 static int ahash_enqueue(struct ahash_request *req)
1906 {
1907         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1908         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1909         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1910         int err;
1911         const char *alg_name;
1912
1913         flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1914
1915         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1916                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1917         rctx->parent = &req->base;
1918         rctx->ctx = ctx;
1919         rctx->bd_suppress = true;
1920         memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1921
1922         /* Initialize position in src scatterlist */
1923         rctx->src_sg = req->src;
1924         rctx->src_skip = 0;
1925         rctx->src_nents = 0;
1926         rctx->dst_sg = NULL;
1927         rctx->dst_skip = 0;
1928         rctx->dst_nents = 0;
1929
1930         /* SPU2 hardware does not compute hash of zero length data */
1931         if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1932             (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1933                 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1934                 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1935                          rctx->is_final ? "" : "non-", alg_name);
1936                 err = do_shash((unsigned char *)alg_name, req->result,
1937                                NULL, 0, NULL, 0, ctx->authkey,
1938                                ctx->authkeylen);
1939                 if (err < 0)
1940                         flow_log("Hash request failed with error %d\n", err);
1941                 return err;
1942         }
1943         /* Choose a SPU to process this request */
1944         rctx->chan_idx = select_channel();
1945
1946         err = handle_ahash_req(rctx);
1947         if (err != -EINPROGRESS)
1948                 /* synchronous result */
1949                 spu_chunk_cleanup(rctx);
1950
1951         if (err == -EAGAIN)
1952                 /*
1953                  * we saved data in hash carry, but tell crypto API
1954                  * we successfully completed request.
1955                  */
1956                 err = 0;
1957
1958         return err;
1959 }
1960
1961 static int __ahash_init(struct ahash_request *req)
1962 {
1963         struct spu_hw *spu = &iproc_priv.spu;
1964         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1965         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1966         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1967
1968         flow_log("%s()\n", __func__);
1969
1970         /* Initialize the context */
1971         rctx->hash_carry_len = 0;
1972         rctx->is_final = 0;
1973
1974         rctx->total_todo = 0;
1975         rctx->src_sent = 0;
1976         rctx->total_sent = 0;
1977         rctx->total_received = 0;
1978
1979         ctx->digestsize = crypto_ahash_digestsize(tfm);
1980         /* If we add a hash whose digest is larger, catch it here. */
1981         WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1982
1983         rctx->is_sw_hmac = false;
1984
1985         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1986                                                           true);
1987
1988         return 0;
1989 }
1990
1991 /**
1992  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1993  * @ctx:  Crypto session context
1994  *
1995  * SPU-2 does not support incremental hashing (we'll have to revisit and
1996  * condition based on chip revision or device tree entry if future versions do
1997  * support incremental hash)
1998  *
1999  * SPU-M also doesn't support incremental hashing of AES-XCBC
2000  *
2001  * Return: true if incremental hashing is not supported
2002  *         false otherwise
2003  */
2004 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2005 {
2006         struct spu_hw *spu = &iproc_priv.spu;
2007
2008         if (spu->spu_type == SPU_TYPE_SPU2)
2009                 return true;
2010
2011         if ((ctx->auth.alg == HASH_ALG_AES) &&
2012             (ctx->auth.mode == HASH_MODE_XCBC))
2013                 return true;
2014
2015         /* Otherwise, incremental hashing is supported */
2016         return false;
2017 }
2018
2019 static int ahash_init(struct ahash_request *req)
2020 {
2021         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2022         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2023         const char *alg_name;
2024         struct crypto_shash *hash;
2025         int ret;
2026         gfp_t gfp;
2027
2028         if (spu_no_incr_hash(ctx)) {
2029                 /*
2030                  * If we get an incremental hashing request and it's not
2031                  * supported by the hardware, we need to handle it in software
2032                  * by calling synchronous hash functions.
2033                  */
2034                 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2035                 hash = crypto_alloc_shash(alg_name, 0, 0);
2036                 if (IS_ERR(hash)) {
2037                         ret = PTR_ERR(hash);
2038                         goto err;
2039                 }
2040
2041                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2042                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2043                 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2044                                      crypto_shash_descsize(hash), gfp);
2045                 if (!ctx->shash) {
2046                         ret = -ENOMEM;
2047                         goto err_hash;
2048                 }
2049                 ctx->shash->tfm = hash;
2050
2051                 /* Set the key using data we already have from setkey */
2052                 if (ctx->authkeylen > 0) {
2053                         ret = crypto_shash_setkey(hash, ctx->authkey,
2054                                                   ctx->authkeylen);
2055                         if (ret)
2056                                 goto err_shash;
2057                 }
2058
2059                 /* Initialize hash w/ this key and other params */
2060                 ret = crypto_shash_init(ctx->shash);
2061                 if (ret)
2062                         goto err_shash;
2063         } else {
2064                 /* Otherwise call the internal function which uses SPU hw */
2065                 ret = __ahash_init(req);
2066         }
2067
2068         return ret;
2069
2070 err_shash:
2071         kfree(ctx->shash);
2072 err_hash:
2073         crypto_free_shash(hash);
2074 err:
2075         return ret;
2076 }
2077
2078 static int __ahash_update(struct ahash_request *req)
2079 {
2080         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2081
2082         flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2083
2084         if (!req->nbytes)
2085                 return 0;
2086         rctx->total_todo += req->nbytes;
2087         rctx->src_sent = 0;
2088
2089         return ahash_enqueue(req);
2090 }
2091
2092 static int ahash_update(struct ahash_request *req)
2093 {
2094         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2095         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2096         u8 *tmpbuf;
2097         int ret;
2098         int nents;
2099         gfp_t gfp;
2100
2101         if (spu_no_incr_hash(ctx)) {
2102                 /*
2103                  * If we get an incremental hashing request and it's not
2104                  * supported by the hardware, we need to handle it in software
2105                  * by calling synchronous hash functions.
2106                  */
2107                 if (req->src)
2108                         nents = sg_nents(req->src);
2109                 else
2110                         return -EINVAL;
2111
2112                 /* Copy data from req scatterlist to tmp buffer */
2113                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2114                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2115                 tmpbuf = kmalloc(req->nbytes, gfp);
2116                 if (!tmpbuf)
2117                         return -ENOMEM;
2118
2119                 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2120                                 req->nbytes) {
2121                         kfree(tmpbuf);
2122                         return -EINVAL;
2123                 }
2124
2125                 /* Call synchronous update */
2126                 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2127                 kfree(tmpbuf);
2128         } else {
2129                 /* Otherwise call the internal function which uses SPU hw */
2130                 ret = __ahash_update(req);
2131         }
2132
2133         return ret;
2134 }
2135
2136 static int __ahash_final(struct ahash_request *req)
2137 {
2138         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2139
2140         flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2141
2142         rctx->is_final = 1;
2143
2144         return ahash_enqueue(req);
2145 }
2146
2147 static int ahash_final(struct ahash_request *req)
2148 {
2149         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2150         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2151         int ret;
2152
2153         if (spu_no_incr_hash(ctx)) {
2154                 /*
2155                  * If we get an incremental hashing request and it's not
2156                  * supported by the hardware, we need to handle it in software
2157                  * by calling synchronous hash functions.
2158                  */
2159                 ret = crypto_shash_final(ctx->shash, req->result);
2160
2161                 /* Done with hash, can deallocate it now */
2162                 crypto_free_shash(ctx->shash->tfm);
2163                 kfree(ctx->shash);
2164
2165         } else {
2166                 /* Otherwise call the internal function which uses SPU hw */
2167                 ret = __ahash_final(req);
2168         }
2169
2170         return ret;
2171 }
2172
2173 static int __ahash_finup(struct ahash_request *req)
2174 {
2175         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2176
2177         flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2178
2179         rctx->total_todo += req->nbytes;
2180         rctx->src_sent = 0;
2181         rctx->is_final = 1;
2182
2183         return ahash_enqueue(req);
2184 }
2185
2186 static int ahash_finup(struct ahash_request *req)
2187 {
2188         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2189         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2190         u8 *tmpbuf;
2191         int ret;
2192         int nents;
2193         gfp_t gfp;
2194
2195         if (spu_no_incr_hash(ctx)) {
2196                 /*
2197                  * If we get an incremental hashing request and it's not
2198                  * supported by the hardware, we need to handle it in software
2199                  * by calling synchronous hash functions.
2200                  */
2201                 if (req->src) {
2202                         nents = sg_nents(req->src);
2203                 } else {
2204                         ret = -EINVAL;
2205                         goto ahash_finup_exit;
2206                 }
2207
2208                 /* Copy data from req scatterlist to tmp buffer */
2209                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2210                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2211                 tmpbuf = kmalloc(req->nbytes, gfp);
2212                 if (!tmpbuf) {
2213                         ret = -ENOMEM;
2214                         goto ahash_finup_exit;
2215                 }
2216
2217                 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2218                                 req->nbytes) {
2219                         ret = -EINVAL;
2220                         goto ahash_finup_free;
2221                 }
2222
2223                 /* Call synchronous update */
2224                 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2225                                          req->result);
2226         } else {
2227                 /* Otherwise call the internal function which uses SPU hw */
2228                 return __ahash_finup(req);
2229         }
2230 ahash_finup_free:
2231         kfree(tmpbuf);
2232
2233 ahash_finup_exit:
2234         /* Done with hash, can deallocate it now */
2235         crypto_free_shash(ctx->shash->tfm);
2236         kfree(ctx->shash);
2237         return ret;
2238 }
2239
2240 static int ahash_digest(struct ahash_request *req)
2241 {
2242         int err;
2243
2244         flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2245
2246         /* whole thing at once */
2247         err = __ahash_init(req);
2248         if (!err)
2249                 err = __ahash_finup(req);
2250
2251         return err;
2252 }
2253
2254 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2255                         unsigned int keylen)
2256 {
2257         struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2258
2259         flow_log("%s() ahash:%p key:%p keylen:%u\n",
2260                  __func__, ahash, key, keylen);
2261         flow_dump("  key: ", key, keylen);
2262
2263         if (ctx->auth.alg == HASH_ALG_AES) {
2264                 switch (keylen) {
2265                 case AES_KEYSIZE_128:
2266                         ctx->cipher_type = CIPHER_TYPE_AES128;
2267                         break;
2268                 case AES_KEYSIZE_192:
2269                         ctx->cipher_type = CIPHER_TYPE_AES192;
2270                         break;
2271                 case AES_KEYSIZE_256:
2272                         ctx->cipher_type = CIPHER_TYPE_AES256;
2273                         break;
2274                 default:
2275                         pr_err("%s() Error: Invalid key length\n", __func__);
2276                         return -EINVAL;
2277                 }
2278         } else {
2279                 pr_err("%s() Error: unknown hash alg\n", __func__);
2280                 return -EINVAL;
2281         }
2282         memcpy(ctx->authkey, key, keylen);
2283         ctx->authkeylen = keylen;
2284
2285         return 0;
2286 }
2287
2288 static int ahash_export(struct ahash_request *req, void *out)
2289 {
2290         const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2291         struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2292
2293         spu_exp->total_todo = rctx->total_todo;
2294         spu_exp->total_sent = rctx->total_sent;
2295         spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2296         memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2297         spu_exp->hash_carry_len = rctx->hash_carry_len;
2298         memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2299
2300         return 0;
2301 }
2302
2303 static int ahash_import(struct ahash_request *req, const void *in)
2304 {
2305         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2306         struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2307
2308         rctx->total_todo = spu_exp->total_todo;
2309         rctx->total_sent = spu_exp->total_sent;
2310         rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2311         memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2312         rctx->hash_carry_len = spu_exp->hash_carry_len;
2313         memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2314
2315         return 0;
2316 }
2317
2318 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2319                              unsigned int keylen)
2320 {
2321         struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2322         unsigned int blocksize =
2323                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2324         unsigned int digestsize = crypto_ahash_digestsize(ahash);
2325         unsigned int index;
2326         int rc;
2327
2328         flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2329                  __func__, ahash, key, keylen, blocksize, digestsize);
2330         flow_dump("  key: ", key, keylen);
2331
2332         if (keylen > blocksize) {
2333                 switch (ctx->auth.alg) {
2334                 case HASH_ALG_MD5:
2335                         rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2336                                       0, NULL, 0);
2337                         break;
2338                 case HASH_ALG_SHA1:
2339                         rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2340                                       0, NULL, 0);
2341                         break;
2342                 case HASH_ALG_SHA224:
2343                         rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2344                                       0, NULL, 0);
2345                         break;
2346                 case HASH_ALG_SHA256:
2347                         rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2348                                       0, NULL, 0);
2349                         break;
2350                 case HASH_ALG_SHA384:
2351                         rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2352                                       0, NULL, 0);
2353                         break;
2354                 case HASH_ALG_SHA512:
2355                         rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2356                                       0, NULL, 0);
2357                         break;
2358                 case HASH_ALG_SHA3_224:
2359                         rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2360                                       NULL, 0, NULL, 0);
2361                         break;
2362                 case HASH_ALG_SHA3_256:
2363                         rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2364                                       NULL, 0, NULL, 0);
2365                         break;
2366                 case HASH_ALG_SHA3_384:
2367                         rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2368                                       NULL, 0, NULL, 0);
2369                         break;
2370                 case HASH_ALG_SHA3_512:
2371                         rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2372                                       NULL, 0, NULL, 0);
2373                         break;
2374                 default:
2375                         pr_err("%s() Error: unknown hash alg\n", __func__);
2376                         return -EINVAL;
2377                 }
2378                 if (rc < 0) {
2379                         pr_err("%s() Error %d computing shash for %s\n",
2380                                __func__, rc, hash_alg_name[ctx->auth.alg]);
2381                         return rc;
2382                 }
2383                 ctx->authkeylen = digestsize;
2384
2385                 flow_log("  keylen > digestsize... hashed\n");
2386                 flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2387         } else {
2388                 memcpy(ctx->authkey, key, keylen);
2389                 ctx->authkeylen = keylen;
2390         }
2391
2392         /*
2393          * Full HMAC operation in SPUM is not verified,
2394          * So keeping the generation of IPAD, OPAD and
2395          * outer hashing in software.
2396          */
2397         if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2398                 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2399                 memset(ctx->ipad + ctx->authkeylen, 0,
2400                        blocksize - ctx->authkeylen);
2401                 ctx->authkeylen = 0;
2402                 memcpy(ctx->opad, ctx->ipad, blocksize);
2403
2404                 for (index = 0; index < blocksize; index++) {
2405                         ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2406                         ctx->opad[index] ^= HMAC_OPAD_VALUE;
2407                 }
2408
2409                 flow_dump("  ipad: ", ctx->ipad, blocksize);
2410                 flow_dump("  opad: ", ctx->opad, blocksize);
2411         }
2412         ctx->digestsize = digestsize;
2413         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2414
2415         return 0;
2416 }
2417
2418 static int ahash_hmac_init(struct ahash_request *req)
2419 {
2420         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2421         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2422         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2423         unsigned int blocksize =
2424                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2425
2426         flow_log("ahash_hmac_init()\n");
2427
2428         /* init the context as a hash */
2429         ahash_init(req);
2430
2431         if (!spu_no_incr_hash(ctx)) {
2432                 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2433                 rctx->is_sw_hmac = true;
2434                 ctx->auth.mode = HASH_MODE_HASH;
2435                 /* start with a prepended ipad */
2436                 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2437                 rctx->hash_carry_len = blocksize;
2438                 rctx->total_todo += blocksize;
2439         }
2440
2441         return 0;
2442 }
2443
2444 static int ahash_hmac_update(struct ahash_request *req)
2445 {
2446         flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2447
2448         if (!req->nbytes)
2449                 return 0;
2450
2451         return ahash_update(req);
2452 }
2453
2454 static int ahash_hmac_final(struct ahash_request *req)
2455 {
2456         flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2457
2458         return ahash_final(req);
2459 }
2460
2461 static int ahash_hmac_finup(struct ahash_request *req)
2462 {
2463         flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2464
2465         return ahash_finup(req);
2466 }
2467
2468 static int ahash_hmac_digest(struct ahash_request *req)
2469 {
2470         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2471         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2472         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2473         unsigned int blocksize =
2474                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2475
2476         flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2477
2478         /* Perform initialization and then call finup */
2479         __ahash_init(req);
2480
2481         if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2482                 /*
2483                  * SPU2 supports full HMAC implementation in the
2484                  * hardware, need not to generate IPAD, OPAD and
2485                  * outer hash in software.
2486                  * Only for hash key len > hash block size, SPU2
2487                  * expects to perform hashing on the key, shorten
2488                  * it to digest size and feed it as hash key.
2489                  */
2490                 rctx->is_sw_hmac = false;
2491                 ctx->auth.mode = HASH_MODE_HMAC;
2492         } else {
2493                 rctx->is_sw_hmac = true;
2494                 ctx->auth.mode = HASH_MODE_HASH;
2495                 /* start with a prepended ipad */
2496                 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2497                 rctx->hash_carry_len = blocksize;
2498                 rctx->total_todo += blocksize;
2499         }
2500
2501         return __ahash_finup(req);
2502 }
2503
2504 /* aead helpers */
2505
2506 static int aead_need_fallback(struct aead_request *req)
2507 {
2508         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2509         struct spu_hw *spu = &iproc_priv.spu;
2510         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2511         struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2512         u32 payload_len;
2513
2514         /*
2515          * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2516          * and AAD are both 0 bytes long. So use fallback in this case.
2517          */
2518         if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2519              (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2520             (req->assoclen == 0)) {
2521                 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2522                     (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2523                         flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2524                         return 1;
2525                 }
2526         }
2527
2528         /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2529         if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2530             (spu->spu_type == SPU_TYPE_SPUM) &&
2531             (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2532             (ctx->digestsize != 16)) {
2533                 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2534                          __func__, ctx->digestsize);
2535                 return 1;
2536         }
2537
2538         /*
2539          * SPU-M on NSP has an issue where AES-CCM hash is not correct
2540          * when AAD size is 0
2541          */
2542         if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2543             (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2544             (req->assoclen == 0)) {
2545                 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2546                          __func__);
2547                 return 1;
2548         }
2549
2550         /*
2551          * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2552          * 16 or 20 bytes long. So use fallback in this case.
2553          */
2554         if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2555             ctx->cipher.alg == CIPHER_ALG_AES &&
2556             rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2557             req->assoclen != 16 && req->assoclen != 20) {
2558                 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2559                          " other than 16 or 20 bytes\n");
2560                 return 1;
2561         }
2562
2563         payload_len = req->cryptlen;
2564         if (spu->spu_type == SPU_TYPE_SPUM)
2565                 payload_len += req->assoclen;
2566
2567         flow_log("%s() payload len: %u\n", __func__, payload_len);
2568
2569         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2570                 return 0;
2571         else
2572                 return payload_len > ctx->max_payload;
2573 }
2574
2575 static void aead_complete(struct crypto_async_request *areq, int err)
2576 {
2577         struct aead_request *req =
2578             container_of(areq, struct aead_request, base);
2579         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2580         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2581
2582         flow_log("%s() err:%d\n", __func__, err);
2583
2584         areq->tfm = crypto_aead_tfm(aead);
2585
2586         areq->complete = rctx->old_complete;
2587         areq->data = rctx->old_data;
2588
2589         areq->complete(areq, err);
2590 }
2591
2592 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2593 {
2594         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2595         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2596         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2597         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2598         int err;
2599         u32 req_flags;
2600
2601         flow_log("%s() enc:%u\n", __func__, is_encrypt);
2602
2603         if (ctx->fallback_cipher) {
2604                 /* Store the cipher tfm and then use the fallback tfm */
2605                 rctx->old_tfm = tfm;
2606                 aead_request_set_tfm(req, ctx->fallback_cipher);
2607                 /*
2608                  * Save the callback and chain ourselves in, so we can restore
2609                  * the tfm
2610                  */
2611                 rctx->old_complete = req->base.complete;
2612                 rctx->old_data = req->base.data;
2613                 req_flags = aead_request_flags(req);
2614                 aead_request_set_callback(req, req_flags, aead_complete, req);
2615                 err = is_encrypt ? crypto_aead_encrypt(req) :
2616                     crypto_aead_decrypt(req);
2617
2618                 if (err == 0) {
2619                         /*
2620                          * fallback was synchronous (did not return
2621                          * -EINPROGRESS). So restore request state here.
2622                          */
2623                         aead_request_set_callback(req, req_flags,
2624                                                   rctx->old_complete, req);
2625                         req->base.data = rctx->old_data;
2626                         aead_request_set_tfm(req, aead);
2627                         flow_log("%s() fallback completed successfully\n\n",
2628                                  __func__);
2629                 }
2630         } else {
2631                 err = -EINVAL;
2632         }
2633
2634         return err;
2635 }
2636
2637 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2638 {
2639         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2640         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2641         struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2642         int err;
2643
2644         flow_log("%s() enc:%u\n", __func__, is_encrypt);
2645
2646         if (req->assoclen > MAX_ASSOC_SIZE) {
2647                 pr_err
2648                     ("%s() Error: associated data too long. (%u > %u bytes)\n",
2649                      __func__, req->assoclen, MAX_ASSOC_SIZE);
2650                 return -EINVAL;
2651         }
2652
2653         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2654                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2655         rctx->parent = &req->base;
2656         rctx->is_encrypt = is_encrypt;
2657         rctx->bd_suppress = false;
2658         rctx->total_todo = req->cryptlen;
2659         rctx->src_sent = 0;
2660         rctx->total_sent = 0;
2661         rctx->total_received = 0;
2662         rctx->is_sw_hmac = false;
2663         rctx->ctx = ctx;
2664         memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2665
2666         /* assoc data is at start of src sg */
2667         rctx->assoc = req->src;
2668
2669         /*
2670          * Init current position in src scatterlist to be after assoc data.
2671          * src_skip set to buffer offset where data begins. (Assoc data could
2672          * end in the middle of a buffer.)
2673          */
2674         if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2675                              &rctx->src_skip) < 0) {
2676                 pr_err("%s() Error: Unable to find start of src data\n",
2677                        __func__);
2678                 return -EINVAL;
2679         }
2680
2681         rctx->src_nents = 0;
2682         rctx->dst_nents = 0;
2683         if (req->dst == req->src) {
2684                 rctx->dst_sg = rctx->src_sg;
2685                 rctx->dst_skip = rctx->src_skip;
2686         } else {
2687                 /*
2688                  * Expect req->dst to have room for assoc data followed by
2689                  * output data and ICV, if encrypt. So initialize dst_sg
2690                  * to point beyond assoc len offset.
2691                  */
2692                 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2693                                      &rctx->dst_skip) < 0) {
2694                         pr_err("%s() Error: Unable to find start of dst data\n",
2695                                __func__);
2696                         return -EINVAL;
2697                 }
2698         }
2699
2700         if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2701             ctx->cipher.mode == CIPHER_MODE_CTR ||
2702             ctx->cipher.mode == CIPHER_MODE_OFB ||
2703             ctx->cipher.mode == CIPHER_MODE_XTS ||
2704             ctx->cipher.mode == CIPHER_MODE_GCM) {
2705                 rctx->iv_ctr_len =
2706                         ctx->salt_len +
2707                         crypto_aead_ivsize(crypto_aead_reqtfm(req));
2708         } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2709                 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2710         } else {
2711                 rctx->iv_ctr_len = 0;
2712         }
2713
2714         rctx->hash_carry_len = 0;
2715
2716         flow_log("  src sg: %p\n", req->src);
2717         flow_log("  rctx->src_sg: %p, src_skip %u\n",
2718                  rctx->src_sg, rctx->src_skip);
2719         flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2720         flow_log("  dst sg: %p\n", req->dst);
2721         flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2722                  rctx->dst_sg, rctx->dst_skip);
2723         flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2724         flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2725         flow_log("  authkeylen:%u\n", ctx->authkeylen);
2726         flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2727
2728         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2729                 flow_log("  max_payload infinite");
2730         else
2731                 flow_log("  max_payload: %u\n", ctx->max_payload);
2732
2733         if (unlikely(aead_need_fallback(req)))
2734                 return aead_do_fallback(req, is_encrypt);
2735
2736         /*
2737          * Do memory allocations for request after fallback check, because if we
2738          * do fallback, we won't call finish_req() to dealloc.
2739          */
2740         if (rctx->iv_ctr_len) {
2741                 if (ctx->salt_len)
2742                         memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2743                                ctx->salt, ctx->salt_len);
2744                 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2745                        req->iv,
2746                        rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2747         }
2748
2749         rctx->chan_idx = select_channel();
2750         err = handle_aead_req(rctx);
2751         if (err != -EINPROGRESS)
2752                 /* synchronous result */
2753                 spu_chunk_cleanup(rctx);
2754
2755         return err;
2756 }
2757
2758 static int aead_authenc_setkey(struct crypto_aead *cipher,
2759                                const u8 *key, unsigned int keylen)
2760 {
2761         struct spu_hw *spu = &iproc_priv.spu;
2762         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2763         struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2764         struct crypto_authenc_keys keys;
2765         int ret;
2766
2767         flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2768                  keylen);
2769         flow_dump("  key: ", key, keylen);
2770
2771         ret = crypto_authenc_extractkeys(&keys, key, keylen);
2772         if (ret)
2773                 goto badkey;
2774
2775         if (keys.enckeylen > MAX_KEY_SIZE ||
2776             keys.authkeylen > MAX_KEY_SIZE)
2777                 goto badkey;
2778
2779         ctx->enckeylen = keys.enckeylen;
2780         ctx->authkeylen = keys.authkeylen;
2781
2782         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2783         /* May end up padding auth key. So make sure it's zeroed. */
2784         memset(ctx->authkey, 0, sizeof(ctx->authkey));
2785         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2786
2787         switch (ctx->alg->cipher_info.alg) {
2788         case CIPHER_ALG_DES:
2789                 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2790                         return -EINVAL;
2791
2792                 ctx->cipher_type = CIPHER_TYPE_DES;
2793                 break;
2794         case CIPHER_ALG_3DES:
2795                 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2796                         return -EINVAL;
2797
2798                 ctx->cipher_type = CIPHER_TYPE_3DES;
2799                 break;
2800         case CIPHER_ALG_AES:
2801                 switch (ctx->enckeylen) {
2802                 case AES_KEYSIZE_128:
2803                         ctx->cipher_type = CIPHER_TYPE_AES128;
2804                         break;
2805                 case AES_KEYSIZE_192:
2806                         ctx->cipher_type = CIPHER_TYPE_AES192;
2807                         break;
2808                 case AES_KEYSIZE_256:
2809                         ctx->cipher_type = CIPHER_TYPE_AES256;
2810                         break;
2811                 default:
2812                         goto badkey;
2813                 }
2814                 break;
2815         default:
2816                 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2817                 return -EINVAL;
2818         }
2819
2820         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2821                  ctx->authkeylen);
2822         flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2823         flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2824
2825         /* setkey the fallback just in case we needto use it */
2826         if (ctx->fallback_cipher) {
2827                 flow_log("  running fallback setkey()\n");
2828
2829                 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2830                 ctx->fallback_cipher->base.crt_flags |=
2831                     tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2832                 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2833                 if (ret)
2834                         flow_log("  fallback setkey() returned:%d\n", ret);
2835         }
2836
2837         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2838                                                           ctx->enckeylen,
2839                                                           false);
2840
2841         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2842
2843         return ret;
2844
2845 badkey:
2846         ctx->enckeylen = 0;
2847         ctx->authkeylen = 0;
2848         ctx->digestsize = 0;
2849
2850         return -EINVAL;
2851 }
2852
2853 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2854                                const u8 *key, unsigned int keylen)
2855 {
2856         struct spu_hw *spu = &iproc_priv.spu;
2857         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2858         struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2859
2860         int ret = 0;
2861
2862         flow_log("%s() keylen:%u\n", __func__, keylen);
2863         flow_dump("  key: ", key, keylen);
2864
2865         if (!ctx->is_esp)
2866                 ctx->digestsize = keylen;
2867
2868         ctx->enckeylen = keylen;
2869         ctx->authkeylen = 0;
2870
2871         switch (ctx->enckeylen) {
2872         case AES_KEYSIZE_128:
2873                 ctx->cipher_type = CIPHER_TYPE_AES128;
2874                 break;
2875         case AES_KEYSIZE_192:
2876                 ctx->cipher_type = CIPHER_TYPE_AES192;
2877                 break;
2878         case AES_KEYSIZE_256:
2879                 ctx->cipher_type = CIPHER_TYPE_AES256;
2880                 break;
2881         default:
2882                 goto badkey;
2883         }
2884
2885         memcpy(ctx->enckey, key, ctx->enckeylen);
2886
2887         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2888                  ctx->authkeylen);
2889         flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2890         flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2891
2892         /* setkey the fallback just in case we need to use it */
2893         if (ctx->fallback_cipher) {
2894                 flow_log("  running fallback setkey()\n");
2895
2896                 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2897                 ctx->fallback_cipher->base.crt_flags |=
2898                     tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2899                 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2900                                          keylen + ctx->salt_len);
2901                 if (ret)
2902                         flow_log("  fallback setkey() returned:%d\n", ret);
2903         }
2904
2905         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2906                                                           ctx->enckeylen,
2907                                                           false);
2908
2909         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2910
2911         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2912                  ctx->authkeylen);
2913
2914         return ret;
2915
2916 badkey:
2917         ctx->enckeylen = 0;
2918         ctx->authkeylen = 0;
2919         ctx->digestsize = 0;
2920
2921         return -EINVAL;
2922 }
2923
2924 /**
2925  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2926  * @cipher: AEAD structure
2927  * @key:    Key followed by 4 bytes of salt
2928  * @keylen: Length of key plus salt, in bytes
2929  *
2930  * Extracts salt from key and stores it to be prepended to IV on each request.
2931  * Digest is always 16 bytes
2932  *
2933  * Return: Value from generic gcm setkey.
2934  */
2935 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2936                                const u8 *key, unsigned int keylen)
2937 {
2938         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2939
2940         flow_log("%s\n", __func__);
2941
2942         if (keylen < GCM_ESP_SALT_SIZE)
2943                 return -EINVAL;
2944
2945         ctx->salt_len = GCM_ESP_SALT_SIZE;
2946         ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2947         memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2948         keylen -= GCM_ESP_SALT_SIZE;
2949         ctx->digestsize = GCM_ESP_DIGESTSIZE;
2950         ctx->is_esp = true;
2951         flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2952
2953         return aead_gcm_ccm_setkey(cipher, key, keylen);
2954 }
2955
2956 /**
2957  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2958  * cipher: AEAD structure
2959  * key:    Key followed by 4 bytes of salt
2960  * keylen: Length of key plus salt, in bytes
2961  *
2962  * Extracts salt from key and stores it to be prepended to IV on each request.
2963  * Digest is always 16 bytes
2964  *
2965  * Return: Value from generic gcm setkey.
2966  */
2967 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2968                                   const u8 *key, unsigned int keylen)
2969 {
2970         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2971
2972         flow_log("%s\n", __func__);
2973
2974         if (keylen < GCM_ESP_SALT_SIZE)
2975                 return -EINVAL;
2976
2977         ctx->salt_len = GCM_ESP_SALT_SIZE;
2978         ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2979         memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2980         keylen -= GCM_ESP_SALT_SIZE;
2981         ctx->digestsize = GCM_ESP_DIGESTSIZE;
2982         ctx->is_esp = true;
2983         ctx->is_rfc4543 = true;
2984         flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2985
2986         return aead_gcm_ccm_setkey(cipher, key, keylen);
2987 }
2988
2989 /**
2990  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2991  * @cipher: AEAD structure
2992  * @key:    Key followed by 4 bytes of salt
2993  * @keylen: Length of key plus salt, in bytes
2994  *
2995  * Extracts salt from key and stores it to be prepended to IV on each request.
2996  * Digest is always 16 bytes
2997  *
2998  * Return: Value from generic ccm setkey.
2999  */
3000 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3001                                const u8 *key, unsigned int keylen)
3002 {
3003         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3004
3005         flow_log("%s\n", __func__);
3006
3007         if (keylen < CCM_ESP_SALT_SIZE)
3008                 return -EINVAL;
3009
3010         ctx->salt_len = CCM_ESP_SALT_SIZE;
3011         ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3012         memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3013         keylen -= CCM_ESP_SALT_SIZE;
3014         ctx->is_esp = true;
3015         flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3016
3017         return aead_gcm_ccm_setkey(cipher, key, keylen);
3018 }
3019
3020 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3021 {
3022         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3023         int ret = 0;
3024
3025         flow_log("%s() authkeylen:%u authsize:%u\n",
3026                  __func__, ctx->authkeylen, authsize);
3027
3028         ctx->digestsize = authsize;
3029
3030         /* setkey the fallback just in case we needto use it */
3031         if (ctx->fallback_cipher) {
3032                 flow_log("  running fallback setauth()\n");
3033
3034                 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3035                 if (ret)
3036                         flow_log("  fallback setauth() returned:%d\n", ret);
3037         }
3038
3039         return ret;
3040 }
3041
3042 static int aead_encrypt(struct aead_request *req)
3043 {
3044         flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3045                  req->cryptlen);
3046         dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3047         flow_log("  assoc_len:%u\n", req->assoclen);
3048
3049         return aead_enqueue(req, true);
3050 }
3051
3052 static int aead_decrypt(struct aead_request *req)
3053 {
3054         flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3055         dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3056         flow_log("  assoc_len:%u\n", req->assoclen);
3057
3058         return aead_enqueue(req, false);
3059 }
3060
3061 /* ==================== Supported Cipher Algorithms ==================== */
3062
3063 static struct iproc_alg_s driver_algs[] = {
3064         {
3065          .type = CRYPTO_ALG_TYPE_AEAD,
3066          .alg.aead = {
3067                  .base = {
3068                         .cra_name = "gcm(aes)",
3069                         .cra_driver_name = "gcm-aes-iproc",
3070                         .cra_blocksize = AES_BLOCK_SIZE,
3071                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3072                  },
3073                  .setkey = aead_gcm_ccm_setkey,
3074                  .ivsize = GCM_AES_IV_SIZE,
3075                 .maxauthsize = AES_BLOCK_SIZE,
3076          },
3077          .cipher_info = {
3078                          .alg = CIPHER_ALG_AES,
3079                          .mode = CIPHER_MODE_GCM,
3080                          },
3081          .auth_info = {
3082                        .alg = HASH_ALG_AES,
3083                        .mode = HASH_MODE_GCM,
3084                        },
3085          .auth_first = 0,
3086          },
3087         {
3088          .type = CRYPTO_ALG_TYPE_AEAD,
3089          .alg.aead = {
3090                  .base = {
3091                         .cra_name = "ccm(aes)",
3092                         .cra_driver_name = "ccm-aes-iproc",
3093                         .cra_blocksize = AES_BLOCK_SIZE,
3094                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3095                  },
3096                  .setkey = aead_gcm_ccm_setkey,
3097                  .ivsize = CCM_AES_IV_SIZE,
3098                 .maxauthsize = AES_BLOCK_SIZE,
3099          },
3100          .cipher_info = {
3101                          .alg = CIPHER_ALG_AES,
3102                          .mode = CIPHER_MODE_CCM,
3103                          },
3104          .auth_info = {
3105                        .alg = HASH_ALG_AES,
3106                        .mode = HASH_MODE_CCM,
3107                        },
3108          .auth_first = 0,
3109          },
3110         {
3111          .type = CRYPTO_ALG_TYPE_AEAD,
3112          .alg.aead = {
3113                  .base = {
3114                         .cra_name = "rfc4106(gcm(aes))",
3115                         .cra_driver_name = "gcm-aes-esp-iproc",
3116                         .cra_blocksize = AES_BLOCK_SIZE,
3117                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3118                  },
3119                  .setkey = aead_gcm_esp_setkey,
3120                  .ivsize = GCM_RFC4106_IV_SIZE,
3121                  .maxauthsize = AES_BLOCK_SIZE,
3122          },
3123          .cipher_info = {
3124                          .alg = CIPHER_ALG_AES,
3125                          .mode = CIPHER_MODE_GCM,
3126                          },
3127          .auth_info = {
3128                        .alg = HASH_ALG_AES,
3129                        .mode = HASH_MODE_GCM,
3130                        },
3131          .auth_first = 0,
3132          },
3133         {
3134          .type = CRYPTO_ALG_TYPE_AEAD,
3135          .alg.aead = {
3136                  .base = {
3137                         .cra_name = "rfc4309(ccm(aes))",
3138                         .cra_driver_name = "ccm-aes-esp-iproc",
3139                         .cra_blocksize = AES_BLOCK_SIZE,
3140                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3141                  },
3142                  .setkey = aead_ccm_esp_setkey,
3143                  .ivsize = CCM_AES_IV_SIZE,
3144                  .maxauthsize = AES_BLOCK_SIZE,
3145          },
3146          .cipher_info = {
3147                          .alg = CIPHER_ALG_AES,
3148                          .mode = CIPHER_MODE_CCM,
3149                          },
3150          .auth_info = {
3151                        .alg = HASH_ALG_AES,
3152                        .mode = HASH_MODE_CCM,
3153                        },
3154          .auth_first = 0,
3155          },
3156         {
3157          .type = CRYPTO_ALG_TYPE_AEAD,
3158          .alg.aead = {
3159                  .base = {
3160                         .cra_name = "rfc4543(gcm(aes))",
3161                         .cra_driver_name = "gmac-aes-esp-iproc",
3162                         .cra_blocksize = AES_BLOCK_SIZE,
3163                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3164                  },
3165                  .setkey = rfc4543_gcm_esp_setkey,
3166                  .ivsize = GCM_RFC4106_IV_SIZE,
3167                  .maxauthsize = AES_BLOCK_SIZE,
3168          },
3169          .cipher_info = {
3170                          .alg = CIPHER_ALG_AES,
3171                          .mode = CIPHER_MODE_GCM,
3172                          },
3173          .auth_info = {
3174                        .alg = HASH_ALG_AES,
3175                        .mode = HASH_MODE_GCM,
3176                        },
3177          .auth_first = 0,
3178          },
3179         {
3180          .type = CRYPTO_ALG_TYPE_AEAD,
3181          .alg.aead = {
3182                  .base = {
3183                         .cra_name = "authenc(hmac(md5),cbc(aes))",
3184                         .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3185                         .cra_blocksize = AES_BLOCK_SIZE,
3186                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3187                                      CRYPTO_ALG_ASYNC |
3188                                      CRYPTO_ALG_ALLOCATES_MEMORY
3189                  },
3190                  .setkey = aead_authenc_setkey,
3191                 .ivsize = AES_BLOCK_SIZE,
3192                 .maxauthsize = MD5_DIGEST_SIZE,
3193          },
3194          .cipher_info = {
3195                          .alg = CIPHER_ALG_AES,
3196                          .mode = CIPHER_MODE_CBC,
3197                          },
3198          .auth_info = {
3199                        .alg = HASH_ALG_MD5,
3200                        .mode = HASH_MODE_HMAC,
3201                        },
3202          .auth_first = 0,
3203          },
3204         {
3205          .type = CRYPTO_ALG_TYPE_AEAD,
3206          .alg.aead = {
3207                  .base = {
3208                         .cra_name = "authenc(hmac(sha1),cbc(aes))",
3209                         .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3210                         .cra_blocksize = AES_BLOCK_SIZE,
3211                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3212                                      CRYPTO_ALG_ASYNC |
3213                                      CRYPTO_ALG_ALLOCATES_MEMORY
3214                  },
3215                  .setkey = aead_authenc_setkey,
3216                  .ivsize = AES_BLOCK_SIZE,
3217                  .maxauthsize = SHA1_DIGEST_SIZE,
3218          },
3219          .cipher_info = {
3220                          .alg = CIPHER_ALG_AES,
3221                          .mode = CIPHER_MODE_CBC,
3222                          },
3223          .auth_info = {
3224                        .alg = HASH_ALG_SHA1,
3225                        .mode = HASH_MODE_HMAC,
3226                        },
3227          .auth_first = 0,
3228          },
3229         {
3230          .type = CRYPTO_ALG_TYPE_AEAD,
3231          .alg.aead = {
3232                  .base = {
3233                         .cra_name = "authenc(hmac(sha256),cbc(aes))",
3234                         .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3235                         .cra_blocksize = AES_BLOCK_SIZE,
3236                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3237                                      CRYPTO_ALG_ASYNC |
3238                                      CRYPTO_ALG_ALLOCATES_MEMORY
3239                  },
3240                  .setkey = aead_authenc_setkey,
3241                  .ivsize = AES_BLOCK_SIZE,
3242                  .maxauthsize = SHA256_DIGEST_SIZE,
3243          },
3244          .cipher_info = {
3245                          .alg = CIPHER_ALG_AES,
3246                          .mode = CIPHER_MODE_CBC,
3247                          },
3248          .auth_info = {
3249                        .alg = HASH_ALG_SHA256,
3250                        .mode = HASH_MODE_HMAC,
3251                        },
3252          .auth_first = 0,
3253          },
3254         {
3255          .type = CRYPTO_ALG_TYPE_AEAD,
3256          .alg.aead = {
3257                  .base = {
3258                         .cra_name = "authenc(hmac(md5),cbc(des))",
3259                         .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3260                         .cra_blocksize = DES_BLOCK_SIZE,
3261                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3262                                      CRYPTO_ALG_ASYNC |
3263                                      CRYPTO_ALG_ALLOCATES_MEMORY
3264                  },
3265                  .setkey = aead_authenc_setkey,
3266                  .ivsize = DES_BLOCK_SIZE,
3267                  .maxauthsize = MD5_DIGEST_SIZE,
3268          },
3269          .cipher_info = {
3270                          .alg = CIPHER_ALG_DES,
3271                          .mode = CIPHER_MODE_CBC,
3272                          },
3273          .auth_info = {
3274                        .alg = HASH_ALG_MD5,
3275                        .mode = HASH_MODE_HMAC,
3276                        },
3277          .auth_first = 0,
3278          },
3279         {
3280          .type = CRYPTO_ALG_TYPE_AEAD,
3281          .alg.aead = {
3282                  .base = {
3283                         .cra_name = "authenc(hmac(sha1),cbc(des))",
3284                         .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3285                         .cra_blocksize = DES_BLOCK_SIZE,
3286                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3287                                      CRYPTO_ALG_ASYNC |
3288                                      CRYPTO_ALG_ALLOCATES_MEMORY
3289                  },
3290                  .setkey = aead_authenc_setkey,
3291                  .ivsize = DES_BLOCK_SIZE,
3292                  .maxauthsize = SHA1_DIGEST_SIZE,
3293          },
3294          .cipher_info = {
3295                          .alg = CIPHER_ALG_DES,
3296                          .mode = CIPHER_MODE_CBC,
3297                          },
3298          .auth_info = {
3299                        .alg = HASH_ALG_SHA1,
3300                        .mode = HASH_MODE_HMAC,
3301                        },
3302          .auth_first = 0,
3303          },
3304         {
3305          .type = CRYPTO_ALG_TYPE_AEAD,
3306          .alg.aead = {
3307                  .base = {
3308                         .cra_name = "authenc(hmac(sha224),cbc(des))",
3309                         .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3310                         .cra_blocksize = DES_BLOCK_SIZE,
3311                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3312                                      CRYPTO_ALG_ASYNC |
3313                                      CRYPTO_ALG_ALLOCATES_MEMORY
3314                  },
3315                  .setkey = aead_authenc_setkey,
3316                  .ivsize = DES_BLOCK_SIZE,
3317                  .maxauthsize = SHA224_DIGEST_SIZE,
3318          },
3319          .cipher_info = {
3320                          .alg = CIPHER_ALG_DES,
3321                          .mode = CIPHER_MODE_CBC,
3322                          },
3323          .auth_info = {
3324                        .alg = HASH_ALG_SHA224,
3325                        .mode = HASH_MODE_HMAC,
3326                        },
3327          .auth_first = 0,
3328          },
3329         {
3330          .type = CRYPTO_ALG_TYPE_AEAD,
3331          .alg.aead = {
3332                  .base = {
3333                         .cra_name = "authenc(hmac(sha256),cbc(des))",
3334                         .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3335                         .cra_blocksize = DES_BLOCK_SIZE,
3336                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3337                                      CRYPTO_ALG_ASYNC |
3338                                      CRYPTO_ALG_ALLOCATES_MEMORY
3339                  },
3340                  .setkey = aead_authenc_setkey,
3341                  .ivsize = DES_BLOCK_SIZE,
3342                  .maxauthsize = SHA256_DIGEST_SIZE,
3343          },
3344          .cipher_info = {
3345                          .alg = CIPHER_ALG_DES,
3346                          .mode = CIPHER_MODE_CBC,
3347                          },
3348          .auth_info = {
3349                        .alg = HASH_ALG_SHA256,
3350                        .mode = HASH_MODE_HMAC,
3351                        },
3352          .auth_first = 0,
3353          },
3354         {
3355          .type = CRYPTO_ALG_TYPE_AEAD,
3356          .alg.aead = {
3357                  .base = {
3358                         .cra_name = "authenc(hmac(sha384),cbc(des))",
3359                         .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3360                         .cra_blocksize = DES_BLOCK_SIZE,
3361                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3362                                      CRYPTO_ALG_ASYNC |
3363                                      CRYPTO_ALG_ALLOCATES_MEMORY
3364                  },
3365                  .setkey = aead_authenc_setkey,
3366                  .ivsize = DES_BLOCK_SIZE,
3367                  .maxauthsize = SHA384_DIGEST_SIZE,
3368          },
3369          .cipher_info = {
3370                          .alg = CIPHER_ALG_DES,
3371                          .mode = CIPHER_MODE_CBC,
3372                          },
3373          .auth_info = {
3374                        .alg = HASH_ALG_SHA384,
3375                        .mode = HASH_MODE_HMAC,
3376                        },
3377          .auth_first = 0,
3378          },
3379         {
3380          .type = CRYPTO_ALG_TYPE_AEAD,
3381          .alg.aead = {
3382                  .base = {
3383                         .cra_name = "authenc(hmac(sha512),cbc(des))",
3384                         .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3385                         .cra_blocksize = DES_BLOCK_SIZE,
3386                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3387                                      CRYPTO_ALG_ASYNC |
3388                                      CRYPTO_ALG_ALLOCATES_MEMORY
3389                  },
3390                  .setkey = aead_authenc_setkey,
3391                  .ivsize = DES_BLOCK_SIZE,
3392                  .maxauthsize = SHA512_DIGEST_SIZE,
3393          },
3394          .cipher_info = {
3395                          .alg = CIPHER_ALG_DES,
3396                          .mode = CIPHER_MODE_CBC,
3397                          },
3398          .auth_info = {
3399                        .alg = HASH_ALG_SHA512,
3400                        .mode = HASH_MODE_HMAC,
3401                        },
3402          .auth_first = 0,
3403          },
3404         {
3405          .type = CRYPTO_ALG_TYPE_AEAD,
3406          .alg.aead = {
3407                  .base = {
3408                         .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3409                         .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3410                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3411                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3412                                      CRYPTO_ALG_ASYNC |
3413                                      CRYPTO_ALG_ALLOCATES_MEMORY
3414                  },
3415                  .setkey = aead_authenc_setkey,
3416                  .ivsize = DES3_EDE_BLOCK_SIZE,
3417                  .maxauthsize = MD5_DIGEST_SIZE,
3418          },
3419          .cipher_info = {
3420                          .alg = CIPHER_ALG_3DES,
3421                          .mode = CIPHER_MODE_CBC,
3422                          },
3423          .auth_info = {
3424                        .alg = HASH_ALG_MD5,
3425                        .mode = HASH_MODE_HMAC,
3426                        },
3427          .auth_first = 0,
3428          },
3429         {
3430          .type = CRYPTO_ALG_TYPE_AEAD,
3431          .alg.aead = {
3432                  .base = {
3433                         .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3434                         .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3435                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3436                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3437                                      CRYPTO_ALG_ASYNC |
3438                                      CRYPTO_ALG_ALLOCATES_MEMORY
3439                  },
3440                  .setkey = aead_authenc_setkey,
3441                  .ivsize = DES3_EDE_BLOCK_SIZE,
3442                  .maxauthsize = SHA1_DIGEST_SIZE,
3443          },
3444          .cipher_info = {
3445                          .alg = CIPHER_ALG_3DES,
3446                          .mode = CIPHER_MODE_CBC,
3447                          },
3448          .auth_info = {
3449                        .alg = HASH_ALG_SHA1,
3450                        .mode = HASH_MODE_HMAC,
3451                        },
3452          .auth_first = 0,
3453          },
3454         {
3455          .type = CRYPTO_ALG_TYPE_AEAD,
3456          .alg.aead = {
3457                  .base = {
3458                         .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3459                         .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3460                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3461                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3462                                      CRYPTO_ALG_ASYNC |
3463                                      CRYPTO_ALG_ALLOCATES_MEMORY
3464                  },
3465                  .setkey = aead_authenc_setkey,
3466                  .ivsize = DES3_EDE_BLOCK_SIZE,
3467                  .maxauthsize = SHA224_DIGEST_SIZE,
3468          },
3469          .cipher_info = {
3470                          .alg = CIPHER_ALG_3DES,
3471                          .mode = CIPHER_MODE_CBC,
3472                          },
3473          .auth_info = {
3474                        .alg = HASH_ALG_SHA224,
3475                        .mode = HASH_MODE_HMAC,
3476                        },
3477          .auth_first = 0,
3478          },
3479         {
3480          .type = CRYPTO_ALG_TYPE_AEAD,
3481          .alg.aead = {
3482                  .base = {
3483                         .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3484                         .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3485                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3486                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3487                                      CRYPTO_ALG_ASYNC |
3488                                      CRYPTO_ALG_ALLOCATES_MEMORY
3489                  },
3490                  .setkey = aead_authenc_setkey,
3491                  .ivsize = DES3_EDE_BLOCK_SIZE,
3492                  .maxauthsize = SHA256_DIGEST_SIZE,
3493          },
3494          .cipher_info = {
3495                          .alg = CIPHER_ALG_3DES,
3496                          .mode = CIPHER_MODE_CBC,
3497                          },
3498          .auth_info = {
3499                        .alg = HASH_ALG_SHA256,
3500                        .mode = HASH_MODE_HMAC,
3501                        },
3502          .auth_first = 0,
3503          },
3504         {
3505          .type = CRYPTO_ALG_TYPE_AEAD,
3506          .alg.aead = {
3507                  .base = {
3508                         .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3509                         .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3510                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3511                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3512                                      CRYPTO_ALG_ASYNC |
3513                                      CRYPTO_ALG_ALLOCATES_MEMORY
3514                  },
3515                  .setkey = aead_authenc_setkey,
3516                  .ivsize = DES3_EDE_BLOCK_SIZE,
3517                  .maxauthsize = SHA384_DIGEST_SIZE,
3518          },
3519          .cipher_info = {
3520                          .alg = CIPHER_ALG_3DES,
3521                          .mode = CIPHER_MODE_CBC,
3522                          },
3523          .auth_info = {
3524                        .alg = HASH_ALG_SHA384,
3525                        .mode = HASH_MODE_HMAC,
3526                        },
3527          .auth_first = 0,
3528          },
3529         {
3530          .type = CRYPTO_ALG_TYPE_AEAD,
3531          .alg.aead = {
3532                  .base = {
3533                         .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3534                         .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3535                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3536                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3537                                      CRYPTO_ALG_ASYNC |
3538                                      CRYPTO_ALG_ALLOCATES_MEMORY
3539                  },
3540                  .setkey = aead_authenc_setkey,
3541                  .ivsize = DES3_EDE_BLOCK_SIZE,
3542                  .maxauthsize = SHA512_DIGEST_SIZE,
3543          },
3544          .cipher_info = {
3545                          .alg = CIPHER_ALG_3DES,
3546                          .mode = CIPHER_MODE_CBC,
3547                          },
3548          .auth_info = {
3549                        .alg = HASH_ALG_SHA512,
3550                        .mode = HASH_MODE_HMAC,
3551                        },
3552          .auth_first = 0,
3553          },
3554
3555 /* SKCIPHER algorithms. */
3556         {
3557          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3558          .alg.skcipher = {
3559                         .base.cra_name = "ofb(des)",
3560                         .base.cra_driver_name = "ofb-des-iproc",
3561                         .base.cra_blocksize = DES_BLOCK_SIZE,
3562                         .min_keysize = DES_KEY_SIZE,
3563                         .max_keysize = DES_KEY_SIZE,
3564                         .ivsize = DES_BLOCK_SIZE,
3565                         },
3566          .cipher_info = {
3567                          .alg = CIPHER_ALG_DES,
3568                          .mode = CIPHER_MODE_OFB,
3569                          },
3570          .auth_info = {
3571                        .alg = HASH_ALG_NONE,
3572                        .mode = HASH_MODE_NONE,
3573                        },
3574          },
3575         {
3576          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3577          .alg.skcipher = {
3578                         .base.cra_name = "cbc(des)",
3579                         .base.cra_driver_name = "cbc-des-iproc",
3580                         .base.cra_blocksize = DES_BLOCK_SIZE,
3581                         .min_keysize = DES_KEY_SIZE,
3582                         .max_keysize = DES_KEY_SIZE,
3583                         .ivsize = DES_BLOCK_SIZE,
3584                         },
3585          .cipher_info = {
3586                          .alg = CIPHER_ALG_DES,
3587                          .mode = CIPHER_MODE_CBC,
3588                          },
3589          .auth_info = {
3590                        .alg = HASH_ALG_NONE,
3591                        .mode = HASH_MODE_NONE,
3592                        },
3593          },
3594         {
3595          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3596          .alg.skcipher = {
3597                         .base.cra_name = "ecb(des)",
3598                         .base.cra_driver_name = "ecb-des-iproc",
3599                         .base.cra_blocksize = DES_BLOCK_SIZE,
3600                         .min_keysize = DES_KEY_SIZE,
3601                         .max_keysize = DES_KEY_SIZE,
3602                         .ivsize = 0,
3603                         },
3604          .cipher_info = {
3605                          .alg = CIPHER_ALG_DES,
3606                          .mode = CIPHER_MODE_ECB,
3607                          },
3608          .auth_info = {
3609                        .alg = HASH_ALG_NONE,
3610                        .mode = HASH_MODE_NONE,
3611                        },
3612          },
3613         {
3614          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3615          .alg.skcipher = {
3616                         .base.cra_name = "ofb(des3_ede)",
3617                         .base.cra_driver_name = "ofb-des3-iproc",
3618                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3619                         .min_keysize = DES3_EDE_KEY_SIZE,
3620                         .max_keysize = DES3_EDE_KEY_SIZE,
3621                         .ivsize = DES3_EDE_BLOCK_SIZE,
3622                         },
3623          .cipher_info = {
3624                          .alg = CIPHER_ALG_3DES,
3625                          .mode = CIPHER_MODE_OFB,
3626                          },
3627          .auth_info = {
3628                        .alg = HASH_ALG_NONE,
3629                        .mode = HASH_MODE_NONE,
3630                        },
3631          },
3632         {
3633          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3634          .alg.skcipher = {
3635                         .base.cra_name = "cbc(des3_ede)",
3636                         .base.cra_driver_name = "cbc-des3-iproc",
3637                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3638                         .min_keysize = DES3_EDE_KEY_SIZE,
3639                         .max_keysize = DES3_EDE_KEY_SIZE,
3640                         .ivsize = DES3_EDE_BLOCK_SIZE,
3641                         },
3642          .cipher_info = {
3643                          .alg = CIPHER_ALG_3DES,
3644                          .mode = CIPHER_MODE_CBC,
3645                          },
3646          .auth_info = {
3647                        .alg = HASH_ALG_NONE,
3648                        .mode = HASH_MODE_NONE,
3649                        },
3650          },
3651         {
3652          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3653          .alg.skcipher = {
3654                         .base.cra_name = "ecb(des3_ede)",
3655                         .base.cra_driver_name = "ecb-des3-iproc",
3656                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3657                         .min_keysize = DES3_EDE_KEY_SIZE,
3658                         .max_keysize = DES3_EDE_KEY_SIZE,
3659                         .ivsize = 0,
3660                         },
3661          .cipher_info = {
3662                          .alg = CIPHER_ALG_3DES,
3663                          .mode = CIPHER_MODE_ECB,
3664                          },
3665          .auth_info = {
3666                        .alg = HASH_ALG_NONE,
3667                        .mode = HASH_MODE_NONE,
3668                        },
3669          },
3670         {
3671          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3672          .alg.skcipher = {
3673                         .base.cra_name = "ofb(aes)",
3674                         .base.cra_driver_name = "ofb-aes-iproc",
3675                         .base.cra_blocksize = AES_BLOCK_SIZE,
3676                         .min_keysize = AES_MIN_KEY_SIZE,
3677                         .max_keysize = AES_MAX_KEY_SIZE,
3678                         .ivsize = AES_BLOCK_SIZE,
3679                         },
3680          .cipher_info = {
3681                          .alg = CIPHER_ALG_AES,
3682                          .mode = CIPHER_MODE_OFB,
3683                          },
3684          .auth_info = {
3685                        .alg = HASH_ALG_NONE,
3686                        .mode = HASH_MODE_NONE,
3687                        },
3688          },
3689         {
3690          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3691          .alg.skcipher = {
3692                         .base.cra_name = "cbc(aes)",
3693                         .base.cra_driver_name = "cbc-aes-iproc",
3694                         .base.cra_blocksize = AES_BLOCK_SIZE,
3695                         .min_keysize = AES_MIN_KEY_SIZE,
3696                         .max_keysize = AES_MAX_KEY_SIZE,
3697                         .ivsize = AES_BLOCK_SIZE,
3698                         },
3699          .cipher_info = {
3700                          .alg = CIPHER_ALG_AES,
3701                          .mode = CIPHER_MODE_CBC,
3702                          },
3703          .auth_info = {
3704                        .alg = HASH_ALG_NONE,
3705                        .mode = HASH_MODE_NONE,
3706                        },
3707          },
3708         {
3709          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3710          .alg.skcipher = {
3711                         .base.cra_name = "ecb(aes)",
3712                         .base.cra_driver_name = "ecb-aes-iproc",
3713                         .base.cra_blocksize = AES_BLOCK_SIZE,
3714                         .min_keysize = AES_MIN_KEY_SIZE,
3715                         .max_keysize = AES_MAX_KEY_SIZE,
3716                         .ivsize = 0,
3717                         },
3718          .cipher_info = {
3719                          .alg = CIPHER_ALG_AES,
3720                          .mode = CIPHER_MODE_ECB,
3721                          },
3722          .auth_info = {
3723                        .alg = HASH_ALG_NONE,
3724                        .mode = HASH_MODE_NONE,
3725                        },
3726          },
3727         {
3728          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3729          .alg.skcipher = {
3730                         .base.cra_name = "ctr(aes)",
3731                         .base.cra_driver_name = "ctr-aes-iproc",
3732                         .base.cra_blocksize = AES_BLOCK_SIZE,
3733                         .min_keysize = AES_MIN_KEY_SIZE,
3734                         .max_keysize = AES_MAX_KEY_SIZE,
3735                         .ivsize = AES_BLOCK_SIZE,
3736                         },
3737          .cipher_info = {
3738                          .alg = CIPHER_ALG_AES,
3739                          .mode = CIPHER_MODE_CTR,
3740                          },
3741          .auth_info = {
3742                        .alg = HASH_ALG_NONE,
3743                        .mode = HASH_MODE_NONE,
3744                        },
3745          },
3746 {
3747          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3748          .alg.skcipher = {
3749                         .base.cra_name = "xts(aes)",
3750                         .base.cra_driver_name = "xts-aes-iproc",
3751                         .base.cra_blocksize = AES_BLOCK_SIZE,
3752                         .min_keysize = 2 * AES_MIN_KEY_SIZE,
3753                         .max_keysize = 2 * AES_MAX_KEY_SIZE,
3754                         .ivsize = AES_BLOCK_SIZE,
3755                         },
3756          .cipher_info = {
3757                          .alg = CIPHER_ALG_AES,
3758                          .mode = CIPHER_MODE_XTS,
3759                          },
3760          .auth_info = {
3761                        .alg = HASH_ALG_NONE,
3762                        .mode = HASH_MODE_NONE,
3763                        },
3764          },
3765
3766 /* AHASH algorithms. */
3767         {
3768          .type = CRYPTO_ALG_TYPE_AHASH,
3769          .alg.hash = {
3770                       .halg.digestsize = MD5_DIGEST_SIZE,
3771                       .halg.base = {
3772                                     .cra_name = "md5",
3773                                     .cra_driver_name = "md5-iproc",
3774                                     .cra_blocksize = MD5_BLOCK_WORDS * 4,
3775                                     .cra_flags = CRYPTO_ALG_ASYNC |
3776                                                  CRYPTO_ALG_ALLOCATES_MEMORY,
3777                                 }
3778                       },
3779          .cipher_info = {
3780                          .alg = CIPHER_ALG_NONE,
3781                          .mode = CIPHER_MODE_NONE,
3782                          },
3783          .auth_info = {
3784                        .alg = HASH_ALG_MD5,
3785                        .mode = HASH_MODE_HASH,
3786                        },
3787          },
3788         {
3789          .type = CRYPTO_ALG_TYPE_AHASH,
3790          .alg.hash = {
3791                       .halg.digestsize = MD5_DIGEST_SIZE,
3792                       .halg.base = {
3793                                     .cra_name = "hmac(md5)",
3794                                     .cra_driver_name = "hmac-md5-iproc",
3795                                     .cra_blocksize = MD5_BLOCK_WORDS * 4,
3796                                 }
3797                       },
3798          .cipher_info = {
3799                          .alg = CIPHER_ALG_NONE,
3800                          .mode = CIPHER_MODE_NONE,
3801                          },
3802          .auth_info = {
3803                        .alg = HASH_ALG_MD5,
3804                        .mode = HASH_MODE_HMAC,
3805                        },
3806          },
3807         {.type = CRYPTO_ALG_TYPE_AHASH,
3808          .alg.hash = {
3809                       .halg.digestsize = SHA1_DIGEST_SIZE,
3810                       .halg.base = {
3811                                     .cra_name = "sha1",
3812                                     .cra_driver_name = "sha1-iproc",
3813                                     .cra_blocksize = SHA1_BLOCK_SIZE,
3814                                 }
3815                       },
3816          .cipher_info = {
3817                          .alg = CIPHER_ALG_NONE,
3818                          .mode = CIPHER_MODE_NONE,
3819                          },
3820          .auth_info = {
3821                        .alg = HASH_ALG_SHA1,
3822                        .mode = HASH_MODE_HASH,
3823                        },
3824          },
3825         {.type = CRYPTO_ALG_TYPE_AHASH,
3826          .alg.hash = {
3827                       .halg.digestsize = SHA1_DIGEST_SIZE,
3828                       .halg.base = {
3829                                     .cra_name = "hmac(sha1)",
3830                                     .cra_driver_name = "hmac-sha1-iproc",
3831                                     .cra_blocksize = SHA1_BLOCK_SIZE,
3832                                 }
3833                       },
3834          .cipher_info = {
3835                          .alg = CIPHER_ALG_NONE,
3836                          .mode = CIPHER_MODE_NONE,
3837                          },
3838          .auth_info = {
3839                        .alg = HASH_ALG_SHA1,
3840                        .mode = HASH_MODE_HMAC,
3841                        },
3842          },
3843         {.type = CRYPTO_ALG_TYPE_AHASH,
3844          .alg.hash = {
3845                         .halg.digestsize = SHA224_DIGEST_SIZE,
3846                         .halg.base = {
3847                                     .cra_name = "sha224",
3848                                     .cra_driver_name = "sha224-iproc",
3849                                     .cra_blocksize = SHA224_BLOCK_SIZE,
3850                         }
3851                       },
3852          .cipher_info = {
3853                          .alg = CIPHER_ALG_NONE,
3854                          .mode = CIPHER_MODE_NONE,
3855                          },
3856          .auth_info = {
3857                        .alg = HASH_ALG_SHA224,
3858                        .mode = HASH_MODE_HASH,
3859                        },
3860          },
3861         {.type = CRYPTO_ALG_TYPE_AHASH,
3862          .alg.hash = {
3863                       .halg.digestsize = SHA224_DIGEST_SIZE,
3864                       .halg.base = {
3865                                     .cra_name = "hmac(sha224)",
3866                                     .cra_driver_name = "hmac-sha224-iproc",
3867                                     .cra_blocksize = SHA224_BLOCK_SIZE,
3868                                 }
3869                       },
3870          .cipher_info = {
3871                          .alg = CIPHER_ALG_NONE,
3872                          .mode = CIPHER_MODE_NONE,
3873                          },
3874          .auth_info = {
3875                        .alg = HASH_ALG_SHA224,
3876                        .mode = HASH_MODE_HMAC,
3877                        },
3878          },
3879         {.type = CRYPTO_ALG_TYPE_AHASH,
3880          .alg.hash = {
3881                       .halg.digestsize = SHA256_DIGEST_SIZE,
3882                       .halg.base = {
3883                                     .cra_name = "sha256",
3884                                     .cra_driver_name = "sha256-iproc",
3885                                     .cra_blocksize = SHA256_BLOCK_SIZE,
3886                                 }
3887                       },
3888          .cipher_info = {
3889                          .alg = CIPHER_ALG_NONE,
3890                          .mode = CIPHER_MODE_NONE,
3891                          },
3892          .auth_info = {
3893                        .alg = HASH_ALG_SHA256,
3894                        .mode = HASH_MODE_HASH,
3895                        },
3896          },
3897         {.type = CRYPTO_ALG_TYPE_AHASH,
3898          .alg.hash = {
3899                       .halg.digestsize = SHA256_DIGEST_SIZE,
3900                       .halg.base = {
3901                                     .cra_name = "hmac(sha256)",
3902                                     .cra_driver_name = "hmac-sha256-iproc",
3903                                     .cra_blocksize = SHA256_BLOCK_SIZE,
3904                                 }
3905                       },
3906          .cipher_info = {
3907                          .alg = CIPHER_ALG_NONE,
3908                          .mode = CIPHER_MODE_NONE,
3909                          },
3910          .auth_info = {
3911                        .alg = HASH_ALG_SHA256,
3912                        .mode = HASH_MODE_HMAC,
3913                        },
3914          },
3915         {
3916         .type = CRYPTO_ALG_TYPE_AHASH,
3917          .alg.hash = {
3918                       .halg.digestsize = SHA384_DIGEST_SIZE,
3919                       .halg.base = {
3920                                     .cra_name = "sha384",
3921                                     .cra_driver_name = "sha384-iproc",
3922                                     .cra_blocksize = SHA384_BLOCK_SIZE,
3923                                 }
3924                       },
3925          .cipher_info = {
3926                          .alg = CIPHER_ALG_NONE,
3927                          .mode = CIPHER_MODE_NONE,
3928                          },
3929          .auth_info = {
3930                        .alg = HASH_ALG_SHA384,
3931                        .mode = HASH_MODE_HASH,
3932                        },
3933          },
3934         {
3935          .type = CRYPTO_ALG_TYPE_AHASH,
3936          .alg.hash = {
3937                       .halg.digestsize = SHA384_DIGEST_SIZE,
3938                       .halg.base = {
3939                                     .cra_name = "hmac(sha384)",
3940                                     .cra_driver_name = "hmac-sha384-iproc",
3941                                     .cra_blocksize = SHA384_BLOCK_SIZE,
3942                                 }
3943                       },
3944          .cipher_info = {
3945                          .alg = CIPHER_ALG_NONE,
3946                          .mode = CIPHER_MODE_NONE,
3947                          },
3948          .auth_info = {
3949                        .alg = HASH_ALG_SHA384,
3950                        .mode = HASH_MODE_HMAC,
3951                        },
3952          },
3953         {
3954          .type = CRYPTO_ALG_TYPE_AHASH,
3955          .alg.hash = {
3956                       .halg.digestsize = SHA512_DIGEST_SIZE,
3957                       .halg.base = {
3958                                     .cra_name = "sha512",
3959                                     .cra_driver_name = "sha512-iproc",
3960                                     .cra_blocksize = SHA512_BLOCK_SIZE,
3961                                 }
3962                       },
3963          .cipher_info = {
3964                          .alg = CIPHER_ALG_NONE,
3965                          .mode = CIPHER_MODE_NONE,
3966                          },
3967          .auth_info = {
3968                        .alg = HASH_ALG_SHA512,
3969                        .mode = HASH_MODE_HASH,
3970                        },
3971          },
3972         {
3973          .type = CRYPTO_ALG_TYPE_AHASH,
3974          .alg.hash = {
3975                       .halg.digestsize = SHA512_DIGEST_SIZE,
3976                       .halg.base = {
3977                                     .cra_name = "hmac(sha512)",
3978                                     .cra_driver_name = "hmac-sha512-iproc",
3979                                     .cra_blocksize = SHA512_BLOCK_SIZE,
3980                                 }
3981                       },
3982          .cipher_info = {
3983                          .alg = CIPHER_ALG_NONE,
3984                          .mode = CIPHER_MODE_NONE,
3985                          },
3986          .auth_info = {
3987                        .alg = HASH_ALG_SHA512,
3988                        .mode = HASH_MODE_HMAC,
3989                        },
3990          },
3991         {
3992          .type = CRYPTO_ALG_TYPE_AHASH,
3993          .alg.hash = {
3994                       .halg.digestsize = SHA3_224_DIGEST_SIZE,
3995                       .halg.base = {
3996                                     .cra_name = "sha3-224",
3997                                     .cra_driver_name = "sha3-224-iproc",
3998                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
3999                                 }
4000                       },
4001          .cipher_info = {
4002                          .alg = CIPHER_ALG_NONE,
4003                          .mode = CIPHER_MODE_NONE,
4004                          },
4005          .auth_info = {
4006                        .alg = HASH_ALG_SHA3_224,
4007                        .mode = HASH_MODE_HASH,
4008                        },
4009          },
4010         {
4011          .type = CRYPTO_ALG_TYPE_AHASH,
4012          .alg.hash = {
4013                       .halg.digestsize = SHA3_224_DIGEST_SIZE,
4014                       .halg.base = {
4015                                     .cra_name = "hmac(sha3-224)",
4016                                     .cra_driver_name = "hmac-sha3-224-iproc",
4017                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4018                                 }
4019                       },
4020          .cipher_info = {
4021                          .alg = CIPHER_ALG_NONE,
4022                          .mode = CIPHER_MODE_NONE,
4023                          },
4024          .auth_info = {
4025                        .alg = HASH_ALG_SHA3_224,
4026                        .mode = HASH_MODE_HMAC
4027                        },
4028          },
4029         {
4030          .type = CRYPTO_ALG_TYPE_AHASH,
4031          .alg.hash = {
4032                       .halg.digestsize = SHA3_256_DIGEST_SIZE,
4033                       .halg.base = {
4034                                     .cra_name = "sha3-256",
4035                                     .cra_driver_name = "sha3-256-iproc",
4036                                     .cra_blocksize = SHA3_256_BLOCK_SIZE,
4037                                 }
4038                       },
4039          .cipher_info = {
4040                          .alg = CIPHER_ALG_NONE,
4041                          .mode = CIPHER_MODE_NONE,
4042                          },
4043          .auth_info = {
4044                        .alg = HASH_ALG_SHA3_256,
4045                        .mode = HASH_MODE_HASH,
4046                        },
4047          },
4048         {
4049          .type = CRYPTO_ALG_TYPE_AHASH,
4050          .alg.hash = {
4051                       .halg.digestsize = SHA3_256_DIGEST_SIZE,
4052                       .halg.base = {
4053                                     .cra_name = "hmac(sha3-256)",
4054                                     .cra_driver_name = "hmac-sha3-256-iproc",
4055                                     .cra_blocksize = SHA3_256_BLOCK_SIZE,
4056                                 }
4057                       },
4058          .cipher_info = {
4059                          .alg = CIPHER_ALG_NONE,
4060                          .mode = CIPHER_MODE_NONE,
4061                          },
4062          .auth_info = {
4063                        .alg = HASH_ALG_SHA3_256,
4064                        .mode = HASH_MODE_HMAC,
4065                        },
4066          },
4067         {
4068          .type = CRYPTO_ALG_TYPE_AHASH,
4069          .alg.hash = {
4070                       .halg.digestsize = SHA3_384_DIGEST_SIZE,
4071                       .halg.base = {
4072                                     .cra_name = "sha3-384",
4073                                     .cra_driver_name = "sha3-384-iproc",
4074                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4075                                 }
4076                       },
4077          .cipher_info = {
4078                          .alg = CIPHER_ALG_NONE,
4079                          .mode = CIPHER_MODE_NONE,
4080                          },
4081          .auth_info = {
4082                        .alg = HASH_ALG_SHA3_384,
4083                        .mode = HASH_MODE_HASH,
4084                        },
4085          },
4086         {
4087          .type = CRYPTO_ALG_TYPE_AHASH,
4088          .alg.hash = {
4089                       .halg.digestsize = SHA3_384_DIGEST_SIZE,
4090                       .halg.base = {
4091                                     .cra_name = "hmac(sha3-384)",
4092                                     .cra_driver_name = "hmac-sha3-384-iproc",
4093                                     .cra_blocksize = SHA3_384_BLOCK_SIZE,
4094                                 }
4095                       },
4096          .cipher_info = {
4097                          .alg = CIPHER_ALG_NONE,
4098                          .mode = CIPHER_MODE_NONE,
4099                          },
4100          .auth_info = {
4101                        .alg = HASH_ALG_SHA3_384,
4102                        .mode = HASH_MODE_HMAC,
4103                        },
4104          },
4105         {
4106          .type = CRYPTO_ALG_TYPE_AHASH,
4107          .alg.hash = {
4108                       .halg.digestsize = SHA3_512_DIGEST_SIZE,
4109                       .halg.base = {
4110                                     .cra_name = "sha3-512",
4111                                     .cra_driver_name = "sha3-512-iproc",
4112                                     .cra_blocksize = SHA3_512_BLOCK_SIZE,
4113                                 }
4114                       },
4115          .cipher_info = {
4116                          .alg = CIPHER_ALG_NONE,
4117                          .mode = CIPHER_MODE_NONE,
4118                          },
4119          .auth_info = {
4120                        .alg = HASH_ALG_SHA3_512,
4121                        .mode = HASH_MODE_HASH,
4122                        },
4123          },
4124         {
4125          .type = CRYPTO_ALG_TYPE_AHASH,
4126          .alg.hash = {
4127                       .halg.digestsize = SHA3_512_DIGEST_SIZE,
4128                       .halg.base = {
4129                                     .cra_name = "hmac(sha3-512)",
4130                                     .cra_driver_name = "hmac-sha3-512-iproc",
4131                                     .cra_blocksize = SHA3_512_BLOCK_SIZE,
4132                                 }
4133                       },
4134          .cipher_info = {
4135                          .alg = CIPHER_ALG_NONE,
4136                          .mode = CIPHER_MODE_NONE,
4137                          },
4138          .auth_info = {
4139                        .alg = HASH_ALG_SHA3_512,
4140                        .mode = HASH_MODE_HMAC,
4141                        },
4142          },
4143         {
4144          .type = CRYPTO_ALG_TYPE_AHASH,
4145          .alg.hash = {
4146                       .halg.digestsize = AES_BLOCK_SIZE,
4147                       .halg.base = {
4148                                     .cra_name = "xcbc(aes)",
4149                                     .cra_driver_name = "xcbc-aes-iproc",
4150                                     .cra_blocksize = AES_BLOCK_SIZE,
4151                                 }
4152                       },
4153          .cipher_info = {
4154                          .alg = CIPHER_ALG_NONE,
4155                          .mode = CIPHER_MODE_NONE,
4156                          },
4157          .auth_info = {
4158                        .alg = HASH_ALG_AES,
4159                        .mode = HASH_MODE_XCBC,
4160                        },
4161          },
4162         {
4163          .type = CRYPTO_ALG_TYPE_AHASH,
4164          .alg.hash = {
4165                       .halg.digestsize = AES_BLOCK_SIZE,
4166                       .halg.base = {
4167                                     .cra_name = "cmac(aes)",
4168                                     .cra_driver_name = "cmac-aes-iproc",
4169                                     .cra_blocksize = AES_BLOCK_SIZE,
4170                                 }
4171                       },
4172          .cipher_info = {
4173                          .alg = CIPHER_ALG_NONE,
4174                          .mode = CIPHER_MODE_NONE,
4175                          },
4176          .auth_info = {
4177                        .alg = HASH_ALG_AES,
4178                        .mode = HASH_MODE_CMAC,
4179                        },
4180          },
4181 };
4182
4183 static int generic_cra_init(struct crypto_tfm *tfm,
4184                             struct iproc_alg_s *cipher_alg)
4185 {
4186         struct spu_hw *spu = &iproc_priv.spu;
4187         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4188         unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4189
4190         flow_log("%s()\n", __func__);
4191
4192         ctx->alg = cipher_alg;
4193         ctx->cipher = cipher_alg->cipher_info;
4194         ctx->auth = cipher_alg->auth_info;
4195         ctx->auth_first = cipher_alg->auth_first;
4196         ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4197                                                     ctx->cipher.mode,
4198                                                     blocksize);
4199         ctx->fallback_cipher = NULL;
4200
4201         ctx->enckeylen = 0;
4202         ctx->authkeylen = 0;
4203
4204         atomic_inc(&iproc_priv.stream_count);
4205         atomic_inc(&iproc_priv.session_count);
4206
4207         return 0;
4208 }
4209
4210 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4211 {
4212         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4213         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4214         struct iproc_alg_s *cipher_alg;
4215
4216         flow_log("%s()\n", __func__);
4217
4218         crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4219
4220         cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4221         return generic_cra_init(tfm, cipher_alg);
4222 }
4223
4224 static int ahash_cra_init(struct crypto_tfm *tfm)
4225 {
4226         int err;
4227         struct crypto_alg *alg = tfm->__crt_alg;
4228         struct iproc_alg_s *cipher_alg;
4229
4230         cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4231                                   alg.hash);
4232
4233         err = generic_cra_init(tfm, cipher_alg);
4234         flow_log("%s()\n", __func__);
4235
4236         /*
4237          * export state size has to be < 512 bytes. So don't include msg bufs
4238          * in state size.
4239          */
4240         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4241                                  sizeof(struct iproc_reqctx_s));
4242
4243         return err;
4244 }
4245
4246 static int aead_cra_init(struct crypto_aead *aead)
4247 {
4248         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4249         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4250         struct crypto_alg *alg = tfm->__crt_alg;
4251         struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4252         struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4253                                                       alg.aead);
4254
4255         int err = generic_cra_init(tfm, cipher_alg);
4256
4257         flow_log("%s()\n", __func__);
4258
4259         crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4260         ctx->is_esp = false;
4261         ctx->salt_len = 0;
4262         ctx->salt_offset = 0;
4263
4264         /* random first IV */
4265         get_random_bytes(ctx->iv, MAX_IV_SIZE);
4266         flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4267
4268         if (!err) {
4269                 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4270                         flow_log("%s() creating fallback cipher\n", __func__);
4271
4272                         ctx->fallback_cipher =
4273                             crypto_alloc_aead(alg->cra_name, 0,
4274                                               CRYPTO_ALG_ASYNC |
4275                                               CRYPTO_ALG_NEED_FALLBACK);
4276                         if (IS_ERR(ctx->fallback_cipher)) {
4277                                 pr_err("%s() Error: failed to allocate fallback for %s\n",
4278                                        __func__, alg->cra_name);
4279                                 return PTR_ERR(ctx->fallback_cipher);
4280                         }
4281                 }
4282         }
4283
4284         return err;
4285 }
4286
4287 static void generic_cra_exit(struct crypto_tfm *tfm)
4288 {
4289         atomic_dec(&iproc_priv.session_count);
4290 }
4291
4292 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4293 {
4294         generic_cra_exit(crypto_skcipher_tfm(tfm));
4295 }
4296
4297 static void aead_cra_exit(struct crypto_aead *aead)
4298 {
4299         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4300         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4301
4302         generic_cra_exit(tfm);
4303
4304         if (ctx->fallback_cipher) {
4305                 crypto_free_aead(ctx->fallback_cipher);
4306                 ctx->fallback_cipher = NULL;
4307         }
4308 }
4309
4310 /**
4311  * spu_functions_register() - Specify hardware-specific SPU functions based on
4312  * SPU type read from device tree.
4313  * @dev:        device structure
4314  * @spu_type:   SPU hardware generation
4315  * @spu_subtype: SPU hardware version
4316  */
4317 static void spu_functions_register(struct device *dev,
4318                                    enum spu_spu_type spu_type,
4319                                    enum spu_spu_subtype spu_subtype)
4320 {
4321         struct spu_hw *spu = &iproc_priv.spu;
4322
4323         if (spu_type == SPU_TYPE_SPUM) {
4324                 dev_dbg(dev, "Registering SPUM functions");
4325                 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4326                 spu->spu_payload_length = spum_payload_length;
4327                 spu->spu_response_hdr_len = spum_response_hdr_len;
4328                 spu->spu_hash_pad_len = spum_hash_pad_len;
4329                 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4330                 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4331                 spu->spu_aead_ivlen = spum_aead_ivlen;
4332                 spu->spu_hash_type = spum_hash_type;
4333                 spu->spu_digest_size = spum_digest_size;
4334                 spu->spu_create_request = spum_create_request;
4335                 spu->spu_cipher_req_init = spum_cipher_req_init;
4336                 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4337                 spu->spu_request_pad = spum_request_pad;
4338                 spu->spu_tx_status_len = spum_tx_status_len;
4339                 spu->spu_rx_status_len = spum_rx_status_len;
4340                 spu->spu_status_process = spum_status_process;
4341                 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4342                 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4343                 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4344                 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4345                         spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4346                 else
4347                         spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4348         } else {
4349                 dev_dbg(dev, "Registering SPU2 functions");
4350                 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4351                 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4352                 spu->spu_payload_length = spu2_payload_length;
4353                 spu->spu_response_hdr_len = spu2_response_hdr_len;
4354                 spu->spu_hash_pad_len = spu2_hash_pad_len;
4355                 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4356                 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4357                 spu->spu_aead_ivlen = spu2_aead_ivlen;
4358                 spu->spu_hash_type = spu2_hash_type;
4359                 spu->spu_digest_size = spu2_digest_size;
4360                 spu->spu_create_request = spu2_create_request;
4361                 spu->spu_cipher_req_init = spu2_cipher_req_init;
4362                 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4363                 spu->spu_request_pad = spu2_request_pad;
4364                 spu->spu_tx_status_len = spu2_tx_status_len;
4365                 spu->spu_rx_status_len = spu2_rx_status_len;
4366                 spu->spu_status_process = spu2_status_process;
4367                 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4368                 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4369                 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4370         }
4371 }
4372
4373 /**
4374  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4375  * channel for the SPU being probed.
4376  * @dev:  SPU driver device structure
4377  *
4378  * Return: 0 if successful
4379  *         < 0 otherwise
4380  */
4381 static int spu_mb_init(struct device *dev)
4382 {
4383         struct mbox_client *mcl = &iproc_priv.mcl;
4384         int err, i;
4385
4386         iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4387                                   sizeof(struct mbox_chan *), GFP_KERNEL);
4388         if (!iproc_priv.mbox)
4389                 return -ENOMEM;
4390
4391         mcl->dev = dev;
4392         mcl->tx_block = false;
4393         mcl->tx_tout = 0;
4394         mcl->knows_txdone = true;
4395         mcl->rx_callback = spu_rx_callback;
4396         mcl->tx_done = NULL;
4397
4398         for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4399                 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4400                 if (IS_ERR(iproc_priv.mbox[i])) {
4401                         err = PTR_ERR(iproc_priv.mbox[i]);
4402                         dev_err(dev,
4403                                 "Mbox channel %d request failed with err %d",
4404                                 i, err);
4405                         iproc_priv.mbox[i] = NULL;
4406                         goto free_channels;
4407                 }
4408         }
4409
4410         return 0;
4411 free_channels:
4412         for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4413                 if (iproc_priv.mbox[i])
4414                         mbox_free_channel(iproc_priv.mbox[i]);
4415         }
4416
4417         return err;
4418 }
4419
4420 static void spu_mb_release(struct platform_device *pdev)
4421 {
4422         int i;
4423
4424         for (i = 0; i < iproc_priv.spu.num_chan; i++)
4425                 mbox_free_channel(iproc_priv.mbox[i]);
4426 }
4427
4428 static void spu_counters_init(void)
4429 {
4430         int i;
4431         int j;
4432
4433         atomic_set(&iproc_priv.session_count, 0);
4434         atomic_set(&iproc_priv.stream_count, 0);
4435         atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4436         atomic64_set(&iproc_priv.bytes_in, 0);
4437         atomic64_set(&iproc_priv.bytes_out, 0);
4438         for (i = 0; i < SPU_OP_NUM; i++) {
4439                 atomic_set(&iproc_priv.op_counts[i], 0);
4440                 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4441         }
4442         for (i = 0; i < CIPHER_ALG_LAST; i++)
4443                 for (j = 0; j < CIPHER_MODE_LAST; j++)
4444                         atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4445
4446         for (i = 0; i < HASH_ALG_LAST; i++) {
4447                 atomic_set(&iproc_priv.hash_cnt[i], 0);
4448                 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4449         }
4450         for (i = 0; i < AEAD_TYPE_LAST; i++)
4451                 atomic_set(&iproc_priv.aead_cnt[i], 0);
4452
4453         atomic_set(&iproc_priv.mb_no_spc, 0);
4454         atomic_set(&iproc_priv.mb_send_fail, 0);
4455         atomic_set(&iproc_priv.bad_icv, 0);
4456 }
4457
4458 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4459 {
4460         struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4461         int err;
4462
4463         crypto->base.cra_module = THIS_MODULE;
4464         crypto->base.cra_priority = cipher_pri;
4465         crypto->base.cra_alignmask = 0;
4466         crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4467         crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4468                                  CRYPTO_ALG_ALLOCATES_MEMORY |
4469                                  CRYPTO_ALG_KERN_DRIVER_ONLY;
4470
4471         crypto->init = skcipher_init_tfm;
4472         crypto->exit = skcipher_exit_tfm;
4473         crypto->setkey = skcipher_setkey;
4474         crypto->encrypt = skcipher_encrypt;
4475         crypto->decrypt = skcipher_decrypt;
4476
4477         err = crypto_register_skcipher(crypto);
4478         /* Mark alg as having been registered, if successful */
4479         if (err == 0)
4480                 driver_alg->registered = true;
4481         pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4482         return err;
4483 }
4484
4485 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4486 {
4487         struct spu_hw *spu = &iproc_priv.spu;
4488         struct ahash_alg *hash = &driver_alg->alg.hash;
4489         int err;
4490
4491         /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4492         if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4493             (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4494             (spu->spu_type == SPU_TYPE_SPUM))
4495                 return 0;
4496
4497         /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4498         if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4499             (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4500                 return 0;
4501
4502         hash->halg.base.cra_module = THIS_MODULE;
4503         hash->halg.base.cra_priority = hash_pri;
4504         hash->halg.base.cra_alignmask = 0;
4505         hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4506         hash->halg.base.cra_init = ahash_cra_init;
4507         hash->halg.base.cra_exit = generic_cra_exit;
4508         hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4509                                     CRYPTO_ALG_ALLOCATES_MEMORY;
4510         hash->halg.statesize = sizeof(struct spu_hash_export_s);
4511
4512         if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4513                 hash->init = ahash_init;
4514                 hash->update = ahash_update;
4515                 hash->final = ahash_final;
4516                 hash->finup = ahash_finup;
4517                 hash->digest = ahash_digest;
4518                 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4519                     ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4520                     (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4521                         hash->setkey = ahash_setkey;
4522                 }
4523         } else {
4524                 hash->setkey = ahash_hmac_setkey;
4525                 hash->init = ahash_hmac_init;
4526                 hash->update = ahash_hmac_update;
4527                 hash->final = ahash_hmac_final;
4528                 hash->finup = ahash_hmac_finup;
4529                 hash->digest = ahash_hmac_digest;
4530         }
4531         hash->export = ahash_export;
4532         hash->import = ahash_import;
4533
4534         err = crypto_register_ahash(hash);
4535         /* Mark alg as having been registered, if successful */
4536         if (err == 0)
4537                 driver_alg->registered = true;
4538         pr_debug("  registered ahash %s\n",
4539                  hash->halg.base.cra_driver_name);
4540         return err;
4541 }
4542
4543 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4544 {
4545         struct aead_alg *aead = &driver_alg->alg.aead;
4546         int err;
4547
4548         aead->base.cra_module = THIS_MODULE;
4549         aead->base.cra_priority = aead_pri;
4550         aead->base.cra_alignmask = 0;
4551         aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4552
4553         aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4554         /* setkey set in alg initialization */
4555         aead->setauthsize = aead_setauthsize;
4556         aead->encrypt = aead_encrypt;
4557         aead->decrypt = aead_decrypt;
4558         aead->init = aead_cra_init;
4559         aead->exit = aead_cra_exit;
4560
4561         err = crypto_register_aead(aead);
4562         /* Mark alg as having been registered, if successful */
4563         if (err == 0)
4564                 driver_alg->registered = true;
4565         pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4566         return err;
4567 }
4568
4569 /* register crypto algorithms the device supports */
4570 static int spu_algs_register(struct device *dev)
4571 {
4572         int i, j;
4573         int err;
4574
4575         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4576                 switch (driver_algs[i].type) {
4577                 case CRYPTO_ALG_TYPE_SKCIPHER:
4578                         err = spu_register_skcipher(&driver_algs[i]);
4579                         break;
4580                 case CRYPTO_ALG_TYPE_AHASH:
4581                         err = spu_register_ahash(&driver_algs[i]);
4582                         break;
4583                 case CRYPTO_ALG_TYPE_AEAD:
4584                         err = spu_register_aead(&driver_algs[i]);
4585                         break;
4586                 default:
4587                         dev_err(dev,
4588                                 "iproc-crypto: unknown alg type: %d",
4589                                 driver_algs[i].type);
4590                         err = -EINVAL;
4591                 }
4592
4593                 if (err) {
4594                         dev_err(dev, "alg registration failed with error %d\n",
4595                                 err);
4596                         goto err_algs;
4597                 }
4598         }
4599
4600         return 0;
4601
4602 err_algs:
4603         for (j = 0; j < i; j++) {
4604                 /* Skip any algorithm not registered */
4605                 if (!driver_algs[j].registered)
4606                         continue;
4607                 switch (driver_algs[j].type) {
4608                 case CRYPTO_ALG_TYPE_SKCIPHER:
4609                         crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4610                         driver_algs[j].registered = false;
4611                         break;
4612                 case CRYPTO_ALG_TYPE_AHASH:
4613                         crypto_unregister_ahash(&driver_algs[j].alg.hash);
4614                         driver_algs[j].registered = false;
4615                         break;
4616                 case CRYPTO_ALG_TYPE_AEAD:
4617                         crypto_unregister_aead(&driver_algs[j].alg.aead);
4618                         driver_algs[j].registered = false;
4619                         break;
4620                 }
4621         }
4622         return err;
4623 }
4624
4625 /* ==================== Kernel Platform API ==================== */
4626
4627 static struct spu_type_subtype spum_ns2_types = {
4628         SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4629 };
4630
4631 static struct spu_type_subtype spum_nsp_types = {
4632         SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4633 };
4634
4635 static struct spu_type_subtype spu2_types = {
4636         SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4637 };
4638
4639 static struct spu_type_subtype spu2_v2_types = {
4640         SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4641 };
4642
4643 static const struct of_device_id bcm_spu_dt_ids[] = {
4644         {
4645                 .compatible = "brcm,spum-crypto",
4646                 .data = &spum_ns2_types,
4647         },
4648         {
4649                 .compatible = "brcm,spum-nsp-crypto",
4650                 .data = &spum_nsp_types,
4651         },
4652         {
4653                 .compatible = "brcm,spu2-crypto",
4654                 .data = &spu2_types,
4655         },
4656         {
4657                 .compatible = "brcm,spu2-v2-crypto",
4658                 .data = &spu2_v2_types,
4659         },
4660         { /* sentinel */ }
4661 };
4662
4663 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4664
4665 static int spu_dt_read(struct platform_device *pdev)
4666 {
4667         struct device *dev = &pdev->dev;
4668         struct spu_hw *spu = &iproc_priv.spu;
4669         struct resource *spu_ctrl_regs;
4670         const struct spu_type_subtype *matched_spu_type;
4671         struct device_node *dn = pdev->dev.of_node;
4672         int err, i;
4673
4674         /* Count number of mailbox channels */
4675         spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4676
4677         matched_spu_type = of_device_get_match_data(dev);
4678         if (!matched_spu_type) {
4679                 dev_err(dev, "Failed to match device\n");
4680                 return -ENODEV;
4681         }
4682
4683         spu->spu_type = matched_spu_type->type;
4684         spu->spu_subtype = matched_spu_type->subtype;
4685
4686         for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4687                 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4688
4689                 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4690                 if (IS_ERR(spu->reg_vbase[i])) {
4691                         err = PTR_ERR(spu->reg_vbase[i]);
4692                         dev_err(dev, "Failed to map registers: %d\n",
4693                                 err);
4694                         spu->reg_vbase[i] = NULL;
4695                         return err;
4696                 }
4697         }
4698         spu->num_spu = i;
4699         dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4700
4701         return 0;
4702 }
4703
4704 static int bcm_spu_probe(struct platform_device *pdev)
4705 {
4706         struct device *dev = &pdev->dev;
4707         struct spu_hw *spu = &iproc_priv.spu;
4708         int err;
4709
4710         iproc_priv.pdev  = pdev;
4711         platform_set_drvdata(iproc_priv.pdev,
4712                              &iproc_priv);
4713
4714         err = spu_dt_read(pdev);
4715         if (err < 0)
4716                 goto failure;
4717
4718         err = spu_mb_init(dev);
4719         if (err < 0)
4720                 goto failure;
4721
4722         if (spu->spu_type == SPU_TYPE_SPUM)
4723                 iproc_priv.bcm_hdr_len = 8;
4724         else if (spu->spu_type == SPU_TYPE_SPU2)
4725                 iproc_priv.bcm_hdr_len = 0;
4726
4727         spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4728
4729         spu_counters_init();
4730
4731         spu_setup_debugfs();
4732
4733         err = spu_algs_register(dev);
4734         if (err < 0)
4735                 goto fail_reg;
4736
4737         return 0;
4738
4739 fail_reg:
4740         spu_free_debugfs();
4741 failure:
4742         spu_mb_release(pdev);
4743         dev_err(dev, "%s failed with error %d.\n", __func__, err);
4744
4745         return err;
4746 }
4747
4748 static int bcm_spu_remove(struct platform_device *pdev)
4749 {
4750         int i;
4751         struct device *dev = &pdev->dev;
4752         char *cdn;
4753
4754         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4755                 /*
4756                  * Not all algorithms were registered, depending on whether
4757                  * hardware is SPU or SPU2.  So here we make sure to skip
4758                  * those algorithms that were not previously registered.
4759                  */
4760                 if (!driver_algs[i].registered)
4761                         continue;
4762
4763                 switch (driver_algs[i].type) {
4764                 case CRYPTO_ALG_TYPE_SKCIPHER:
4765                         crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4766                         dev_dbg(dev, "  unregistered cipher %s\n",
4767                                 driver_algs[i].alg.skcipher.base.cra_driver_name);
4768                         driver_algs[i].registered = false;
4769                         break;
4770                 case CRYPTO_ALG_TYPE_AHASH:
4771                         crypto_unregister_ahash(&driver_algs[i].alg.hash);
4772                         cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4773                         dev_dbg(dev, "  unregistered hash %s\n", cdn);
4774                         driver_algs[i].registered = false;
4775                         break;
4776                 case CRYPTO_ALG_TYPE_AEAD:
4777                         crypto_unregister_aead(&driver_algs[i].alg.aead);
4778                         dev_dbg(dev, "  unregistered aead %s\n",
4779                                 driver_algs[i].alg.aead.base.cra_driver_name);
4780                         driver_algs[i].registered = false;
4781                         break;
4782                 }
4783         }
4784         spu_free_debugfs();
4785         spu_mb_release(pdev);
4786         return 0;
4787 }
4788
4789 /* ===== Kernel Module API ===== */
4790
4791 static struct platform_driver bcm_spu_pdriver = {
4792         .driver = {
4793                    .name = "brcm-spu-crypto",
4794                    .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4795                    },
4796         .probe = bcm_spu_probe,
4797         .remove = bcm_spu_remove,
4798 };
4799 module_platform_driver(bcm_spu_pdriver);
4800
4801 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4802 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4803 MODULE_LICENSE("GPL v2");