Merge tag 'modules-for-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[linux-2.6-microblaze.git] / drivers / crypto / bcm / cipher.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright 2016 Broadcom
4  */
5
6 #include <linux/err.h>
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/errno.h>
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/platform_device.h>
13 #include <linux/scatterlist.h>
14 #include <linux/crypto.h>
15 #include <linux/kthread.h>
16 #include <linux/rtnetlink.h>
17 #include <linux/sched.h>
18 #include <linux/of_address.h>
19 #include <linux/of_device.h>
20 #include <linux/io.h>
21 #include <linux/bitops.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/aead.h>
25 #include <crypto/internal/aead.h>
26 #include <crypto/aes.h>
27 #include <crypto/internal/des.h>
28 #include <crypto/hmac.h>
29 #include <crypto/md5.h>
30 #include <crypto/authenc.h>
31 #include <crypto/skcipher.h>
32 #include <crypto/hash.h>
33 #include <crypto/sha1.h>
34 #include <crypto/sha2.h>
35 #include <crypto/sha3.h>
36
37 #include "util.h"
38 #include "cipher.h"
39 #include "spu.h"
40 #include "spum.h"
41 #include "spu2.h"
42
43 /* ================= Device Structure ================== */
44
45 struct device_private iproc_priv;
46
47 /* ==================== Parameters ===================== */
48
49 int flow_debug_logging;
50 module_param(flow_debug_logging, int, 0644);
51 MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
52
53 int packet_debug_logging;
54 module_param(packet_debug_logging, int, 0644);
55 MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
56
57 int debug_logging_sleep;
58 module_param(debug_logging_sleep, int, 0644);
59 MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
60
61 /*
62  * The value of these module parameters is used to set the priority for each
63  * algo type when this driver registers algos with the kernel crypto API.
64  * To use a priority other than the default, set the priority in the insmod or
65  * modprobe. Changing the module priority after init time has no effect.
66  *
67  * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
68  * algos, but more preferred than generic software algos.
69  */
70 static int cipher_pri = 150;
71 module_param(cipher_pri, int, 0644);
72 MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
73
74 static int hash_pri = 100;
75 module_param(hash_pri, int, 0644);
76 MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
77
78 static int aead_pri = 150;
79 module_param(aead_pri, int, 0644);
80 MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
81
82 /* A type 3 BCM header, expected to precede the SPU header for SPU-M.
83  * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
84  * 0x60 - ring 0
85  * 0x68 - ring 1
86  * 0x70 - ring 2
87  * 0x78 - ring 3
88  */
89 static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
90 /*
91  * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
92  * is set dynamically after reading SPU type from device tree.
93  */
94 #define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
95
96 /* min and max time to sleep before retrying when mbox queue is full. usec */
97 #define MBOX_SLEEP_MIN  800
98 #define MBOX_SLEEP_MAX 1000
99
100 /**
101  * select_channel() - Select a SPU channel to handle a crypto request. Selects
102  * channel in round robin order.
103  *
104  * Return:  channel index
105  */
106 static u8 select_channel(void)
107 {
108         u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
109
110         return chan_idx % iproc_priv.spu.num_chan;
111 }
112
113 /**
114  * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
115  * receive a SPU response message for an skcipher request. Includes buffers to
116  * catch SPU message headers and the response data.
117  * @mssg:       mailbox message containing the receive sg
118  * @rctx:       crypto request context
119  * @rx_frag_num: number of scatterlist elements required to hold the
120  *              SPU response message
121  * @chunksize:  Number of bytes of response data expected
122  * @stat_pad_len: Number of bytes required to pad the STAT field to
123  *              a 4-byte boundary
124  *
125  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
126  * when the request completes, whether the request is handled successfully or
127  * there is an error.
128  *
129  * Returns:
130  *   0 if successful
131  *   < 0 if an error
132  */
133 static int
134 spu_skcipher_rx_sg_create(struct brcm_message *mssg,
135                             struct iproc_reqctx_s *rctx,
136                             u8 rx_frag_num,
137                             unsigned int chunksize, u32 stat_pad_len)
138 {
139         struct spu_hw *spu = &iproc_priv.spu;
140         struct scatterlist *sg; /* used to build sgs in mbox message */
141         struct iproc_ctx_s *ctx = rctx->ctx;
142         u32 datalen;            /* Number of bytes of response data expected */
143
144         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
145                                 rctx->gfp);
146         if (!mssg->spu.dst)
147                 return -ENOMEM;
148
149         sg = mssg->spu.dst;
150         sg_init_table(sg, rx_frag_num);
151         /* Space for SPU message header */
152         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
153
154         /* If XTS tweak in payload, add buffer to receive encrypted tweak */
155         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
156             spu->spu_xts_tweak_in_payload())
157                 sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
158                            SPU_XTS_TWEAK_SIZE);
159
160         /* Copy in each dst sg entry from request, up to chunksize */
161         datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
162                                  rctx->dst_nents, chunksize);
163         if (datalen < chunksize) {
164                 pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
165                        __func__, chunksize, datalen);
166                 return -EFAULT;
167         }
168
169         if (stat_pad_len)
170                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
171
172         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
173         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
174
175         return 0;
176 }
177
178 /**
179  * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
180  * send a SPU request message for an skcipher request. Includes SPU message
181  * headers and the request data.
182  * @mssg:       mailbox message containing the transmit sg
183  * @rctx:       crypto request context
184  * @tx_frag_num: number of scatterlist elements required to construct the
185  *              SPU request message
186  * @chunksize:  Number of bytes of request data
187  * @pad_len:    Number of pad bytes
188  *
189  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
190  * when the request completes, whether the request is handled successfully or
191  * there is an error.
192  *
193  * Returns:
194  *   0 if successful
195  *   < 0 if an error
196  */
197 static int
198 spu_skcipher_tx_sg_create(struct brcm_message *mssg,
199                             struct iproc_reqctx_s *rctx,
200                             u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
201 {
202         struct spu_hw *spu = &iproc_priv.spu;
203         struct scatterlist *sg; /* used to build sgs in mbox message */
204         struct iproc_ctx_s *ctx = rctx->ctx;
205         u32 datalen;            /* Number of bytes of response data expected */
206         u32 stat_len;
207
208         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
209                                 rctx->gfp);
210         if (unlikely(!mssg->spu.src))
211                 return -ENOMEM;
212
213         sg = mssg->spu.src;
214         sg_init_table(sg, tx_frag_num);
215
216         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
217                    BCM_HDR_LEN + ctx->spu_req_hdr_len);
218
219         /* if XTS tweak in payload, copy from IV (where crypto API puts it) */
220         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
221             spu->spu_xts_tweak_in_payload())
222                 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
223
224         /* Copy in each src sg entry from request, up to chunksize */
225         datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
226                                  rctx->src_nents, chunksize);
227         if (unlikely(datalen < chunksize)) {
228                 pr_err("%s(): failed to copy src sg to mbox msg",
229                        __func__);
230                 return -EFAULT;
231         }
232
233         if (pad_len)
234                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
235
236         stat_len = spu->spu_tx_status_len();
237         if (stat_len) {
238                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
239                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
240         }
241         return 0;
242 }
243
244 static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
245                                 u8 chan_idx)
246 {
247         int err;
248         int retry_cnt = 0;
249         struct device *dev = &(iproc_priv.pdev->dev);
250
251         err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
252         if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
253                 while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
254                         /*
255                          * Mailbox queue is full. Since MAY_SLEEP is set, assume
256                          * not in atomic context and we can wait and try again.
257                          */
258                         retry_cnt++;
259                         usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
260                         err = mbox_send_message(iproc_priv.mbox[chan_idx],
261                                                 mssg);
262                         atomic_inc(&iproc_priv.mb_no_spc);
263                 }
264         }
265         if (err < 0) {
266                 atomic_inc(&iproc_priv.mb_send_fail);
267                 return err;
268         }
269
270         /* Check error returned by mailbox controller */
271         err = mssg->error;
272         if (unlikely(err < 0)) {
273                 dev_err(dev, "message error %d", err);
274                 /* Signal txdone for mailbox channel */
275         }
276
277         /* Signal txdone for mailbox channel */
278         mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
279         return err;
280 }
281
282 /**
283  * handle_skcipher_req() - Submit as much of a block cipher request as fits in
284  * a single SPU request message, starting at the current position in the request
285  * data.
286  * @rctx:       Crypto request context
287  *
288  * This may be called on the crypto API thread, or, when a request is so large
289  * it must be broken into multiple SPU messages, on the thread used to invoke
290  * the response callback. When requests are broken into multiple SPU
291  * messages, we assume subsequent messages depend on previous results, and
292  * thus always wait for previous results before submitting the next message.
293  * Because requests are submitted in lock step like this, there is no need
294  * to synchronize access to request data structures.
295  *
296  * Return: -EINPROGRESS: request has been accepted and result will be returned
297  *                       asynchronously
298  *         Any other value indicates an error
299  */
300 static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
301 {
302         struct spu_hw *spu = &iproc_priv.spu;
303         struct crypto_async_request *areq = rctx->parent;
304         struct skcipher_request *req =
305             container_of(areq, struct skcipher_request, base);
306         struct iproc_ctx_s *ctx = rctx->ctx;
307         struct spu_cipher_parms cipher_parms;
308         int err;
309         unsigned int chunksize; /* Num bytes of request to submit */
310         int remaining;  /* Bytes of request still to process */
311         int chunk_start;        /* Beginning of data for current SPU msg */
312
313         /* IV or ctr value to use in this SPU msg */
314         u8 local_iv_ctr[MAX_IV_SIZE];
315         u32 stat_pad_len;       /* num bytes to align status field */
316         u32 pad_len;            /* total length of all padding */
317         struct brcm_message *mssg;      /* mailbox message */
318
319         /* number of entries in src and dst sg in mailbox message. */
320         u8 rx_frag_num = 2;     /* response header and STATUS */
321         u8 tx_frag_num = 1;     /* request header */
322
323         flow_log("%s\n", __func__);
324
325         cipher_parms.alg = ctx->cipher.alg;
326         cipher_parms.mode = ctx->cipher.mode;
327         cipher_parms.type = ctx->cipher_type;
328         cipher_parms.key_len = ctx->enckeylen;
329         cipher_parms.key_buf = ctx->enckey;
330         cipher_parms.iv_buf = local_iv_ctr;
331         cipher_parms.iv_len = rctx->iv_ctr_len;
332
333         mssg = &rctx->mb_mssg;
334         chunk_start = rctx->src_sent;
335         remaining = rctx->total_todo - chunk_start;
336
337         /* determine the chunk we are breaking off and update the indexes */
338         if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
339             (remaining > ctx->max_payload))
340                 chunksize = ctx->max_payload;
341         else
342                 chunksize = remaining;
343
344         rctx->src_sent += chunksize;
345         rctx->total_sent = rctx->src_sent;
346
347         /* Count number of sg entries to be included in this request */
348         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
349         rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
350
351         if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
352             rctx->is_encrypt && chunk_start)
353                 /*
354                  * Encrypting non-first first chunk. Copy last block of
355                  * previous result to IV for this chunk.
356                  */
357                 sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
358                                     rctx->iv_ctr_len,
359                                     chunk_start - rctx->iv_ctr_len);
360
361         if (rctx->iv_ctr_len) {
362                 /* get our local copy of the iv */
363                 __builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
364                                  rctx->iv_ctr_len);
365
366                 /* generate the next IV if possible */
367                 if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
368                     !rctx->is_encrypt) {
369                         /*
370                          * CBC Decrypt: next IV is the last ciphertext block in
371                          * this chunk
372                          */
373                         sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
374                                             rctx->iv_ctr_len,
375                                             rctx->src_sent - rctx->iv_ctr_len);
376                 } else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
377                         /*
378                          * The SPU hardware increments the counter once for
379                          * each AES block of 16 bytes. So update the counter
380                          * for the next chunk, if there is one. Note that for
381                          * this chunk, the counter has already been copied to
382                          * local_iv_ctr. We can assume a block size of 16,
383                          * because we only support CTR mode for AES, not for
384                          * any other cipher alg.
385                          */
386                         add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
387                 }
388         }
389
390         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
391                 flow_log("max_payload infinite\n");
392         else
393                 flow_log("max_payload %u\n", ctx->max_payload);
394
395         flow_log("sent:%u start:%u remains:%u size:%u\n",
396                  rctx->src_sent, chunk_start, remaining, chunksize);
397
398         /* Copy SPU header template created at setkey time */
399         memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
400                sizeof(rctx->msg_buf.bcm_spu_req_hdr));
401
402         spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
403                                    ctx->spu_req_hdr_len, !(rctx->is_encrypt),
404                                    &cipher_parms, chunksize);
405
406         atomic64_add(chunksize, &iproc_priv.bytes_out);
407
408         stat_pad_len = spu->spu_wordalign_padlen(chunksize);
409         if (stat_pad_len)
410                 rx_frag_num++;
411         pad_len = stat_pad_len;
412         if (pad_len) {
413                 tx_frag_num++;
414                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
415                                      0, ctx->auth.alg, ctx->auth.mode,
416                                      rctx->total_sent, stat_pad_len);
417         }
418
419         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
420                               ctx->spu_req_hdr_len);
421         packet_log("payload:\n");
422         dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
423         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
424
425         /*
426          * Build mailbox message containing SPU request msg and rx buffers
427          * to catch response message
428          */
429         memset(mssg, 0, sizeof(*mssg));
430         mssg->type = BRCM_MESSAGE_SPU;
431         mssg->ctx = rctx;       /* Will be returned in response */
432
433         /* Create rx scatterlist to catch result */
434         rx_frag_num += rctx->dst_nents;
435
436         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
437             spu->spu_xts_tweak_in_payload())
438                 rx_frag_num++;  /* extra sg to insert tweak */
439
440         err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
441                                           stat_pad_len);
442         if (err)
443                 return err;
444
445         /* Create tx scatterlist containing SPU request message */
446         tx_frag_num += rctx->src_nents;
447         if (spu->spu_tx_status_len())
448                 tx_frag_num++;
449
450         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
451             spu->spu_xts_tweak_in_payload())
452                 tx_frag_num++;  /* extra sg to insert tweak */
453
454         err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
455                                           pad_len);
456         if (err)
457                 return err;
458
459         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
460         if (unlikely(err < 0))
461                 return err;
462
463         return -EINPROGRESS;
464 }
465
466 /**
467  * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
468  * total received count for the request and updates global stats.
469  * @rctx:       Crypto request context
470  */
471 static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
472 {
473         struct spu_hw *spu = &iproc_priv.spu;
474 #ifdef DEBUG
475         struct crypto_async_request *areq = rctx->parent;
476         struct skcipher_request *req = skcipher_request_cast(areq);
477 #endif
478         struct iproc_ctx_s *ctx = rctx->ctx;
479         u32 payload_len;
480
481         /* See how much data was returned */
482         payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
483
484         /*
485          * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
486          * encrypted tweak ("i") value; we don't count those.
487          */
488         if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
489             spu->spu_xts_tweak_in_payload() &&
490             (payload_len >= SPU_XTS_TWEAK_SIZE))
491                 payload_len -= SPU_XTS_TWEAK_SIZE;
492
493         atomic64_add(payload_len, &iproc_priv.bytes_in);
494
495         flow_log("%s() offset: %u, bd_len: %u BD:\n",
496                  __func__, rctx->total_received, payload_len);
497
498         dump_sg(req->dst, rctx->total_received, payload_len);
499
500         rctx->total_received += payload_len;
501         if (rctx->total_received == rctx->total_todo) {
502                 atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
503                 atomic_inc(
504                    &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
505         }
506 }
507
508 /**
509  * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
510  * receive a SPU response message for an ahash request.
511  * @mssg:       mailbox message containing the receive sg
512  * @rctx:       crypto request context
513  * @rx_frag_num: number of scatterlist elements required to hold the
514  *              SPU response message
515  * @digestsize: length of hash digest, in bytes
516  * @stat_pad_len: Number of bytes required to pad the STAT field to
517  *              a 4-byte boundary
518  *
519  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
520  * when the request completes, whether the request is handled successfully or
521  * there is an error.
522  *
523  * Return:
524  *   0 if successful
525  *   < 0 if an error
526  */
527 static int
528 spu_ahash_rx_sg_create(struct brcm_message *mssg,
529                        struct iproc_reqctx_s *rctx,
530                        u8 rx_frag_num, unsigned int digestsize,
531                        u32 stat_pad_len)
532 {
533         struct spu_hw *spu = &iproc_priv.spu;
534         struct scatterlist *sg; /* used to build sgs in mbox message */
535         struct iproc_ctx_s *ctx = rctx->ctx;
536
537         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
538                                 rctx->gfp);
539         if (!mssg->spu.dst)
540                 return -ENOMEM;
541
542         sg = mssg->spu.dst;
543         sg_init_table(sg, rx_frag_num);
544         /* Space for SPU message header */
545         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
546
547         /* Space for digest */
548         sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
549
550         if (stat_pad_len)
551                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
552
553         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
554         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
555         return 0;
556 }
557
558 /**
559  * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
560  * a SPU request message for an ahash request. Includes SPU message headers and
561  * the request data.
562  * @mssg:       mailbox message containing the transmit sg
563  * @rctx:       crypto request context
564  * @tx_frag_num: number of scatterlist elements required to construct the
565  *              SPU request message
566  * @spu_hdr_len: length in bytes of SPU message header
567  * @hash_carry_len: Number of bytes of data carried over from previous req
568  * @new_data_len: Number of bytes of new request data
569  * @pad_len:    Number of pad bytes
570  *
571  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
572  * when the request completes, whether the request is handled successfully or
573  * there is an error.
574  *
575  * Return:
576  *   0 if successful
577  *   < 0 if an error
578  */
579 static int
580 spu_ahash_tx_sg_create(struct brcm_message *mssg,
581                        struct iproc_reqctx_s *rctx,
582                        u8 tx_frag_num,
583                        u32 spu_hdr_len,
584                        unsigned int hash_carry_len,
585                        unsigned int new_data_len, u32 pad_len)
586 {
587         struct spu_hw *spu = &iproc_priv.spu;
588         struct scatterlist *sg; /* used to build sgs in mbox message */
589         u32 datalen;            /* Number of bytes of response data expected */
590         u32 stat_len;
591
592         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
593                                 rctx->gfp);
594         if (!mssg->spu.src)
595                 return -ENOMEM;
596
597         sg = mssg->spu.src;
598         sg_init_table(sg, tx_frag_num);
599
600         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
601                    BCM_HDR_LEN + spu_hdr_len);
602
603         if (hash_carry_len)
604                 sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
605
606         if (new_data_len) {
607                 /* Copy in each src sg entry from request, up to chunksize */
608                 datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
609                                          rctx->src_nents, new_data_len);
610                 if (datalen < new_data_len) {
611                         pr_err("%s(): failed to copy src sg to mbox msg",
612                                __func__);
613                         return -EFAULT;
614                 }
615         }
616
617         if (pad_len)
618                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
619
620         stat_len = spu->spu_tx_status_len();
621         if (stat_len) {
622                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
623                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
624         }
625
626         return 0;
627 }
628
629 /**
630  * handle_ahash_req() - Process an asynchronous hash request from the crypto
631  * API.
632  * @rctx:  Crypto request context
633  *
634  * Builds a SPU request message embedded in a mailbox message and submits the
635  * mailbox message on a selected mailbox channel. The SPU request message is
636  * constructed as a scatterlist, including entries from the crypto API's
637  * src scatterlist to avoid copying the data to be hashed. This function is
638  * called either on the thread from the crypto API, or, in the case that the
639  * crypto API request is too large to fit in a single SPU request message,
640  * on the thread that invokes the receive callback with a response message.
641  * Because some operations require the response from one chunk before the next
642  * chunk can be submitted, we always wait for the response for the previous
643  * chunk before submitting the next chunk. Because requests are submitted in
644  * lock step like this, there is no need to synchronize access to request data
645  * structures.
646  *
647  * Return:
648  *   -EINPROGRESS: request has been submitted to SPU and response will be
649  *                 returned asynchronously
650  *   -EAGAIN:      non-final request included a small amount of data, which for
651  *                 efficiency we did not submit to the SPU, but instead stored
652  *                 to be submitted to the SPU with the next part of the request
653  *   other:        an error code
654  */
655 static int handle_ahash_req(struct iproc_reqctx_s *rctx)
656 {
657         struct spu_hw *spu = &iproc_priv.spu;
658         struct crypto_async_request *areq = rctx->parent;
659         struct ahash_request *req = ahash_request_cast(areq);
660         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
661         struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
662         unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
663         struct iproc_ctx_s *ctx = rctx->ctx;
664
665         /* number of bytes still to be hashed in this req */
666         unsigned int nbytes_to_hash = 0;
667         int err;
668         unsigned int chunksize = 0;     /* length of hash carry + new data */
669         /*
670          * length of new data, not from hash carry, to be submitted in
671          * this hw request
672          */
673         unsigned int new_data_len;
674
675         unsigned int __maybe_unused chunk_start = 0;
676         u32 db_size;     /* Length of data field, incl gcm and hash padding */
677         int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
678         u32 data_pad_len = 0;   /* length of GCM/CCM padding */
679         u32 stat_pad_len = 0;   /* length of padding to align STATUS word */
680         struct brcm_message *mssg;      /* mailbox message */
681         struct spu_request_opts req_opts;
682         struct spu_cipher_parms cipher_parms;
683         struct spu_hash_parms hash_parms;
684         struct spu_aead_parms aead_parms;
685         unsigned int local_nbuf;
686         u32 spu_hdr_len;
687         unsigned int digestsize;
688         u16 rem = 0;
689
690         /*
691          * number of entries in src and dst sg. Always includes SPU msg header.
692          * rx always includes a buffer to catch digest and STATUS.
693          */
694         u8 rx_frag_num = 3;
695         u8 tx_frag_num = 1;
696
697         flow_log("total_todo %u, total_sent %u\n",
698                  rctx->total_todo, rctx->total_sent);
699
700         memset(&req_opts, 0, sizeof(req_opts));
701         memset(&cipher_parms, 0, sizeof(cipher_parms));
702         memset(&hash_parms, 0, sizeof(hash_parms));
703         memset(&aead_parms, 0, sizeof(aead_parms));
704
705         req_opts.bd_suppress = true;
706         hash_parms.alg = ctx->auth.alg;
707         hash_parms.mode = ctx->auth.mode;
708         hash_parms.type = HASH_TYPE_NONE;
709         hash_parms.key_buf = (u8 *)ctx->authkey;
710         hash_parms.key_len = ctx->authkeylen;
711
712         /*
713          * For hash algorithms below assignment looks bit odd but
714          * it's needed for AES-XCBC and AES-CMAC hash algorithms
715          * to differentiate between 128, 192, 256 bit key values.
716          * Based on the key values, hash algorithm is selected.
717          * For example for 128 bit key, hash algorithm is AES-128.
718          */
719         cipher_parms.type = ctx->cipher_type;
720
721         mssg = &rctx->mb_mssg;
722         chunk_start = rctx->src_sent;
723
724         /*
725          * Compute the amount remaining to hash. This may include data
726          * carried over from previous requests.
727          */
728         nbytes_to_hash = rctx->total_todo - rctx->total_sent;
729         chunksize = nbytes_to_hash;
730         if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
731             (chunksize > ctx->max_payload))
732                 chunksize = ctx->max_payload;
733
734         /*
735          * If this is not a final request and the request data is not a multiple
736          * of a full block, then simply park the extra data and prefix it to the
737          * data for the next request.
738          */
739         if (!rctx->is_final) {
740                 u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
741                 u16 new_len;  /* len of data to add to hash carry */
742
743                 rem = chunksize % blocksize;   /* remainder */
744                 if (rem) {
745                         /* chunksize not a multiple of blocksize */
746                         chunksize -= rem;
747                         if (chunksize == 0) {
748                                 /* Don't have a full block to submit to hw */
749                                 new_len = rem - rctx->hash_carry_len;
750                                 sg_copy_part_to_buf(req->src, dest, new_len,
751                                                     rctx->src_sent);
752                                 rctx->hash_carry_len = rem;
753                                 flow_log("Exiting with hash carry len: %u\n",
754                                          rctx->hash_carry_len);
755                                 packet_dump("  buf: ",
756                                             rctx->hash_carry,
757                                             rctx->hash_carry_len);
758                                 return -EAGAIN;
759                         }
760                 }
761         }
762
763         /* if we have hash carry, then prefix it to the data in this request */
764         local_nbuf = rctx->hash_carry_len;
765         rctx->hash_carry_len = 0;
766         if (local_nbuf)
767                 tx_frag_num++;
768         new_data_len = chunksize - local_nbuf;
769
770         /* Count number of sg entries to be used in this request */
771         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
772                                        new_data_len);
773
774         /* AES hashing keeps key size in type field, so need to copy it here */
775         if (hash_parms.alg == HASH_ALG_AES)
776                 hash_parms.type = (enum hash_type)cipher_parms.type;
777         else
778                 hash_parms.type = spu->spu_hash_type(rctx->total_sent);
779
780         digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
781                                           hash_parms.type);
782         hash_parms.digestsize = digestsize;
783
784         /* update the indexes */
785         rctx->total_sent += chunksize;
786         /* if you sent a prebuf then that wasn't from this req->src */
787         rctx->src_sent += new_data_len;
788
789         if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
790                 hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
791                                                            hash_parms.mode,
792                                                            chunksize,
793                                                            blocksize);
794
795         /*
796          * If a non-first chunk, then include the digest returned from the
797          * previous chunk so that hw can add to it (except for AES types).
798          */
799         if ((hash_parms.type == HASH_TYPE_UPDT) &&
800             (hash_parms.alg != HASH_ALG_AES)) {
801                 hash_parms.key_buf = rctx->incr_hash;
802                 hash_parms.key_len = digestsize;
803         }
804
805         atomic64_add(chunksize, &iproc_priv.bytes_out);
806
807         flow_log("%s() final: %u nbuf: %u ",
808                  __func__, rctx->is_final, local_nbuf);
809
810         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
811                 flow_log("max_payload infinite\n");
812         else
813                 flow_log("max_payload %u\n", ctx->max_payload);
814
815         flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
816
817         /* Prepend SPU header with type 3 BCM header */
818         memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
819
820         hash_parms.prebuf_len = local_nbuf;
821         spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
822                                               BCM_HDR_LEN,
823                                               &req_opts, &cipher_parms,
824                                               &hash_parms, &aead_parms,
825                                               new_data_len);
826
827         if (spu_hdr_len == 0) {
828                 pr_err("Failed to create SPU request header\n");
829                 return -EFAULT;
830         }
831
832         /*
833          * Determine total length of padding required. Put all padding in one
834          * buffer.
835          */
836         data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
837         db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
838                                    0, 0, hash_parms.pad_len);
839         if (spu->spu_tx_status_len())
840                 stat_pad_len = spu->spu_wordalign_padlen(db_size);
841         if (stat_pad_len)
842                 rx_frag_num++;
843         pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
844         if (pad_len) {
845                 tx_frag_num++;
846                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
847                                      hash_parms.pad_len, ctx->auth.alg,
848                                      ctx->auth.mode, rctx->total_sent,
849                                      stat_pad_len);
850         }
851
852         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
853                               spu_hdr_len);
854         packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
855         flow_log("Data:\n");
856         dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
857         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
858
859         /*
860          * Build mailbox message containing SPU request msg and rx buffers
861          * to catch response message
862          */
863         memset(mssg, 0, sizeof(*mssg));
864         mssg->type = BRCM_MESSAGE_SPU;
865         mssg->ctx = rctx;       /* Will be returned in response */
866
867         /* Create rx scatterlist to catch result */
868         err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
869                                      stat_pad_len);
870         if (err)
871                 return err;
872
873         /* Create tx scatterlist containing SPU request message */
874         tx_frag_num += rctx->src_nents;
875         if (spu->spu_tx_status_len())
876                 tx_frag_num++;
877         err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
878                                      local_nbuf, new_data_len, pad_len);
879         if (err)
880                 return err;
881
882         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
883         if (unlikely(err < 0))
884                 return err;
885
886         return -EINPROGRESS;
887 }
888
889 /**
890  * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
891  * for an HMAC request.
892  * @req:  The HMAC request from the crypto API
893  * @ctx:  The session context
894  *
895  * Return: 0 if synchronous hash operation successful
896  *         -EINVAL if the hash algo is unrecognized
897  *         any other value indicates an error
898  */
899 static int spu_hmac_outer_hash(struct ahash_request *req,
900                                struct iproc_ctx_s *ctx)
901 {
902         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
903         unsigned int blocksize =
904                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
905         int rc;
906
907         switch (ctx->auth.alg) {
908         case HASH_ALG_MD5:
909                 rc = do_shash("md5", req->result, ctx->opad, blocksize,
910                               req->result, ctx->digestsize, NULL, 0);
911                 break;
912         case HASH_ALG_SHA1:
913                 rc = do_shash("sha1", req->result, ctx->opad, blocksize,
914                               req->result, ctx->digestsize, NULL, 0);
915                 break;
916         case HASH_ALG_SHA224:
917                 rc = do_shash("sha224", req->result, ctx->opad, blocksize,
918                               req->result, ctx->digestsize, NULL, 0);
919                 break;
920         case HASH_ALG_SHA256:
921                 rc = do_shash("sha256", req->result, ctx->opad, blocksize,
922                               req->result, ctx->digestsize, NULL, 0);
923                 break;
924         case HASH_ALG_SHA384:
925                 rc = do_shash("sha384", req->result, ctx->opad, blocksize,
926                               req->result, ctx->digestsize, NULL, 0);
927                 break;
928         case HASH_ALG_SHA512:
929                 rc = do_shash("sha512", req->result, ctx->opad, blocksize,
930                               req->result, ctx->digestsize, NULL, 0);
931                 break;
932         default:
933                 pr_err("%s() Error : unknown hmac type\n", __func__);
934                 rc = -EINVAL;
935         }
936         return rc;
937 }
938
939 /**
940  * ahash_req_done() - Process a hash result from the SPU hardware.
941  * @rctx: Crypto request context
942  *
943  * Return: 0 if successful
944  *         < 0 if an error
945  */
946 static int ahash_req_done(struct iproc_reqctx_s *rctx)
947 {
948         struct spu_hw *spu = &iproc_priv.spu;
949         struct crypto_async_request *areq = rctx->parent;
950         struct ahash_request *req = ahash_request_cast(areq);
951         struct iproc_ctx_s *ctx = rctx->ctx;
952         int err;
953
954         memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
955
956         if (spu->spu_type == SPU_TYPE_SPUM) {
957                 /* byte swap the output from the UPDT function to network byte
958                  * order
959                  */
960                 if (ctx->auth.alg == HASH_ALG_MD5) {
961                         __swab32s((u32 *)req->result);
962                         __swab32s(((u32 *)req->result) + 1);
963                         __swab32s(((u32 *)req->result) + 2);
964                         __swab32s(((u32 *)req->result) + 3);
965                         __swab32s(((u32 *)req->result) + 4);
966                 }
967         }
968
969         flow_dump("  digest ", req->result, ctx->digestsize);
970
971         /* if this an HMAC then do the outer hash */
972         if (rctx->is_sw_hmac) {
973                 err = spu_hmac_outer_hash(req, ctx);
974                 if (err < 0)
975                         return err;
976                 flow_dump("  hmac: ", req->result, ctx->digestsize);
977         }
978
979         if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
980                 atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
981                 atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
982         } else {
983                 atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
984                 atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
985         }
986
987         return 0;
988 }
989
990 /**
991  * handle_ahash_resp() - Process a SPU response message for a hash request.
992  * Checks if the entire crypto API request has been processed, and if so,
993  * invokes post processing on the result.
994  * @rctx: Crypto request context
995  */
996 static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
997 {
998         struct iproc_ctx_s *ctx = rctx->ctx;
999 #ifdef DEBUG
1000         struct crypto_async_request *areq = rctx->parent;
1001         struct ahash_request *req = ahash_request_cast(areq);
1002         struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
1003         unsigned int blocksize =
1004                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1005 #endif
1006         /*
1007          * Save hash to use as input to next op if incremental. Might be copying
1008          * too much, but that's easier than figuring out actual digest size here
1009          */
1010         memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1011
1012         flow_log("%s() blocksize:%u digestsize:%u\n",
1013                  __func__, blocksize, ctx->digestsize);
1014
1015         atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1016
1017         if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1018                 ahash_req_done(rctx);
1019 }
1020
1021 /**
1022  * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1023  * a SPU response message for an AEAD request. Includes buffers to catch SPU
1024  * message headers and the response data.
1025  * @mssg:       mailbox message containing the receive sg
1026  * @rctx:       crypto request context
1027  * @rx_frag_num: number of scatterlist elements required to hold the
1028  *              SPU response message
1029  * @assoc_len:  Length of associated data included in the crypto request
1030  * @ret_iv_len: Length of IV returned in response
1031  * @resp_len:   Number of bytes of response data expected to be written to
1032  *              dst buffer from crypto API
1033  * @digestsize: Length of hash digest, in bytes
1034  * @stat_pad_len: Number of bytes required to pad the STAT field to
1035  *              a 4-byte boundary
1036  *
1037  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1038  * when the request completes, whether the request is handled successfully or
1039  * there is an error.
1040  *
1041  * Returns:
1042  *   0 if successful
1043  *   < 0 if an error
1044  */
1045 static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1046                                  struct aead_request *req,
1047                                  struct iproc_reqctx_s *rctx,
1048                                  u8 rx_frag_num,
1049                                  unsigned int assoc_len,
1050                                  u32 ret_iv_len, unsigned int resp_len,
1051                                  unsigned int digestsize, u32 stat_pad_len)
1052 {
1053         struct spu_hw *spu = &iproc_priv.spu;
1054         struct scatterlist *sg; /* used to build sgs in mbox message */
1055         struct iproc_ctx_s *ctx = rctx->ctx;
1056         u32 datalen;            /* Number of bytes of response data expected */
1057         u32 assoc_buf_len;
1058         u8 data_padlen = 0;
1059
1060         if (ctx->is_rfc4543) {
1061                 /* RFC4543: only pad after data, not after AAD */
1062                 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1063                                                           assoc_len + resp_len);
1064                 assoc_buf_len = assoc_len;
1065         } else {
1066                 data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1067                                                           resp_len);
1068                 assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1069                                                 assoc_len, ret_iv_len,
1070                                                 rctx->is_encrypt);
1071         }
1072
1073         if (ctx->cipher.mode == CIPHER_MODE_CCM)
1074                 /* ICV (after data) must be in the next 32-bit word for CCM */
1075                 data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1076                                                          resp_len +
1077                                                          data_padlen);
1078
1079         if (data_padlen)
1080                 /* have to catch gcm pad in separate buffer */
1081                 rx_frag_num++;
1082
1083         mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1084                                 rctx->gfp);
1085         if (!mssg->spu.dst)
1086                 return -ENOMEM;
1087
1088         sg = mssg->spu.dst;
1089         sg_init_table(sg, rx_frag_num);
1090
1091         /* Space for SPU message header */
1092         sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1093
1094         if (assoc_buf_len) {
1095                 /*
1096                  * Don't write directly to req->dst, because SPU may pad the
1097                  * assoc data in the response
1098                  */
1099                 memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1100                 sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1101         }
1102
1103         if (resp_len) {
1104                 /*
1105                  * Copy in each dst sg entry from request, up to chunksize.
1106                  * dst sg catches just the data. digest caught in separate buf.
1107                  */
1108                 datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1109                                          rctx->dst_nents, resp_len);
1110                 if (datalen < (resp_len)) {
1111                         pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1112                                __func__, resp_len, datalen);
1113                         return -EFAULT;
1114                 }
1115         }
1116
1117         /* If GCM/CCM data is padded, catch padding in separate buffer */
1118         if (data_padlen) {
1119                 memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1120                 sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1121         }
1122
1123         /* Always catch ICV in separate buffer */
1124         sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1125
1126         flow_log("stat_pad_len %u\n", stat_pad_len);
1127         if (stat_pad_len) {
1128                 memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1129                 sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1130         }
1131
1132         memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1133         sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1134
1135         return 0;
1136 }
1137
1138 /**
1139  * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1140  * SPU request message for an AEAD request. Includes SPU message headers and the
1141  * request data.
1142  * @mssg:       mailbox message containing the transmit sg
1143  * @rctx:       crypto request context
1144  * @tx_frag_num: number of scatterlist elements required to construct the
1145  *              SPU request message
1146  * @spu_hdr_len: length of SPU message header in bytes
1147  * @assoc:      crypto API associated data scatterlist
1148  * @assoc_len:  length of associated data
1149  * @assoc_nents: number of scatterlist entries containing assoc data
1150  * @aead_iv_len: length of AEAD IV, if included
1151  * @chunksize:  Number of bytes of request data
1152  * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1153  * @pad_len:    Number of pad bytes
1154  * @incl_icv:   If true, write separate ICV buffer after data and
1155  *              any padding
1156  *
1157  * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1158  * when the request completes, whether the request is handled successfully or
1159  * there is an error.
1160  *
1161  * Return:
1162  *   0 if successful
1163  *   < 0 if an error
1164  */
1165 static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1166                                  struct iproc_reqctx_s *rctx,
1167                                  u8 tx_frag_num,
1168                                  u32 spu_hdr_len,
1169                                  struct scatterlist *assoc,
1170                                  unsigned int assoc_len,
1171                                  int assoc_nents,
1172                                  unsigned int aead_iv_len,
1173                                  unsigned int chunksize,
1174                                  u32 aad_pad_len, u32 pad_len, bool incl_icv)
1175 {
1176         struct spu_hw *spu = &iproc_priv.spu;
1177         struct scatterlist *sg; /* used to build sgs in mbox message */
1178         struct scatterlist *assoc_sg = assoc;
1179         struct iproc_ctx_s *ctx = rctx->ctx;
1180         u32 datalen;            /* Number of bytes of data to write */
1181         u32 written;            /* Number of bytes of data written */
1182         u32 assoc_offset = 0;
1183         u32 stat_len;
1184
1185         mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1186                                 rctx->gfp);
1187         if (!mssg->spu.src)
1188                 return -ENOMEM;
1189
1190         sg = mssg->spu.src;
1191         sg_init_table(sg, tx_frag_num);
1192
1193         sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1194                    BCM_HDR_LEN + spu_hdr_len);
1195
1196         if (assoc_len) {
1197                 /* Copy in each associated data sg entry from request */
1198                 written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1199                                          assoc_nents, assoc_len);
1200                 if (written < assoc_len) {
1201                         pr_err("%s(): failed to copy assoc sg to mbox msg",
1202                                __func__);
1203                         return -EFAULT;
1204                 }
1205         }
1206
1207         if (aead_iv_len)
1208                 sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1209
1210         if (aad_pad_len) {
1211                 memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1212                 sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1213         }
1214
1215         datalen = chunksize;
1216         if ((chunksize > ctx->digestsize) && incl_icv)
1217                 datalen -= ctx->digestsize;
1218         if (datalen) {
1219                 /* For aead, a single msg should consume the entire src sg */
1220                 written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1221                                          rctx->src_nents, datalen);
1222                 if (written < datalen) {
1223                         pr_err("%s(): failed to copy src sg to mbox msg",
1224                                __func__);
1225                         return -EFAULT;
1226                 }
1227         }
1228
1229         if (pad_len) {
1230                 memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1231                 sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1232         }
1233
1234         if (incl_icv)
1235                 sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1236
1237         stat_len = spu->spu_tx_status_len();
1238         if (stat_len) {
1239                 memset(rctx->msg_buf.tx_stat, 0, stat_len);
1240                 sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1241         }
1242         return 0;
1243 }
1244
1245 /**
1246  * handle_aead_req() - Submit a SPU request message for the next chunk of the
1247  * current AEAD request.
1248  * @rctx:  Crypto request context
1249  *
1250  * Unlike other operation types, we assume the length of the request fits in
1251  * a single SPU request message. aead_enqueue() makes sure this is true.
1252  * Comments for other op types regarding threads applies here as well.
1253  *
1254  * Unlike incremental hash ops, where the spu returns the entire hash for
1255  * truncated algs like sha-224, the SPU returns just the truncated hash in
1256  * response to aead requests. So digestsize is always ctx->digestsize here.
1257  *
1258  * Return: -EINPROGRESS: crypto request has been accepted and result will be
1259  *                       returned asynchronously
1260  *         Any other value indicates an error
1261  */
1262 static int handle_aead_req(struct iproc_reqctx_s *rctx)
1263 {
1264         struct spu_hw *spu = &iproc_priv.spu;
1265         struct crypto_async_request *areq = rctx->parent;
1266         struct aead_request *req = container_of(areq,
1267                                                 struct aead_request, base);
1268         struct iproc_ctx_s *ctx = rctx->ctx;
1269         int err;
1270         unsigned int chunksize;
1271         unsigned int resp_len;
1272         u32 spu_hdr_len;
1273         u32 db_size;
1274         u32 stat_pad_len;
1275         u32 pad_len;
1276         struct brcm_message *mssg;      /* mailbox message */
1277         struct spu_request_opts req_opts;
1278         struct spu_cipher_parms cipher_parms;
1279         struct spu_hash_parms hash_parms;
1280         struct spu_aead_parms aead_parms;
1281         int assoc_nents = 0;
1282         bool incl_icv = false;
1283         unsigned int digestsize = ctx->digestsize;
1284
1285         /* number of entries in src and dst sg. Always includes SPU msg header.
1286          */
1287         u8 rx_frag_num = 2;     /* and STATUS */
1288         u8 tx_frag_num = 1;
1289
1290         /* doing the whole thing at once */
1291         chunksize = rctx->total_todo;
1292
1293         flow_log("%s: chunksize %u\n", __func__, chunksize);
1294
1295         memset(&req_opts, 0, sizeof(req_opts));
1296         memset(&hash_parms, 0, sizeof(hash_parms));
1297         memset(&aead_parms, 0, sizeof(aead_parms));
1298
1299         req_opts.is_inbound = !(rctx->is_encrypt);
1300         req_opts.auth_first = ctx->auth_first;
1301         req_opts.is_aead = true;
1302         req_opts.is_esp = ctx->is_esp;
1303
1304         cipher_parms.alg = ctx->cipher.alg;
1305         cipher_parms.mode = ctx->cipher.mode;
1306         cipher_parms.type = ctx->cipher_type;
1307         cipher_parms.key_buf = ctx->enckey;
1308         cipher_parms.key_len = ctx->enckeylen;
1309         cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1310         cipher_parms.iv_len = rctx->iv_ctr_len;
1311
1312         hash_parms.alg = ctx->auth.alg;
1313         hash_parms.mode = ctx->auth.mode;
1314         hash_parms.type = HASH_TYPE_NONE;
1315         hash_parms.key_buf = (u8 *)ctx->authkey;
1316         hash_parms.key_len = ctx->authkeylen;
1317         hash_parms.digestsize = digestsize;
1318
1319         if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1320             (ctx->authkeylen < SHA224_DIGEST_SIZE))
1321                 hash_parms.key_len = SHA224_DIGEST_SIZE;
1322
1323         aead_parms.assoc_size = req->assoclen;
1324         if (ctx->is_esp && !ctx->is_rfc4543) {
1325                 /*
1326                  * 8-byte IV is included assoc data in request. SPU2
1327                  * expects AAD to include just SPI and seqno. So
1328                  * subtract off the IV len.
1329                  */
1330                 aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1331
1332                 if (rctx->is_encrypt) {
1333                         aead_parms.return_iv = true;
1334                         aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1335                         aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1336                 }
1337         } else {
1338                 aead_parms.ret_iv_len = 0;
1339         }
1340
1341         /*
1342          * Count number of sg entries from the crypto API request that are to
1343          * be included in this mailbox message. For dst sg, don't count space
1344          * for digest. Digest gets caught in a separate buffer and copied back
1345          * to dst sg when processing response.
1346          */
1347         rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1348         rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1349         if (aead_parms.assoc_size)
1350                 assoc_nents = spu_sg_count(rctx->assoc, 0,
1351                                            aead_parms.assoc_size);
1352
1353         mssg = &rctx->mb_mssg;
1354
1355         rctx->total_sent = chunksize;
1356         rctx->src_sent = chunksize;
1357         if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1358                                     aead_parms.assoc_size,
1359                                     aead_parms.ret_iv_len,
1360                                     rctx->is_encrypt))
1361                 rx_frag_num++;
1362
1363         aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1364                                                 rctx->iv_ctr_len);
1365
1366         if (ctx->auth.alg == HASH_ALG_AES)
1367                 hash_parms.type = (enum hash_type)ctx->cipher_type;
1368
1369         /* General case AAD padding (CCM and RFC4543 special cases below) */
1370         aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1371                                                  aead_parms.assoc_size);
1372
1373         /* General case data padding (CCM decrypt special case below) */
1374         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1375                                                            chunksize);
1376
1377         if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1378                 /*
1379                  * for CCM, AAD len + 2 (rather than AAD len) needs to be
1380                  * 128-bit aligned
1381                  */
1382                 aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1383                                          ctx->cipher.mode,
1384                                          aead_parms.assoc_size + 2);
1385
1386                 /*
1387                  * And when decrypting CCM, need to pad without including
1388                  * size of ICV which is tacked on to end of chunk
1389                  */
1390                 if (!rctx->is_encrypt)
1391                         aead_parms.data_pad_len =
1392                                 spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1393                                                         chunksize - digestsize);
1394
1395                 /* CCM also requires software to rewrite portions of IV: */
1396                 spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1397                                        chunksize, rctx->is_encrypt,
1398                                        ctx->is_esp);
1399         }
1400
1401         if (ctx->is_rfc4543) {
1402                 /*
1403                  * RFC4543: data is included in AAD, so don't pad after AAD
1404                  * and pad data based on both AAD + data size
1405                  */
1406                 aead_parms.aad_pad_len = 0;
1407                 if (!rctx->is_encrypt)
1408                         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1409                                         ctx->cipher.mode,
1410                                         aead_parms.assoc_size + chunksize -
1411                                         digestsize);
1412                 else
1413                         aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1414                                         ctx->cipher.mode,
1415                                         aead_parms.assoc_size + chunksize);
1416
1417                 req_opts.is_rfc4543 = true;
1418         }
1419
1420         if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1421                 incl_icv = true;
1422                 tx_frag_num++;
1423                 /* Copy ICV from end of src scatterlist to digest buf */
1424                 sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1425                                     req->assoclen + rctx->total_sent -
1426                                     digestsize);
1427         }
1428
1429         atomic64_add(chunksize, &iproc_priv.bytes_out);
1430
1431         flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1432
1433         /* Prepend SPU header with type 3 BCM header */
1434         memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1435
1436         spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1437                                               BCM_HDR_LEN, &req_opts,
1438                                               &cipher_parms, &hash_parms,
1439                                               &aead_parms, chunksize);
1440
1441         /* Determine total length of padding. Put all padding in one buffer. */
1442         db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1443                                    chunksize, aead_parms.aad_pad_len,
1444                                    aead_parms.data_pad_len, 0);
1445
1446         stat_pad_len = spu->spu_wordalign_padlen(db_size);
1447
1448         if (stat_pad_len)
1449                 rx_frag_num++;
1450         pad_len = aead_parms.data_pad_len + stat_pad_len;
1451         if (pad_len) {
1452                 tx_frag_num++;
1453                 spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1454                                      aead_parms.data_pad_len, 0,
1455                                      ctx->auth.alg, ctx->auth.mode,
1456                                      rctx->total_sent, stat_pad_len);
1457         }
1458
1459         spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1460                               spu_hdr_len);
1461         dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1462         packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1463         packet_log("BD:\n");
1464         dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1465         packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1466
1467         /*
1468          * Build mailbox message containing SPU request msg and rx buffers
1469          * to catch response message
1470          */
1471         memset(mssg, 0, sizeof(*mssg));
1472         mssg->type = BRCM_MESSAGE_SPU;
1473         mssg->ctx = rctx;       /* Will be returned in response */
1474
1475         /* Create rx scatterlist to catch result */
1476         rx_frag_num += rctx->dst_nents;
1477         resp_len = chunksize;
1478
1479         /*
1480          * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1481          * padding. Have to for SHA-224 and other truncated SHAs because SPU
1482          * sends entire digest back.
1483          */
1484         rx_frag_num++;
1485
1486         if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1487              (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1488                 /*
1489                  * Input is ciphertxt plus ICV, but ICV not incl
1490                  * in output.
1491                  */
1492                 resp_len -= ctx->digestsize;
1493                 if (resp_len == 0)
1494                         /* no rx frags to catch output data */
1495                         rx_frag_num -= rctx->dst_nents;
1496         }
1497
1498         err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1499                                     aead_parms.assoc_size,
1500                                     aead_parms.ret_iv_len, resp_len, digestsize,
1501                                     stat_pad_len);
1502         if (err)
1503                 return err;
1504
1505         /* Create tx scatterlist containing SPU request message */
1506         tx_frag_num += rctx->src_nents;
1507         tx_frag_num += assoc_nents;
1508         if (aead_parms.aad_pad_len)
1509                 tx_frag_num++;
1510         if (aead_parms.iv_len)
1511                 tx_frag_num++;
1512         if (spu->spu_tx_status_len())
1513                 tx_frag_num++;
1514         err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1515                                     rctx->assoc, aead_parms.assoc_size,
1516                                     assoc_nents, aead_parms.iv_len, chunksize,
1517                                     aead_parms.aad_pad_len, pad_len, incl_icv);
1518         if (err)
1519                 return err;
1520
1521         err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1522         if (unlikely(err < 0))
1523                 return err;
1524
1525         return -EINPROGRESS;
1526 }
1527
1528 /**
1529  * handle_aead_resp() - Process a SPU response message for an AEAD request.
1530  * @rctx:  Crypto request context
1531  */
1532 static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1533 {
1534         struct spu_hw *spu = &iproc_priv.spu;
1535         struct crypto_async_request *areq = rctx->parent;
1536         struct aead_request *req = container_of(areq,
1537                                                 struct aead_request, base);
1538         struct iproc_ctx_s *ctx = rctx->ctx;
1539         u32 payload_len;
1540         unsigned int icv_offset;
1541         u32 result_len;
1542
1543         /* See how much data was returned */
1544         payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1545         flow_log("payload_len %u\n", payload_len);
1546
1547         /* only count payload */
1548         atomic64_add(payload_len, &iproc_priv.bytes_in);
1549
1550         if (req->assoclen)
1551                 packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1552                             req->assoclen);
1553
1554         /*
1555          * Copy the ICV back to the destination
1556          * buffer. In decrypt case, SPU gives us back the digest, but crypto
1557          * API doesn't expect ICV in dst buffer.
1558          */
1559         result_len = req->cryptlen;
1560         if (rctx->is_encrypt) {
1561                 icv_offset = req->assoclen + rctx->total_sent;
1562                 packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1563                 flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1564                 sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1565                                       ctx->digestsize, icv_offset);
1566                 result_len += ctx->digestsize;
1567         }
1568
1569         packet_log("response data:  ");
1570         dump_sg(req->dst, req->assoclen, result_len);
1571
1572         atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1573         if (ctx->cipher.alg == CIPHER_ALG_AES) {
1574                 if (ctx->cipher.mode == CIPHER_MODE_CCM)
1575                         atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1576                 else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1577                         atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1578                 else
1579                         atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1580         } else {
1581                 atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1582         }
1583 }
1584
1585 /**
1586  * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1587  * @rctx:  request context
1588  *
1589  * Mailbox scatterlists are allocated for each chunk. So free them after
1590  * processing each chunk.
1591  */
1592 static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1593 {
1594         /* mailbox message used to tx request */
1595         struct brcm_message *mssg = &rctx->mb_mssg;
1596
1597         kfree(mssg->spu.src);
1598         kfree(mssg->spu.dst);
1599         memset(mssg, 0, sizeof(struct brcm_message));
1600 }
1601
1602 /**
1603  * finish_req() - Used to invoke the complete callback from the requester when
1604  * a request has been handled asynchronously.
1605  * @rctx:  Request context
1606  * @err:   Indicates whether the request was successful or not
1607  *
1608  * Ensures that cleanup has been done for request
1609  */
1610 static void finish_req(struct iproc_reqctx_s *rctx, int err)
1611 {
1612         struct crypto_async_request *areq = rctx->parent;
1613
1614         flow_log("%s() err:%d\n\n", __func__, err);
1615
1616         /* No harm done if already called */
1617         spu_chunk_cleanup(rctx);
1618
1619         if (areq)
1620                 areq->complete(areq, err);
1621 }
1622
1623 /**
1624  * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1625  * @cl:         mailbox client structure for SPU driver
1626  * @msg:        mailbox message containing SPU response
1627  */
1628 static void spu_rx_callback(struct mbox_client *cl, void *msg)
1629 {
1630         struct spu_hw *spu = &iproc_priv.spu;
1631         struct brcm_message *mssg = msg;
1632         struct iproc_reqctx_s *rctx;
1633         int err;
1634
1635         rctx = mssg->ctx;
1636         if (unlikely(!rctx)) {
1637                 /* This is fatal */
1638                 pr_err("%s(): no request context", __func__);
1639                 err = -EFAULT;
1640                 goto cb_finish;
1641         }
1642
1643         /* process the SPU status */
1644         err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1645         if (err != 0) {
1646                 if (err == SPU_INVALID_ICV)
1647                         atomic_inc(&iproc_priv.bad_icv);
1648                 err = -EBADMSG;
1649                 goto cb_finish;
1650         }
1651
1652         /* Process the SPU response message */
1653         switch (rctx->ctx->alg->type) {
1654         case CRYPTO_ALG_TYPE_SKCIPHER:
1655                 handle_skcipher_resp(rctx);
1656                 break;
1657         case CRYPTO_ALG_TYPE_AHASH:
1658                 handle_ahash_resp(rctx);
1659                 break;
1660         case CRYPTO_ALG_TYPE_AEAD:
1661                 handle_aead_resp(rctx);
1662                 break;
1663         default:
1664                 err = -EINVAL;
1665                 goto cb_finish;
1666         }
1667
1668         /*
1669          * If this response does not complete the request, then send the next
1670          * request chunk.
1671          */
1672         if (rctx->total_sent < rctx->total_todo) {
1673                 /* Deallocate anything specific to previous chunk */
1674                 spu_chunk_cleanup(rctx);
1675
1676                 switch (rctx->ctx->alg->type) {
1677                 case CRYPTO_ALG_TYPE_SKCIPHER:
1678                         err = handle_skcipher_req(rctx);
1679                         break;
1680                 case CRYPTO_ALG_TYPE_AHASH:
1681                         err = handle_ahash_req(rctx);
1682                         if (err == -EAGAIN)
1683                                 /*
1684                                  * we saved data in hash carry, but tell crypto
1685                                  * API we successfully completed request.
1686                                  */
1687                                 err = 0;
1688                         break;
1689                 case CRYPTO_ALG_TYPE_AEAD:
1690                         err = handle_aead_req(rctx);
1691                         break;
1692                 default:
1693                         err = -EINVAL;
1694                 }
1695
1696                 if (err == -EINPROGRESS)
1697                         /* Successfully submitted request for next chunk */
1698                         return;
1699         }
1700
1701 cb_finish:
1702         finish_req(rctx, err);
1703 }
1704
1705 /* ==================== Kernel Cryptographic API ==================== */
1706
1707 /**
1708  * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1709  * @req:        Crypto API request
1710  * @encrypt:    true if encrypting; false if decrypting
1711  *
1712  * Return: -EINPROGRESS if request accepted and result will be returned
1713  *                      asynchronously
1714  *         < 0 if an error
1715  */
1716 static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1717 {
1718         struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1719         struct iproc_ctx_s *ctx =
1720             crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1721         int err;
1722
1723         flow_log("%s() enc:%u\n", __func__, encrypt);
1724
1725         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1726                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1727         rctx->parent = &req->base;
1728         rctx->is_encrypt = encrypt;
1729         rctx->bd_suppress = false;
1730         rctx->total_todo = req->cryptlen;
1731         rctx->src_sent = 0;
1732         rctx->total_sent = 0;
1733         rctx->total_received = 0;
1734         rctx->ctx = ctx;
1735
1736         /* Initialize current position in src and dst scatterlists */
1737         rctx->src_sg = req->src;
1738         rctx->src_nents = 0;
1739         rctx->src_skip = 0;
1740         rctx->dst_sg = req->dst;
1741         rctx->dst_nents = 0;
1742         rctx->dst_skip = 0;
1743
1744         if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1745             ctx->cipher.mode == CIPHER_MODE_CTR ||
1746             ctx->cipher.mode == CIPHER_MODE_OFB ||
1747             ctx->cipher.mode == CIPHER_MODE_XTS ||
1748             ctx->cipher.mode == CIPHER_MODE_GCM ||
1749             ctx->cipher.mode == CIPHER_MODE_CCM) {
1750                 rctx->iv_ctr_len =
1751                     crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1752                 memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1753         } else {
1754                 rctx->iv_ctr_len = 0;
1755         }
1756
1757         /* Choose a SPU to process this request */
1758         rctx->chan_idx = select_channel();
1759         err = handle_skcipher_req(rctx);
1760         if (err != -EINPROGRESS)
1761                 /* synchronous result */
1762                 spu_chunk_cleanup(rctx);
1763
1764         return err;
1765 }
1766
1767 static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1768                       unsigned int keylen)
1769 {
1770         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1771         int err;
1772
1773         err = verify_skcipher_des_key(cipher, key);
1774         if (err)
1775                 return err;
1776
1777         ctx->cipher_type = CIPHER_TYPE_DES;
1778         return 0;
1779 }
1780
1781 static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1782                            unsigned int keylen)
1783 {
1784         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1785         int err;
1786
1787         err = verify_skcipher_des3_key(cipher, key);
1788         if (err)
1789                 return err;
1790
1791         ctx->cipher_type = CIPHER_TYPE_3DES;
1792         return 0;
1793 }
1794
1795 static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1796                       unsigned int keylen)
1797 {
1798         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1799
1800         if (ctx->cipher.mode == CIPHER_MODE_XTS)
1801                 /* XTS includes two keys of equal length */
1802                 keylen = keylen / 2;
1803
1804         switch (keylen) {
1805         case AES_KEYSIZE_128:
1806                 ctx->cipher_type = CIPHER_TYPE_AES128;
1807                 break;
1808         case AES_KEYSIZE_192:
1809                 ctx->cipher_type = CIPHER_TYPE_AES192;
1810                 break;
1811         case AES_KEYSIZE_256:
1812                 ctx->cipher_type = CIPHER_TYPE_AES256;
1813                 break;
1814         default:
1815                 return -EINVAL;
1816         }
1817         WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1818                 ((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1819         return 0;
1820 }
1821
1822 static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1823                              unsigned int keylen)
1824 {
1825         struct spu_hw *spu = &iproc_priv.spu;
1826         struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1827         struct spu_cipher_parms cipher_parms;
1828         u32 alloc_len = 0;
1829         int err;
1830
1831         flow_log("skcipher_setkey() keylen: %d\n", keylen);
1832         flow_dump("  key: ", key, keylen);
1833
1834         switch (ctx->cipher.alg) {
1835         case CIPHER_ALG_DES:
1836                 err = des_setkey(cipher, key, keylen);
1837                 break;
1838         case CIPHER_ALG_3DES:
1839                 err = threedes_setkey(cipher, key, keylen);
1840                 break;
1841         case CIPHER_ALG_AES:
1842                 err = aes_setkey(cipher, key, keylen);
1843                 break;
1844         default:
1845                 pr_err("%s() Error: unknown cipher alg\n", __func__);
1846                 err = -EINVAL;
1847         }
1848         if (err)
1849                 return err;
1850
1851         memcpy(ctx->enckey, key, keylen);
1852         ctx->enckeylen = keylen;
1853
1854         /* SPU needs XTS keys in the reverse order the crypto API presents */
1855         if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1856             (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1857                 unsigned int xts_keylen = keylen / 2;
1858
1859                 memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1860                 memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1861         }
1862
1863         if (spu->spu_type == SPU_TYPE_SPUM)
1864                 alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1865         else if (spu->spu_type == SPU_TYPE_SPU2)
1866                 alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1867         memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1868         cipher_parms.iv_buf = NULL;
1869         cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1870         flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1871
1872         cipher_parms.alg = ctx->cipher.alg;
1873         cipher_parms.mode = ctx->cipher.mode;
1874         cipher_parms.type = ctx->cipher_type;
1875         cipher_parms.key_buf = ctx->enckey;
1876         cipher_parms.key_len = ctx->enckeylen;
1877
1878         /* Prepend SPU request message with BCM header */
1879         memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1880         ctx->spu_req_hdr_len =
1881             spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1882                                      &cipher_parms);
1883
1884         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1885                                                           ctx->enckeylen,
1886                                                           false);
1887
1888         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1889
1890         return 0;
1891 }
1892
1893 static int skcipher_encrypt(struct skcipher_request *req)
1894 {
1895         flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1896
1897         return skcipher_enqueue(req, true);
1898 }
1899
1900 static int skcipher_decrypt(struct skcipher_request *req)
1901 {
1902         flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1903         return skcipher_enqueue(req, false);
1904 }
1905
1906 static int ahash_enqueue(struct ahash_request *req)
1907 {
1908         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1909         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1910         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1911         int err;
1912         const char *alg_name;
1913
1914         flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1915
1916         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1917                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1918         rctx->parent = &req->base;
1919         rctx->ctx = ctx;
1920         rctx->bd_suppress = true;
1921         memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1922
1923         /* Initialize position in src scatterlist */
1924         rctx->src_sg = req->src;
1925         rctx->src_skip = 0;
1926         rctx->src_nents = 0;
1927         rctx->dst_sg = NULL;
1928         rctx->dst_skip = 0;
1929         rctx->dst_nents = 0;
1930
1931         /* SPU2 hardware does not compute hash of zero length data */
1932         if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1933             (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1934                 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
1935                 flow_log("Doing %sfinal %s zero-len hash request in software\n",
1936                          rctx->is_final ? "" : "non-", alg_name);
1937                 err = do_shash((unsigned char *)alg_name, req->result,
1938                                NULL, 0, NULL, 0, ctx->authkey,
1939                                ctx->authkeylen);
1940                 if (err < 0)
1941                         flow_log("Hash request failed with error %d\n", err);
1942                 return err;
1943         }
1944         /* Choose a SPU to process this request */
1945         rctx->chan_idx = select_channel();
1946
1947         err = handle_ahash_req(rctx);
1948         if (err != -EINPROGRESS)
1949                 /* synchronous result */
1950                 spu_chunk_cleanup(rctx);
1951
1952         if (err == -EAGAIN)
1953                 /*
1954                  * we saved data in hash carry, but tell crypto API
1955                  * we successfully completed request.
1956                  */
1957                 err = 0;
1958
1959         return err;
1960 }
1961
1962 static int __ahash_init(struct ahash_request *req)
1963 {
1964         struct spu_hw *spu = &iproc_priv.spu;
1965         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1966         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1967         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1968
1969         flow_log("%s()\n", __func__);
1970
1971         /* Initialize the context */
1972         rctx->hash_carry_len = 0;
1973         rctx->is_final = 0;
1974
1975         rctx->total_todo = 0;
1976         rctx->src_sent = 0;
1977         rctx->total_sent = 0;
1978         rctx->total_received = 0;
1979
1980         ctx->digestsize = crypto_ahash_digestsize(tfm);
1981         /* If we add a hash whose digest is larger, catch it here. */
1982         WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1983
1984         rctx->is_sw_hmac = false;
1985
1986         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1987                                                           true);
1988
1989         return 0;
1990 }
1991
1992 /**
1993  * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1994  * @ctx:  Crypto session context
1995  *
1996  * SPU-2 does not support incremental hashing (we'll have to revisit and
1997  * condition based on chip revision or device tree entry if future versions do
1998  * support incremental hash)
1999  *
2000  * SPU-M also doesn't support incremental hashing of AES-XCBC
2001  *
2002  * Return: true if incremental hashing is not supported
2003  *         false otherwise
2004  */
2005 static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2006 {
2007         struct spu_hw *spu = &iproc_priv.spu;
2008
2009         if (spu->spu_type == SPU_TYPE_SPU2)
2010                 return true;
2011
2012         if ((ctx->auth.alg == HASH_ALG_AES) &&
2013             (ctx->auth.mode == HASH_MODE_XCBC))
2014                 return true;
2015
2016         /* Otherwise, incremental hashing is supported */
2017         return false;
2018 }
2019
2020 static int ahash_init(struct ahash_request *req)
2021 {
2022         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2023         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2024         const char *alg_name;
2025         struct crypto_shash *hash;
2026         int ret;
2027         gfp_t gfp;
2028
2029         if (spu_no_incr_hash(ctx)) {
2030                 /*
2031                  * If we get an incremental hashing request and it's not
2032                  * supported by the hardware, we need to handle it in software
2033                  * by calling synchronous hash functions.
2034                  */
2035                 alg_name = crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
2036                 hash = crypto_alloc_shash(alg_name, 0, 0);
2037                 if (IS_ERR(hash)) {
2038                         ret = PTR_ERR(hash);
2039                         goto err;
2040                 }
2041
2042                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2043                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2044                 ctx->shash = kmalloc(sizeof(*ctx->shash) +
2045                                      crypto_shash_descsize(hash), gfp);
2046                 if (!ctx->shash) {
2047                         ret = -ENOMEM;
2048                         goto err_hash;
2049                 }
2050                 ctx->shash->tfm = hash;
2051
2052                 /* Set the key using data we already have from setkey */
2053                 if (ctx->authkeylen > 0) {
2054                         ret = crypto_shash_setkey(hash, ctx->authkey,
2055                                                   ctx->authkeylen);
2056                         if (ret)
2057                                 goto err_shash;
2058                 }
2059
2060                 /* Initialize hash w/ this key and other params */
2061                 ret = crypto_shash_init(ctx->shash);
2062                 if (ret)
2063                         goto err_shash;
2064         } else {
2065                 /* Otherwise call the internal function which uses SPU hw */
2066                 ret = __ahash_init(req);
2067         }
2068
2069         return ret;
2070
2071 err_shash:
2072         kfree(ctx->shash);
2073 err_hash:
2074         crypto_free_shash(hash);
2075 err:
2076         return ret;
2077 }
2078
2079 static int __ahash_update(struct ahash_request *req)
2080 {
2081         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2082
2083         flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2084
2085         if (!req->nbytes)
2086                 return 0;
2087         rctx->total_todo += req->nbytes;
2088         rctx->src_sent = 0;
2089
2090         return ahash_enqueue(req);
2091 }
2092
2093 static int ahash_update(struct ahash_request *req)
2094 {
2095         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2096         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2097         u8 *tmpbuf;
2098         int ret;
2099         int nents;
2100         gfp_t gfp;
2101
2102         if (spu_no_incr_hash(ctx)) {
2103                 /*
2104                  * If we get an incremental hashing request and it's not
2105                  * supported by the hardware, we need to handle it in software
2106                  * by calling synchronous hash functions.
2107                  */
2108                 if (req->src)
2109                         nents = sg_nents(req->src);
2110                 else
2111                         return -EINVAL;
2112
2113                 /* Copy data from req scatterlist to tmp buffer */
2114                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2115                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2116                 tmpbuf = kmalloc(req->nbytes, gfp);
2117                 if (!tmpbuf)
2118                         return -ENOMEM;
2119
2120                 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2121                                 req->nbytes) {
2122                         kfree(tmpbuf);
2123                         return -EINVAL;
2124                 }
2125
2126                 /* Call synchronous update */
2127                 ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2128                 kfree(tmpbuf);
2129         } else {
2130                 /* Otherwise call the internal function which uses SPU hw */
2131                 ret = __ahash_update(req);
2132         }
2133
2134         return ret;
2135 }
2136
2137 static int __ahash_final(struct ahash_request *req)
2138 {
2139         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2140
2141         flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2142
2143         rctx->is_final = 1;
2144
2145         return ahash_enqueue(req);
2146 }
2147
2148 static int ahash_final(struct ahash_request *req)
2149 {
2150         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2151         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2152         int ret;
2153
2154         if (spu_no_incr_hash(ctx)) {
2155                 /*
2156                  * If we get an incremental hashing request and it's not
2157                  * supported by the hardware, we need to handle it in software
2158                  * by calling synchronous hash functions.
2159                  */
2160                 ret = crypto_shash_final(ctx->shash, req->result);
2161
2162                 /* Done with hash, can deallocate it now */
2163                 crypto_free_shash(ctx->shash->tfm);
2164                 kfree(ctx->shash);
2165
2166         } else {
2167                 /* Otherwise call the internal function which uses SPU hw */
2168                 ret = __ahash_final(req);
2169         }
2170
2171         return ret;
2172 }
2173
2174 static int __ahash_finup(struct ahash_request *req)
2175 {
2176         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2177
2178         flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2179
2180         rctx->total_todo += req->nbytes;
2181         rctx->src_sent = 0;
2182         rctx->is_final = 1;
2183
2184         return ahash_enqueue(req);
2185 }
2186
2187 static int ahash_finup(struct ahash_request *req)
2188 {
2189         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2190         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2191         u8 *tmpbuf;
2192         int ret;
2193         int nents;
2194         gfp_t gfp;
2195
2196         if (spu_no_incr_hash(ctx)) {
2197                 /*
2198                  * If we get an incremental hashing request and it's not
2199                  * supported by the hardware, we need to handle it in software
2200                  * by calling synchronous hash functions.
2201                  */
2202                 if (req->src) {
2203                         nents = sg_nents(req->src);
2204                 } else {
2205                         ret = -EINVAL;
2206                         goto ahash_finup_exit;
2207                 }
2208
2209                 /* Copy data from req scatterlist to tmp buffer */
2210                 gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2211                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2212                 tmpbuf = kmalloc(req->nbytes, gfp);
2213                 if (!tmpbuf) {
2214                         ret = -ENOMEM;
2215                         goto ahash_finup_exit;
2216                 }
2217
2218                 if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2219                                 req->nbytes) {
2220                         ret = -EINVAL;
2221                         goto ahash_finup_free;
2222                 }
2223
2224                 /* Call synchronous update */
2225                 ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2226                                          req->result);
2227         } else {
2228                 /* Otherwise call the internal function which uses SPU hw */
2229                 return __ahash_finup(req);
2230         }
2231 ahash_finup_free:
2232         kfree(tmpbuf);
2233
2234 ahash_finup_exit:
2235         /* Done with hash, can deallocate it now */
2236         crypto_free_shash(ctx->shash->tfm);
2237         kfree(ctx->shash);
2238         return ret;
2239 }
2240
2241 static int ahash_digest(struct ahash_request *req)
2242 {
2243         int err;
2244
2245         flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2246
2247         /* whole thing at once */
2248         err = __ahash_init(req);
2249         if (!err)
2250                 err = __ahash_finup(req);
2251
2252         return err;
2253 }
2254
2255 static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2256                         unsigned int keylen)
2257 {
2258         struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2259
2260         flow_log("%s() ahash:%p key:%p keylen:%u\n",
2261                  __func__, ahash, key, keylen);
2262         flow_dump("  key: ", key, keylen);
2263
2264         if (ctx->auth.alg == HASH_ALG_AES) {
2265                 switch (keylen) {
2266                 case AES_KEYSIZE_128:
2267                         ctx->cipher_type = CIPHER_TYPE_AES128;
2268                         break;
2269                 case AES_KEYSIZE_192:
2270                         ctx->cipher_type = CIPHER_TYPE_AES192;
2271                         break;
2272                 case AES_KEYSIZE_256:
2273                         ctx->cipher_type = CIPHER_TYPE_AES256;
2274                         break;
2275                 default:
2276                         pr_err("%s() Error: Invalid key length\n", __func__);
2277                         return -EINVAL;
2278                 }
2279         } else {
2280                 pr_err("%s() Error: unknown hash alg\n", __func__);
2281                 return -EINVAL;
2282         }
2283         memcpy(ctx->authkey, key, keylen);
2284         ctx->authkeylen = keylen;
2285
2286         return 0;
2287 }
2288
2289 static int ahash_export(struct ahash_request *req, void *out)
2290 {
2291         const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2292         struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2293
2294         spu_exp->total_todo = rctx->total_todo;
2295         spu_exp->total_sent = rctx->total_sent;
2296         spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2297         memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2298         spu_exp->hash_carry_len = rctx->hash_carry_len;
2299         memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2300
2301         return 0;
2302 }
2303
2304 static int ahash_import(struct ahash_request *req, const void *in)
2305 {
2306         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2307         struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2308
2309         rctx->total_todo = spu_exp->total_todo;
2310         rctx->total_sent = spu_exp->total_sent;
2311         rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2312         memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2313         rctx->hash_carry_len = spu_exp->hash_carry_len;
2314         memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2315
2316         return 0;
2317 }
2318
2319 static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2320                              unsigned int keylen)
2321 {
2322         struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2323         unsigned int blocksize =
2324                 crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2325         unsigned int digestsize = crypto_ahash_digestsize(ahash);
2326         unsigned int index;
2327         int rc;
2328
2329         flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2330                  __func__, ahash, key, keylen, blocksize, digestsize);
2331         flow_dump("  key: ", key, keylen);
2332
2333         if (keylen > blocksize) {
2334                 switch (ctx->auth.alg) {
2335                 case HASH_ALG_MD5:
2336                         rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2337                                       0, NULL, 0);
2338                         break;
2339                 case HASH_ALG_SHA1:
2340                         rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2341                                       0, NULL, 0);
2342                         break;
2343                 case HASH_ALG_SHA224:
2344                         rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2345                                       0, NULL, 0);
2346                         break;
2347                 case HASH_ALG_SHA256:
2348                         rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2349                                       0, NULL, 0);
2350                         break;
2351                 case HASH_ALG_SHA384:
2352                         rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2353                                       0, NULL, 0);
2354                         break;
2355                 case HASH_ALG_SHA512:
2356                         rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2357                                       0, NULL, 0);
2358                         break;
2359                 case HASH_ALG_SHA3_224:
2360                         rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2361                                       NULL, 0, NULL, 0);
2362                         break;
2363                 case HASH_ALG_SHA3_256:
2364                         rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2365                                       NULL, 0, NULL, 0);
2366                         break;
2367                 case HASH_ALG_SHA3_384:
2368                         rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2369                                       NULL, 0, NULL, 0);
2370                         break;
2371                 case HASH_ALG_SHA3_512:
2372                         rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2373                                       NULL, 0, NULL, 0);
2374                         break;
2375                 default:
2376                         pr_err("%s() Error: unknown hash alg\n", __func__);
2377                         return -EINVAL;
2378                 }
2379                 if (rc < 0) {
2380                         pr_err("%s() Error %d computing shash for %s\n",
2381                                __func__, rc, hash_alg_name[ctx->auth.alg]);
2382                         return rc;
2383                 }
2384                 ctx->authkeylen = digestsize;
2385
2386                 flow_log("  keylen > digestsize... hashed\n");
2387                 flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2388         } else {
2389                 memcpy(ctx->authkey, key, keylen);
2390                 ctx->authkeylen = keylen;
2391         }
2392
2393         /*
2394          * Full HMAC operation in SPUM is not verified,
2395          * So keeping the generation of IPAD, OPAD and
2396          * outer hashing in software.
2397          */
2398         if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2399                 memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2400                 memset(ctx->ipad + ctx->authkeylen, 0,
2401                        blocksize - ctx->authkeylen);
2402                 ctx->authkeylen = 0;
2403                 memcpy(ctx->opad, ctx->ipad, blocksize);
2404
2405                 for (index = 0; index < blocksize; index++) {
2406                         ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2407                         ctx->opad[index] ^= HMAC_OPAD_VALUE;
2408                 }
2409
2410                 flow_dump("  ipad: ", ctx->ipad, blocksize);
2411                 flow_dump("  opad: ", ctx->opad, blocksize);
2412         }
2413         ctx->digestsize = digestsize;
2414         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2415
2416         return 0;
2417 }
2418
2419 static int ahash_hmac_init(struct ahash_request *req)
2420 {
2421         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2422         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2423         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2424         unsigned int blocksize =
2425                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2426
2427         flow_log("ahash_hmac_init()\n");
2428
2429         /* init the context as a hash */
2430         ahash_init(req);
2431
2432         if (!spu_no_incr_hash(ctx)) {
2433                 /* SPU-M can do incr hashing but needs sw for outer HMAC */
2434                 rctx->is_sw_hmac = true;
2435                 ctx->auth.mode = HASH_MODE_HASH;
2436                 /* start with a prepended ipad */
2437                 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2438                 rctx->hash_carry_len = blocksize;
2439                 rctx->total_todo += blocksize;
2440         }
2441
2442         return 0;
2443 }
2444
2445 static int ahash_hmac_update(struct ahash_request *req)
2446 {
2447         flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2448
2449         if (!req->nbytes)
2450                 return 0;
2451
2452         return ahash_update(req);
2453 }
2454
2455 static int ahash_hmac_final(struct ahash_request *req)
2456 {
2457         flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2458
2459         return ahash_final(req);
2460 }
2461
2462 static int ahash_hmac_finup(struct ahash_request *req)
2463 {
2464         flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2465
2466         return ahash_finup(req);
2467 }
2468
2469 static int ahash_hmac_digest(struct ahash_request *req)
2470 {
2471         struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2472         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2473         struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2474         unsigned int blocksize =
2475                         crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2476
2477         flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2478
2479         /* Perform initialization and then call finup */
2480         __ahash_init(req);
2481
2482         if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2483                 /*
2484                  * SPU2 supports full HMAC implementation in the
2485                  * hardware, need not to generate IPAD, OPAD and
2486                  * outer hash in software.
2487                  * Only for hash key len > hash block size, SPU2
2488                  * expects to perform hashing on the key, shorten
2489                  * it to digest size and feed it as hash key.
2490                  */
2491                 rctx->is_sw_hmac = false;
2492                 ctx->auth.mode = HASH_MODE_HMAC;
2493         } else {
2494                 rctx->is_sw_hmac = true;
2495                 ctx->auth.mode = HASH_MODE_HASH;
2496                 /* start with a prepended ipad */
2497                 memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2498                 rctx->hash_carry_len = blocksize;
2499                 rctx->total_todo += blocksize;
2500         }
2501
2502         return __ahash_finup(req);
2503 }
2504
2505 /* aead helpers */
2506
2507 static int aead_need_fallback(struct aead_request *req)
2508 {
2509         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2510         struct spu_hw *spu = &iproc_priv.spu;
2511         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2512         struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2513         u32 payload_len;
2514
2515         /*
2516          * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2517          * and AAD are both 0 bytes long. So use fallback in this case.
2518          */
2519         if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2520              (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2521             (req->assoclen == 0)) {
2522                 if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2523                     (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2524                         flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2525                         return 1;
2526                 }
2527         }
2528
2529         /* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2530         if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2531             (spu->spu_type == SPU_TYPE_SPUM) &&
2532             (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2533             (ctx->digestsize != 16)) {
2534                 flow_log("%s() AES CCM needs fallback for digest size %d\n",
2535                          __func__, ctx->digestsize);
2536                 return 1;
2537         }
2538
2539         /*
2540          * SPU-M on NSP has an issue where AES-CCM hash is not correct
2541          * when AAD size is 0
2542          */
2543         if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2544             (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2545             (req->assoclen == 0)) {
2546                 flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2547                          __func__);
2548                 return 1;
2549         }
2550
2551         /*
2552          * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2553          * 16 or 20 bytes long. So use fallback in this case.
2554          */
2555         if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2556             ctx->cipher.alg == CIPHER_ALG_AES &&
2557             rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2558             req->assoclen != 16 && req->assoclen != 20) {
2559                 flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2560                          " other than 16 or 20 bytes\n");
2561                 return 1;
2562         }
2563
2564         payload_len = req->cryptlen;
2565         if (spu->spu_type == SPU_TYPE_SPUM)
2566                 payload_len += req->assoclen;
2567
2568         flow_log("%s() payload len: %u\n", __func__, payload_len);
2569
2570         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2571                 return 0;
2572         else
2573                 return payload_len > ctx->max_payload;
2574 }
2575
2576 static void aead_complete(struct crypto_async_request *areq, int err)
2577 {
2578         struct aead_request *req =
2579             container_of(areq, struct aead_request, base);
2580         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2581         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2582
2583         flow_log("%s() err:%d\n", __func__, err);
2584
2585         areq->tfm = crypto_aead_tfm(aead);
2586
2587         areq->complete = rctx->old_complete;
2588         areq->data = rctx->old_data;
2589
2590         areq->complete(areq, err);
2591 }
2592
2593 static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2594 {
2595         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2596         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2597         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2598         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2599         int err;
2600         u32 req_flags;
2601
2602         flow_log("%s() enc:%u\n", __func__, is_encrypt);
2603
2604         if (ctx->fallback_cipher) {
2605                 /* Store the cipher tfm and then use the fallback tfm */
2606                 rctx->old_tfm = tfm;
2607                 aead_request_set_tfm(req, ctx->fallback_cipher);
2608                 /*
2609                  * Save the callback and chain ourselves in, so we can restore
2610                  * the tfm
2611                  */
2612                 rctx->old_complete = req->base.complete;
2613                 rctx->old_data = req->base.data;
2614                 req_flags = aead_request_flags(req);
2615                 aead_request_set_callback(req, req_flags, aead_complete, req);
2616                 err = is_encrypt ? crypto_aead_encrypt(req) :
2617                     crypto_aead_decrypt(req);
2618
2619                 if (err == 0) {
2620                         /*
2621                          * fallback was synchronous (did not return
2622                          * -EINPROGRESS). So restore request state here.
2623                          */
2624                         aead_request_set_callback(req, req_flags,
2625                                                   rctx->old_complete, req);
2626                         req->base.data = rctx->old_data;
2627                         aead_request_set_tfm(req, aead);
2628                         flow_log("%s() fallback completed successfully\n\n",
2629                                  __func__);
2630                 }
2631         } else {
2632                 err = -EINVAL;
2633         }
2634
2635         return err;
2636 }
2637
2638 static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2639 {
2640         struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2641         struct crypto_aead *aead = crypto_aead_reqtfm(req);
2642         struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2643         int err;
2644
2645         flow_log("%s() enc:%u\n", __func__, is_encrypt);
2646
2647         if (req->assoclen > MAX_ASSOC_SIZE) {
2648                 pr_err
2649                     ("%s() Error: associated data too long. (%u > %u bytes)\n",
2650                      __func__, req->assoclen, MAX_ASSOC_SIZE);
2651                 return -EINVAL;
2652         }
2653
2654         rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2655                        CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2656         rctx->parent = &req->base;
2657         rctx->is_encrypt = is_encrypt;
2658         rctx->bd_suppress = false;
2659         rctx->total_todo = req->cryptlen;
2660         rctx->src_sent = 0;
2661         rctx->total_sent = 0;
2662         rctx->total_received = 0;
2663         rctx->is_sw_hmac = false;
2664         rctx->ctx = ctx;
2665         memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2666
2667         /* assoc data is at start of src sg */
2668         rctx->assoc = req->src;
2669
2670         /*
2671          * Init current position in src scatterlist to be after assoc data.
2672          * src_skip set to buffer offset where data begins. (Assoc data could
2673          * end in the middle of a buffer.)
2674          */
2675         if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2676                              &rctx->src_skip) < 0) {
2677                 pr_err("%s() Error: Unable to find start of src data\n",
2678                        __func__);
2679                 return -EINVAL;
2680         }
2681
2682         rctx->src_nents = 0;
2683         rctx->dst_nents = 0;
2684         if (req->dst == req->src) {
2685                 rctx->dst_sg = rctx->src_sg;
2686                 rctx->dst_skip = rctx->src_skip;
2687         } else {
2688                 /*
2689                  * Expect req->dst to have room for assoc data followed by
2690                  * output data and ICV, if encrypt. So initialize dst_sg
2691                  * to point beyond assoc len offset.
2692                  */
2693                 if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2694                                      &rctx->dst_skip) < 0) {
2695                         pr_err("%s() Error: Unable to find start of dst data\n",
2696                                __func__);
2697                         return -EINVAL;
2698                 }
2699         }
2700
2701         if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2702             ctx->cipher.mode == CIPHER_MODE_CTR ||
2703             ctx->cipher.mode == CIPHER_MODE_OFB ||
2704             ctx->cipher.mode == CIPHER_MODE_XTS ||
2705             ctx->cipher.mode == CIPHER_MODE_GCM) {
2706                 rctx->iv_ctr_len =
2707                         ctx->salt_len +
2708                         crypto_aead_ivsize(crypto_aead_reqtfm(req));
2709         } else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2710                 rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2711         } else {
2712                 rctx->iv_ctr_len = 0;
2713         }
2714
2715         rctx->hash_carry_len = 0;
2716
2717         flow_log("  src sg: %p\n", req->src);
2718         flow_log("  rctx->src_sg: %p, src_skip %u\n",
2719                  rctx->src_sg, rctx->src_skip);
2720         flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2721         flow_log("  dst sg: %p\n", req->dst);
2722         flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2723                  rctx->dst_sg, rctx->dst_skip);
2724         flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2725         flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2726         flow_log("  authkeylen:%u\n", ctx->authkeylen);
2727         flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2728
2729         if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2730                 flow_log("  max_payload infinite");
2731         else
2732                 flow_log("  max_payload: %u\n", ctx->max_payload);
2733
2734         if (unlikely(aead_need_fallback(req)))
2735                 return aead_do_fallback(req, is_encrypt);
2736
2737         /*
2738          * Do memory allocations for request after fallback check, because if we
2739          * do fallback, we won't call finish_req() to dealloc.
2740          */
2741         if (rctx->iv_ctr_len) {
2742                 if (ctx->salt_len)
2743                         memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2744                                ctx->salt, ctx->salt_len);
2745                 memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2746                        req->iv,
2747                        rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2748         }
2749
2750         rctx->chan_idx = select_channel();
2751         err = handle_aead_req(rctx);
2752         if (err != -EINPROGRESS)
2753                 /* synchronous result */
2754                 spu_chunk_cleanup(rctx);
2755
2756         return err;
2757 }
2758
2759 static int aead_authenc_setkey(struct crypto_aead *cipher,
2760                                const u8 *key, unsigned int keylen)
2761 {
2762         struct spu_hw *spu = &iproc_priv.spu;
2763         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2764         struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2765         struct crypto_authenc_keys keys;
2766         int ret;
2767
2768         flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2769                  keylen);
2770         flow_dump("  key: ", key, keylen);
2771
2772         ret = crypto_authenc_extractkeys(&keys, key, keylen);
2773         if (ret)
2774                 goto badkey;
2775
2776         if (keys.enckeylen > MAX_KEY_SIZE ||
2777             keys.authkeylen > MAX_KEY_SIZE)
2778                 goto badkey;
2779
2780         ctx->enckeylen = keys.enckeylen;
2781         ctx->authkeylen = keys.authkeylen;
2782
2783         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2784         /* May end up padding auth key. So make sure it's zeroed. */
2785         memset(ctx->authkey, 0, sizeof(ctx->authkey));
2786         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2787
2788         switch (ctx->alg->cipher_info.alg) {
2789         case CIPHER_ALG_DES:
2790                 if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2791                         return -EINVAL;
2792
2793                 ctx->cipher_type = CIPHER_TYPE_DES;
2794                 break;
2795         case CIPHER_ALG_3DES:
2796                 if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2797                         return -EINVAL;
2798
2799                 ctx->cipher_type = CIPHER_TYPE_3DES;
2800                 break;
2801         case CIPHER_ALG_AES:
2802                 switch (ctx->enckeylen) {
2803                 case AES_KEYSIZE_128:
2804                         ctx->cipher_type = CIPHER_TYPE_AES128;
2805                         break;
2806                 case AES_KEYSIZE_192:
2807                         ctx->cipher_type = CIPHER_TYPE_AES192;
2808                         break;
2809                 case AES_KEYSIZE_256:
2810                         ctx->cipher_type = CIPHER_TYPE_AES256;
2811                         break;
2812                 default:
2813                         goto badkey;
2814                 }
2815                 break;
2816         default:
2817                 pr_err("%s() Error: Unknown cipher alg\n", __func__);
2818                 return -EINVAL;
2819         }
2820
2821         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2822                  ctx->authkeylen);
2823         flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2824         flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2825
2826         /* setkey the fallback just in case we needto use it */
2827         if (ctx->fallback_cipher) {
2828                 flow_log("  running fallback setkey()\n");
2829
2830                 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2831                 ctx->fallback_cipher->base.crt_flags |=
2832                     tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2833                 ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2834                 if (ret)
2835                         flow_log("  fallback setkey() returned:%d\n", ret);
2836         }
2837
2838         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2839                                                           ctx->enckeylen,
2840                                                           false);
2841
2842         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2843
2844         return ret;
2845
2846 badkey:
2847         ctx->enckeylen = 0;
2848         ctx->authkeylen = 0;
2849         ctx->digestsize = 0;
2850
2851         return -EINVAL;
2852 }
2853
2854 static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2855                                const u8 *key, unsigned int keylen)
2856 {
2857         struct spu_hw *spu = &iproc_priv.spu;
2858         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2859         struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2860
2861         int ret = 0;
2862
2863         flow_log("%s() keylen:%u\n", __func__, keylen);
2864         flow_dump("  key: ", key, keylen);
2865
2866         if (!ctx->is_esp)
2867                 ctx->digestsize = keylen;
2868
2869         ctx->enckeylen = keylen;
2870         ctx->authkeylen = 0;
2871
2872         switch (ctx->enckeylen) {
2873         case AES_KEYSIZE_128:
2874                 ctx->cipher_type = CIPHER_TYPE_AES128;
2875                 break;
2876         case AES_KEYSIZE_192:
2877                 ctx->cipher_type = CIPHER_TYPE_AES192;
2878                 break;
2879         case AES_KEYSIZE_256:
2880                 ctx->cipher_type = CIPHER_TYPE_AES256;
2881                 break;
2882         default:
2883                 goto badkey;
2884         }
2885
2886         memcpy(ctx->enckey, key, ctx->enckeylen);
2887
2888         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2889                  ctx->authkeylen);
2890         flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2891         flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2892
2893         /* setkey the fallback just in case we need to use it */
2894         if (ctx->fallback_cipher) {
2895                 flow_log("  running fallback setkey()\n");
2896
2897                 ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2898                 ctx->fallback_cipher->base.crt_flags |=
2899                     tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2900                 ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2901                                          keylen + ctx->salt_len);
2902                 if (ret)
2903                         flow_log("  fallback setkey() returned:%d\n", ret);
2904         }
2905
2906         ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2907                                                           ctx->enckeylen,
2908                                                           false);
2909
2910         atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2911
2912         flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2913                  ctx->authkeylen);
2914
2915         return ret;
2916
2917 badkey:
2918         ctx->enckeylen = 0;
2919         ctx->authkeylen = 0;
2920         ctx->digestsize = 0;
2921
2922         return -EINVAL;
2923 }
2924
2925 /**
2926  * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2927  * @cipher: AEAD structure
2928  * @key:    Key followed by 4 bytes of salt
2929  * @keylen: Length of key plus salt, in bytes
2930  *
2931  * Extracts salt from key and stores it to be prepended to IV on each request.
2932  * Digest is always 16 bytes
2933  *
2934  * Return: Value from generic gcm setkey.
2935  */
2936 static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2937                                const u8 *key, unsigned int keylen)
2938 {
2939         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2940
2941         flow_log("%s\n", __func__);
2942
2943         if (keylen < GCM_ESP_SALT_SIZE)
2944                 return -EINVAL;
2945
2946         ctx->salt_len = GCM_ESP_SALT_SIZE;
2947         ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2948         memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2949         keylen -= GCM_ESP_SALT_SIZE;
2950         ctx->digestsize = GCM_ESP_DIGESTSIZE;
2951         ctx->is_esp = true;
2952         flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2953
2954         return aead_gcm_ccm_setkey(cipher, key, keylen);
2955 }
2956
2957 /**
2958  * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2959  * cipher: AEAD structure
2960  * key:    Key followed by 4 bytes of salt
2961  * keylen: Length of key plus salt, in bytes
2962  *
2963  * Extracts salt from key and stores it to be prepended to IV on each request.
2964  * Digest is always 16 bytes
2965  *
2966  * Return: Value from generic gcm setkey.
2967  */
2968 static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2969                                   const u8 *key, unsigned int keylen)
2970 {
2971         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2972
2973         flow_log("%s\n", __func__);
2974
2975         if (keylen < GCM_ESP_SALT_SIZE)
2976                 return -EINVAL;
2977
2978         ctx->salt_len = GCM_ESP_SALT_SIZE;
2979         ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2980         memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2981         keylen -= GCM_ESP_SALT_SIZE;
2982         ctx->digestsize = GCM_ESP_DIGESTSIZE;
2983         ctx->is_esp = true;
2984         ctx->is_rfc4543 = true;
2985         flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2986
2987         return aead_gcm_ccm_setkey(cipher, key, keylen);
2988 }
2989
2990 /**
2991  * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2992  * @cipher: AEAD structure
2993  * @key:    Key followed by 4 bytes of salt
2994  * @keylen: Length of key plus salt, in bytes
2995  *
2996  * Extracts salt from key and stores it to be prepended to IV on each request.
2997  * Digest is always 16 bytes
2998  *
2999  * Return: Value from generic ccm setkey.
3000  */
3001 static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
3002                                const u8 *key, unsigned int keylen)
3003 {
3004         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3005
3006         flow_log("%s\n", __func__);
3007
3008         if (keylen < CCM_ESP_SALT_SIZE)
3009                 return -EINVAL;
3010
3011         ctx->salt_len = CCM_ESP_SALT_SIZE;
3012         ctx->salt_offset = CCM_ESP_SALT_OFFSET;
3013         memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
3014         keylen -= CCM_ESP_SALT_SIZE;
3015         ctx->is_esp = true;
3016         flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
3017
3018         return aead_gcm_ccm_setkey(cipher, key, keylen);
3019 }
3020
3021 static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
3022 {
3023         struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
3024         int ret = 0;
3025
3026         flow_log("%s() authkeylen:%u authsize:%u\n",
3027                  __func__, ctx->authkeylen, authsize);
3028
3029         ctx->digestsize = authsize;
3030
3031         /* setkey the fallback just in case we needto use it */
3032         if (ctx->fallback_cipher) {
3033                 flow_log("  running fallback setauth()\n");
3034
3035                 ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
3036                 if (ret)
3037                         flow_log("  fallback setauth() returned:%d\n", ret);
3038         }
3039
3040         return ret;
3041 }
3042
3043 static int aead_encrypt(struct aead_request *req)
3044 {
3045         flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3046                  req->cryptlen);
3047         dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3048         flow_log("  assoc_len:%u\n", req->assoclen);
3049
3050         return aead_enqueue(req, true);
3051 }
3052
3053 static int aead_decrypt(struct aead_request *req)
3054 {
3055         flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3056         dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3057         flow_log("  assoc_len:%u\n", req->assoclen);
3058
3059         return aead_enqueue(req, false);
3060 }
3061
3062 /* ==================== Supported Cipher Algorithms ==================== */
3063
3064 static struct iproc_alg_s driver_algs[] = {
3065         {
3066          .type = CRYPTO_ALG_TYPE_AEAD,
3067          .alg.aead = {
3068                  .base = {
3069                         .cra_name = "gcm(aes)",
3070                         .cra_driver_name = "gcm-aes-iproc",
3071                         .cra_blocksize = AES_BLOCK_SIZE,
3072                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3073                  },
3074                  .setkey = aead_gcm_ccm_setkey,
3075                  .ivsize = GCM_AES_IV_SIZE,
3076                 .maxauthsize = AES_BLOCK_SIZE,
3077          },
3078          .cipher_info = {
3079                          .alg = CIPHER_ALG_AES,
3080                          .mode = CIPHER_MODE_GCM,
3081                          },
3082          .auth_info = {
3083                        .alg = HASH_ALG_AES,
3084                        .mode = HASH_MODE_GCM,
3085                        },
3086          .auth_first = 0,
3087          },
3088         {
3089          .type = CRYPTO_ALG_TYPE_AEAD,
3090          .alg.aead = {
3091                  .base = {
3092                         .cra_name = "ccm(aes)",
3093                         .cra_driver_name = "ccm-aes-iproc",
3094                         .cra_blocksize = AES_BLOCK_SIZE,
3095                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3096                  },
3097                  .setkey = aead_gcm_ccm_setkey,
3098                  .ivsize = CCM_AES_IV_SIZE,
3099                 .maxauthsize = AES_BLOCK_SIZE,
3100          },
3101          .cipher_info = {
3102                          .alg = CIPHER_ALG_AES,
3103                          .mode = CIPHER_MODE_CCM,
3104                          },
3105          .auth_info = {
3106                        .alg = HASH_ALG_AES,
3107                        .mode = HASH_MODE_CCM,
3108                        },
3109          .auth_first = 0,
3110          },
3111         {
3112          .type = CRYPTO_ALG_TYPE_AEAD,
3113          .alg.aead = {
3114                  .base = {
3115                         .cra_name = "rfc4106(gcm(aes))",
3116                         .cra_driver_name = "gcm-aes-esp-iproc",
3117                         .cra_blocksize = AES_BLOCK_SIZE,
3118                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3119                  },
3120                  .setkey = aead_gcm_esp_setkey,
3121                  .ivsize = GCM_RFC4106_IV_SIZE,
3122                  .maxauthsize = AES_BLOCK_SIZE,
3123          },
3124          .cipher_info = {
3125                          .alg = CIPHER_ALG_AES,
3126                          .mode = CIPHER_MODE_GCM,
3127                          },
3128          .auth_info = {
3129                        .alg = HASH_ALG_AES,
3130                        .mode = HASH_MODE_GCM,
3131                        },
3132          .auth_first = 0,
3133          },
3134         {
3135          .type = CRYPTO_ALG_TYPE_AEAD,
3136          .alg.aead = {
3137                  .base = {
3138                         .cra_name = "rfc4309(ccm(aes))",
3139                         .cra_driver_name = "ccm-aes-esp-iproc",
3140                         .cra_blocksize = AES_BLOCK_SIZE,
3141                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3142                  },
3143                  .setkey = aead_ccm_esp_setkey,
3144                  .ivsize = CCM_AES_IV_SIZE,
3145                  .maxauthsize = AES_BLOCK_SIZE,
3146          },
3147          .cipher_info = {
3148                          .alg = CIPHER_ALG_AES,
3149                          .mode = CIPHER_MODE_CCM,
3150                          },
3151          .auth_info = {
3152                        .alg = HASH_ALG_AES,
3153                        .mode = HASH_MODE_CCM,
3154                        },
3155          .auth_first = 0,
3156          },
3157         {
3158          .type = CRYPTO_ALG_TYPE_AEAD,
3159          .alg.aead = {
3160                  .base = {
3161                         .cra_name = "rfc4543(gcm(aes))",
3162                         .cra_driver_name = "gmac-aes-esp-iproc",
3163                         .cra_blocksize = AES_BLOCK_SIZE,
3164                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK
3165                  },
3166                  .setkey = rfc4543_gcm_esp_setkey,
3167                  .ivsize = GCM_RFC4106_IV_SIZE,
3168                  .maxauthsize = AES_BLOCK_SIZE,
3169          },
3170          .cipher_info = {
3171                          .alg = CIPHER_ALG_AES,
3172                          .mode = CIPHER_MODE_GCM,
3173                          },
3174          .auth_info = {
3175                        .alg = HASH_ALG_AES,
3176                        .mode = HASH_MODE_GCM,
3177                        },
3178          .auth_first = 0,
3179          },
3180         {
3181          .type = CRYPTO_ALG_TYPE_AEAD,
3182          .alg.aead = {
3183                  .base = {
3184                         .cra_name = "authenc(hmac(md5),cbc(aes))",
3185                         .cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3186                         .cra_blocksize = AES_BLOCK_SIZE,
3187                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3188                                      CRYPTO_ALG_ASYNC |
3189                                      CRYPTO_ALG_ALLOCATES_MEMORY
3190                  },
3191                  .setkey = aead_authenc_setkey,
3192                 .ivsize = AES_BLOCK_SIZE,
3193                 .maxauthsize = MD5_DIGEST_SIZE,
3194          },
3195          .cipher_info = {
3196                          .alg = CIPHER_ALG_AES,
3197                          .mode = CIPHER_MODE_CBC,
3198                          },
3199          .auth_info = {
3200                        .alg = HASH_ALG_MD5,
3201                        .mode = HASH_MODE_HMAC,
3202                        },
3203          .auth_first = 0,
3204          },
3205         {
3206          .type = CRYPTO_ALG_TYPE_AEAD,
3207          .alg.aead = {
3208                  .base = {
3209                         .cra_name = "authenc(hmac(sha1),cbc(aes))",
3210                         .cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3211                         .cra_blocksize = AES_BLOCK_SIZE,
3212                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3213                                      CRYPTO_ALG_ASYNC |
3214                                      CRYPTO_ALG_ALLOCATES_MEMORY
3215                  },
3216                  .setkey = aead_authenc_setkey,
3217                  .ivsize = AES_BLOCK_SIZE,
3218                  .maxauthsize = SHA1_DIGEST_SIZE,
3219          },
3220          .cipher_info = {
3221                          .alg = CIPHER_ALG_AES,
3222                          .mode = CIPHER_MODE_CBC,
3223                          },
3224          .auth_info = {
3225                        .alg = HASH_ALG_SHA1,
3226                        .mode = HASH_MODE_HMAC,
3227                        },
3228          .auth_first = 0,
3229          },
3230         {
3231          .type = CRYPTO_ALG_TYPE_AEAD,
3232          .alg.aead = {
3233                  .base = {
3234                         .cra_name = "authenc(hmac(sha256),cbc(aes))",
3235                         .cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3236                         .cra_blocksize = AES_BLOCK_SIZE,
3237                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3238                                      CRYPTO_ALG_ASYNC |
3239                                      CRYPTO_ALG_ALLOCATES_MEMORY
3240                  },
3241                  .setkey = aead_authenc_setkey,
3242                  .ivsize = AES_BLOCK_SIZE,
3243                  .maxauthsize = SHA256_DIGEST_SIZE,
3244          },
3245          .cipher_info = {
3246                          .alg = CIPHER_ALG_AES,
3247                          .mode = CIPHER_MODE_CBC,
3248                          },
3249          .auth_info = {
3250                        .alg = HASH_ALG_SHA256,
3251                        .mode = HASH_MODE_HMAC,
3252                        },
3253          .auth_first = 0,
3254          },
3255         {
3256          .type = CRYPTO_ALG_TYPE_AEAD,
3257          .alg.aead = {
3258                  .base = {
3259                         .cra_name = "authenc(hmac(md5),cbc(des))",
3260                         .cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3261                         .cra_blocksize = DES_BLOCK_SIZE,
3262                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3263                                      CRYPTO_ALG_ASYNC |
3264                                      CRYPTO_ALG_ALLOCATES_MEMORY
3265                  },
3266                  .setkey = aead_authenc_setkey,
3267                  .ivsize = DES_BLOCK_SIZE,
3268                  .maxauthsize = MD5_DIGEST_SIZE,
3269          },
3270          .cipher_info = {
3271                          .alg = CIPHER_ALG_DES,
3272                          .mode = CIPHER_MODE_CBC,
3273                          },
3274          .auth_info = {
3275                        .alg = HASH_ALG_MD5,
3276                        .mode = HASH_MODE_HMAC,
3277                        },
3278          .auth_first = 0,
3279          },
3280         {
3281          .type = CRYPTO_ALG_TYPE_AEAD,
3282          .alg.aead = {
3283                  .base = {
3284                         .cra_name = "authenc(hmac(sha1),cbc(des))",
3285                         .cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3286                         .cra_blocksize = DES_BLOCK_SIZE,
3287                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3288                                      CRYPTO_ALG_ASYNC |
3289                                      CRYPTO_ALG_ALLOCATES_MEMORY
3290                  },
3291                  .setkey = aead_authenc_setkey,
3292                  .ivsize = DES_BLOCK_SIZE,
3293                  .maxauthsize = SHA1_DIGEST_SIZE,
3294          },
3295          .cipher_info = {
3296                          .alg = CIPHER_ALG_DES,
3297                          .mode = CIPHER_MODE_CBC,
3298                          },
3299          .auth_info = {
3300                        .alg = HASH_ALG_SHA1,
3301                        .mode = HASH_MODE_HMAC,
3302                        },
3303          .auth_first = 0,
3304          },
3305         {
3306          .type = CRYPTO_ALG_TYPE_AEAD,
3307          .alg.aead = {
3308                  .base = {
3309                         .cra_name = "authenc(hmac(sha224),cbc(des))",
3310                         .cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3311                         .cra_blocksize = DES_BLOCK_SIZE,
3312                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3313                                      CRYPTO_ALG_ASYNC |
3314                                      CRYPTO_ALG_ALLOCATES_MEMORY
3315                  },
3316                  .setkey = aead_authenc_setkey,
3317                  .ivsize = DES_BLOCK_SIZE,
3318                  .maxauthsize = SHA224_DIGEST_SIZE,
3319          },
3320          .cipher_info = {
3321                          .alg = CIPHER_ALG_DES,
3322                          .mode = CIPHER_MODE_CBC,
3323                          },
3324          .auth_info = {
3325                        .alg = HASH_ALG_SHA224,
3326                        .mode = HASH_MODE_HMAC,
3327                        },
3328          .auth_first = 0,
3329          },
3330         {
3331          .type = CRYPTO_ALG_TYPE_AEAD,
3332          .alg.aead = {
3333                  .base = {
3334                         .cra_name = "authenc(hmac(sha256),cbc(des))",
3335                         .cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3336                         .cra_blocksize = DES_BLOCK_SIZE,
3337                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3338                                      CRYPTO_ALG_ASYNC |
3339                                      CRYPTO_ALG_ALLOCATES_MEMORY
3340                  },
3341                  .setkey = aead_authenc_setkey,
3342                  .ivsize = DES_BLOCK_SIZE,
3343                  .maxauthsize = SHA256_DIGEST_SIZE,
3344          },
3345          .cipher_info = {
3346                          .alg = CIPHER_ALG_DES,
3347                          .mode = CIPHER_MODE_CBC,
3348                          },
3349          .auth_info = {
3350                        .alg = HASH_ALG_SHA256,
3351                        .mode = HASH_MODE_HMAC,
3352                        },
3353          .auth_first = 0,
3354          },
3355         {
3356          .type = CRYPTO_ALG_TYPE_AEAD,
3357          .alg.aead = {
3358                  .base = {
3359                         .cra_name = "authenc(hmac(sha384),cbc(des))",
3360                         .cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3361                         .cra_blocksize = DES_BLOCK_SIZE,
3362                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3363                                      CRYPTO_ALG_ASYNC |
3364                                      CRYPTO_ALG_ALLOCATES_MEMORY
3365                  },
3366                  .setkey = aead_authenc_setkey,
3367                  .ivsize = DES_BLOCK_SIZE,
3368                  .maxauthsize = SHA384_DIGEST_SIZE,
3369          },
3370          .cipher_info = {
3371                          .alg = CIPHER_ALG_DES,
3372                          .mode = CIPHER_MODE_CBC,
3373                          },
3374          .auth_info = {
3375                        .alg = HASH_ALG_SHA384,
3376                        .mode = HASH_MODE_HMAC,
3377                        },
3378          .auth_first = 0,
3379          },
3380         {
3381          .type = CRYPTO_ALG_TYPE_AEAD,
3382          .alg.aead = {
3383                  .base = {
3384                         .cra_name = "authenc(hmac(sha512),cbc(des))",
3385                         .cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3386                         .cra_blocksize = DES_BLOCK_SIZE,
3387                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3388                                      CRYPTO_ALG_ASYNC |
3389                                      CRYPTO_ALG_ALLOCATES_MEMORY
3390                  },
3391                  .setkey = aead_authenc_setkey,
3392                  .ivsize = DES_BLOCK_SIZE,
3393                  .maxauthsize = SHA512_DIGEST_SIZE,
3394          },
3395          .cipher_info = {
3396                          .alg = CIPHER_ALG_DES,
3397                          .mode = CIPHER_MODE_CBC,
3398                          },
3399          .auth_info = {
3400                        .alg = HASH_ALG_SHA512,
3401                        .mode = HASH_MODE_HMAC,
3402                        },
3403          .auth_first = 0,
3404          },
3405         {
3406          .type = CRYPTO_ALG_TYPE_AEAD,
3407          .alg.aead = {
3408                  .base = {
3409                         .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3410                         .cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3411                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3412                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3413                                      CRYPTO_ALG_ASYNC |
3414                                      CRYPTO_ALG_ALLOCATES_MEMORY
3415                  },
3416                  .setkey = aead_authenc_setkey,
3417                  .ivsize = DES3_EDE_BLOCK_SIZE,
3418                  .maxauthsize = MD5_DIGEST_SIZE,
3419          },
3420          .cipher_info = {
3421                          .alg = CIPHER_ALG_3DES,
3422                          .mode = CIPHER_MODE_CBC,
3423                          },
3424          .auth_info = {
3425                        .alg = HASH_ALG_MD5,
3426                        .mode = HASH_MODE_HMAC,
3427                        },
3428          .auth_first = 0,
3429          },
3430         {
3431          .type = CRYPTO_ALG_TYPE_AEAD,
3432          .alg.aead = {
3433                  .base = {
3434                         .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3435                         .cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3436                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3437                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3438                                      CRYPTO_ALG_ASYNC |
3439                                      CRYPTO_ALG_ALLOCATES_MEMORY
3440                  },
3441                  .setkey = aead_authenc_setkey,
3442                  .ivsize = DES3_EDE_BLOCK_SIZE,
3443                  .maxauthsize = SHA1_DIGEST_SIZE,
3444          },
3445          .cipher_info = {
3446                          .alg = CIPHER_ALG_3DES,
3447                          .mode = CIPHER_MODE_CBC,
3448                          },
3449          .auth_info = {
3450                        .alg = HASH_ALG_SHA1,
3451                        .mode = HASH_MODE_HMAC,
3452                        },
3453          .auth_first = 0,
3454          },
3455         {
3456          .type = CRYPTO_ALG_TYPE_AEAD,
3457          .alg.aead = {
3458                  .base = {
3459                         .cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3460                         .cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3461                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3462                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3463                                      CRYPTO_ALG_ASYNC |
3464                                      CRYPTO_ALG_ALLOCATES_MEMORY
3465                  },
3466                  .setkey = aead_authenc_setkey,
3467                  .ivsize = DES3_EDE_BLOCK_SIZE,
3468                  .maxauthsize = SHA224_DIGEST_SIZE,
3469          },
3470          .cipher_info = {
3471                          .alg = CIPHER_ALG_3DES,
3472                          .mode = CIPHER_MODE_CBC,
3473                          },
3474          .auth_info = {
3475                        .alg = HASH_ALG_SHA224,
3476                        .mode = HASH_MODE_HMAC,
3477                        },
3478          .auth_first = 0,
3479          },
3480         {
3481          .type = CRYPTO_ALG_TYPE_AEAD,
3482          .alg.aead = {
3483                  .base = {
3484                         .cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3485                         .cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3486                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3487                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3488                                      CRYPTO_ALG_ASYNC |
3489                                      CRYPTO_ALG_ALLOCATES_MEMORY
3490                  },
3491                  .setkey = aead_authenc_setkey,
3492                  .ivsize = DES3_EDE_BLOCK_SIZE,
3493                  .maxauthsize = SHA256_DIGEST_SIZE,
3494          },
3495          .cipher_info = {
3496                          .alg = CIPHER_ALG_3DES,
3497                          .mode = CIPHER_MODE_CBC,
3498                          },
3499          .auth_info = {
3500                        .alg = HASH_ALG_SHA256,
3501                        .mode = HASH_MODE_HMAC,
3502                        },
3503          .auth_first = 0,
3504          },
3505         {
3506          .type = CRYPTO_ALG_TYPE_AEAD,
3507          .alg.aead = {
3508                  .base = {
3509                         .cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3510                         .cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3511                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3512                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3513                                      CRYPTO_ALG_ASYNC |
3514                                      CRYPTO_ALG_ALLOCATES_MEMORY
3515                  },
3516                  .setkey = aead_authenc_setkey,
3517                  .ivsize = DES3_EDE_BLOCK_SIZE,
3518                  .maxauthsize = SHA384_DIGEST_SIZE,
3519          },
3520          .cipher_info = {
3521                          .alg = CIPHER_ALG_3DES,
3522                          .mode = CIPHER_MODE_CBC,
3523                          },
3524          .auth_info = {
3525                        .alg = HASH_ALG_SHA384,
3526                        .mode = HASH_MODE_HMAC,
3527                        },
3528          .auth_first = 0,
3529          },
3530         {
3531          .type = CRYPTO_ALG_TYPE_AEAD,
3532          .alg.aead = {
3533                  .base = {
3534                         .cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3535                         .cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3536                         .cra_blocksize = DES3_EDE_BLOCK_SIZE,
3537                         .cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3538                                      CRYPTO_ALG_ASYNC |
3539                                      CRYPTO_ALG_ALLOCATES_MEMORY
3540                  },
3541                  .setkey = aead_authenc_setkey,
3542                  .ivsize = DES3_EDE_BLOCK_SIZE,
3543                  .maxauthsize = SHA512_DIGEST_SIZE,
3544          },
3545          .cipher_info = {
3546                          .alg = CIPHER_ALG_3DES,
3547                          .mode = CIPHER_MODE_CBC,
3548                          },
3549          .auth_info = {
3550                        .alg = HASH_ALG_SHA512,
3551                        .mode = HASH_MODE_HMAC,
3552                        },
3553          .auth_first = 0,
3554          },
3555
3556 /* SKCIPHER algorithms. */
3557         {
3558          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3559          .alg.skcipher = {
3560                         .base.cra_name = "ofb(des)",
3561                         .base.cra_driver_name = "ofb-des-iproc",
3562                         .base.cra_blocksize = DES_BLOCK_SIZE,
3563                         .min_keysize = DES_KEY_SIZE,
3564                         .max_keysize = DES_KEY_SIZE,
3565                         .ivsize = DES_BLOCK_SIZE,
3566                         },
3567          .cipher_info = {
3568                          .alg = CIPHER_ALG_DES,
3569                          .mode = CIPHER_MODE_OFB,
3570                          },
3571          .auth_info = {
3572                        .alg = HASH_ALG_NONE,
3573                        .mode = HASH_MODE_NONE,
3574                        },
3575          },
3576         {
3577          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3578          .alg.skcipher = {
3579                         .base.cra_name = "cbc(des)",
3580                         .base.cra_driver_name = "cbc-des-iproc",
3581                         .base.cra_blocksize = DES_BLOCK_SIZE,
3582                         .min_keysize = DES_KEY_SIZE,
3583                         .max_keysize = DES_KEY_SIZE,
3584                         .ivsize = DES_BLOCK_SIZE,
3585                         },
3586          .cipher_info = {
3587                          .alg = CIPHER_ALG_DES,
3588                          .mode = CIPHER_MODE_CBC,
3589                          },
3590          .auth_info = {
3591                        .alg = HASH_ALG_NONE,
3592                        .mode = HASH_MODE_NONE,
3593                        },
3594          },
3595         {
3596          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3597          .alg.skcipher = {
3598                         .base.cra_name = "ecb(des)",
3599                         .base.cra_driver_name = "ecb-des-iproc",
3600                         .base.cra_blocksize = DES_BLOCK_SIZE,
3601                         .min_keysize = DES_KEY_SIZE,
3602                         .max_keysize = DES_KEY_SIZE,
3603                         .ivsize = 0,
3604                         },
3605          .cipher_info = {
3606                          .alg = CIPHER_ALG_DES,
3607                          .mode = CIPHER_MODE_ECB,
3608                          },
3609          .auth_info = {
3610                        .alg = HASH_ALG_NONE,
3611                        .mode = HASH_MODE_NONE,
3612                        },
3613          },
3614         {
3615          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3616          .alg.skcipher = {
3617                         .base.cra_name = "ofb(des3_ede)",
3618                         .base.cra_driver_name = "ofb-des3-iproc",
3619                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3620                         .min_keysize = DES3_EDE_KEY_SIZE,
3621                         .max_keysize = DES3_EDE_KEY_SIZE,
3622                         .ivsize = DES3_EDE_BLOCK_SIZE,
3623                         },
3624          .cipher_info = {
3625                          .alg = CIPHER_ALG_3DES,
3626                          .mode = CIPHER_MODE_OFB,
3627                          },
3628          .auth_info = {
3629                        .alg = HASH_ALG_NONE,
3630                        .mode = HASH_MODE_NONE,
3631                        },
3632          },
3633         {
3634          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3635          .alg.skcipher = {
3636                         .base.cra_name = "cbc(des3_ede)",
3637                         .base.cra_driver_name = "cbc-des3-iproc",
3638                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3639                         .min_keysize = DES3_EDE_KEY_SIZE,
3640                         .max_keysize = DES3_EDE_KEY_SIZE,
3641                         .ivsize = DES3_EDE_BLOCK_SIZE,
3642                         },
3643          .cipher_info = {
3644                          .alg = CIPHER_ALG_3DES,
3645                          .mode = CIPHER_MODE_CBC,
3646                          },
3647          .auth_info = {
3648                        .alg = HASH_ALG_NONE,
3649                        .mode = HASH_MODE_NONE,
3650                        },
3651          },
3652         {
3653          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3654          .alg.skcipher = {
3655                         .base.cra_name = "ecb(des3_ede)",
3656                         .base.cra_driver_name = "ecb-des3-iproc",
3657                         .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3658                         .min_keysize = DES3_EDE_KEY_SIZE,
3659                         .max_keysize = DES3_EDE_KEY_SIZE,
3660                         .ivsize = 0,
3661                         },
3662          .cipher_info = {
3663                          .alg = CIPHER_ALG_3DES,
3664                          .mode = CIPHER_MODE_ECB,
3665                          },
3666          .auth_info = {
3667                        .alg = HASH_ALG_NONE,
3668                        .mode = HASH_MODE_NONE,
3669                        },
3670          },
3671         {
3672          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3673          .alg.skcipher = {
3674                         .base.cra_name = "ofb(aes)",
3675                         .base.cra_driver_name = "ofb-aes-iproc",
3676                         .base.cra_blocksize = AES_BLOCK_SIZE,
3677                         .min_keysize = AES_MIN_KEY_SIZE,
3678                         .max_keysize = AES_MAX_KEY_SIZE,
3679                         .ivsize = AES_BLOCK_SIZE,
3680                         },
3681          .cipher_info = {
3682                          .alg = CIPHER_ALG_AES,
3683                          .mode = CIPHER_MODE_OFB,
3684                          },
3685          .auth_info = {
3686                        .alg = HASH_ALG_NONE,
3687                        .mode = HASH_MODE_NONE,
3688                        },
3689          },
3690         {
3691          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3692          .alg.skcipher = {
3693                         .base.cra_name = "cbc(aes)",
3694                         .base.cra_driver_name = "cbc-aes-iproc",
3695                         .base.cra_blocksize = AES_BLOCK_SIZE,
3696                         .min_keysize = AES_MIN_KEY_SIZE,
3697                         .max_keysize = AES_MAX_KEY_SIZE,
3698                         .ivsize = AES_BLOCK_SIZE,
3699                         },
3700          .cipher_info = {
3701                          .alg = CIPHER_ALG_AES,
3702                          .mode = CIPHER_MODE_CBC,
3703                          },
3704          .auth_info = {
3705                        .alg = HASH_ALG_NONE,
3706                        .mode = HASH_MODE_NONE,
3707                        },
3708          },
3709         {
3710          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3711          .alg.skcipher = {
3712                         .base.cra_name = "ecb(aes)",
3713                         .base.cra_driver_name = "ecb-aes-iproc",
3714                         .base.cra_blocksize = AES_BLOCK_SIZE,
3715                         .min_keysize = AES_MIN_KEY_SIZE,
3716                         .max_keysize = AES_MAX_KEY_SIZE,
3717                         .ivsize = 0,
3718                         },
3719          .cipher_info = {
3720                          .alg = CIPHER_ALG_AES,
3721                          .mode = CIPHER_MODE_ECB,
3722                          },
3723          .auth_info = {
3724                        .alg = HASH_ALG_NONE,
3725                        .mode = HASH_MODE_NONE,
3726                        },
3727          },
3728         {
3729          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3730          .alg.skcipher = {
3731                         .base.cra_name = "ctr(aes)",
3732                         .base.cra_driver_name = "ctr-aes-iproc",
3733                         .base.cra_blocksize = AES_BLOCK_SIZE,
3734                         .min_keysize = AES_MIN_KEY_SIZE,
3735                         .max_keysize = AES_MAX_KEY_SIZE,
3736                         .ivsize = AES_BLOCK_SIZE,
3737                         },
3738          .cipher_info = {
3739                          .alg = CIPHER_ALG_AES,
3740                          .mode = CIPHER_MODE_CTR,
3741                          },
3742          .auth_info = {
3743                        .alg = HASH_ALG_NONE,
3744                        .mode = HASH_MODE_NONE,
3745                        },
3746          },
3747 {
3748          .type = CRYPTO_ALG_TYPE_SKCIPHER,
3749          .alg.skcipher = {
3750                         .base.cra_name = "xts(aes)",
3751                         .base.cra_driver_name = "xts-aes-iproc",
3752                         .base.cra_blocksize = AES_BLOCK_SIZE,
3753                         .min_keysize = 2 * AES_MIN_KEY_SIZE,
3754                         .max_keysize = 2 * AES_MAX_KEY_SIZE,
3755                         .ivsize = AES_BLOCK_SIZE,
3756                         },
3757          .cipher_info = {
3758                          .alg = CIPHER_ALG_AES,
3759                          .mode = CIPHER_MODE_XTS,
3760                          },
3761          .auth_info = {
3762                        .alg = HASH_ALG_NONE,
3763                        .mode = HASH_MODE_NONE,
3764                        },
3765          },
3766
3767 /* AHASH algorithms. */
3768         {
3769          .type = CRYPTO_ALG_TYPE_AHASH,
3770          .alg.hash = {
3771                       .halg.digestsize = MD5_DIGEST_SIZE,
3772                       .halg.base = {
3773                                     .cra_name = "md5",
3774                                     .cra_driver_name = "md5-iproc",
3775                                     .cra_blocksize = MD5_BLOCK_WORDS * 4,
3776                                     .cra_flags = CRYPTO_ALG_ASYNC |
3777                                                  CRYPTO_ALG_ALLOCATES_MEMORY,
3778                                 }
3779                       },
3780          .cipher_info = {
3781                          .alg = CIPHER_ALG_NONE,
3782                          .mode = CIPHER_MODE_NONE,
3783                          },
3784          .auth_info = {
3785                        .alg = HASH_ALG_MD5,
3786                        .mode = HASH_MODE_HASH,
3787                        },
3788          },
3789         {
3790          .type = CRYPTO_ALG_TYPE_AHASH,
3791          .alg.hash = {
3792                       .halg.digestsize = MD5_DIGEST_SIZE,
3793                       .halg.base = {
3794                                     .cra_name = "hmac(md5)",
3795                                     .cra_driver_name = "hmac-md5-iproc",
3796                                     .cra_blocksize = MD5_BLOCK_WORDS * 4,
3797                                 }
3798                       },
3799          .cipher_info = {
3800                          .alg = CIPHER_ALG_NONE,
3801                          .mode = CIPHER_MODE_NONE,
3802                          },
3803          .auth_info = {
3804                        .alg = HASH_ALG_MD5,
3805                        .mode = HASH_MODE_HMAC,
3806                        },
3807          },
3808         {.type = CRYPTO_ALG_TYPE_AHASH,
3809          .alg.hash = {
3810                       .halg.digestsize = SHA1_DIGEST_SIZE,
3811                       .halg.base = {
3812                                     .cra_name = "sha1",
3813                                     .cra_driver_name = "sha1-iproc",
3814                                     .cra_blocksize = SHA1_BLOCK_SIZE,
3815                                 }
3816                       },
3817          .cipher_info = {
3818                          .alg = CIPHER_ALG_NONE,
3819                          .mode = CIPHER_MODE_NONE,
3820                          },
3821          .auth_info = {
3822                        .alg = HASH_ALG_SHA1,
3823                        .mode = HASH_MODE_HASH,
3824                        },
3825          },
3826         {.type = CRYPTO_ALG_TYPE_AHASH,
3827          .alg.hash = {
3828                       .halg.digestsize = SHA1_DIGEST_SIZE,
3829                       .halg.base = {
3830                                     .cra_name = "hmac(sha1)",
3831                                     .cra_driver_name = "hmac-sha1-iproc",
3832                                     .cra_blocksize = SHA1_BLOCK_SIZE,
3833                                 }
3834                       },
3835          .cipher_info = {
3836                          .alg = CIPHER_ALG_NONE,
3837                          .mode = CIPHER_MODE_NONE,
3838                          },
3839          .auth_info = {
3840                        .alg = HASH_ALG_SHA1,
3841                        .mode = HASH_MODE_HMAC,
3842                        },
3843          },
3844         {.type = CRYPTO_ALG_TYPE_AHASH,
3845          .alg.hash = {
3846                         .halg.digestsize = SHA224_DIGEST_SIZE,
3847                         .halg.base = {
3848                                     .cra_name = "sha224",
3849                                     .cra_driver_name = "sha224-iproc",
3850                                     .cra_blocksize = SHA224_BLOCK_SIZE,
3851                         }
3852                       },
3853          .cipher_info = {
3854                          .alg = CIPHER_ALG_NONE,
3855                          .mode = CIPHER_MODE_NONE,
3856                          },
3857          .auth_info = {
3858                        .alg = HASH_ALG_SHA224,
3859                        .mode = HASH_MODE_HASH,
3860                        },
3861          },
3862         {.type = CRYPTO_ALG_TYPE_AHASH,
3863          .alg.hash = {
3864                       .halg.digestsize = SHA224_DIGEST_SIZE,
3865                       .halg.base = {
3866                                     .cra_name = "hmac(sha224)",
3867                                     .cra_driver_name = "hmac-sha224-iproc",
3868                                     .cra_blocksize = SHA224_BLOCK_SIZE,
3869                                 }
3870                       },
3871          .cipher_info = {
3872                          .alg = CIPHER_ALG_NONE,
3873                          .mode = CIPHER_MODE_NONE,
3874                          },
3875          .auth_info = {
3876                        .alg = HASH_ALG_SHA224,
3877                        .mode = HASH_MODE_HMAC,
3878                        },
3879          },
3880         {.type = CRYPTO_ALG_TYPE_AHASH,
3881          .alg.hash = {
3882                       .halg.digestsize = SHA256_DIGEST_SIZE,
3883                       .halg.base = {
3884                                     .cra_name = "sha256",
3885                                     .cra_driver_name = "sha256-iproc",
3886                                     .cra_blocksize = SHA256_BLOCK_SIZE,
3887                                 }
3888                       },
3889          .cipher_info = {
3890                          .alg = CIPHER_ALG_NONE,
3891                          .mode = CIPHER_MODE_NONE,
3892                          },
3893          .auth_info = {
3894                        .alg = HASH_ALG_SHA256,
3895                        .mode = HASH_MODE_HASH,
3896                        },
3897          },
3898         {.type = CRYPTO_ALG_TYPE_AHASH,
3899          .alg.hash = {
3900                       .halg.digestsize = SHA256_DIGEST_SIZE,
3901                       .halg.base = {
3902                                     .cra_name = "hmac(sha256)",
3903                                     .cra_driver_name = "hmac-sha256-iproc",
3904                                     .cra_blocksize = SHA256_BLOCK_SIZE,
3905                                 }
3906                       },
3907          .cipher_info = {
3908                          .alg = CIPHER_ALG_NONE,
3909                          .mode = CIPHER_MODE_NONE,
3910                          },
3911          .auth_info = {
3912                        .alg = HASH_ALG_SHA256,
3913                        .mode = HASH_MODE_HMAC,
3914                        },
3915          },
3916         {
3917         .type = CRYPTO_ALG_TYPE_AHASH,
3918          .alg.hash = {
3919                       .halg.digestsize = SHA384_DIGEST_SIZE,
3920                       .halg.base = {
3921                                     .cra_name = "sha384",
3922                                     .cra_driver_name = "sha384-iproc",
3923                                     .cra_blocksize = SHA384_BLOCK_SIZE,
3924                                 }
3925                       },
3926          .cipher_info = {
3927                          .alg = CIPHER_ALG_NONE,
3928                          .mode = CIPHER_MODE_NONE,
3929                          },
3930          .auth_info = {
3931                        .alg = HASH_ALG_SHA384,
3932                        .mode = HASH_MODE_HASH,
3933                        },
3934          },
3935         {
3936          .type = CRYPTO_ALG_TYPE_AHASH,
3937          .alg.hash = {
3938                       .halg.digestsize = SHA384_DIGEST_SIZE,
3939                       .halg.base = {
3940                                     .cra_name = "hmac(sha384)",
3941                                     .cra_driver_name = "hmac-sha384-iproc",
3942                                     .cra_blocksize = SHA384_BLOCK_SIZE,
3943                                 }
3944                       },
3945          .cipher_info = {
3946                          .alg = CIPHER_ALG_NONE,
3947                          .mode = CIPHER_MODE_NONE,
3948                          },
3949          .auth_info = {
3950                        .alg = HASH_ALG_SHA384,
3951                        .mode = HASH_MODE_HMAC,
3952                        },
3953          },
3954         {
3955          .type = CRYPTO_ALG_TYPE_AHASH,
3956          .alg.hash = {
3957                       .halg.digestsize = SHA512_DIGEST_SIZE,
3958                       .halg.base = {
3959                                     .cra_name = "sha512",
3960                                     .cra_driver_name = "sha512-iproc",
3961                                     .cra_blocksize = SHA512_BLOCK_SIZE,
3962                                 }
3963                       },
3964          .cipher_info = {
3965                          .alg = CIPHER_ALG_NONE,
3966                          .mode = CIPHER_MODE_NONE,
3967                          },
3968          .auth_info = {
3969                        .alg = HASH_ALG_SHA512,
3970                        .mode = HASH_MODE_HASH,
3971                        },
3972          },
3973         {
3974          .type = CRYPTO_ALG_TYPE_AHASH,
3975          .alg.hash = {
3976                       .halg.digestsize = SHA512_DIGEST_SIZE,
3977                       .halg.base = {
3978                                     .cra_name = "hmac(sha512)",
3979                                     .cra_driver_name = "hmac-sha512-iproc",
3980                                     .cra_blocksize = SHA512_BLOCK_SIZE,
3981                                 }
3982                       },
3983          .cipher_info = {
3984                          .alg = CIPHER_ALG_NONE,
3985                          .mode = CIPHER_MODE_NONE,
3986                          },
3987          .auth_info = {
3988                        .alg = HASH_ALG_SHA512,
3989                        .mode = HASH_MODE_HMAC,
3990                        },
3991          },
3992         {
3993          .type = CRYPTO_ALG_TYPE_AHASH,
3994          .alg.hash = {
3995                       .halg.digestsize = SHA3_224_DIGEST_SIZE,
3996                       .halg.base = {
3997                                     .cra_name = "sha3-224",
3998                                     .cra_driver_name = "sha3-224-iproc",
3999                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4000                                 }
4001                       },
4002          .cipher_info = {
4003                          .alg = CIPHER_ALG_NONE,
4004                          .mode = CIPHER_MODE_NONE,
4005                          },
4006          .auth_info = {
4007                        .alg = HASH_ALG_SHA3_224,
4008                        .mode = HASH_MODE_HASH,
4009                        },
4010          },
4011         {
4012          .type = CRYPTO_ALG_TYPE_AHASH,
4013          .alg.hash = {
4014                       .halg.digestsize = SHA3_224_DIGEST_SIZE,
4015                       .halg.base = {
4016                                     .cra_name = "hmac(sha3-224)",
4017                                     .cra_driver_name = "hmac-sha3-224-iproc",
4018                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4019                                 }
4020                       },
4021          .cipher_info = {
4022                          .alg = CIPHER_ALG_NONE,
4023                          .mode = CIPHER_MODE_NONE,
4024                          },
4025          .auth_info = {
4026                        .alg = HASH_ALG_SHA3_224,
4027                        .mode = HASH_MODE_HMAC
4028                        },
4029          },
4030         {
4031          .type = CRYPTO_ALG_TYPE_AHASH,
4032          .alg.hash = {
4033                       .halg.digestsize = SHA3_256_DIGEST_SIZE,
4034                       .halg.base = {
4035                                     .cra_name = "sha3-256",
4036                                     .cra_driver_name = "sha3-256-iproc",
4037                                     .cra_blocksize = SHA3_256_BLOCK_SIZE,
4038                                 }
4039                       },
4040          .cipher_info = {
4041                          .alg = CIPHER_ALG_NONE,
4042                          .mode = CIPHER_MODE_NONE,
4043                          },
4044          .auth_info = {
4045                        .alg = HASH_ALG_SHA3_256,
4046                        .mode = HASH_MODE_HASH,
4047                        },
4048          },
4049         {
4050          .type = CRYPTO_ALG_TYPE_AHASH,
4051          .alg.hash = {
4052                       .halg.digestsize = SHA3_256_DIGEST_SIZE,
4053                       .halg.base = {
4054                                     .cra_name = "hmac(sha3-256)",
4055                                     .cra_driver_name = "hmac-sha3-256-iproc",
4056                                     .cra_blocksize = SHA3_256_BLOCK_SIZE,
4057                                 }
4058                       },
4059          .cipher_info = {
4060                          .alg = CIPHER_ALG_NONE,
4061                          .mode = CIPHER_MODE_NONE,
4062                          },
4063          .auth_info = {
4064                        .alg = HASH_ALG_SHA3_256,
4065                        .mode = HASH_MODE_HMAC,
4066                        },
4067          },
4068         {
4069          .type = CRYPTO_ALG_TYPE_AHASH,
4070          .alg.hash = {
4071                       .halg.digestsize = SHA3_384_DIGEST_SIZE,
4072                       .halg.base = {
4073                                     .cra_name = "sha3-384",
4074                                     .cra_driver_name = "sha3-384-iproc",
4075                                     .cra_blocksize = SHA3_224_BLOCK_SIZE,
4076                                 }
4077                       },
4078          .cipher_info = {
4079                          .alg = CIPHER_ALG_NONE,
4080                          .mode = CIPHER_MODE_NONE,
4081                          },
4082          .auth_info = {
4083                        .alg = HASH_ALG_SHA3_384,
4084                        .mode = HASH_MODE_HASH,
4085                        },
4086          },
4087         {
4088          .type = CRYPTO_ALG_TYPE_AHASH,
4089          .alg.hash = {
4090                       .halg.digestsize = SHA3_384_DIGEST_SIZE,
4091                       .halg.base = {
4092                                     .cra_name = "hmac(sha3-384)",
4093                                     .cra_driver_name = "hmac-sha3-384-iproc",
4094                                     .cra_blocksize = SHA3_384_BLOCK_SIZE,
4095                                 }
4096                       },
4097          .cipher_info = {
4098                          .alg = CIPHER_ALG_NONE,
4099                          .mode = CIPHER_MODE_NONE,
4100                          },
4101          .auth_info = {
4102                        .alg = HASH_ALG_SHA3_384,
4103                        .mode = HASH_MODE_HMAC,
4104                        },
4105          },
4106         {
4107          .type = CRYPTO_ALG_TYPE_AHASH,
4108          .alg.hash = {
4109                       .halg.digestsize = SHA3_512_DIGEST_SIZE,
4110                       .halg.base = {
4111                                     .cra_name = "sha3-512",
4112                                     .cra_driver_name = "sha3-512-iproc",
4113                                     .cra_blocksize = SHA3_512_BLOCK_SIZE,
4114                                 }
4115                       },
4116          .cipher_info = {
4117                          .alg = CIPHER_ALG_NONE,
4118                          .mode = CIPHER_MODE_NONE,
4119                          },
4120          .auth_info = {
4121                        .alg = HASH_ALG_SHA3_512,
4122                        .mode = HASH_MODE_HASH,
4123                        },
4124          },
4125         {
4126          .type = CRYPTO_ALG_TYPE_AHASH,
4127          .alg.hash = {
4128                       .halg.digestsize = SHA3_512_DIGEST_SIZE,
4129                       .halg.base = {
4130                                     .cra_name = "hmac(sha3-512)",
4131                                     .cra_driver_name = "hmac-sha3-512-iproc",
4132                                     .cra_blocksize = SHA3_512_BLOCK_SIZE,
4133                                 }
4134                       },
4135          .cipher_info = {
4136                          .alg = CIPHER_ALG_NONE,
4137                          .mode = CIPHER_MODE_NONE,
4138                          },
4139          .auth_info = {
4140                        .alg = HASH_ALG_SHA3_512,
4141                        .mode = HASH_MODE_HMAC,
4142                        },
4143          },
4144         {
4145          .type = CRYPTO_ALG_TYPE_AHASH,
4146          .alg.hash = {
4147                       .halg.digestsize = AES_BLOCK_SIZE,
4148                       .halg.base = {
4149                                     .cra_name = "xcbc(aes)",
4150                                     .cra_driver_name = "xcbc-aes-iproc",
4151                                     .cra_blocksize = AES_BLOCK_SIZE,
4152                                 }
4153                       },
4154          .cipher_info = {
4155                          .alg = CIPHER_ALG_NONE,
4156                          .mode = CIPHER_MODE_NONE,
4157                          },
4158          .auth_info = {
4159                        .alg = HASH_ALG_AES,
4160                        .mode = HASH_MODE_XCBC,
4161                        },
4162          },
4163         {
4164          .type = CRYPTO_ALG_TYPE_AHASH,
4165          .alg.hash = {
4166                       .halg.digestsize = AES_BLOCK_SIZE,
4167                       .halg.base = {
4168                                     .cra_name = "cmac(aes)",
4169                                     .cra_driver_name = "cmac-aes-iproc",
4170                                     .cra_blocksize = AES_BLOCK_SIZE,
4171                                 }
4172                       },
4173          .cipher_info = {
4174                          .alg = CIPHER_ALG_NONE,
4175                          .mode = CIPHER_MODE_NONE,
4176                          },
4177          .auth_info = {
4178                        .alg = HASH_ALG_AES,
4179                        .mode = HASH_MODE_CMAC,
4180                        },
4181          },
4182 };
4183
4184 static int generic_cra_init(struct crypto_tfm *tfm,
4185                             struct iproc_alg_s *cipher_alg)
4186 {
4187         struct spu_hw *spu = &iproc_priv.spu;
4188         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4189         unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4190
4191         flow_log("%s()\n", __func__);
4192
4193         ctx->alg = cipher_alg;
4194         ctx->cipher = cipher_alg->cipher_info;
4195         ctx->auth = cipher_alg->auth_info;
4196         ctx->auth_first = cipher_alg->auth_first;
4197         ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4198                                                     ctx->cipher.mode,
4199                                                     blocksize);
4200         ctx->fallback_cipher = NULL;
4201
4202         ctx->enckeylen = 0;
4203         ctx->authkeylen = 0;
4204
4205         atomic_inc(&iproc_priv.stream_count);
4206         atomic_inc(&iproc_priv.session_count);
4207
4208         return 0;
4209 }
4210
4211 static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4212 {
4213         struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4214         struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4215         struct iproc_alg_s *cipher_alg;
4216
4217         flow_log("%s()\n", __func__);
4218
4219         crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4220
4221         cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4222         return generic_cra_init(tfm, cipher_alg);
4223 }
4224
4225 static int ahash_cra_init(struct crypto_tfm *tfm)
4226 {
4227         int err;
4228         struct crypto_alg *alg = tfm->__crt_alg;
4229         struct iproc_alg_s *cipher_alg;
4230
4231         cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4232                                   alg.hash);
4233
4234         err = generic_cra_init(tfm, cipher_alg);
4235         flow_log("%s()\n", __func__);
4236
4237         /*
4238          * export state size has to be < 512 bytes. So don't include msg bufs
4239          * in state size.
4240          */
4241         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4242                                  sizeof(struct iproc_reqctx_s));
4243
4244         return err;
4245 }
4246
4247 static int aead_cra_init(struct crypto_aead *aead)
4248 {
4249         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4250         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4251         struct crypto_alg *alg = tfm->__crt_alg;
4252         struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4253         struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4254                                                       alg.aead);
4255
4256         int err = generic_cra_init(tfm, cipher_alg);
4257
4258         flow_log("%s()\n", __func__);
4259
4260         crypto_aead_set_reqsize(aead, sizeof(struct iproc_reqctx_s));
4261         ctx->is_esp = false;
4262         ctx->salt_len = 0;
4263         ctx->salt_offset = 0;
4264
4265         /* random first IV */
4266         get_random_bytes(ctx->iv, MAX_IV_SIZE);
4267         flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4268
4269         if (!err) {
4270                 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
4271                         flow_log("%s() creating fallback cipher\n", __func__);
4272
4273                         ctx->fallback_cipher =
4274                             crypto_alloc_aead(alg->cra_name, 0,
4275                                               CRYPTO_ALG_ASYNC |
4276                                               CRYPTO_ALG_NEED_FALLBACK);
4277                         if (IS_ERR(ctx->fallback_cipher)) {
4278                                 pr_err("%s() Error: failed to allocate fallback for %s\n",
4279                                        __func__, alg->cra_name);
4280                                 return PTR_ERR(ctx->fallback_cipher);
4281                         }
4282                 }
4283         }
4284
4285         return err;
4286 }
4287
4288 static void generic_cra_exit(struct crypto_tfm *tfm)
4289 {
4290         atomic_dec(&iproc_priv.session_count);
4291 }
4292
4293 static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4294 {
4295         generic_cra_exit(crypto_skcipher_tfm(tfm));
4296 }
4297
4298 static void aead_cra_exit(struct crypto_aead *aead)
4299 {
4300         struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4301         struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4302
4303         generic_cra_exit(tfm);
4304
4305         if (ctx->fallback_cipher) {
4306                 crypto_free_aead(ctx->fallback_cipher);
4307                 ctx->fallback_cipher = NULL;
4308         }
4309 }
4310
4311 /**
4312  * spu_functions_register() - Specify hardware-specific SPU functions based on
4313  * SPU type read from device tree.
4314  * @dev:        device structure
4315  * @spu_type:   SPU hardware generation
4316  * @spu_subtype: SPU hardware version
4317  */
4318 static void spu_functions_register(struct device *dev,
4319                                    enum spu_spu_type spu_type,
4320                                    enum spu_spu_subtype spu_subtype)
4321 {
4322         struct spu_hw *spu = &iproc_priv.spu;
4323
4324         if (spu_type == SPU_TYPE_SPUM) {
4325                 dev_dbg(dev, "Registering SPUM functions");
4326                 spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4327                 spu->spu_payload_length = spum_payload_length;
4328                 spu->spu_response_hdr_len = spum_response_hdr_len;
4329                 spu->spu_hash_pad_len = spum_hash_pad_len;
4330                 spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4331                 spu->spu_assoc_resp_len = spum_assoc_resp_len;
4332                 spu->spu_aead_ivlen = spum_aead_ivlen;
4333                 spu->spu_hash_type = spum_hash_type;
4334                 spu->spu_digest_size = spum_digest_size;
4335                 spu->spu_create_request = spum_create_request;
4336                 spu->spu_cipher_req_init = spum_cipher_req_init;
4337                 spu->spu_cipher_req_finish = spum_cipher_req_finish;
4338                 spu->spu_request_pad = spum_request_pad;
4339                 spu->spu_tx_status_len = spum_tx_status_len;
4340                 spu->spu_rx_status_len = spum_rx_status_len;
4341                 spu->spu_status_process = spum_status_process;
4342                 spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4343                 spu->spu_ccm_update_iv = spum_ccm_update_iv;
4344                 spu->spu_wordalign_padlen = spum_wordalign_padlen;
4345                 if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4346                         spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4347                 else
4348                         spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4349         } else {
4350                 dev_dbg(dev, "Registering SPU2 functions");
4351                 spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4352                 spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4353                 spu->spu_payload_length = spu2_payload_length;
4354                 spu->spu_response_hdr_len = spu2_response_hdr_len;
4355                 spu->spu_hash_pad_len = spu2_hash_pad_len;
4356                 spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4357                 spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4358                 spu->spu_aead_ivlen = spu2_aead_ivlen;
4359                 spu->spu_hash_type = spu2_hash_type;
4360                 spu->spu_digest_size = spu2_digest_size;
4361                 spu->spu_create_request = spu2_create_request;
4362                 spu->spu_cipher_req_init = spu2_cipher_req_init;
4363                 spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4364                 spu->spu_request_pad = spu2_request_pad;
4365                 spu->spu_tx_status_len = spu2_tx_status_len;
4366                 spu->spu_rx_status_len = spu2_rx_status_len;
4367                 spu->spu_status_process = spu2_status_process;
4368                 spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4369                 spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4370                 spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4371         }
4372 }
4373
4374 /**
4375  * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4376  * channel for the SPU being probed.
4377  * @dev:  SPU driver device structure
4378  *
4379  * Return: 0 if successful
4380  *         < 0 otherwise
4381  */
4382 static int spu_mb_init(struct device *dev)
4383 {
4384         struct mbox_client *mcl = &iproc_priv.mcl;
4385         int err, i;
4386
4387         iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4388                                   sizeof(struct mbox_chan *), GFP_KERNEL);
4389         if (!iproc_priv.mbox)
4390                 return -ENOMEM;
4391
4392         mcl->dev = dev;
4393         mcl->tx_block = false;
4394         mcl->tx_tout = 0;
4395         mcl->knows_txdone = true;
4396         mcl->rx_callback = spu_rx_callback;
4397         mcl->tx_done = NULL;
4398
4399         for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4400                 iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4401                 if (IS_ERR(iproc_priv.mbox[i])) {
4402                         err = PTR_ERR(iproc_priv.mbox[i]);
4403                         dev_err(dev,
4404                                 "Mbox channel %d request failed with err %d",
4405                                 i, err);
4406                         iproc_priv.mbox[i] = NULL;
4407                         goto free_channels;
4408                 }
4409         }
4410
4411         return 0;
4412 free_channels:
4413         for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4414                 if (iproc_priv.mbox[i])
4415                         mbox_free_channel(iproc_priv.mbox[i]);
4416         }
4417
4418         return err;
4419 }
4420
4421 static void spu_mb_release(struct platform_device *pdev)
4422 {
4423         int i;
4424
4425         for (i = 0; i < iproc_priv.spu.num_chan; i++)
4426                 mbox_free_channel(iproc_priv.mbox[i]);
4427 }
4428
4429 static void spu_counters_init(void)
4430 {
4431         int i;
4432         int j;
4433
4434         atomic_set(&iproc_priv.session_count, 0);
4435         atomic_set(&iproc_priv.stream_count, 0);
4436         atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4437         atomic64_set(&iproc_priv.bytes_in, 0);
4438         atomic64_set(&iproc_priv.bytes_out, 0);
4439         for (i = 0; i < SPU_OP_NUM; i++) {
4440                 atomic_set(&iproc_priv.op_counts[i], 0);
4441                 atomic_set(&iproc_priv.setkey_cnt[i], 0);
4442         }
4443         for (i = 0; i < CIPHER_ALG_LAST; i++)
4444                 for (j = 0; j < CIPHER_MODE_LAST; j++)
4445                         atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4446
4447         for (i = 0; i < HASH_ALG_LAST; i++) {
4448                 atomic_set(&iproc_priv.hash_cnt[i], 0);
4449                 atomic_set(&iproc_priv.hmac_cnt[i], 0);
4450         }
4451         for (i = 0; i < AEAD_TYPE_LAST; i++)
4452                 atomic_set(&iproc_priv.aead_cnt[i], 0);
4453
4454         atomic_set(&iproc_priv.mb_no_spc, 0);
4455         atomic_set(&iproc_priv.mb_send_fail, 0);
4456         atomic_set(&iproc_priv.bad_icv, 0);
4457 }
4458
4459 static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4460 {
4461         struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4462         int err;
4463
4464         crypto->base.cra_module = THIS_MODULE;
4465         crypto->base.cra_priority = cipher_pri;
4466         crypto->base.cra_alignmask = 0;
4467         crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4468         crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4469                                  CRYPTO_ALG_ALLOCATES_MEMORY |
4470                                  CRYPTO_ALG_KERN_DRIVER_ONLY;
4471
4472         crypto->init = skcipher_init_tfm;
4473         crypto->exit = skcipher_exit_tfm;
4474         crypto->setkey = skcipher_setkey;
4475         crypto->encrypt = skcipher_encrypt;
4476         crypto->decrypt = skcipher_decrypt;
4477
4478         err = crypto_register_skcipher(crypto);
4479         /* Mark alg as having been registered, if successful */
4480         if (err == 0)
4481                 driver_alg->registered = true;
4482         pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4483         return err;
4484 }
4485
4486 static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4487 {
4488         struct spu_hw *spu = &iproc_priv.spu;
4489         struct ahash_alg *hash = &driver_alg->alg.hash;
4490         int err;
4491
4492         /* AES-XCBC is the only AES hash type currently supported on SPU-M */
4493         if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4494             (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4495             (spu->spu_type == SPU_TYPE_SPUM))
4496                 return 0;
4497
4498         /* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4499         if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4500             (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4501                 return 0;
4502
4503         hash->halg.base.cra_module = THIS_MODULE;
4504         hash->halg.base.cra_priority = hash_pri;
4505         hash->halg.base.cra_alignmask = 0;
4506         hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4507         hash->halg.base.cra_init = ahash_cra_init;
4508         hash->halg.base.cra_exit = generic_cra_exit;
4509         hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4510                                     CRYPTO_ALG_ALLOCATES_MEMORY;
4511         hash->halg.statesize = sizeof(struct spu_hash_export_s);
4512
4513         if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4514                 hash->init = ahash_init;
4515                 hash->update = ahash_update;
4516                 hash->final = ahash_final;
4517                 hash->finup = ahash_finup;
4518                 hash->digest = ahash_digest;
4519                 if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4520                     ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4521                     (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4522                         hash->setkey = ahash_setkey;
4523                 }
4524         } else {
4525                 hash->setkey = ahash_hmac_setkey;
4526                 hash->init = ahash_hmac_init;
4527                 hash->update = ahash_hmac_update;
4528                 hash->final = ahash_hmac_final;
4529                 hash->finup = ahash_hmac_finup;
4530                 hash->digest = ahash_hmac_digest;
4531         }
4532         hash->export = ahash_export;
4533         hash->import = ahash_import;
4534
4535         err = crypto_register_ahash(hash);
4536         /* Mark alg as having been registered, if successful */
4537         if (err == 0)
4538                 driver_alg->registered = true;
4539         pr_debug("  registered ahash %s\n",
4540                  hash->halg.base.cra_driver_name);
4541         return err;
4542 }
4543
4544 static int spu_register_aead(struct iproc_alg_s *driver_alg)
4545 {
4546         struct aead_alg *aead = &driver_alg->alg.aead;
4547         int err;
4548
4549         aead->base.cra_module = THIS_MODULE;
4550         aead->base.cra_priority = aead_pri;
4551         aead->base.cra_alignmask = 0;
4552         aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4553
4554         aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4555         /* setkey set in alg initialization */
4556         aead->setauthsize = aead_setauthsize;
4557         aead->encrypt = aead_encrypt;
4558         aead->decrypt = aead_decrypt;
4559         aead->init = aead_cra_init;
4560         aead->exit = aead_cra_exit;
4561
4562         err = crypto_register_aead(aead);
4563         /* Mark alg as having been registered, if successful */
4564         if (err == 0)
4565                 driver_alg->registered = true;
4566         pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4567         return err;
4568 }
4569
4570 /* register crypto algorithms the device supports */
4571 static int spu_algs_register(struct device *dev)
4572 {
4573         int i, j;
4574         int err;
4575
4576         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4577                 switch (driver_algs[i].type) {
4578                 case CRYPTO_ALG_TYPE_SKCIPHER:
4579                         err = spu_register_skcipher(&driver_algs[i]);
4580                         break;
4581                 case CRYPTO_ALG_TYPE_AHASH:
4582                         err = spu_register_ahash(&driver_algs[i]);
4583                         break;
4584                 case CRYPTO_ALG_TYPE_AEAD:
4585                         err = spu_register_aead(&driver_algs[i]);
4586                         break;
4587                 default:
4588                         dev_err(dev,
4589                                 "iproc-crypto: unknown alg type: %d",
4590                                 driver_algs[i].type);
4591                         err = -EINVAL;
4592                 }
4593
4594                 if (err) {
4595                         dev_err(dev, "alg registration failed with error %d\n",
4596                                 err);
4597                         goto err_algs;
4598                 }
4599         }
4600
4601         return 0;
4602
4603 err_algs:
4604         for (j = 0; j < i; j++) {
4605                 /* Skip any algorithm not registered */
4606                 if (!driver_algs[j].registered)
4607                         continue;
4608                 switch (driver_algs[j].type) {
4609                 case CRYPTO_ALG_TYPE_SKCIPHER:
4610                         crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4611                         driver_algs[j].registered = false;
4612                         break;
4613                 case CRYPTO_ALG_TYPE_AHASH:
4614                         crypto_unregister_ahash(&driver_algs[j].alg.hash);
4615                         driver_algs[j].registered = false;
4616                         break;
4617                 case CRYPTO_ALG_TYPE_AEAD:
4618                         crypto_unregister_aead(&driver_algs[j].alg.aead);
4619                         driver_algs[j].registered = false;
4620                         break;
4621                 }
4622         }
4623         return err;
4624 }
4625
4626 /* ==================== Kernel Platform API ==================== */
4627
4628 static struct spu_type_subtype spum_ns2_types = {
4629         SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4630 };
4631
4632 static struct spu_type_subtype spum_nsp_types = {
4633         SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4634 };
4635
4636 static struct spu_type_subtype spu2_types = {
4637         SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4638 };
4639
4640 static struct spu_type_subtype spu2_v2_types = {
4641         SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4642 };
4643
4644 static const struct of_device_id bcm_spu_dt_ids[] = {
4645         {
4646                 .compatible = "brcm,spum-crypto",
4647                 .data = &spum_ns2_types,
4648         },
4649         {
4650                 .compatible = "brcm,spum-nsp-crypto",
4651                 .data = &spum_nsp_types,
4652         },
4653         {
4654                 .compatible = "brcm,spu2-crypto",
4655                 .data = &spu2_types,
4656         },
4657         {
4658                 .compatible = "brcm,spu2-v2-crypto",
4659                 .data = &spu2_v2_types,
4660         },
4661         { /* sentinel */ }
4662 };
4663
4664 MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4665
4666 static int spu_dt_read(struct platform_device *pdev)
4667 {
4668         struct device *dev = &pdev->dev;
4669         struct spu_hw *spu = &iproc_priv.spu;
4670         struct resource *spu_ctrl_regs;
4671         const struct spu_type_subtype *matched_spu_type;
4672         struct device_node *dn = pdev->dev.of_node;
4673         int err, i;
4674
4675         /* Count number of mailbox channels */
4676         spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4677
4678         matched_spu_type = of_device_get_match_data(dev);
4679         if (!matched_spu_type) {
4680                 dev_err(dev, "Failed to match device\n");
4681                 return -ENODEV;
4682         }
4683
4684         spu->spu_type = matched_spu_type->type;
4685         spu->spu_subtype = matched_spu_type->subtype;
4686
4687         for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4688                 platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4689
4690                 spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4691                 if (IS_ERR(spu->reg_vbase[i])) {
4692                         err = PTR_ERR(spu->reg_vbase[i]);
4693                         dev_err(dev, "Failed to map registers: %d\n",
4694                                 err);
4695                         spu->reg_vbase[i] = NULL;
4696                         return err;
4697                 }
4698         }
4699         spu->num_spu = i;
4700         dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4701
4702         return 0;
4703 }
4704
4705 static int bcm_spu_probe(struct platform_device *pdev)
4706 {
4707         struct device *dev = &pdev->dev;
4708         struct spu_hw *spu = &iproc_priv.spu;
4709         int err;
4710
4711         iproc_priv.pdev  = pdev;
4712         platform_set_drvdata(iproc_priv.pdev,
4713                              &iproc_priv);
4714
4715         err = spu_dt_read(pdev);
4716         if (err < 0)
4717                 goto failure;
4718
4719         err = spu_mb_init(dev);
4720         if (err < 0)
4721                 goto failure;
4722
4723         if (spu->spu_type == SPU_TYPE_SPUM)
4724                 iproc_priv.bcm_hdr_len = 8;
4725         else if (spu->spu_type == SPU_TYPE_SPU2)
4726                 iproc_priv.bcm_hdr_len = 0;
4727
4728         spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4729
4730         spu_counters_init();
4731
4732         spu_setup_debugfs();
4733
4734         err = spu_algs_register(dev);
4735         if (err < 0)
4736                 goto fail_reg;
4737
4738         return 0;
4739
4740 fail_reg:
4741         spu_free_debugfs();
4742 failure:
4743         spu_mb_release(pdev);
4744         dev_err(dev, "%s failed with error %d.\n", __func__, err);
4745
4746         return err;
4747 }
4748
4749 static int bcm_spu_remove(struct platform_device *pdev)
4750 {
4751         int i;
4752         struct device *dev = &pdev->dev;
4753         char *cdn;
4754
4755         for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4756                 /*
4757                  * Not all algorithms were registered, depending on whether
4758                  * hardware is SPU or SPU2.  So here we make sure to skip
4759                  * those algorithms that were not previously registered.
4760                  */
4761                 if (!driver_algs[i].registered)
4762                         continue;
4763
4764                 switch (driver_algs[i].type) {
4765                 case CRYPTO_ALG_TYPE_SKCIPHER:
4766                         crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4767                         dev_dbg(dev, "  unregistered cipher %s\n",
4768                                 driver_algs[i].alg.skcipher.base.cra_driver_name);
4769                         driver_algs[i].registered = false;
4770                         break;
4771                 case CRYPTO_ALG_TYPE_AHASH:
4772                         crypto_unregister_ahash(&driver_algs[i].alg.hash);
4773                         cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4774                         dev_dbg(dev, "  unregistered hash %s\n", cdn);
4775                         driver_algs[i].registered = false;
4776                         break;
4777                 case CRYPTO_ALG_TYPE_AEAD:
4778                         crypto_unregister_aead(&driver_algs[i].alg.aead);
4779                         dev_dbg(dev, "  unregistered aead %s\n",
4780                                 driver_algs[i].alg.aead.base.cra_driver_name);
4781                         driver_algs[i].registered = false;
4782                         break;
4783                 }
4784         }
4785         spu_free_debugfs();
4786         spu_mb_release(pdev);
4787         return 0;
4788 }
4789
4790 /* ===== Kernel Module API ===== */
4791
4792 static struct platform_driver bcm_spu_pdriver = {
4793         .driver = {
4794                    .name = "brcm-spu-crypto",
4795                    .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4796                    },
4797         .probe = bcm_spu_probe,
4798         .remove = bcm_spu_remove,
4799 };
4800 module_platform_driver(bcm_spu_pdriver);
4801
4802 MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4803 MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4804 MODULE_LICENSE("GPL v2");