Merge tag 'v4.16-rc2' into next-general
[linux-2.6-microblaze.git] / drivers / crypto / atmel-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL SHA1/SHA256 HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-sham.c drivers.
14  */
15
16
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <linux/cryptohash.h>
37 #include <crypto/scatterwalk.h>
38 #include <crypto/algapi.h>
39 #include <crypto/sha.h>
40 #include <crypto/hash.h>
41 #include <crypto/internal/hash.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include "atmel-sha-regs.h"
44 #include "atmel-authenc.h"
45
46 /* SHA flags */
47 #define SHA_FLAGS_BUSY                  BIT(0)
48 #define SHA_FLAGS_FINAL                 BIT(1)
49 #define SHA_FLAGS_DMA_ACTIVE    BIT(2)
50 #define SHA_FLAGS_OUTPUT_READY  BIT(3)
51 #define SHA_FLAGS_INIT                  BIT(4)
52 #define SHA_FLAGS_CPU                   BIT(5)
53 #define SHA_FLAGS_DMA_READY             BIT(6)
54 #define SHA_FLAGS_DUMP_REG      BIT(7)
55
56 /* bits[11:8] are reserved. */
57
58 #define SHA_FLAGS_FINUP         BIT(16)
59 #define SHA_FLAGS_SG            BIT(17)
60 #define SHA_FLAGS_ERROR         BIT(23)
61 #define SHA_FLAGS_PAD           BIT(24)
62 #define SHA_FLAGS_RESTORE       BIT(25)
63 #define SHA_FLAGS_IDATAR0       BIT(26)
64 #define SHA_FLAGS_WAIT_DATARDY  BIT(27)
65
66 #define SHA_OP_INIT     0
67 #define SHA_OP_UPDATE   1
68 #define SHA_OP_FINAL    2
69 #define SHA_OP_DIGEST   3
70
71 #define SHA_BUFFER_LEN          (PAGE_SIZE / 16)
72
73 #define ATMEL_SHA_DMA_THRESHOLD         56
74
75 struct atmel_sha_caps {
76         bool    has_dma;
77         bool    has_dualbuff;
78         bool    has_sha224;
79         bool    has_sha_384_512;
80         bool    has_uihv;
81         bool    has_hmac;
82 };
83
84 struct atmel_sha_dev;
85
86 /*
87  * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
88  * tested by the ahash_prepare_alg() function.
89  */
90 struct atmel_sha_reqctx {
91         struct atmel_sha_dev    *dd;
92         unsigned long   flags;
93         unsigned long   op;
94
95         u8      digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
96         u64     digcnt[2];
97         size_t  bufcnt;
98         size_t  buflen;
99         dma_addr_t      dma_addr;
100
101         /* walk state */
102         struct scatterlist      *sg;
103         unsigned int    offset; /* offset in current sg */
104         unsigned int    total;  /* total request */
105
106         size_t block_size;
107         size_t hash_size;
108
109         u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
110 };
111
112 typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
113
114 struct atmel_sha_ctx {
115         struct atmel_sha_dev    *dd;
116         atmel_sha_fn_t          start;
117
118         unsigned long           flags;
119 };
120
121 #define ATMEL_SHA_QUEUE_LENGTH  50
122
123 struct atmel_sha_dma {
124         struct dma_chan                 *chan;
125         struct dma_slave_config dma_conf;
126         struct scatterlist      *sg;
127         int                     nents;
128         unsigned int            last_sg_length;
129 };
130
131 struct atmel_sha_dev {
132         struct list_head        list;
133         unsigned long           phys_base;
134         struct device           *dev;
135         struct clk                      *iclk;
136         int                                     irq;
137         void __iomem            *io_base;
138
139         spinlock_t              lock;
140         int                     err;
141         struct tasklet_struct   done_task;
142         struct tasklet_struct   queue_task;
143
144         unsigned long           flags;
145         struct crypto_queue     queue;
146         struct ahash_request    *req;
147         bool                    is_async;
148         bool                    force_complete;
149         atmel_sha_fn_t          resume;
150         atmel_sha_fn_t          cpu_transfer_complete;
151
152         struct atmel_sha_dma    dma_lch_in;
153
154         struct atmel_sha_caps   caps;
155
156         struct scatterlist      tmp;
157
158         u32     hw_version;
159 };
160
161 struct atmel_sha_drv {
162         struct list_head        dev_list;
163         spinlock_t              lock;
164 };
165
166 static struct atmel_sha_drv atmel_sha = {
167         .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
168         .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
169 };
170
171 #ifdef VERBOSE_DEBUG
172 static const char *atmel_sha_reg_name(u32 offset, char *tmp, size_t sz, bool wr)
173 {
174         switch (offset) {
175         case SHA_CR:
176                 return "CR";
177
178         case SHA_MR:
179                 return "MR";
180
181         case SHA_IER:
182                 return "IER";
183
184         case SHA_IDR:
185                 return "IDR";
186
187         case SHA_IMR:
188                 return "IMR";
189
190         case SHA_ISR:
191                 return "ISR";
192
193         case SHA_MSR:
194                 return "MSR";
195
196         case SHA_BCR:
197                 return "BCR";
198
199         case SHA_REG_DIN(0):
200         case SHA_REG_DIN(1):
201         case SHA_REG_DIN(2):
202         case SHA_REG_DIN(3):
203         case SHA_REG_DIN(4):
204         case SHA_REG_DIN(5):
205         case SHA_REG_DIN(6):
206         case SHA_REG_DIN(7):
207         case SHA_REG_DIN(8):
208         case SHA_REG_DIN(9):
209         case SHA_REG_DIN(10):
210         case SHA_REG_DIN(11):
211         case SHA_REG_DIN(12):
212         case SHA_REG_DIN(13):
213         case SHA_REG_DIN(14):
214         case SHA_REG_DIN(15):
215                 snprintf(tmp, sz, "IDATAR[%u]", (offset - SHA_REG_DIN(0)) >> 2);
216                 break;
217
218         case SHA_REG_DIGEST(0):
219         case SHA_REG_DIGEST(1):
220         case SHA_REG_DIGEST(2):
221         case SHA_REG_DIGEST(3):
222         case SHA_REG_DIGEST(4):
223         case SHA_REG_DIGEST(5):
224         case SHA_REG_DIGEST(6):
225         case SHA_REG_DIGEST(7):
226         case SHA_REG_DIGEST(8):
227         case SHA_REG_DIGEST(9):
228         case SHA_REG_DIGEST(10):
229         case SHA_REG_DIGEST(11):
230         case SHA_REG_DIGEST(12):
231         case SHA_REG_DIGEST(13):
232         case SHA_REG_DIGEST(14):
233         case SHA_REG_DIGEST(15):
234                 if (wr)
235                         snprintf(tmp, sz, "IDATAR[%u]",
236                                  16u + ((offset - SHA_REG_DIGEST(0)) >> 2));
237                 else
238                         snprintf(tmp, sz, "ODATAR[%u]",
239                                  (offset - SHA_REG_DIGEST(0)) >> 2);
240                 break;
241
242         case SHA_HW_VERSION:
243                 return "HWVER";
244
245         default:
246                 snprintf(tmp, sz, "0x%02x", offset);
247                 break;
248         }
249
250         return tmp;
251 }
252
253 #endif /* VERBOSE_DEBUG */
254
255 static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
256 {
257         u32 value = readl_relaxed(dd->io_base + offset);
258
259 #ifdef VERBOSE_DEBUG
260         if (dd->flags & SHA_FLAGS_DUMP_REG) {
261                 char tmp[16];
262
263                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
264                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), false));
265         }
266 #endif /* VERBOSE_DEBUG */
267
268         return value;
269 }
270
271 static inline void atmel_sha_write(struct atmel_sha_dev *dd,
272                                         u32 offset, u32 value)
273 {
274 #ifdef VERBOSE_DEBUG
275         if (dd->flags & SHA_FLAGS_DUMP_REG) {
276                 char tmp[16];
277
278                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
279                          atmel_sha_reg_name(offset, tmp, sizeof(tmp), true));
280         }
281 #endif /* VERBOSE_DEBUG */
282
283         writel_relaxed(value, dd->io_base + offset);
284 }
285
286 static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
287 {
288         struct ahash_request *req = dd->req;
289
290         dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
291                        SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY |
292                        SHA_FLAGS_DUMP_REG);
293
294         clk_disable(dd->iclk);
295
296         if ((dd->is_async || dd->force_complete) && req->base.complete)
297                 req->base.complete(&req->base, err);
298
299         /* handle new request */
300         tasklet_schedule(&dd->queue_task);
301
302         return err;
303 }
304
305 static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
306 {
307         size_t count;
308
309         while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
310                 count = min(ctx->sg->length - ctx->offset, ctx->total);
311                 count = min(count, ctx->buflen - ctx->bufcnt);
312
313                 if (count <= 0) {
314                         /*
315                         * Check if count <= 0 because the buffer is full or
316                         * because the sg length is 0. In the latest case,
317                         * check if there is another sg in the list, a 0 length
318                         * sg doesn't necessarily mean the end of the sg list.
319                         */
320                         if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
321                                 ctx->sg = sg_next(ctx->sg);
322                                 continue;
323                         } else {
324                                 break;
325                         }
326                 }
327
328                 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
329                         ctx->offset, count, 0);
330
331                 ctx->bufcnt += count;
332                 ctx->offset += count;
333                 ctx->total -= count;
334
335                 if (ctx->offset == ctx->sg->length) {
336                         ctx->sg = sg_next(ctx->sg);
337                         if (ctx->sg)
338                                 ctx->offset = 0;
339                         else
340                                 ctx->total = 0;
341                 }
342         }
343
344         return 0;
345 }
346
347 /*
348  * The purpose of this padding is to ensure that the padded message is a
349  * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
350  * The bit "1" is appended at the end of the message followed by
351  * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
352  * 128 bits block (SHA384/SHA512) equals to the message length in bits
353  * is appended.
354  *
355  * For SHA1/SHA224/SHA256, padlen is calculated as followed:
356  *  - if message length < 56 bytes then padlen = 56 - message length
357  *  - else padlen = 64 + 56 - message length
358  *
359  * For SHA384/SHA512, padlen is calculated as followed:
360  *  - if message length < 112 bytes then padlen = 112 - message length
361  *  - else padlen = 128 + 112 - message length
362  */
363 static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
364 {
365         unsigned int index, padlen;
366         u64 bits[2];
367         u64 size[2];
368
369         size[0] = ctx->digcnt[0];
370         size[1] = ctx->digcnt[1];
371
372         size[0] += ctx->bufcnt;
373         if (size[0] < ctx->bufcnt)
374                 size[1]++;
375
376         size[0] += length;
377         if (size[0]  < length)
378                 size[1]++;
379
380         bits[1] = cpu_to_be64(size[0] << 3);
381         bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
382
383         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
384         case SHA_FLAGS_SHA384:
385         case SHA_FLAGS_SHA512:
386                 index = ctx->bufcnt & 0x7f;
387                 padlen = (index < 112) ? (112 - index) : ((128+112) - index);
388                 *(ctx->buffer + ctx->bufcnt) = 0x80;
389                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
390                 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
391                 ctx->bufcnt += padlen + 16;
392                 ctx->flags |= SHA_FLAGS_PAD;
393                 break;
394
395         default:
396                 index = ctx->bufcnt & 0x3f;
397                 padlen = (index < 56) ? (56 - index) : ((64+56) - index);
398                 *(ctx->buffer + ctx->bufcnt) = 0x80;
399                 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
400                 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
401                 ctx->bufcnt += padlen + 8;
402                 ctx->flags |= SHA_FLAGS_PAD;
403                 break;
404         }
405 }
406
407 static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
408 {
409         struct atmel_sha_dev *dd = NULL;
410         struct atmel_sha_dev *tmp;
411
412         spin_lock_bh(&atmel_sha.lock);
413         if (!tctx->dd) {
414                 list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
415                         dd = tmp;
416                         break;
417                 }
418                 tctx->dd = dd;
419         } else {
420                 dd = tctx->dd;
421         }
422
423         spin_unlock_bh(&atmel_sha.lock);
424
425         return dd;
426 }
427
428 static int atmel_sha_init(struct ahash_request *req)
429 {
430         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
431         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
432         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
433         struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
434
435         ctx->dd = dd;
436
437         ctx->flags = 0;
438
439         dev_dbg(dd->dev, "init: digest size: %d\n",
440                 crypto_ahash_digestsize(tfm));
441
442         switch (crypto_ahash_digestsize(tfm)) {
443         case SHA1_DIGEST_SIZE:
444                 ctx->flags |= SHA_FLAGS_SHA1;
445                 ctx->block_size = SHA1_BLOCK_SIZE;
446                 break;
447         case SHA224_DIGEST_SIZE:
448                 ctx->flags |= SHA_FLAGS_SHA224;
449                 ctx->block_size = SHA224_BLOCK_SIZE;
450                 break;
451         case SHA256_DIGEST_SIZE:
452                 ctx->flags |= SHA_FLAGS_SHA256;
453                 ctx->block_size = SHA256_BLOCK_SIZE;
454                 break;
455         case SHA384_DIGEST_SIZE:
456                 ctx->flags |= SHA_FLAGS_SHA384;
457                 ctx->block_size = SHA384_BLOCK_SIZE;
458                 break;
459         case SHA512_DIGEST_SIZE:
460                 ctx->flags |= SHA_FLAGS_SHA512;
461                 ctx->block_size = SHA512_BLOCK_SIZE;
462                 break;
463         default:
464                 return -EINVAL;
465                 break;
466         }
467
468         ctx->bufcnt = 0;
469         ctx->digcnt[0] = 0;
470         ctx->digcnt[1] = 0;
471         ctx->buflen = SHA_BUFFER_LEN;
472
473         return 0;
474 }
475
476 static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
477 {
478         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
479         u32 valmr = SHA_MR_MODE_AUTO;
480         unsigned int i, hashsize = 0;
481
482         if (likely(dma)) {
483                 if (!dd->caps.has_dma)
484                         atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
485                 valmr = SHA_MR_MODE_PDC;
486                 if (dd->caps.has_dualbuff)
487                         valmr |= SHA_MR_DUALBUFF;
488         } else {
489                 atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
490         }
491
492         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
493         case SHA_FLAGS_SHA1:
494                 valmr |= SHA_MR_ALGO_SHA1;
495                 hashsize = SHA1_DIGEST_SIZE;
496                 break;
497
498         case SHA_FLAGS_SHA224:
499                 valmr |= SHA_MR_ALGO_SHA224;
500                 hashsize = SHA256_DIGEST_SIZE;
501                 break;
502
503         case SHA_FLAGS_SHA256:
504                 valmr |= SHA_MR_ALGO_SHA256;
505                 hashsize = SHA256_DIGEST_SIZE;
506                 break;
507
508         case SHA_FLAGS_SHA384:
509                 valmr |= SHA_MR_ALGO_SHA384;
510                 hashsize = SHA512_DIGEST_SIZE;
511                 break;
512
513         case SHA_FLAGS_SHA512:
514                 valmr |= SHA_MR_ALGO_SHA512;
515                 hashsize = SHA512_DIGEST_SIZE;
516                 break;
517
518         default:
519                 break;
520         }
521
522         /* Setting CR_FIRST only for the first iteration */
523         if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
524                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
525         } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
526                 const u32 *hash = (const u32 *)ctx->digest;
527
528                 /*
529                  * Restore the hardware context: update the User Initialize
530                  * Hash Value (UIHV) with the value saved when the latest
531                  * 'update' operation completed on this very same crypto
532                  * request.
533                  */
534                 ctx->flags &= ~SHA_FLAGS_RESTORE;
535                 atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
536                 for (i = 0; i < hashsize / sizeof(u32); ++i)
537                         atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
538                 atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
539                 valmr |= SHA_MR_UIHV;
540         }
541         /*
542          * WARNING: If the UIHV feature is not available, the hardware CANNOT
543          * process concurrent requests: the internal registers used to store
544          * the hash/digest are still set to the partial digest output values
545          * computed during the latest round.
546          */
547
548         atmel_sha_write(dd, SHA_MR, valmr);
549 }
550
551 static inline int atmel_sha_wait_for_data_ready(struct atmel_sha_dev *dd,
552                                                 atmel_sha_fn_t resume)
553 {
554         u32 isr = atmel_sha_read(dd, SHA_ISR);
555
556         if (unlikely(isr & SHA_INT_DATARDY))
557                 return resume(dd);
558
559         dd->resume = resume;
560         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
561         return -EINPROGRESS;
562 }
563
564 static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
565                               size_t length, int final)
566 {
567         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
568         int count, len32;
569         const u32 *buffer = (const u32 *)buf;
570
571         dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
572                 ctx->digcnt[1], ctx->digcnt[0], length, final);
573
574         atmel_sha_write_ctrl(dd, 0);
575
576         /* should be non-zero before next lines to disable clocks later */
577         ctx->digcnt[0] += length;
578         if (ctx->digcnt[0] < length)
579                 ctx->digcnt[1]++;
580
581         if (final)
582                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
583
584         len32 = DIV_ROUND_UP(length, sizeof(u32));
585
586         dd->flags |= SHA_FLAGS_CPU;
587
588         for (count = 0; count < len32; count++)
589                 atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
590
591         return -EINPROGRESS;
592 }
593
594 static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
595                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
596 {
597         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
598         int len32;
599
600         dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
601                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
602
603         len32 = DIV_ROUND_UP(length1, sizeof(u32));
604         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
605         atmel_sha_write(dd, SHA_TPR, dma_addr1);
606         atmel_sha_write(dd, SHA_TCR, len32);
607
608         len32 = DIV_ROUND_UP(length2, sizeof(u32));
609         atmel_sha_write(dd, SHA_TNPR, dma_addr2);
610         atmel_sha_write(dd, SHA_TNCR, len32);
611
612         atmel_sha_write_ctrl(dd, 1);
613
614         /* should be non-zero before next lines to disable clocks later */
615         ctx->digcnt[0] += length1;
616         if (ctx->digcnt[0] < length1)
617                 ctx->digcnt[1]++;
618
619         if (final)
620                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
621
622         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
623
624         /* Start DMA transfer */
625         atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
626
627         return -EINPROGRESS;
628 }
629
630 static void atmel_sha_dma_callback(void *data)
631 {
632         struct atmel_sha_dev *dd = data;
633
634         dd->is_async = true;
635
636         /* dma_lch_in - completed - wait DATRDY */
637         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
638 }
639
640 static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
641                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
642 {
643         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
644         struct dma_async_tx_descriptor  *in_desc;
645         struct scatterlist sg[2];
646
647         dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %zd, final: %d\n",
648                 ctx->digcnt[1], ctx->digcnt[0], length1, final);
649
650         dd->dma_lch_in.dma_conf.src_maxburst = 16;
651         dd->dma_lch_in.dma_conf.dst_maxburst = 16;
652
653         dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
654
655         if (length2) {
656                 sg_init_table(sg, 2);
657                 sg_dma_address(&sg[0]) = dma_addr1;
658                 sg_dma_len(&sg[0]) = length1;
659                 sg_dma_address(&sg[1]) = dma_addr2;
660                 sg_dma_len(&sg[1]) = length2;
661                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
662                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
663         } else {
664                 sg_init_table(sg, 1);
665                 sg_dma_address(&sg[0]) = dma_addr1;
666                 sg_dma_len(&sg[0]) = length1;
667                 in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
668                         DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
669         }
670         if (!in_desc)
671                 return atmel_sha_complete(dd, -EINVAL);
672
673         in_desc->callback = atmel_sha_dma_callback;
674         in_desc->callback_param = dd;
675
676         atmel_sha_write_ctrl(dd, 1);
677
678         /* should be non-zero before next lines to disable clocks later */
679         ctx->digcnt[0] += length1;
680         if (ctx->digcnt[0] < length1)
681                 ctx->digcnt[1]++;
682
683         if (final)
684                 dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
685
686         dd->flags |=  SHA_FLAGS_DMA_ACTIVE;
687
688         /* Start DMA transfer */
689         dmaengine_submit(in_desc);
690         dma_async_issue_pending(dd->dma_lch_in.chan);
691
692         return -EINPROGRESS;
693 }
694
695 static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
696                 size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
697 {
698         if (dd->caps.has_dma)
699                 return atmel_sha_xmit_dma(dd, dma_addr1, length1,
700                                 dma_addr2, length2, final);
701         else
702                 return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
703                                 dma_addr2, length2, final);
704 }
705
706 static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
707 {
708         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
709         int bufcnt;
710
711         atmel_sha_append_sg(ctx);
712         atmel_sha_fill_padding(ctx, 0);
713         bufcnt = ctx->bufcnt;
714         ctx->bufcnt = 0;
715
716         return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
717 }
718
719 static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
720                                         struct atmel_sha_reqctx *ctx,
721                                         size_t length, int final)
722 {
723         ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
724                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
725         if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
726                 dev_err(dd->dev, "dma %zu bytes error\n", ctx->buflen +
727                                 ctx->block_size);
728                 return atmel_sha_complete(dd, -EINVAL);
729         }
730
731         ctx->flags &= ~SHA_FLAGS_SG;
732
733         /* next call does not fail... so no unmap in the case of error */
734         return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
735 }
736
737 static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
738 {
739         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
740         unsigned int final;
741         size_t count;
742
743         atmel_sha_append_sg(ctx);
744
745         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
746
747         dev_dbg(dd->dev, "slow: bufcnt: %zu, digcnt: 0x%llx 0x%llx, final: %d\n",
748                  ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
749
750         if (final)
751                 atmel_sha_fill_padding(ctx, 0);
752
753         if (final || (ctx->bufcnt == ctx->buflen)) {
754                 count = ctx->bufcnt;
755                 ctx->bufcnt = 0;
756                 return atmel_sha_xmit_dma_map(dd, ctx, count, final);
757         }
758
759         return 0;
760 }
761
762 static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
763 {
764         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
765         unsigned int length, final, tail;
766         struct scatterlist *sg;
767         unsigned int count;
768
769         if (!ctx->total)
770                 return 0;
771
772         if (ctx->bufcnt || ctx->offset)
773                 return atmel_sha_update_dma_slow(dd);
774
775         dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %zd, total: %u\n",
776                 ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
777
778         sg = ctx->sg;
779
780         if (!IS_ALIGNED(sg->offset, sizeof(u32)))
781                 return atmel_sha_update_dma_slow(dd);
782
783         if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
784                 /* size is not ctx->block_size aligned */
785                 return atmel_sha_update_dma_slow(dd);
786
787         length = min(ctx->total, sg->length);
788
789         if (sg_is_last(sg)) {
790                 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
791                         /* not last sg must be ctx->block_size aligned */
792                         tail = length & (ctx->block_size - 1);
793                         length -= tail;
794                 }
795         }
796
797         ctx->total -= length;
798         ctx->offset = length; /* offset where to start slow */
799
800         final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
801
802         /* Add padding */
803         if (final) {
804                 tail = length & (ctx->block_size - 1);
805                 length -= tail;
806                 ctx->total += tail;
807                 ctx->offset = length; /* offset where to start slow */
808
809                 sg = ctx->sg;
810                 atmel_sha_append_sg(ctx);
811
812                 atmel_sha_fill_padding(ctx, length);
813
814                 ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
815                         ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
816                 if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
817                         dev_err(dd->dev, "dma %zu bytes error\n",
818                                 ctx->buflen + ctx->block_size);
819                         return atmel_sha_complete(dd, -EINVAL);
820                 }
821
822                 if (length == 0) {
823                         ctx->flags &= ~SHA_FLAGS_SG;
824                         count = ctx->bufcnt;
825                         ctx->bufcnt = 0;
826                         return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
827                                         0, final);
828                 } else {
829                         ctx->sg = sg;
830                         if (!dma_map_sg(dd->dev, ctx->sg, 1,
831                                 DMA_TO_DEVICE)) {
832                                         dev_err(dd->dev, "dma_map_sg  error\n");
833                                         return atmel_sha_complete(dd, -EINVAL);
834                         }
835
836                         ctx->flags |= SHA_FLAGS_SG;
837
838                         count = ctx->bufcnt;
839                         ctx->bufcnt = 0;
840                         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
841                                         length, ctx->dma_addr, count, final);
842                 }
843         }
844
845         if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
846                 dev_err(dd->dev, "dma_map_sg  error\n");
847                 return atmel_sha_complete(dd, -EINVAL);
848         }
849
850         ctx->flags |= SHA_FLAGS_SG;
851
852         /* next call does not fail... so no unmap in the case of error */
853         return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
854                                                                 0, final);
855 }
856
857 static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
858 {
859         struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
860
861         if (ctx->flags & SHA_FLAGS_SG) {
862                 dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
863                 if (ctx->sg->length == ctx->offset) {
864                         ctx->sg = sg_next(ctx->sg);
865                         if (ctx->sg)
866                                 ctx->offset = 0;
867                 }
868                 if (ctx->flags & SHA_FLAGS_PAD) {
869                         dma_unmap_single(dd->dev, ctx->dma_addr,
870                                 ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
871                 }
872         } else {
873                 dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
874                                                 ctx->block_size, DMA_TO_DEVICE);
875         }
876
877         return 0;
878 }
879
880 static int atmel_sha_update_req(struct atmel_sha_dev *dd)
881 {
882         struct ahash_request *req = dd->req;
883         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
884         int err;
885
886         dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
887                 ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
888
889         if (ctx->flags & SHA_FLAGS_CPU)
890                 err = atmel_sha_update_cpu(dd);
891         else
892                 err = atmel_sha_update_dma_start(dd);
893
894         /* wait for dma completion before can take more data */
895         dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
896                         err, ctx->digcnt[1], ctx->digcnt[0]);
897
898         return err;
899 }
900
901 static int atmel_sha_final_req(struct atmel_sha_dev *dd)
902 {
903         struct ahash_request *req = dd->req;
904         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
905         int err = 0;
906         int count;
907
908         if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
909                 atmel_sha_fill_padding(ctx, 0);
910                 count = ctx->bufcnt;
911                 ctx->bufcnt = 0;
912                 err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
913         }
914         /* faster to handle last block with cpu */
915         else {
916                 atmel_sha_fill_padding(ctx, 0);
917                 count = ctx->bufcnt;
918                 ctx->bufcnt = 0;
919                 err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
920         }
921
922         dev_dbg(dd->dev, "final_req: err: %d\n", err);
923
924         return err;
925 }
926
927 static void atmel_sha_copy_hash(struct ahash_request *req)
928 {
929         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
930         u32 *hash = (u32 *)ctx->digest;
931         unsigned int i, hashsize;
932
933         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
934         case SHA_FLAGS_SHA1:
935                 hashsize = SHA1_DIGEST_SIZE;
936                 break;
937
938         case SHA_FLAGS_SHA224:
939         case SHA_FLAGS_SHA256:
940                 hashsize = SHA256_DIGEST_SIZE;
941                 break;
942
943         case SHA_FLAGS_SHA384:
944         case SHA_FLAGS_SHA512:
945                 hashsize = SHA512_DIGEST_SIZE;
946                 break;
947
948         default:
949                 /* Should not happen... */
950                 return;
951         }
952
953         for (i = 0; i < hashsize / sizeof(u32); ++i)
954                 hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
955         ctx->flags |= SHA_FLAGS_RESTORE;
956 }
957
958 static void atmel_sha_copy_ready_hash(struct ahash_request *req)
959 {
960         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
961
962         if (!req->result)
963                 return;
964
965         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
966         default:
967         case SHA_FLAGS_SHA1:
968                 memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
969                 break;
970
971         case SHA_FLAGS_SHA224:
972                 memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
973                 break;
974
975         case SHA_FLAGS_SHA256:
976                 memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
977                 break;
978
979         case SHA_FLAGS_SHA384:
980                 memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
981                 break;
982
983         case SHA_FLAGS_SHA512:
984                 memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
985                 break;
986         }
987 }
988
989 static int atmel_sha_finish(struct ahash_request *req)
990 {
991         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
992         struct atmel_sha_dev *dd = ctx->dd;
993
994         if (ctx->digcnt[0] || ctx->digcnt[1])
995                 atmel_sha_copy_ready_hash(req);
996
997         dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %zd\n", ctx->digcnt[1],
998                 ctx->digcnt[0], ctx->bufcnt);
999
1000         return 0;
1001 }
1002
1003 static void atmel_sha_finish_req(struct ahash_request *req, int err)
1004 {
1005         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1006         struct atmel_sha_dev *dd = ctx->dd;
1007
1008         if (!err) {
1009                 atmel_sha_copy_hash(req);
1010                 if (SHA_FLAGS_FINAL & dd->flags)
1011                         err = atmel_sha_finish(req);
1012         } else {
1013                 ctx->flags |= SHA_FLAGS_ERROR;
1014         }
1015
1016         /* atomic operation is not needed here */
1017         (void)atmel_sha_complete(dd, err);
1018 }
1019
1020 static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
1021 {
1022         int err;
1023
1024         err = clk_enable(dd->iclk);
1025         if (err)
1026                 return err;
1027
1028         if (!(SHA_FLAGS_INIT & dd->flags)) {
1029                 atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
1030                 dd->flags |= SHA_FLAGS_INIT;
1031                 dd->err = 0;
1032         }
1033
1034         return 0;
1035 }
1036
1037 static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
1038 {
1039         return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
1040 }
1041
1042 static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
1043 {
1044         atmel_sha_hw_init(dd);
1045
1046         dd->hw_version = atmel_sha_get_version(dd);
1047
1048         dev_info(dd->dev,
1049                         "version: 0x%x\n", dd->hw_version);
1050
1051         clk_disable(dd->iclk);
1052 }
1053
1054 static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
1055                                   struct ahash_request *req)
1056 {
1057         struct crypto_async_request *async_req, *backlog;
1058         struct atmel_sha_ctx *ctx;
1059         unsigned long flags;
1060         bool start_async;
1061         int err = 0, ret = 0;
1062
1063         spin_lock_irqsave(&dd->lock, flags);
1064         if (req)
1065                 ret = ahash_enqueue_request(&dd->queue, req);
1066
1067         if (SHA_FLAGS_BUSY & dd->flags) {
1068                 spin_unlock_irqrestore(&dd->lock, flags);
1069                 return ret;
1070         }
1071
1072         backlog = crypto_get_backlog(&dd->queue);
1073         async_req = crypto_dequeue_request(&dd->queue);
1074         if (async_req)
1075                 dd->flags |= SHA_FLAGS_BUSY;
1076
1077         spin_unlock_irqrestore(&dd->lock, flags);
1078
1079         if (!async_req)
1080                 return ret;
1081
1082         if (backlog)
1083                 backlog->complete(backlog, -EINPROGRESS);
1084
1085         ctx = crypto_tfm_ctx(async_req->tfm);
1086
1087         dd->req = ahash_request_cast(async_req);
1088         start_async = (dd->req != req);
1089         dd->is_async = start_async;
1090         dd->force_complete = false;
1091
1092         /* WARNING: ctx->start() MAY change dd->is_async. */
1093         err = ctx->start(dd);
1094         return (start_async) ? ret : err;
1095 }
1096
1097 static int atmel_sha_done(struct atmel_sha_dev *dd);
1098
1099 static int atmel_sha_start(struct atmel_sha_dev *dd)
1100 {
1101         struct ahash_request *req = dd->req;
1102         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1103         int err;
1104
1105         dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
1106                                                 ctx->op, req->nbytes);
1107
1108         err = atmel_sha_hw_init(dd);
1109         if (err)
1110                 return atmel_sha_complete(dd, err);
1111
1112         /*
1113          * atmel_sha_update_req() and atmel_sha_final_req() can return either:
1114          *  -EINPROGRESS: the hardware is busy and the SHA driver will resume
1115          *                its job later in the done_task.
1116          *                This is the main path.
1117          *
1118          * 0: the SHA driver can continue its job then release the hardware
1119          *    later, if needed, with atmel_sha_finish_req().
1120          *    This is the alternate path.
1121          *
1122          * < 0: an error has occurred so atmel_sha_complete(dd, err) has already
1123          *      been called, hence the hardware has been released.
1124          *      The SHA driver must stop its job without calling
1125          *      atmel_sha_finish_req(), otherwise atmel_sha_complete() would be
1126          *      called a second time.
1127          *
1128          * Please note that currently, atmel_sha_final_req() never returns 0.
1129          */
1130
1131         dd->resume = atmel_sha_done;
1132         if (ctx->op == SHA_OP_UPDATE) {
1133                 err = atmel_sha_update_req(dd);
1134                 if (!err && (ctx->flags & SHA_FLAGS_FINUP))
1135                         /* no final() after finup() */
1136                         err = atmel_sha_final_req(dd);
1137         } else if (ctx->op == SHA_OP_FINAL) {
1138                 err = atmel_sha_final_req(dd);
1139         }
1140
1141         if (!err)
1142                 /* done_task will not finish it, so do it here */
1143                 atmel_sha_finish_req(req, err);
1144
1145         dev_dbg(dd->dev, "exit, err: %d\n", err);
1146
1147         return err;
1148 }
1149
1150 static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
1151 {
1152         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1153         struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
1154         struct atmel_sha_dev *dd = tctx->dd;
1155
1156         ctx->op = op;
1157
1158         return atmel_sha_handle_queue(dd, req);
1159 }
1160
1161 static int atmel_sha_update(struct ahash_request *req)
1162 {
1163         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1164
1165         if (!req->nbytes)
1166                 return 0;
1167
1168         ctx->total = req->nbytes;
1169         ctx->sg = req->src;
1170         ctx->offset = 0;
1171
1172         if (ctx->flags & SHA_FLAGS_FINUP) {
1173                 if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
1174                         /* faster to use CPU for short transfers */
1175                         ctx->flags |= SHA_FLAGS_CPU;
1176         } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
1177                 atmel_sha_append_sg(ctx);
1178                 return 0;
1179         }
1180         return atmel_sha_enqueue(req, SHA_OP_UPDATE);
1181 }
1182
1183 static int atmel_sha_final(struct ahash_request *req)
1184 {
1185         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1186
1187         ctx->flags |= SHA_FLAGS_FINUP;
1188
1189         if (ctx->flags & SHA_FLAGS_ERROR)
1190                 return 0; /* uncompleted hash is not needed */
1191
1192         if (ctx->flags & SHA_FLAGS_PAD)
1193                 /* copy ready hash (+ finalize hmac) */
1194                 return atmel_sha_finish(req);
1195
1196         return atmel_sha_enqueue(req, SHA_OP_FINAL);
1197 }
1198
1199 static int atmel_sha_finup(struct ahash_request *req)
1200 {
1201         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1202         int err1, err2;
1203
1204         ctx->flags |= SHA_FLAGS_FINUP;
1205
1206         err1 = atmel_sha_update(req);
1207         if (err1 == -EINPROGRESS ||
1208             (err1 == -EBUSY && (ahash_request_flags(req) &
1209                                 CRYPTO_TFM_REQ_MAY_BACKLOG)))
1210                 return err1;
1211
1212         /*
1213          * final() has to be always called to cleanup resources
1214          * even if udpate() failed, except EINPROGRESS
1215          */
1216         err2 = atmel_sha_final(req);
1217
1218         return err1 ?: err2;
1219 }
1220
1221 static int atmel_sha_digest(struct ahash_request *req)
1222 {
1223         return atmel_sha_init(req) ?: atmel_sha_finup(req);
1224 }
1225
1226
1227 static int atmel_sha_export(struct ahash_request *req, void *out)
1228 {
1229         const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1230
1231         memcpy(out, ctx, sizeof(*ctx));
1232         return 0;
1233 }
1234
1235 static int atmel_sha_import(struct ahash_request *req, const void *in)
1236 {
1237         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1238
1239         memcpy(ctx, in, sizeof(*ctx));
1240         return 0;
1241 }
1242
1243 static int atmel_sha_cra_init(struct crypto_tfm *tfm)
1244 {
1245         struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
1246
1247         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1248                                  sizeof(struct atmel_sha_reqctx));
1249         ctx->start = atmel_sha_start;
1250
1251         return 0;
1252 }
1253
1254 static struct ahash_alg sha_1_256_algs[] = {
1255 {
1256         .init           = atmel_sha_init,
1257         .update         = atmel_sha_update,
1258         .final          = atmel_sha_final,
1259         .finup          = atmel_sha_finup,
1260         .digest         = atmel_sha_digest,
1261         .export         = atmel_sha_export,
1262         .import         = atmel_sha_import,
1263         .halg = {
1264                 .digestsize     = SHA1_DIGEST_SIZE,
1265                 .statesize      = sizeof(struct atmel_sha_reqctx),
1266                 .base   = {
1267                         .cra_name               = "sha1",
1268                         .cra_driver_name        = "atmel-sha1",
1269                         .cra_priority           = 100,
1270                         .cra_flags              = CRYPTO_ALG_ASYNC,
1271                         .cra_blocksize          = SHA1_BLOCK_SIZE,
1272                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1273                         .cra_alignmask          = 0,
1274                         .cra_module             = THIS_MODULE,
1275                         .cra_init               = atmel_sha_cra_init,
1276                 }
1277         }
1278 },
1279 {
1280         .init           = atmel_sha_init,
1281         .update         = atmel_sha_update,
1282         .final          = atmel_sha_final,
1283         .finup          = atmel_sha_finup,
1284         .digest         = atmel_sha_digest,
1285         .export         = atmel_sha_export,
1286         .import         = atmel_sha_import,
1287         .halg = {
1288                 .digestsize     = SHA256_DIGEST_SIZE,
1289                 .statesize      = sizeof(struct atmel_sha_reqctx),
1290                 .base   = {
1291                         .cra_name               = "sha256",
1292                         .cra_driver_name        = "atmel-sha256",
1293                         .cra_priority           = 100,
1294                         .cra_flags              = CRYPTO_ALG_ASYNC,
1295                         .cra_blocksize          = SHA256_BLOCK_SIZE,
1296                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1297                         .cra_alignmask          = 0,
1298                         .cra_module             = THIS_MODULE,
1299                         .cra_init               = atmel_sha_cra_init,
1300                 }
1301         }
1302 },
1303 };
1304
1305 static struct ahash_alg sha_224_alg = {
1306         .init           = atmel_sha_init,
1307         .update         = atmel_sha_update,
1308         .final          = atmel_sha_final,
1309         .finup          = atmel_sha_finup,
1310         .digest         = atmel_sha_digest,
1311         .export         = atmel_sha_export,
1312         .import         = atmel_sha_import,
1313         .halg = {
1314                 .digestsize     = SHA224_DIGEST_SIZE,
1315                 .statesize      = sizeof(struct atmel_sha_reqctx),
1316                 .base   = {
1317                         .cra_name               = "sha224",
1318                         .cra_driver_name        = "atmel-sha224",
1319                         .cra_priority           = 100,
1320                         .cra_flags              = CRYPTO_ALG_ASYNC,
1321                         .cra_blocksize          = SHA224_BLOCK_SIZE,
1322                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1323                         .cra_alignmask          = 0,
1324                         .cra_module             = THIS_MODULE,
1325                         .cra_init               = atmel_sha_cra_init,
1326                 }
1327         }
1328 };
1329
1330 static struct ahash_alg sha_384_512_algs[] = {
1331 {
1332         .init           = atmel_sha_init,
1333         .update         = atmel_sha_update,
1334         .final          = atmel_sha_final,
1335         .finup          = atmel_sha_finup,
1336         .digest         = atmel_sha_digest,
1337         .export         = atmel_sha_export,
1338         .import         = atmel_sha_import,
1339         .halg = {
1340                 .digestsize     = SHA384_DIGEST_SIZE,
1341                 .statesize      = sizeof(struct atmel_sha_reqctx),
1342                 .base   = {
1343                         .cra_name               = "sha384",
1344                         .cra_driver_name        = "atmel-sha384",
1345                         .cra_priority           = 100,
1346                         .cra_flags              = CRYPTO_ALG_ASYNC,
1347                         .cra_blocksize          = SHA384_BLOCK_SIZE,
1348                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1349                         .cra_alignmask          = 0x3,
1350                         .cra_module             = THIS_MODULE,
1351                         .cra_init               = atmel_sha_cra_init,
1352                 }
1353         }
1354 },
1355 {
1356         .init           = atmel_sha_init,
1357         .update         = atmel_sha_update,
1358         .final          = atmel_sha_final,
1359         .finup          = atmel_sha_finup,
1360         .digest         = atmel_sha_digest,
1361         .export         = atmel_sha_export,
1362         .import         = atmel_sha_import,
1363         .halg = {
1364                 .digestsize     = SHA512_DIGEST_SIZE,
1365                 .statesize      = sizeof(struct atmel_sha_reqctx),
1366                 .base   = {
1367                         .cra_name               = "sha512",
1368                         .cra_driver_name        = "atmel-sha512",
1369                         .cra_priority           = 100,
1370                         .cra_flags              = CRYPTO_ALG_ASYNC,
1371                         .cra_blocksize          = SHA512_BLOCK_SIZE,
1372                         .cra_ctxsize            = sizeof(struct atmel_sha_ctx),
1373                         .cra_alignmask          = 0x3,
1374                         .cra_module             = THIS_MODULE,
1375                         .cra_init               = atmel_sha_cra_init,
1376                 }
1377         }
1378 },
1379 };
1380
1381 static void atmel_sha_queue_task(unsigned long data)
1382 {
1383         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1384
1385         atmel_sha_handle_queue(dd, NULL);
1386 }
1387
1388 static int atmel_sha_done(struct atmel_sha_dev *dd)
1389 {
1390         int err = 0;
1391
1392         if (SHA_FLAGS_CPU & dd->flags) {
1393                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1394                         dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
1395                         goto finish;
1396                 }
1397         } else if (SHA_FLAGS_DMA_READY & dd->flags) {
1398                 if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
1399                         dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
1400                         atmel_sha_update_dma_stop(dd);
1401                         if (dd->err) {
1402                                 err = dd->err;
1403                                 goto finish;
1404                         }
1405                 }
1406                 if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
1407                         /* hash or semi-hash ready */
1408                         dd->flags &= ~(SHA_FLAGS_DMA_READY |
1409                                                 SHA_FLAGS_OUTPUT_READY);
1410                         err = atmel_sha_update_dma_start(dd);
1411                         if (err != -EINPROGRESS)
1412                                 goto finish;
1413                 }
1414         }
1415         return err;
1416
1417 finish:
1418         /* finish curent request */
1419         atmel_sha_finish_req(dd->req, err);
1420
1421         return err;
1422 }
1423
1424 static void atmel_sha_done_task(unsigned long data)
1425 {
1426         struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
1427
1428         dd->is_async = true;
1429         (void)dd->resume(dd);
1430 }
1431
1432 static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
1433 {
1434         struct atmel_sha_dev *sha_dd = dev_id;
1435         u32 reg;
1436
1437         reg = atmel_sha_read(sha_dd, SHA_ISR);
1438         if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
1439                 atmel_sha_write(sha_dd, SHA_IDR, reg);
1440                 if (SHA_FLAGS_BUSY & sha_dd->flags) {
1441                         sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
1442                         if (!(SHA_FLAGS_CPU & sha_dd->flags))
1443                                 sha_dd->flags |= SHA_FLAGS_DMA_READY;
1444                         tasklet_schedule(&sha_dd->done_task);
1445                 } else {
1446                         dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
1447                 }
1448                 return IRQ_HANDLED;
1449         }
1450
1451         return IRQ_NONE;
1452 }
1453
1454
1455 /* DMA transfer functions */
1456
1457 static bool atmel_sha_dma_check_aligned(struct atmel_sha_dev *dd,
1458                                         struct scatterlist *sg,
1459                                         size_t len)
1460 {
1461         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1462         struct ahash_request *req = dd->req;
1463         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1464         size_t bs = ctx->block_size;
1465         int nents;
1466
1467         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
1468                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
1469                         return false;
1470
1471                 /*
1472                  * This is the last sg, the only one that is allowed to
1473                  * have an unaligned length.
1474                  */
1475                 if (len <= sg->length) {
1476                         dma->nents = nents + 1;
1477                         dma->last_sg_length = sg->length;
1478                         sg->length = ALIGN(len, sizeof(u32));
1479                         return true;
1480                 }
1481
1482                 /* All other sg lengths MUST be aligned to the block size. */
1483                 if (!IS_ALIGNED(sg->length, bs))
1484                         return false;
1485
1486                 len -= sg->length;
1487         }
1488
1489         return false;
1490 }
1491
1492 static void atmel_sha_dma_callback2(void *data)
1493 {
1494         struct atmel_sha_dev *dd = data;
1495         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1496         struct scatterlist *sg;
1497         int nents;
1498
1499         dmaengine_terminate_all(dma->chan);
1500         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1501
1502         sg = dma->sg;
1503         for (nents = 0; nents < dma->nents - 1; ++nents)
1504                 sg = sg_next(sg);
1505         sg->length = dma->last_sg_length;
1506
1507         dd->is_async = true;
1508         (void)atmel_sha_wait_for_data_ready(dd, dd->resume);
1509 }
1510
1511 static int atmel_sha_dma_start(struct atmel_sha_dev *dd,
1512                                struct scatterlist *src,
1513                                size_t len,
1514                                atmel_sha_fn_t resume)
1515 {
1516         struct atmel_sha_dma *dma = &dd->dma_lch_in;
1517         struct dma_slave_config *config = &dma->dma_conf;
1518         struct dma_chan *chan = dma->chan;
1519         struct dma_async_tx_descriptor *desc;
1520         dma_cookie_t cookie;
1521         unsigned int sg_len;
1522         int err;
1523
1524         dd->resume = resume;
1525
1526         /*
1527          * dma->nents has already been initialized by
1528          * atmel_sha_dma_check_aligned().
1529          */
1530         dma->sg = src;
1531         sg_len = dma_map_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1532         if (!sg_len) {
1533                 err = -ENOMEM;
1534                 goto exit;
1535         }
1536
1537         config->src_maxburst = 16;
1538         config->dst_maxburst = 16;
1539         err = dmaengine_slave_config(chan, config);
1540         if (err)
1541                 goto unmap_sg;
1542
1543         desc = dmaengine_prep_slave_sg(chan, dma->sg, sg_len, DMA_MEM_TO_DEV,
1544                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1545         if (!desc) {
1546                 err = -ENOMEM;
1547                 goto unmap_sg;
1548         }
1549
1550         desc->callback = atmel_sha_dma_callback2;
1551         desc->callback_param = dd;
1552         cookie = dmaengine_submit(desc);
1553         err = dma_submit_error(cookie);
1554         if (err)
1555                 goto unmap_sg;
1556
1557         dma_async_issue_pending(chan);
1558
1559         return -EINPROGRESS;
1560
1561 unmap_sg:
1562         dma_unmap_sg(dd->dev, dma->sg, dma->nents, DMA_TO_DEVICE);
1563 exit:
1564         return atmel_sha_complete(dd, err);
1565 }
1566
1567
1568 /* CPU transfer functions */
1569
1570 static int atmel_sha_cpu_transfer(struct atmel_sha_dev *dd)
1571 {
1572         struct ahash_request *req = dd->req;
1573         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1574         const u32 *words = (const u32 *)ctx->buffer;
1575         size_t i, num_words;
1576         u32 isr, din, din_inc;
1577
1578         din_inc = (ctx->flags & SHA_FLAGS_IDATAR0) ? 0 : 1;
1579         for (;;) {
1580                 /* Write data into the Input Data Registers. */
1581                 num_words = DIV_ROUND_UP(ctx->bufcnt, sizeof(u32));
1582                 for (i = 0, din = 0; i < num_words; ++i, din += din_inc)
1583                         atmel_sha_write(dd, SHA_REG_DIN(din), words[i]);
1584
1585                 ctx->offset += ctx->bufcnt;
1586                 ctx->total -= ctx->bufcnt;
1587
1588                 if (!ctx->total)
1589                         break;
1590
1591                 /*
1592                  * Prepare next block:
1593                  * Fill ctx->buffer now with the next data to be written into
1594                  * IDATARx: it gives time for the SHA hardware to process
1595                  * the current data so the SHA_INT_DATARDY flag might be set
1596                  * in SHA_ISR when polling this register at the beginning of
1597                  * the next loop.
1598                  */
1599                 ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1600                 scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1601                                          ctx->offset, ctx->bufcnt, 0);
1602
1603                 /* Wait for hardware to be ready again. */
1604                 isr = atmel_sha_read(dd, SHA_ISR);
1605                 if (!(isr & SHA_INT_DATARDY)) {
1606                         /* Not ready yet. */
1607                         dd->resume = atmel_sha_cpu_transfer;
1608                         atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
1609                         return -EINPROGRESS;
1610                 }
1611         }
1612
1613         if (unlikely(!(ctx->flags & SHA_FLAGS_WAIT_DATARDY)))
1614                 return dd->cpu_transfer_complete(dd);
1615
1616         return atmel_sha_wait_for_data_ready(dd, dd->cpu_transfer_complete);
1617 }
1618
1619 static int atmel_sha_cpu_start(struct atmel_sha_dev *dd,
1620                                struct scatterlist *sg,
1621                                unsigned int len,
1622                                bool idatar0_only,
1623                                bool wait_data_ready,
1624                                atmel_sha_fn_t resume)
1625 {
1626         struct ahash_request *req = dd->req;
1627         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1628
1629         if (!len)
1630                 return resume(dd);
1631
1632         ctx->flags &= ~(SHA_FLAGS_IDATAR0 | SHA_FLAGS_WAIT_DATARDY);
1633
1634         if (idatar0_only)
1635                 ctx->flags |= SHA_FLAGS_IDATAR0;
1636
1637         if (wait_data_ready)
1638                 ctx->flags |= SHA_FLAGS_WAIT_DATARDY;
1639
1640         ctx->sg = sg;
1641         ctx->total = len;
1642         ctx->offset = 0;
1643
1644         /* Prepare the first block to be written. */
1645         ctx->bufcnt = min_t(size_t, ctx->block_size, ctx->total);
1646         scatterwalk_map_and_copy(ctx->buffer, ctx->sg,
1647                                  ctx->offset, ctx->bufcnt, 0);
1648
1649         dd->cpu_transfer_complete = resume;
1650         return atmel_sha_cpu_transfer(dd);
1651 }
1652
1653 static int atmel_sha_cpu_hash(struct atmel_sha_dev *dd,
1654                               const void *data, unsigned int datalen,
1655                               bool auto_padding,
1656                               atmel_sha_fn_t resume)
1657 {
1658         struct ahash_request *req = dd->req;
1659         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1660         u32 msglen = (auto_padding) ? datalen : 0;
1661         u32 mr = SHA_MR_MODE_AUTO;
1662
1663         if (!(IS_ALIGNED(datalen, ctx->block_size) || auto_padding))
1664                 return atmel_sha_complete(dd, -EINVAL);
1665
1666         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1667         atmel_sha_write(dd, SHA_MR, mr);
1668         atmel_sha_write(dd, SHA_MSR, msglen);
1669         atmel_sha_write(dd, SHA_BCR, msglen);
1670         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1671
1672         sg_init_one(&dd->tmp, data, datalen);
1673         return atmel_sha_cpu_start(dd, &dd->tmp, datalen, false, true, resume);
1674 }
1675
1676
1677 /* hmac functions */
1678
1679 struct atmel_sha_hmac_key {
1680         bool                    valid;
1681         unsigned int            keylen;
1682         u8                      buffer[SHA512_BLOCK_SIZE];
1683         u8                      *keydup;
1684 };
1685
1686 static inline void atmel_sha_hmac_key_init(struct atmel_sha_hmac_key *hkey)
1687 {
1688         memset(hkey, 0, sizeof(*hkey));
1689 }
1690
1691 static inline void atmel_sha_hmac_key_release(struct atmel_sha_hmac_key *hkey)
1692 {
1693         kfree(hkey->keydup);
1694         memset(hkey, 0, sizeof(*hkey));
1695 }
1696
1697 static inline int atmel_sha_hmac_key_set(struct atmel_sha_hmac_key *hkey,
1698                                          const u8 *key,
1699                                          unsigned int keylen)
1700 {
1701         atmel_sha_hmac_key_release(hkey);
1702
1703         if (keylen > sizeof(hkey->buffer)) {
1704                 hkey->keydup = kmemdup(key, keylen, GFP_KERNEL);
1705                 if (!hkey->keydup)
1706                         return -ENOMEM;
1707
1708         } else {
1709                 memcpy(hkey->buffer, key, keylen);
1710         }
1711
1712         hkey->valid = true;
1713         hkey->keylen = keylen;
1714         return 0;
1715 }
1716
1717 static inline bool atmel_sha_hmac_key_get(const struct atmel_sha_hmac_key *hkey,
1718                                           const u8 **key,
1719                                           unsigned int *keylen)
1720 {
1721         if (!hkey->valid)
1722                 return false;
1723
1724         *keylen = hkey->keylen;
1725         *key = (hkey->keydup) ? hkey->keydup : hkey->buffer;
1726         return true;
1727 }
1728
1729
1730 struct atmel_sha_hmac_ctx {
1731         struct atmel_sha_ctx    base;
1732
1733         struct atmel_sha_hmac_key       hkey;
1734         u32                     ipad[SHA512_BLOCK_SIZE / sizeof(u32)];
1735         u32                     opad[SHA512_BLOCK_SIZE / sizeof(u32)];
1736         atmel_sha_fn_t          resume;
1737 };
1738
1739 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1740                                 atmel_sha_fn_t resume);
1741 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1742                                       const u8 *key, unsigned int keylen);
1743 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd);
1744 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd);
1745 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd);
1746 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd);
1747
1748 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd);
1749 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd);
1750 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd);
1751 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd);
1752
1753 static int atmel_sha_hmac_setup(struct atmel_sha_dev *dd,
1754                                 atmel_sha_fn_t resume)
1755 {
1756         struct ahash_request *req = dd->req;
1757         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1758         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1759         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1760         unsigned int keylen;
1761         const u8 *key;
1762         size_t bs;
1763
1764         hmac->resume = resume;
1765         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
1766         case SHA_FLAGS_SHA1:
1767                 ctx->block_size = SHA1_BLOCK_SIZE;
1768                 ctx->hash_size = SHA1_DIGEST_SIZE;
1769                 break;
1770
1771         case SHA_FLAGS_SHA224:
1772                 ctx->block_size = SHA224_BLOCK_SIZE;
1773                 ctx->hash_size = SHA256_DIGEST_SIZE;
1774                 break;
1775
1776         case SHA_FLAGS_SHA256:
1777                 ctx->block_size = SHA256_BLOCK_SIZE;
1778                 ctx->hash_size = SHA256_DIGEST_SIZE;
1779                 break;
1780
1781         case SHA_FLAGS_SHA384:
1782                 ctx->block_size = SHA384_BLOCK_SIZE;
1783                 ctx->hash_size = SHA512_DIGEST_SIZE;
1784                 break;
1785
1786         case SHA_FLAGS_SHA512:
1787                 ctx->block_size = SHA512_BLOCK_SIZE;
1788                 ctx->hash_size = SHA512_DIGEST_SIZE;
1789                 break;
1790
1791         default:
1792                 return atmel_sha_complete(dd, -EINVAL);
1793         }
1794         bs = ctx->block_size;
1795
1796         if (likely(!atmel_sha_hmac_key_get(&hmac->hkey, &key, &keylen)))
1797                 return resume(dd);
1798
1799         /* Compute K' from K. */
1800         if (unlikely(keylen > bs))
1801                 return atmel_sha_hmac_prehash_key(dd, key, keylen);
1802
1803         /* Prepare ipad. */
1804         memcpy((u8 *)hmac->ipad, key, keylen);
1805         memset((u8 *)hmac->ipad + keylen, 0, bs - keylen);
1806         return atmel_sha_hmac_compute_ipad_hash(dd);
1807 }
1808
1809 static int atmel_sha_hmac_prehash_key(struct atmel_sha_dev *dd,
1810                                       const u8 *key, unsigned int keylen)
1811 {
1812         return atmel_sha_cpu_hash(dd, key, keylen, true,
1813                                   atmel_sha_hmac_prehash_key_done);
1814 }
1815
1816 static int atmel_sha_hmac_prehash_key_done(struct atmel_sha_dev *dd)
1817 {
1818         struct ahash_request *req = dd->req;
1819         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1820         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1821         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1822         size_t ds = crypto_ahash_digestsize(tfm);
1823         size_t bs = ctx->block_size;
1824         size_t i, num_words = ds / sizeof(u32);
1825
1826         /* Prepare ipad. */
1827         for (i = 0; i < num_words; ++i)
1828                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1829         memset((u8 *)hmac->ipad + ds, 0, bs - ds);
1830         return atmel_sha_hmac_compute_ipad_hash(dd);
1831 }
1832
1833 static int atmel_sha_hmac_compute_ipad_hash(struct atmel_sha_dev *dd)
1834 {
1835         struct ahash_request *req = dd->req;
1836         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1837         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1838         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1839         size_t bs = ctx->block_size;
1840         size_t i, num_words = bs / sizeof(u32);
1841
1842         memcpy(hmac->opad, hmac->ipad, bs);
1843         for (i = 0; i < num_words; ++i) {
1844                 hmac->ipad[i] ^= 0x36363636;
1845                 hmac->opad[i] ^= 0x5c5c5c5c;
1846         }
1847
1848         return atmel_sha_cpu_hash(dd, hmac->ipad, bs, false,
1849                                   atmel_sha_hmac_compute_opad_hash);
1850 }
1851
1852 static int atmel_sha_hmac_compute_opad_hash(struct atmel_sha_dev *dd)
1853 {
1854         struct ahash_request *req = dd->req;
1855         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1856         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1857         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1858         size_t bs = ctx->block_size;
1859         size_t hs = ctx->hash_size;
1860         size_t i, num_words = hs / sizeof(u32);
1861
1862         for (i = 0; i < num_words; ++i)
1863                 hmac->ipad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1864         return atmel_sha_cpu_hash(dd, hmac->opad, bs, false,
1865                                   atmel_sha_hmac_setup_done);
1866 }
1867
1868 static int atmel_sha_hmac_setup_done(struct atmel_sha_dev *dd)
1869 {
1870         struct ahash_request *req = dd->req;
1871         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1872         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1873         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1874         size_t hs = ctx->hash_size;
1875         size_t i, num_words = hs / sizeof(u32);
1876
1877         for (i = 0; i < num_words; ++i)
1878                 hmac->opad[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1879         atmel_sha_hmac_key_release(&hmac->hkey);
1880         return hmac->resume(dd);
1881 }
1882
1883 static int atmel_sha_hmac_start(struct atmel_sha_dev *dd)
1884 {
1885         struct ahash_request *req = dd->req;
1886         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1887         int err;
1888
1889         err = atmel_sha_hw_init(dd);
1890         if (err)
1891                 return atmel_sha_complete(dd, err);
1892
1893         switch (ctx->op) {
1894         case SHA_OP_INIT:
1895                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_init_done);
1896                 break;
1897
1898         case SHA_OP_UPDATE:
1899                 dd->resume = atmel_sha_done;
1900                 err = atmel_sha_update_req(dd);
1901                 break;
1902
1903         case SHA_OP_FINAL:
1904                 dd->resume = atmel_sha_hmac_final;
1905                 err = atmel_sha_final_req(dd);
1906                 break;
1907
1908         case SHA_OP_DIGEST:
1909                 err = atmel_sha_hmac_setup(dd, atmel_sha_hmac_digest2);
1910                 break;
1911
1912         default:
1913                 return atmel_sha_complete(dd, -EINVAL);
1914         }
1915
1916         return err;
1917 }
1918
1919 static int atmel_sha_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
1920                                  unsigned int keylen)
1921 {
1922         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1923
1924         if (atmel_sha_hmac_key_set(&hmac->hkey, key, keylen)) {
1925                 crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1926                 return -EINVAL;
1927         }
1928
1929         return 0;
1930 }
1931
1932 static int atmel_sha_hmac_init(struct ahash_request *req)
1933 {
1934         int err;
1935
1936         err = atmel_sha_init(req);
1937         if (err)
1938                 return err;
1939
1940         return atmel_sha_enqueue(req, SHA_OP_INIT);
1941 }
1942
1943 static int atmel_sha_hmac_init_done(struct atmel_sha_dev *dd)
1944 {
1945         struct ahash_request *req = dd->req;
1946         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1947         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1948         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1949         size_t bs = ctx->block_size;
1950         size_t hs = ctx->hash_size;
1951
1952         ctx->bufcnt = 0;
1953         ctx->digcnt[0] = bs;
1954         ctx->digcnt[1] = 0;
1955         ctx->flags |= SHA_FLAGS_RESTORE;
1956         memcpy(ctx->digest, hmac->ipad, hs);
1957         return atmel_sha_complete(dd, 0);
1958 }
1959
1960 static int atmel_sha_hmac_final(struct atmel_sha_dev *dd)
1961 {
1962         struct ahash_request *req = dd->req;
1963         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
1964         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1965         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
1966         u32 *digest = (u32 *)ctx->digest;
1967         size_t ds = crypto_ahash_digestsize(tfm);
1968         size_t bs = ctx->block_size;
1969         size_t hs = ctx->hash_size;
1970         size_t i, num_words;
1971         u32 mr;
1972
1973         /* Save d = SHA((K' + ipad) | msg). */
1974         num_words = ds / sizeof(u32);
1975         for (i = 0; i < num_words; ++i)
1976                 digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
1977
1978         /* Restore context to finish computing SHA((K' + opad) | d). */
1979         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
1980         num_words = hs / sizeof(u32);
1981         for (i = 0; i < num_words; ++i)
1982                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
1983
1984         mr = SHA_MR_MODE_AUTO | SHA_MR_UIHV;
1985         mr |= (ctx->flags & SHA_FLAGS_ALGO_MASK);
1986         atmel_sha_write(dd, SHA_MR, mr);
1987         atmel_sha_write(dd, SHA_MSR, bs + ds);
1988         atmel_sha_write(dd, SHA_BCR, ds);
1989         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
1990
1991         sg_init_one(&dd->tmp, digest, ds);
1992         return atmel_sha_cpu_start(dd, &dd->tmp, ds, false, true,
1993                                    atmel_sha_hmac_final_done);
1994 }
1995
1996 static int atmel_sha_hmac_final_done(struct atmel_sha_dev *dd)
1997 {
1998         /*
1999          * req->result might not be sizeof(u32) aligned, so copy the
2000          * digest into ctx->digest[] before memcpy() the data into
2001          * req->result.
2002          */
2003         atmel_sha_copy_hash(dd->req);
2004         atmel_sha_copy_ready_hash(dd->req);
2005         return atmel_sha_complete(dd, 0);
2006 }
2007
2008 static int atmel_sha_hmac_digest(struct ahash_request *req)
2009 {
2010         int err;
2011
2012         err = atmel_sha_init(req);
2013         if (err)
2014                 return err;
2015
2016         return atmel_sha_enqueue(req, SHA_OP_DIGEST);
2017 }
2018
2019 static int atmel_sha_hmac_digest2(struct atmel_sha_dev *dd)
2020 {
2021         struct ahash_request *req = dd->req;
2022         struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
2023         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2024         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2025         size_t hs = ctx->hash_size;
2026         size_t i, num_words = hs / sizeof(u32);
2027         bool use_dma = false;
2028         u32 mr;
2029
2030         /* Special case for empty message. */
2031         if (!req->nbytes)
2032                 return atmel_sha_complete(dd, -EINVAL); // TODO:
2033
2034         /* Check DMA threshold and alignment. */
2035         if (req->nbytes > ATMEL_SHA_DMA_THRESHOLD &&
2036             atmel_sha_dma_check_aligned(dd, req->src, req->nbytes))
2037                 use_dma = true;
2038
2039         /* Write both initial hash values to compute a HMAC. */
2040         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2041         for (i = 0; i < num_words; ++i)
2042                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2043
2044         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2045         for (i = 0; i < num_words; ++i)
2046                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2047
2048         /* Write the Mode, Message Size, Bytes Count then Control Registers. */
2049         mr = (SHA_MR_HMAC | SHA_MR_DUALBUFF);
2050         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2051         if (use_dma)
2052                 mr |= SHA_MR_MODE_IDATAR0;
2053         else
2054                 mr |= SHA_MR_MODE_AUTO;
2055         atmel_sha_write(dd, SHA_MR, mr);
2056
2057         atmel_sha_write(dd, SHA_MSR, req->nbytes);
2058         atmel_sha_write(dd, SHA_BCR, req->nbytes);
2059
2060         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2061
2062         /* Process data. */
2063         if (use_dma)
2064                 return atmel_sha_dma_start(dd, req->src, req->nbytes,
2065                                            atmel_sha_hmac_final_done);
2066
2067         return atmel_sha_cpu_start(dd, req->src, req->nbytes, false, true,
2068                                    atmel_sha_hmac_final_done);
2069 }
2070
2071 static int atmel_sha_hmac_cra_init(struct crypto_tfm *tfm)
2072 {
2073         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2074
2075         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
2076                                  sizeof(struct atmel_sha_reqctx));
2077         hmac->base.start = atmel_sha_hmac_start;
2078         atmel_sha_hmac_key_init(&hmac->hkey);
2079
2080         return 0;
2081 }
2082
2083 static void atmel_sha_hmac_cra_exit(struct crypto_tfm *tfm)
2084 {
2085         struct atmel_sha_hmac_ctx *hmac = crypto_tfm_ctx(tfm);
2086
2087         atmel_sha_hmac_key_release(&hmac->hkey);
2088 }
2089
2090 static struct ahash_alg sha_hmac_algs[] = {
2091 {
2092         .init           = atmel_sha_hmac_init,
2093         .update         = atmel_sha_update,
2094         .final          = atmel_sha_final,
2095         .digest         = atmel_sha_hmac_digest,
2096         .setkey         = atmel_sha_hmac_setkey,
2097         .export         = atmel_sha_export,
2098         .import         = atmel_sha_import,
2099         .halg = {
2100                 .digestsize     = SHA1_DIGEST_SIZE,
2101                 .statesize      = sizeof(struct atmel_sha_reqctx),
2102                 .base   = {
2103                         .cra_name               = "hmac(sha1)",
2104                         .cra_driver_name        = "atmel-hmac-sha1",
2105                         .cra_priority           = 100,
2106                         .cra_flags              = CRYPTO_ALG_ASYNC,
2107                         .cra_blocksize          = SHA1_BLOCK_SIZE,
2108                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2109                         .cra_alignmask          = 0,
2110                         .cra_module             = THIS_MODULE,
2111                         .cra_init               = atmel_sha_hmac_cra_init,
2112                         .cra_exit               = atmel_sha_hmac_cra_exit,
2113                 }
2114         }
2115 },
2116 {
2117         .init           = atmel_sha_hmac_init,
2118         .update         = atmel_sha_update,
2119         .final          = atmel_sha_final,
2120         .digest         = atmel_sha_hmac_digest,
2121         .setkey         = atmel_sha_hmac_setkey,
2122         .export         = atmel_sha_export,
2123         .import         = atmel_sha_import,
2124         .halg = {
2125                 .digestsize     = SHA224_DIGEST_SIZE,
2126                 .statesize      = sizeof(struct atmel_sha_reqctx),
2127                 .base   = {
2128                         .cra_name               = "hmac(sha224)",
2129                         .cra_driver_name        = "atmel-hmac-sha224",
2130                         .cra_priority           = 100,
2131                         .cra_flags              = CRYPTO_ALG_ASYNC,
2132                         .cra_blocksize          = SHA224_BLOCK_SIZE,
2133                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2134                         .cra_alignmask          = 0,
2135                         .cra_module             = THIS_MODULE,
2136                         .cra_init               = atmel_sha_hmac_cra_init,
2137                         .cra_exit               = atmel_sha_hmac_cra_exit,
2138                 }
2139         }
2140 },
2141 {
2142         .init           = atmel_sha_hmac_init,
2143         .update         = atmel_sha_update,
2144         .final          = atmel_sha_final,
2145         .digest         = atmel_sha_hmac_digest,
2146         .setkey         = atmel_sha_hmac_setkey,
2147         .export         = atmel_sha_export,
2148         .import         = atmel_sha_import,
2149         .halg = {
2150                 .digestsize     = SHA256_DIGEST_SIZE,
2151                 .statesize      = sizeof(struct atmel_sha_reqctx),
2152                 .base   = {
2153                         .cra_name               = "hmac(sha256)",
2154                         .cra_driver_name        = "atmel-hmac-sha256",
2155                         .cra_priority           = 100,
2156                         .cra_flags              = CRYPTO_ALG_ASYNC,
2157                         .cra_blocksize          = SHA256_BLOCK_SIZE,
2158                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2159                         .cra_alignmask          = 0,
2160                         .cra_module             = THIS_MODULE,
2161                         .cra_init               = atmel_sha_hmac_cra_init,
2162                         .cra_exit               = atmel_sha_hmac_cra_exit,
2163                 }
2164         }
2165 },
2166 {
2167         .init           = atmel_sha_hmac_init,
2168         .update         = atmel_sha_update,
2169         .final          = atmel_sha_final,
2170         .digest         = atmel_sha_hmac_digest,
2171         .setkey         = atmel_sha_hmac_setkey,
2172         .export         = atmel_sha_export,
2173         .import         = atmel_sha_import,
2174         .halg = {
2175                 .digestsize     = SHA384_DIGEST_SIZE,
2176                 .statesize      = sizeof(struct atmel_sha_reqctx),
2177                 .base   = {
2178                         .cra_name               = "hmac(sha384)",
2179                         .cra_driver_name        = "atmel-hmac-sha384",
2180                         .cra_priority           = 100,
2181                         .cra_flags              = CRYPTO_ALG_ASYNC,
2182                         .cra_blocksize          = SHA384_BLOCK_SIZE,
2183                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2184                         .cra_alignmask          = 0,
2185                         .cra_module             = THIS_MODULE,
2186                         .cra_init               = atmel_sha_hmac_cra_init,
2187                         .cra_exit               = atmel_sha_hmac_cra_exit,
2188                 }
2189         }
2190 },
2191 {
2192         .init           = atmel_sha_hmac_init,
2193         .update         = atmel_sha_update,
2194         .final          = atmel_sha_final,
2195         .digest         = atmel_sha_hmac_digest,
2196         .setkey         = atmel_sha_hmac_setkey,
2197         .export         = atmel_sha_export,
2198         .import         = atmel_sha_import,
2199         .halg = {
2200                 .digestsize     = SHA512_DIGEST_SIZE,
2201                 .statesize      = sizeof(struct atmel_sha_reqctx),
2202                 .base   = {
2203                         .cra_name               = "hmac(sha512)",
2204                         .cra_driver_name        = "atmel-hmac-sha512",
2205                         .cra_priority           = 100,
2206                         .cra_flags              = CRYPTO_ALG_ASYNC,
2207                         .cra_blocksize          = SHA512_BLOCK_SIZE,
2208                         .cra_ctxsize            = sizeof(struct atmel_sha_hmac_ctx),
2209                         .cra_alignmask          = 0,
2210                         .cra_module             = THIS_MODULE,
2211                         .cra_init               = atmel_sha_hmac_cra_init,
2212                         .cra_exit               = atmel_sha_hmac_cra_exit,
2213                 }
2214         }
2215 },
2216 };
2217
2218 #ifdef CONFIG_CRYPTO_DEV_ATMEL_AUTHENC
2219 /* authenc functions */
2220
2221 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd);
2222 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd);
2223 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd);
2224
2225
2226 struct atmel_sha_authenc_ctx {
2227         struct crypto_ahash     *tfm;
2228 };
2229
2230 struct atmel_sha_authenc_reqctx {
2231         struct atmel_sha_reqctx base;
2232
2233         atmel_aes_authenc_fn_t  cb;
2234         struct atmel_aes_dev    *aes_dev;
2235
2236         /* _init() parameters. */
2237         struct scatterlist      *assoc;
2238         u32                     assoclen;
2239         u32                     textlen;
2240
2241         /* _final() parameters. */
2242         u32                     *digest;
2243         unsigned int            digestlen;
2244 };
2245
2246 static void atmel_sha_authenc_complete(struct crypto_async_request *areq,
2247                                        int err)
2248 {
2249         struct ahash_request *req = areq->data;
2250         struct atmel_sha_authenc_reqctx *authctx  = ahash_request_ctx(req);
2251
2252         authctx->cb(authctx->aes_dev, err, authctx->base.dd->is_async);
2253 }
2254
2255 static int atmel_sha_authenc_start(struct atmel_sha_dev *dd)
2256 {
2257         struct ahash_request *req = dd->req;
2258         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2259         int err;
2260
2261         /*
2262          * Force atmel_sha_complete() to call req->base.complete(), ie
2263          * atmel_sha_authenc_complete(), which in turn calls authctx->cb().
2264          */
2265         dd->force_complete = true;
2266
2267         err = atmel_sha_hw_init(dd);
2268         return authctx->cb(authctx->aes_dev, err, dd->is_async);
2269 }
2270
2271 bool atmel_sha_authenc_is_ready(void)
2272 {
2273         struct atmel_sha_ctx dummy;
2274
2275         dummy.dd = NULL;
2276         return (atmel_sha_find_dev(&dummy) != NULL);
2277 }
2278 EXPORT_SYMBOL_GPL(atmel_sha_authenc_is_ready);
2279
2280 unsigned int atmel_sha_authenc_get_reqsize(void)
2281 {
2282         return sizeof(struct atmel_sha_authenc_reqctx);
2283 }
2284 EXPORT_SYMBOL_GPL(atmel_sha_authenc_get_reqsize);
2285
2286 struct atmel_sha_authenc_ctx *atmel_sha_authenc_spawn(unsigned long mode)
2287 {
2288         struct atmel_sha_authenc_ctx *auth;
2289         struct crypto_ahash *tfm;
2290         struct atmel_sha_ctx *tctx;
2291         const char *name;
2292         int err = -EINVAL;
2293
2294         switch (mode & SHA_FLAGS_MODE_MASK) {
2295         case SHA_FLAGS_HMAC_SHA1:
2296                 name = "atmel-hmac-sha1";
2297                 break;
2298
2299         case SHA_FLAGS_HMAC_SHA224:
2300                 name = "atmel-hmac-sha224";
2301                 break;
2302
2303         case SHA_FLAGS_HMAC_SHA256:
2304                 name = "atmel-hmac-sha256";
2305                 break;
2306
2307         case SHA_FLAGS_HMAC_SHA384:
2308                 name = "atmel-hmac-sha384";
2309                 break;
2310
2311         case SHA_FLAGS_HMAC_SHA512:
2312                 name = "atmel-hmac-sha512";
2313                 break;
2314
2315         default:
2316                 goto error;
2317         }
2318
2319         tfm = crypto_alloc_ahash(name,
2320                                  CRYPTO_ALG_TYPE_AHASH,
2321                                  CRYPTO_ALG_TYPE_AHASH_MASK);
2322         if (IS_ERR(tfm)) {
2323                 err = PTR_ERR(tfm);
2324                 goto error;
2325         }
2326         tctx = crypto_ahash_ctx(tfm);
2327         tctx->start = atmel_sha_authenc_start;
2328         tctx->flags = mode;
2329
2330         auth = kzalloc(sizeof(*auth), GFP_KERNEL);
2331         if (!auth) {
2332                 err = -ENOMEM;
2333                 goto err_free_ahash;
2334         }
2335         auth->tfm = tfm;
2336
2337         return auth;
2338
2339 err_free_ahash:
2340         crypto_free_ahash(tfm);
2341 error:
2342         return ERR_PTR(err);
2343 }
2344 EXPORT_SYMBOL_GPL(atmel_sha_authenc_spawn);
2345
2346 void atmel_sha_authenc_free(struct atmel_sha_authenc_ctx *auth)
2347 {
2348         if (auth)
2349                 crypto_free_ahash(auth->tfm);
2350         kfree(auth);
2351 }
2352 EXPORT_SYMBOL_GPL(atmel_sha_authenc_free);
2353
2354 int atmel_sha_authenc_setkey(struct atmel_sha_authenc_ctx *auth,
2355                              const u8 *key, unsigned int keylen,
2356                              u32 *flags)
2357 {
2358         struct crypto_ahash *tfm = auth->tfm;
2359         int err;
2360
2361         crypto_ahash_clear_flags(tfm, CRYPTO_TFM_REQ_MASK);
2362         crypto_ahash_set_flags(tfm, *flags & CRYPTO_TFM_REQ_MASK);
2363         err = crypto_ahash_setkey(tfm, key, keylen);
2364         *flags = crypto_ahash_get_flags(tfm);
2365
2366         return err;
2367 }
2368 EXPORT_SYMBOL_GPL(atmel_sha_authenc_setkey);
2369
2370 int atmel_sha_authenc_schedule(struct ahash_request *req,
2371                                struct atmel_sha_authenc_ctx *auth,
2372                                atmel_aes_authenc_fn_t cb,
2373                                struct atmel_aes_dev *aes_dev)
2374 {
2375         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2376         struct atmel_sha_reqctx *ctx = &authctx->base;
2377         struct crypto_ahash *tfm = auth->tfm;
2378         struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
2379         struct atmel_sha_dev *dd;
2380
2381         /* Reset request context (MUST be done first). */
2382         memset(authctx, 0, sizeof(*authctx));
2383
2384         /* Get SHA device. */
2385         dd = atmel_sha_find_dev(tctx);
2386         if (!dd)
2387                 return cb(aes_dev, -ENODEV, false);
2388
2389         /* Init request context. */
2390         ctx->dd = dd;
2391         ctx->buflen = SHA_BUFFER_LEN;
2392         authctx->cb = cb;
2393         authctx->aes_dev = aes_dev;
2394         ahash_request_set_tfm(req, tfm);
2395         ahash_request_set_callback(req, 0, atmel_sha_authenc_complete, req);
2396
2397         return atmel_sha_handle_queue(dd, req);
2398 }
2399 EXPORT_SYMBOL_GPL(atmel_sha_authenc_schedule);
2400
2401 int atmel_sha_authenc_init(struct ahash_request *req,
2402                            struct scatterlist *assoc, unsigned int assoclen,
2403                            unsigned int textlen,
2404                            atmel_aes_authenc_fn_t cb,
2405                            struct atmel_aes_dev *aes_dev)
2406 {
2407         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2408         struct atmel_sha_reqctx *ctx = &authctx->base;
2409         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2410         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2411         struct atmel_sha_dev *dd = ctx->dd;
2412
2413         if (unlikely(!IS_ALIGNED(assoclen, sizeof(u32))))
2414                 return atmel_sha_complete(dd, -EINVAL);
2415
2416         authctx->cb = cb;
2417         authctx->aes_dev = aes_dev;
2418         authctx->assoc = assoc;
2419         authctx->assoclen = assoclen;
2420         authctx->textlen = textlen;
2421
2422         ctx->flags = hmac->base.flags;
2423         return atmel_sha_hmac_setup(dd, atmel_sha_authenc_init2);
2424 }
2425 EXPORT_SYMBOL_GPL(atmel_sha_authenc_init);
2426
2427 static int atmel_sha_authenc_init2(struct atmel_sha_dev *dd)
2428 {
2429         struct ahash_request *req = dd->req;
2430         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2431         struct atmel_sha_reqctx *ctx = &authctx->base;
2432         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2433         struct atmel_sha_hmac_ctx *hmac = crypto_ahash_ctx(tfm);
2434         size_t hs = ctx->hash_size;
2435         size_t i, num_words = hs / sizeof(u32);
2436         u32 mr, msg_size;
2437
2438         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
2439         for (i = 0; i < num_words; ++i)
2440                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->ipad[i]);
2441
2442         atmel_sha_write(dd, SHA_CR, SHA_CR_WUIEHV);
2443         for (i = 0; i < num_words; ++i)
2444                 atmel_sha_write(dd, SHA_REG_DIN(i), hmac->opad[i]);
2445
2446         mr = (SHA_MR_MODE_IDATAR0 |
2447               SHA_MR_HMAC |
2448               SHA_MR_DUALBUFF);
2449         mr |= ctx->flags & SHA_FLAGS_ALGO_MASK;
2450         atmel_sha_write(dd, SHA_MR, mr);
2451
2452         msg_size = authctx->assoclen + authctx->textlen;
2453         atmel_sha_write(dd, SHA_MSR, msg_size);
2454         atmel_sha_write(dd, SHA_BCR, msg_size);
2455
2456         atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
2457
2458         /* Process assoc data. */
2459         return atmel_sha_cpu_start(dd, authctx->assoc, authctx->assoclen,
2460                                    true, false,
2461                                    atmel_sha_authenc_init_done);
2462 }
2463
2464 static int atmel_sha_authenc_init_done(struct atmel_sha_dev *dd)
2465 {
2466         struct ahash_request *req = dd->req;
2467         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2468
2469         return authctx->cb(authctx->aes_dev, 0, dd->is_async);
2470 }
2471
2472 int atmel_sha_authenc_final(struct ahash_request *req,
2473                             u32 *digest, unsigned int digestlen,
2474                             atmel_aes_authenc_fn_t cb,
2475                             struct atmel_aes_dev *aes_dev)
2476 {
2477         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2478         struct atmel_sha_reqctx *ctx = &authctx->base;
2479         struct atmel_sha_dev *dd = ctx->dd;
2480
2481         switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
2482         case SHA_FLAGS_SHA1:
2483                 authctx->digestlen = SHA1_DIGEST_SIZE;
2484                 break;
2485
2486         case SHA_FLAGS_SHA224:
2487                 authctx->digestlen = SHA224_DIGEST_SIZE;
2488                 break;
2489
2490         case SHA_FLAGS_SHA256:
2491                 authctx->digestlen = SHA256_DIGEST_SIZE;
2492                 break;
2493
2494         case SHA_FLAGS_SHA384:
2495                 authctx->digestlen = SHA384_DIGEST_SIZE;
2496                 break;
2497
2498         case SHA_FLAGS_SHA512:
2499                 authctx->digestlen = SHA512_DIGEST_SIZE;
2500                 break;
2501
2502         default:
2503                 return atmel_sha_complete(dd, -EINVAL);
2504         }
2505         if (authctx->digestlen > digestlen)
2506                 authctx->digestlen = digestlen;
2507
2508         authctx->cb = cb;
2509         authctx->aes_dev = aes_dev;
2510         authctx->digest = digest;
2511         return atmel_sha_wait_for_data_ready(dd,
2512                                              atmel_sha_authenc_final_done);
2513 }
2514 EXPORT_SYMBOL_GPL(atmel_sha_authenc_final);
2515
2516 static int atmel_sha_authenc_final_done(struct atmel_sha_dev *dd)
2517 {
2518         struct ahash_request *req = dd->req;
2519         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2520         size_t i, num_words = authctx->digestlen / sizeof(u32);
2521
2522         for (i = 0; i < num_words; ++i)
2523                 authctx->digest[i] = atmel_sha_read(dd, SHA_REG_DIGEST(i));
2524
2525         return atmel_sha_complete(dd, 0);
2526 }
2527
2528 void atmel_sha_authenc_abort(struct ahash_request *req)
2529 {
2530         struct atmel_sha_authenc_reqctx *authctx = ahash_request_ctx(req);
2531         struct atmel_sha_reqctx *ctx = &authctx->base;
2532         struct atmel_sha_dev *dd = ctx->dd;
2533
2534         /* Prevent atmel_sha_complete() from calling req->base.complete(). */
2535         dd->is_async = false;
2536         dd->force_complete = false;
2537         (void)atmel_sha_complete(dd, 0);
2538 }
2539 EXPORT_SYMBOL_GPL(atmel_sha_authenc_abort);
2540
2541 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2542
2543
2544 static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
2545 {
2546         int i;
2547
2548         if (dd->caps.has_hmac)
2549                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++)
2550                         crypto_unregister_ahash(&sha_hmac_algs[i]);
2551
2552         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
2553                 crypto_unregister_ahash(&sha_1_256_algs[i]);
2554
2555         if (dd->caps.has_sha224)
2556                 crypto_unregister_ahash(&sha_224_alg);
2557
2558         if (dd->caps.has_sha_384_512) {
2559                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
2560                         crypto_unregister_ahash(&sha_384_512_algs[i]);
2561         }
2562 }
2563
2564 static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
2565 {
2566         int err, i, j;
2567
2568         for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
2569                 err = crypto_register_ahash(&sha_1_256_algs[i]);
2570                 if (err)
2571                         goto err_sha_1_256_algs;
2572         }
2573
2574         if (dd->caps.has_sha224) {
2575                 err = crypto_register_ahash(&sha_224_alg);
2576                 if (err)
2577                         goto err_sha_224_algs;
2578         }
2579
2580         if (dd->caps.has_sha_384_512) {
2581                 for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
2582                         err = crypto_register_ahash(&sha_384_512_algs[i]);
2583                         if (err)
2584                                 goto err_sha_384_512_algs;
2585                 }
2586         }
2587
2588         if (dd->caps.has_hmac) {
2589                 for (i = 0; i < ARRAY_SIZE(sha_hmac_algs); i++) {
2590                         err = crypto_register_ahash(&sha_hmac_algs[i]);
2591                         if (err)
2592                                 goto err_sha_hmac_algs;
2593                 }
2594         }
2595
2596         return 0;
2597
2598         /*i = ARRAY_SIZE(sha_hmac_algs);*/
2599 err_sha_hmac_algs:
2600         for (j = 0; j < i; j++)
2601                 crypto_unregister_ahash(&sha_hmac_algs[j]);
2602         i = ARRAY_SIZE(sha_384_512_algs);
2603 err_sha_384_512_algs:
2604         for (j = 0; j < i; j++)
2605                 crypto_unregister_ahash(&sha_384_512_algs[j]);
2606         crypto_unregister_ahash(&sha_224_alg);
2607 err_sha_224_algs:
2608         i = ARRAY_SIZE(sha_1_256_algs);
2609 err_sha_1_256_algs:
2610         for (j = 0; j < i; j++)
2611                 crypto_unregister_ahash(&sha_1_256_algs[j]);
2612
2613         return err;
2614 }
2615
2616 static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
2617 {
2618         struct at_dma_slave     *sl = slave;
2619
2620         if (sl && sl->dma_dev == chan->device->dev) {
2621                 chan->private = sl;
2622                 return true;
2623         } else {
2624                 return false;
2625         }
2626 }
2627
2628 static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
2629                                 struct crypto_platform_data *pdata)
2630 {
2631         dma_cap_mask_t mask_in;
2632
2633         /* Try to grab DMA channel */
2634         dma_cap_zero(mask_in);
2635         dma_cap_set(DMA_SLAVE, mask_in);
2636
2637         dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
2638                         atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
2639         if (!dd->dma_lch_in.chan) {
2640                 dev_warn(dd->dev, "no DMA channel available\n");
2641                 return -ENODEV;
2642         }
2643
2644         dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
2645         dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
2646                 SHA_REG_DIN(0);
2647         dd->dma_lch_in.dma_conf.src_maxburst = 1;
2648         dd->dma_lch_in.dma_conf.src_addr_width =
2649                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2650         dd->dma_lch_in.dma_conf.dst_maxburst = 1;
2651         dd->dma_lch_in.dma_conf.dst_addr_width =
2652                 DMA_SLAVE_BUSWIDTH_4_BYTES;
2653         dd->dma_lch_in.dma_conf.device_fc = false;
2654
2655         return 0;
2656 }
2657
2658 static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
2659 {
2660         dma_release_channel(dd->dma_lch_in.chan);
2661 }
2662
2663 static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
2664 {
2665
2666         dd->caps.has_dma = 0;
2667         dd->caps.has_dualbuff = 0;
2668         dd->caps.has_sha224 = 0;
2669         dd->caps.has_sha_384_512 = 0;
2670         dd->caps.has_uihv = 0;
2671         dd->caps.has_hmac = 0;
2672
2673         /* keep only major version number */
2674         switch (dd->hw_version & 0xff0) {
2675         case 0x510:
2676                 dd->caps.has_dma = 1;
2677                 dd->caps.has_dualbuff = 1;
2678                 dd->caps.has_sha224 = 1;
2679                 dd->caps.has_sha_384_512 = 1;
2680                 dd->caps.has_uihv = 1;
2681                 dd->caps.has_hmac = 1;
2682                 break;
2683         case 0x420:
2684                 dd->caps.has_dma = 1;
2685                 dd->caps.has_dualbuff = 1;
2686                 dd->caps.has_sha224 = 1;
2687                 dd->caps.has_sha_384_512 = 1;
2688                 dd->caps.has_uihv = 1;
2689                 break;
2690         case 0x410:
2691                 dd->caps.has_dma = 1;
2692                 dd->caps.has_dualbuff = 1;
2693                 dd->caps.has_sha224 = 1;
2694                 dd->caps.has_sha_384_512 = 1;
2695                 break;
2696         case 0x400:
2697                 dd->caps.has_dma = 1;
2698                 dd->caps.has_dualbuff = 1;
2699                 dd->caps.has_sha224 = 1;
2700                 break;
2701         case 0x320:
2702                 break;
2703         default:
2704                 dev_warn(dd->dev,
2705                                 "Unmanaged sha version, set minimum capabilities\n");
2706                 break;
2707         }
2708 }
2709
2710 #if defined(CONFIG_OF)
2711 static const struct of_device_id atmel_sha_dt_ids[] = {
2712         { .compatible = "atmel,at91sam9g46-sha" },
2713         { /* sentinel */ }
2714 };
2715
2716 MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
2717
2718 static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
2719 {
2720         struct device_node *np = pdev->dev.of_node;
2721         struct crypto_platform_data *pdata;
2722
2723         if (!np) {
2724                 dev_err(&pdev->dev, "device node not found\n");
2725                 return ERR_PTR(-EINVAL);
2726         }
2727
2728         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2729         if (!pdata) {
2730                 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
2731                 return ERR_PTR(-ENOMEM);
2732         }
2733
2734         pdata->dma_slave = devm_kzalloc(&pdev->dev,
2735                                         sizeof(*(pdata->dma_slave)),
2736                                         GFP_KERNEL);
2737         if (!pdata->dma_slave) {
2738                 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
2739                 return ERR_PTR(-ENOMEM);
2740         }
2741
2742         return pdata;
2743 }
2744 #else /* CONFIG_OF */
2745 static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
2746 {
2747         return ERR_PTR(-EINVAL);
2748 }
2749 #endif
2750
2751 static int atmel_sha_probe(struct platform_device *pdev)
2752 {
2753         struct atmel_sha_dev *sha_dd;
2754         struct crypto_platform_data     *pdata;
2755         struct device *dev = &pdev->dev;
2756         struct resource *sha_res;
2757         int err;
2758
2759         sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
2760         if (sha_dd == NULL) {
2761                 dev_err(dev, "unable to alloc data struct.\n");
2762                 err = -ENOMEM;
2763                 goto sha_dd_err;
2764         }
2765
2766         sha_dd->dev = dev;
2767
2768         platform_set_drvdata(pdev, sha_dd);
2769
2770         INIT_LIST_HEAD(&sha_dd->list);
2771         spin_lock_init(&sha_dd->lock);
2772
2773         tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
2774                                         (unsigned long)sha_dd);
2775         tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
2776                                         (unsigned long)sha_dd);
2777
2778         crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
2779
2780         /* Get the base address */
2781         sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2782         if (!sha_res) {
2783                 dev_err(dev, "no MEM resource info\n");
2784                 err = -ENODEV;
2785                 goto res_err;
2786         }
2787         sha_dd->phys_base = sha_res->start;
2788
2789         /* Get the IRQ */
2790         sha_dd->irq = platform_get_irq(pdev,  0);
2791         if (sha_dd->irq < 0) {
2792                 dev_err(dev, "no IRQ resource info\n");
2793                 err = sha_dd->irq;
2794                 goto res_err;
2795         }
2796
2797         err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
2798                                IRQF_SHARED, "atmel-sha", sha_dd);
2799         if (err) {
2800                 dev_err(dev, "unable to request sha irq.\n");
2801                 goto res_err;
2802         }
2803
2804         /* Initializing the clock */
2805         sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
2806         if (IS_ERR(sha_dd->iclk)) {
2807                 dev_err(dev, "clock initialization failed.\n");
2808                 err = PTR_ERR(sha_dd->iclk);
2809                 goto res_err;
2810         }
2811
2812         sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
2813         if (IS_ERR(sha_dd->io_base)) {
2814                 dev_err(dev, "can't ioremap\n");
2815                 err = PTR_ERR(sha_dd->io_base);
2816                 goto res_err;
2817         }
2818
2819         err = clk_prepare(sha_dd->iclk);
2820         if (err)
2821                 goto res_err;
2822
2823         atmel_sha_hw_version_init(sha_dd);
2824
2825         atmel_sha_get_cap(sha_dd);
2826
2827         if (sha_dd->caps.has_dma) {
2828                 pdata = pdev->dev.platform_data;
2829                 if (!pdata) {
2830                         pdata = atmel_sha_of_init(pdev);
2831                         if (IS_ERR(pdata)) {
2832                                 dev_err(&pdev->dev, "platform data not available\n");
2833                                 err = PTR_ERR(pdata);
2834                                 goto iclk_unprepare;
2835                         }
2836                 }
2837                 if (!pdata->dma_slave) {
2838                         err = -ENXIO;
2839                         goto iclk_unprepare;
2840                 }
2841                 err = atmel_sha_dma_init(sha_dd, pdata);
2842                 if (err)
2843                         goto err_sha_dma;
2844
2845                 dev_info(dev, "using %s for DMA transfers\n",
2846                                 dma_chan_name(sha_dd->dma_lch_in.chan));
2847         }
2848
2849         spin_lock(&atmel_sha.lock);
2850         list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
2851         spin_unlock(&atmel_sha.lock);
2852
2853         err = atmel_sha_register_algs(sha_dd);
2854         if (err)
2855                 goto err_algs;
2856
2857         dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
2858                         sha_dd->caps.has_sha224 ? "/SHA224" : "",
2859                         sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
2860
2861         return 0;
2862
2863 err_algs:
2864         spin_lock(&atmel_sha.lock);
2865         list_del(&sha_dd->list);
2866         spin_unlock(&atmel_sha.lock);
2867         if (sha_dd->caps.has_dma)
2868                 atmel_sha_dma_cleanup(sha_dd);
2869 err_sha_dma:
2870 iclk_unprepare:
2871         clk_unprepare(sha_dd->iclk);
2872 res_err:
2873         tasklet_kill(&sha_dd->queue_task);
2874         tasklet_kill(&sha_dd->done_task);
2875 sha_dd_err:
2876         dev_err(dev, "initialization failed.\n");
2877
2878         return err;
2879 }
2880
2881 static int atmel_sha_remove(struct platform_device *pdev)
2882 {
2883         struct atmel_sha_dev *sha_dd;
2884
2885         sha_dd = platform_get_drvdata(pdev);
2886         if (!sha_dd)
2887                 return -ENODEV;
2888         spin_lock(&atmel_sha.lock);
2889         list_del(&sha_dd->list);
2890         spin_unlock(&atmel_sha.lock);
2891
2892         atmel_sha_unregister_algs(sha_dd);
2893
2894         tasklet_kill(&sha_dd->queue_task);
2895         tasklet_kill(&sha_dd->done_task);
2896
2897         if (sha_dd->caps.has_dma)
2898                 atmel_sha_dma_cleanup(sha_dd);
2899
2900         clk_unprepare(sha_dd->iclk);
2901
2902         return 0;
2903 }
2904
2905 static struct platform_driver atmel_sha_driver = {
2906         .probe          = atmel_sha_probe,
2907         .remove         = atmel_sha_remove,
2908         .driver         = {
2909                 .name   = "atmel_sha",
2910                 .of_match_table = of_match_ptr(atmel_sha_dt_ids),
2911         },
2912 };
2913
2914 module_platform_driver(atmel_sha_driver);
2915
2916 MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
2917 MODULE_LICENSE("GPL v2");
2918 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");