Merge tag 'hwlock-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[linux-2.6-microblaze.git] / drivers / crypto / atmel-aes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY      300
45
46 #define ATMEL_AES_BUFFER_ORDER  2
47 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE         1
50 #define CFB16_BLOCK_SIZE        2
51 #define CFB32_BLOCK_SIZE        4
52 #define CFB64_BLOCK_SIZE        8
53
54 #define SIZE_IN_WORDS(x)        ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
72
73 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
74                                  AES_FLAGS_ENCRYPT |            \
75                                  AES_FLAGS_GTAGEN)
76
77 #define AES_FLAGS_BUSY          BIT(3)
78 #define AES_FLAGS_DUMP_REG      BIT(4)
79 #define AES_FLAGS_OWN_SHA       BIT(5)
80
81 #define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
82
83 #define ATMEL_AES_QUEUE_LENGTH  50
84
85 #define ATMEL_AES_DMA_THRESHOLD         256
86
87
88 struct atmel_aes_caps {
89         bool                    has_dualbuff;
90         bool                    has_cfb64;
91         bool                    has_gcm;
92         bool                    has_xts;
93         bool                    has_authenc;
94         u32                     max_burst_size;
95 };
96
97 struct atmel_aes_dev;
98
99
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103 struct atmel_aes_base_ctx {
104         struct atmel_aes_dev    *dd;
105         atmel_aes_fn_t          start;
106         int                     keylen;
107         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
108         u16                     block_size;
109         bool                    is_aead;
110 };
111
112 struct atmel_aes_ctx {
113         struct atmel_aes_base_ctx       base;
114 };
115
116 struct atmel_aes_ctr_ctx {
117         struct atmel_aes_base_ctx       base;
118
119         __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
120         size_t                  offset;
121         struct scatterlist      src[2];
122         struct scatterlist      dst[2];
123         u32                     blocks;
124 };
125
126 struct atmel_aes_gcm_ctx {
127         struct atmel_aes_base_ctx       base;
128
129         struct scatterlist      src[2];
130         struct scatterlist      dst[2];
131
132         __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
133         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
134         __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
135         size_t                  textlen;
136
137         const __be32            *ghash_in;
138         __be32                  *ghash_out;
139         atmel_aes_fn_t          ghash_resume;
140 };
141
142 struct atmel_aes_xts_ctx {
143         struct atmel_aes_base_ctx       base;
144
145         u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
146         struct crypto_skcipher *fallback_tfm;
147 };
148
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151         struct atmel_aes_base_ctx       base;
152         struct atmel_sha_authenc_ctx    *auth;
153 };
154 #endif
155
156 struct atmel_aes_reqctx {
157         unsigned long           mode;
158         u8                      lastc[AES_BLOCK_SIZE];
159         struct skcipher_request fallback_req;
160 };
161
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164         struct atmel_aes_reqctx base;
165
166         struct scatterlist      src[2];
167         struct scatterlist      dst[2];
168         size_t                  textlen;
169         u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171         /* auth_req MUST be place last. */
172         struct ahash_request    auth_req;
173 };
174 #endif
175
176 struct atmel_aes_dma {
177         struct dma_chan         *chan;
178         struct scatterlist      *sg;
179         int                     nents;
180         unsigned int            remainder;
181         unsigned int            sg_len;
182 };
183
184 struct atmel_aes_dev {
185         struct list_head        list;
186         unsigned long           phys_base;
187         void __iomem            *io_base;
188
189         struct crypto_async_request     *areq;
190         struct atmel_aes_base_ctx       *ctx;
191
192         bool                    is_async;
193         atmel_aes_fn_t          resume;
194         atmel_aes_fn_t          cpu_transfer_complete;
195
196         struct device           *dev;
197         struct clk              *iclk;
198         int                     irq;
199
200         unsigned long           flags;
201
202         spinlock_t              lock;
203         struct crypto_queue     queue;
204
205         struct tasklet_struct   done_task;
206         struct tasklet_struct   queue_task;
207
208         size_t                  total;
209         size_t                  datalen;
210         u32                     *data;
211
212         struct atmel_aes_dma    src;
213         struct atmel_aes_dma    dst;
214
215         size_t                  buflen;
216         void                    *buf;
217         struct scatterlist      aligned_sg;
218         struct scatterlist      *real_dst;
219
220         struct atmel_aes_caps   caps;
221
222         u32                     hw_version;
223 };
224
225 struct atmel_aes_drv {
226         struct list_head        dev_list;
227         spinlock_t              lock;
228 };
229
230 static struct atmel_aes_drv atmel_aes = {
231         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 };
234
235 #ifdef VERBOSE_DEBUG
236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 {
238         switch (offset) {
239         case AES_CR:
240                 return "CR";
241
242         case AES_MR:
243                 return "MR";
244
245         case AES_ISR:
246                 return "ISR";
247
248         case AES_IMR:
249                 return "IMR";
250
251         case AES_IER:
252                 return "IER";
253
254         case AES_IDR:
255                 return "IDR";
256
257         case AES_KEYWR(0):
258         case AES_KEYWR(1):
259         case AES_KEYWR(2):
260         case AES_KEYWR(3):
261         case AES_KEYWR(4):
262         case AES_KEYWR(5):
263         case AES_KEYWR(6):
264         case AES_KEYWR(7):
265                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266                 break;
267
268         case AES_IDATAR(0):
269         case AES_IDATAR(1):
270         case AES_IDATAR(2):
271         case AES_IDATAR(3):
272                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273                 break;
274
275         case AES_ODATAR(0):
276         case AES_ODATAR(1):
277         case AES_ODATAR(2):
278         case AES_ODATAR(3):
279                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280                 break;
281
282         case AES_IVR(0):
283         case AES_IVR(1):
284         case AES_IVR(2):
285         case AES_IVR(3):
286                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287                 break;
288
289         case AES_AADLENR:
290                 return "AADLENR";
291
292         case AES_CLENR:
293                 return "CLENR";
294
295         case AES_GHASHR(0):
296         case AES_GHASHR(1):
297         case AES_GHASHR(2):
298         case AES_GHASHR(3):
299                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300                 break;
301
302         case AES_TAGR(0):
303         case AES_TAGR(1):
304         case AES_TAGR(2):
305         case AES_TAGR(3):
306                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307                 break;
308
309         case AES_CTRR:
310                 return "CTRR";
311
312         case AES_GCMHR(0):
313         case AES_GCMHR(1):
314         case AES_GCMHR(2):
315         case AES_GCMHR(3):
316                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317                 break;
318
319         case AES_EMR:
320                 return "EMR";
321
322         case AES_TWR(0):
323         case AES_TWR(1):
324         case AES_TWR(2):
325         case AES_TWR(3):
326                 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327                 break;
328
329         case AES_ALPHAR(0):
330         case AES_ALPHAR(1):
331         case AES_ALPHAR(2):
332         case AES_ALPHAR(3):
333                 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334                 break;
335
336         default:
337                 snprintf(tmp, sz, "0x%02x", offset);
338                 break;
339         }
340
341         return tmp;
342 }
343 #endif /* VERBOSE_DEBUG */
344
345 /* Shared functions */
346
347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 {
349         u32 value = readl_relaxed(dd->io_base + offset);
350
351 #ifdef VERBOSE_DEBUG
352         if (dd->flags & AES_FLAGS_DUMP_REG) {
353                 char tmp[16];
354
355                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357         }
358 #endif /* VERBOSE_DEBUG */
359
360         return value;
361 }
362
363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364                                         u32 offset, u32 value)
365 {
366 #ifdef VERBOSE_DEBUG
367         if (dd->flags & AES_FLAGS_DUMP_REG) {
368                 char tmp[16];
369
370                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372         }
373 #endif /* VERBOSE_DEBUG */
374
375         writel_relaxed(value, dd->io_base + offset);
376 }
377
378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379                                         u32 *value, int count)
380 {
381         for (; count--; value++, offset += 4)
382                 *value = atmel_aes_read(dd, offset);
383 }
384
385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386                               const u32 *value, int count)
387 {
388         for (; count--; value++, offset += 4)
389                 atmel_aes_write(dd, offset, *value);
390 }
391
392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393                                         void *value)
394 {
395         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 }
397
398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399                                          const void *value)
400 {
401         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 }
403
404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405                                                 atmel_aes_fn_t resume)
406 {
407         u32 isr = atmel_aes_read(dd, AES_ISR);
408
409         if (unlikely(isr & AES_INT_DATARDY))
410                 return resume(dd);
411
412         dd->resume = resume;
413         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414         return -EINPROGRESS;
415 }
416
417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 {
419         len &= block_size - 1;
420         return len ? block_size - len : 0;
421 }
422
423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424 {
425         struct atmel_aes_dev *aes_dd;
426
427         spin_lock_bh(&atmel_aes.lock);
428         /* One AES IP per SoC. */
429         aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430                                           struct atmel_aes_dev, list);
431         spin_unlock_bh(&atmel_aes.lock);
432         return aes_dd;
433 }
434
435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436 {
437         int err;
438
439         err = clk_enable(dd->iclk);
440         if (err)
441                 return err;
442
443         atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444         atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445
446         return 0;
447 }
448
449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450 {
451         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452 }
453
454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455 {
456         int err;
457
458         err = atmel_aes_hw_init(dd);
459         if (err)
460                 return err;
461
462         dd->hw_version = atmel_aes_get_version(dd);
463
464         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465
466         clk_disable(dd->iclk);
467         return 0;
468 }
469
470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471                                       const struct atmel_aes_reqctx *rctx)
472 {
473         /* Clear all but persistent flags and set request flags. */
474         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475 }
476
477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478 {
479         return (dd->flags & AES_FLAGS_ENCRYPT);
480 }
481
482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484 #endif
485
486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487 {
488         struct skcipher_request *req = skcipher_request_cast(dd->areq);
489         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492
493         if (req->cryptlen < ivsize)
494                 return;
495
496         if (rctx->mode & AES_FLAGS_ENCRYPT) {
497                 scatterwalk_map_and_copy(req->iv, req->dst,
498                                          req->cryptlen - ivsize, ivsize, 0);
499         } else {
500                 if (req->src == req->dst)
501                         memcpy(req->iv, rctx->lastc, ivsize);
502                 else
503                         scatterwalk_map_and_copy(req->iv, req->src,
504                                                  req->cryptlen - ivsize,
505                                                  ivsize, 0);
506         }
507 }
508
509 static inline struct atmel_aes_ctr_ctx *
510 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
511 {
512         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
513 }
514
515 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
516 {
517         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
518         struct skcipher_request *req = skcipher_request_cast(dd->areq);
519         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
520         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
521         int i;
522
523         /*
524          * The CTR transfer works in fragments of data of maximum 1 MByte
525          * because of the 16 bit CTR counter embedded in the IP. When reaching
526          * here, ctx->blocks contains the number of blocks of the last fragment
527          * processed, there is no need to explicit cast it to u16.
528          */
529         for (i = 0; i < ctx->blocks; i++)
530                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
531
532         memcpy(req->iv, ctx->iv, ivsize);
533 }
534
535 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
536 {
537         struct skcipher_request *req = skcipher_request_cast(dd->areq);
538         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
539
540 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
541         if (dd->ctx->is_aead)
542                 atmel_aes_authenc_complete(dd, err);
543 #endif
544
545         clk_disable(dd->iclk);
546         dd->flags &= ~AES_FLAGS_BUSY;
547
548         if (!err && !dd->ctx->is_aead &&
549             (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
550                 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
551                         atmel_aes_set_iv_as_last_ciphertext_block(dd);
552                 else
553                         atmel_aes_ctr_update_req_iv(dd);
554         }
555
556         if (dd->is_async)
557                 dd->areq->complete(dd->areq, err);
558
559         tasklet_schedule(&dd->queue_task);
560
561         return err;
562 }
563
564 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
565                                      const __be32 *iv, const u32 *key, int keylen)
566 {
567         u32 valmr = 0;
568
569         /* MR register must be set before IV registers */
570         if (keylen == AES_KEYSIZE_128)
571                 valmr |= AES_MR_KEYSIZE_128;
572         else if (keylen == AES_KEYSIZE_192)
573                 valmr |= AES_MR_KEYSIZE_192;
574         else
575                 valmr |= AES_MR_KEYSIZE_256;
576
577         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
578
579         if (use_dma) {
580                 valmr |= AES_MR_SMOD_IDATAR0;
581                 if (dd->caps.has_dualbuff)
582                         valmr |= AES_MR_DUALBUFF;
583         } else {
584                 valmr |= AES_MR_SMOD_AUTO;
585         }
586
587         atmel_aes_write(dd, AES_MR, valmr);
588
589         atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
590
591         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
592                 atmel_aes_write_block(dd, AES_IVR(0), iv);
593 }
594
595 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
596                                         const __be32 *iv)
597
598 {
599         atmel_aes_write_ctrl_key(dd, use_dma, iv,
600                                  dd->ctx->key, dd->ctx->keylen);
601 }
602
603 /* CPU transfer */
604
605 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
606 {
607         int err = 0;
608         u32 isr;
609
610         for (;;) {
611                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
612                 dd->data += 4;
613                 dd->datalen -= AES_BLOCK_SIZE;
614
615                 if (dd->datalen < AES_BLOCK_SIZE)
616                         break;
617
618                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
619
620                 isr = atmel_aes_read(dd, AES_ISR);
621                 if (!(isr & AES_INT_DATARDY)) {
622                         dd->resume = atmel_aes_cpu_transfer;
623                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
624                         return -EINPROGRESS;
625                 }
626         }
627
628         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
629                                  dd->buf, dd->total))
630                 err = -EINVAL;
631
632         if (err)
633                 return atmel_aes_complete(dd, err);
634
635         return dd->cpu_transfer_complete(dd);
636 }
637
638 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
639                                struct scatterlist *src,
640                                struct scatterlist *dst,
641                                size_t len,
642                                atmel_aes_fn_t resume)
643 {
644         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
645
646         if (unlikely(len == 0))
647                 return -EINVAL;
648
649         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
650
651         dd->total = len;
652         dd->real_dst = dst;
653         dd->cpu_transfer_complete = resume;
654         dd->datalen = len + padlen;
655         dd->data = (u32 *)dd->buf;
656         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
657         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
658 }
659
660
661 /* DMA transfer */
662
663 static void atmel_aes_dma_callback(void *data);
664
665 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
666                                     struct scatterlist *sg,
667                                     size_t len,
668                                     struct atmel_aes_dma *dma)
669 {
670         int nents;
671
672         if (!IS_ALIGNED(len, dd->ctx->block_size))
673                 return false;
674
675         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
676                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
677                         return false;
678
679                 if (len <= sg->length) {
680                         if (!IS_ALIGNED(len, dd->ctx->block_size))
681                                 return false;
682
683                         dma->nents = nents+1;
684                         dma->remainder = sg->length - len;
685                         sg->length = len;
686                         return true;
687                 }
688
689                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
690                         return false;
691
692                 len -= sg->length;
693         }
694
695         return false;
696 }
697
698 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
699 {
700         struct scatterlist *sg = dma->sg;
701         int nents = dma->nents;
702
703         if (!dma->remainder)
704                 return;
705
706         while (--nents > 0 && sg)
707                 sg = sg_next(sg);
708
709         if (!sg)
710                 return;
711
712         sg->length += dma->remainder;
713 }
714
715 static int atmel_aes_map(struct atmel_aes_dev *dd,
716                          struct scatterlist *src,
717                          struct scatterlist *dst,
718                          size_t len)
719 {
720         bool src_aligned, dst_aligned;
721         size_t padlen;
722
723         dd->total = len;
724         dd->src.sg = src;
725         dd->dst.sg = dst;
726         dd->real_dst = dst;
727
728         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
729         if (src == dst)
730                 dst_aligned = src_aligned;
731         else
732                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
733         if (!src_aligned || !dst_aligned) {
734                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
735
736                 if (dd->buflen < len + padlen)
737                         return -ENOMEM;
738
739                 if (!src_aligned) {
740                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
741                         dd->src.sg = &dd->aligned_sg;
742                         dd->src.nents = 1;
743                         dd->src.remainder = 0;
744                 }
745
746                 if (!dst_aligned) {
747                         dd->dst.sg = &dd->aligned_sg;
748                         dd->dst.nents = 1;
749                         dd->dst.remainder = 0;
750                 }
751
752                 sg_init_table(&dd->aligned_sg, 1);
753                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
754         }
755
756         if (dd->src.sg == dd->dst.sg) {
757                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758                                             DMA_BIDIRECTIONAL);
759                 dd->dst.sg_len = dd->src.sg_len;
760                 if (!dd->src.sg_len)
761                         return -EFAULT;
762         } else {
763                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
764                                             DMA_TO_DEVICE);
765                 if (!dd->src.sg_len)
766                         return -EFAULT;
767
768                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
769                                             DMA_FROM_DEVICE);
770                 if (!dd->dst.sg_len) {
771                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
772                                      DMA_TO_DEVICE);
773                         return -EFAULT;
774                 }
775         }
776
777         return 0;
778 }
779
780 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
781 {
782         if (dd->src.sg == dd->dst.sg) {
783                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
784                              DMA_BIDIRECTIONAL);
785
786                 if (dd->src.sg != &dd->aligned_sg)
787                         atmel_aes_restore_sg(&dd->src);
788         } else {
789                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
790                              DMA_FROM_DEVICE);
791
792                 if (dd->dst.sg != &dd->aligned_sg)
793                         atmel_aes_restore_sg(&dd->dst);
794
795                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
796                              DMA_TO_DEVICE);
797
798                 if (dd->src.sg != &dd->aligned_sg)
799                         atmel_aes_restore_sg(&dd->src);
800         }
801
802         if (dd->dst.sg == &dd->aligned_sg)
803                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
804                                     dd->buf, dd->total);
805 }
806
807 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
808                                         enum dma_slave_buswidth addr_width,
809                                         enum dma_transfer_direction dir,
810                                         u32 maxburst)
811 {
812         struct dma_async_tx_descriptor *desc;
813         struct dma_slave_config config;
814         dma_async_tx_callback callback;
815         struct atmel_aes_dma *dma;
816         int err;
817
818         memset(&config, 0, sizeof(config));
819         config.src_addr_width = addr_width;
820         config.dst_addr_width = addr_width;
821         config.src_maxburst = maxburst;
822         config.dst_maxburst = maxburst;
823
824         switch (dir) {
825         case DMA_MEM_TO_DEV:
826                 dma = &dd->src;
827                 callback = NULL;
828                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
829                 break;
830
831         case DMA_DEV_TO_MEM:
832                 dma = &dd->dst;
833                 callback = atmel_aes_dma_callback;
834                 config.src_addr = dd->phys_base + AES_ODATAR(0);
835                 break;
836
837         default:
838                 return -EINVAL;
839         }
840
841         err = dmaengine_slave_config(dma->chan, &config);
842         if (err)
843                 return err;
844
845         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
846                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847         if (!desc)
848                 return -ENOMEM;
849
850         desc->callback = callback;
851         desc->callback_param = dd;
852         dmaengine_submit(desc);
853         dma_async_issue_pending(dma->chan);
854
855         return 0;
856 }
857
858 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
859                                struct scatterlist *src,
860                                struct scatterlist *dst,
861                                size_t len,
862                                atmel_aes_fn_t resume)
863 {
864         enum dma_slave_buswidth addr_width;
865         u32 maxburst;
866         int err;
867
868         switch (dd->ctx->block_size) {
869         case CFB8_BLOCK_SIZE:
870                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
871                 maxburst = 1;
872                 break;
873
874         case CFB16_BLOCK_SIZE:
875                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
876                 maxburst = 1;
877                 break;
878
879         case CFB32_BLOCK_SIZE:
880         case CFB64_BLOCK_SIZE:
881                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
882                 maxburst = 1;
883                 break;
884
885         case AES_BLOCK_SIZE:
886                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
887                 maxburst = dd->caps.max_burst_size;
888                 break;
889
890         default:
891                 err = -EINVAL;
892                 goto exit;
893         }
894
895         err = atmel_aes_map(dd, src, dst, len);
896         if (err)
897                 goto exit;
898
899         dd->resume = resume;
900
901         /* Set output DMA transfer first */
902         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
903                                            maxburst);
904         if (err)
905                 goto unmap;
906
907         /* Then set input DMA transfer */
908         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
909                                            maxburst);
910         if (err)
911                 goto output_transfer_stop;
912
913         return -EINPROGRESS;
914
915 output_transfer_stop:
916         dmaengine_terminate_sync(dd->dst.chan);
917 unmap:
918         atmel_aes_unmap(dd);
919 exit:
920         return atmel_aes_complete(dd, err);
921 }
922
923 static void atmel_aes_dma_callback(void *data)
924 {
925         struct atmel_aes_dev *dd = data;
926
927         atmel_aes_unmap(dd);
928         dd->is_async = true;
929         (void)dd->resume(dd);
930 }
931
932 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
933                                   struct crypto_async_request *new_areq)
934 {
935         struct crypto_async_request *areq, *backlog;
936         struct atmel_aes_base_ctx *ctx;
937         unsigned long flags;
938         bool start_async;
939         int err, ret = 0;
940
941         spin_lock_irqsave(&dd->lock, flags);
942         if (new_areq)
943                 ret = crypto_enqueue_request(&dd->queue, new_areq);
944         if (dd->flags & AES_FLAGS_BUSY) {
945                 spin_unlock_irqrestore(&dd->lock, flags);
946                 return ret;
947         }
948         backlog = crypto_get_backlog(&dd->queue);
949         areq = crypto_dequeue_request(&dd->queue);
950         if (areq)
951                 dd->flags |= AES_FLAGS_BUSY;
952         spin_unlock_irqrestore(&dd->lock, flags);
953
954         if (!areq)
955                 return ret;
956
957         if (backlog)
958                 backlog->complete(backlog, -EINPROGRESS);
959
960         ctx = crypto_tfm_ctx(areq->tfm);
961
962         dd->areq = areq;
963         dd->ctx = ctx;
964         start_async = (areq != new_areq);
965         dd->is_async = start_async;
966
967         /* WARNING: ctx->start() MAY change dd->is_async. */
968         err = ctx->start(dd);
969         return (start_async) ? ret : err;
970 }
971
972
973 /* AES async block ciphers */
974
975 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
976 {
977         return atmel_aes_complete(dd, 0);
978 }
979
980 static int atmel_aes_start(struct atmel_aes_dev *dd)
981 {
982         struct skcipher_request *req = skcipher_request_cast(dd->areq);
983         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
984         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
985                         dd->ctx->block_size != AES_BLOCK_SIZE);
986         int err;
987
988         atmel_aes_set_mode(dd, rctx);
989
990         err = atmel_aes_hw_init(dd);
991         if (err)
992                 return atmel_aes_complete(dd, err);
993
994         atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
995         if (use_dma)
996                 return atmel_aes_dma_start(dd, req->src, req->dst,
997                                            req->cryptlen,
998                                            atmel_aes_transfer_complete);
999
1000         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1001                                    atmel_aes_transfer_complete);
1002 }
1003
1004 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1005 {
1006         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1007         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1008         struct scatterlist *src, *dst;
1009         size_t datalen;
1010         u32 ctr;
1011         u16 start, end;
1012         bool use_dma, fragmented = false;
1013
1014         /* Check for transfer completion. */
1015         ctx->offset += dd->total;
1016         if (ctx->offset >= req->cryptlen)
1017                 return atmel_aes_transfer_complete(dd);
1018
1019         /* Compute data length. */
1020         datalen = req->cryptlen - ctx->offset;
1021         ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1022         ctr = be32_to_cpu(ctx->iv[3]);
1023
1024         /* Check 16bit counter overflow. */
1025         start = ctr & 0xffff;
1026         end = start + ctx->blocks - 1;
1027
1028         if (ctx->blocks >> 16 || end < start) {
1029                 ctr |= 0xffff;
1030                 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1031                 fragmented = true;
1032         }
1033
1034         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1035
1036         /* Jump to offset. */
1037         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1038         dst = ((req->src == req->dst) ? src :
1039                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1040
1041         /* Configure hardware. */
1042         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1043         if (unlikely(fragmented)) {
1044                 /*
1045                  * Increment the counter manually to cope with the hardware
1046                  * counter overflow.
1047                  */
1048                 ctx->iv[3] = cpu_to_be32(ctr);
1049                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1050         }
1051
1052         if (use_dma)
1053                 return atmel_aes_dma_start(dd, src, dst, datalen,
1054                                            atmel_aes_ctr_transfer);
1055
1056         return atmel_aes_cpu_start(dd, src, dst, datalen,
1057                                    atmel_aes_ctr_transfer);
1058 }
1059
1060 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1061 {
1062         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1063         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1064         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1065         int err;
1066
1067         atmel_aes_set_mode(dd, rctx);
1068
1069         err = atmel_aes_hw_init(dd);
1070         if (err)
1071                 return atmel_aes_complete(dd, err);
1072
1073         memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1074         ctx->offset = 0;
1075         dd->total = 0;
1076         return atmel_aes_ctr_transfer(dd);
1077 }
1078
1079 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1080 {
1081         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1082         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1083                         crypto_skcipher_reqtfm(req));
1084
1085         skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1086         skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1087                                       req->base.complete, req->base.data);
1088         skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1089                                    req->cryptlen, req->iv);
1090
1091         return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1092                      crypto_skcipher_decrypt(&rctx->fallback_req);
1093 }
1094
1095 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1096 {
1097         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1098         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1099         struct atmel_aes_reqctx *rctx;
1100         u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1101
1102         if (opmode == AES_FLAGS_XTS) {
1103                 if (req->cryptlen < XTS_BLOCK_SIZE)
1104                         return -EINVAL;
1105
1106                 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1107                         return atmel_aes_xts_fallback(req,
1108                                                       mode & AES_FLAGS_ENCRYPT);
1109         }
1110
1111         /*
1112          * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1113          * to have a positve integer length.
1114          */
1115         if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1116                 return 0;
1117
1118         if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1119             !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1120                 return -EINVAL;
1121
1122         switch (mode & AES_FLAGS_OPMODE_MASK) {
1123         case AES_FLAGS_CFB8:
1124                 ctx->block_size = CFB8_BLOCK_SIZE;
1125                 break;
1126
1127         case AES_FLAGS_CFB16:
1128                 ctx->block_size = CFB16_BLOCK_SIZE;
1129                 break;
1130
1131         case AES_FLAGS_CFB32:
1132                 ctx->block_size = CFB32_BLOCK_SIZE;
1133                 break;
1134
1135         case AES_FLAGS_CFB64:
1136                 ctx->block_size = CFB64_BLOCK_SIZE;
1137                 break;
1138
1139         default:
1140                 ctx->block_size = AES_BLOCK_SIZE;
1141                 break;
1142         }
1143         ctx->is_aead = false;
1144
1145         rctx = skcipher_request_ctx(req);
1146         rctx->mode = mode;
1147
1148         if (opmode != AES_FLAGS_ECB &&
1149             !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1150                 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1151
1152                 if (req->cryptlen >= ivsize)
1153                         scatterwalk_map_and_copy(rctx->lastc, req->src,
1154                                                  req->cryptlen - ivsize,
1155                                                  ivsize, 0);
1156         }
1157
1158         return atmel_aes_handle_queue(ctx->dd, &req->base);
1159 }
1160
1161 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1162                            unsigned int keylen)
1163 {
1164         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1165
1166         if (keylen != AES_KEYSIZE_128 &&
1167             keylen != AES_KEYSIZE_192 &&
1168             keylen != AES_KEYSIZE_256)
1169                 return -EINVAL;
1170
1171         memcpy(ctx->key, key, keylen);
1172         ctx->keylen = keylen;
1173
1174         return 0;
1175 }
1176
1177 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1178 {
1179         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1180 }
1181
1182 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1183 {
1184         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1185 }
1186
1187 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1188 {
1189         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1190 }
1191
1192 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1193 {
1194         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1195 }
1196
1197 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1198 {
1199         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1200 }
1201
1202 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1203 {
1204         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1205 }
1206
1207 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1208 {
1209         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1210 }
1211
1212 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1213 {
1214         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1215 }
1216
1217 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1218 {
1219         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1220 }
1221
1222 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1223 {
1224         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1225 }
1226
1227 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1228 {
1229         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1230 }
1231
1232 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1233 {
1234         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1235 }
1236
1237 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1238 {
1239         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1240 }
1241
1242 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1243 {
1244         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1245 }
1246
1247 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1248 {
1249         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1250 }
1251
1252 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1253 {
1254         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1255 }
1256
1257 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1258 {
1259         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1260 }
1261
1262 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1263 {
1264         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1265 }
1266
1267 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1268 {
1269         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1270         struct atmel_aes_dev *dd;
1271
1272         dd = atmel_aes_dev_alloc(&ctx->base);
1273         if (!dd)
1274                 return -ENODEV;
1275
1276         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1277         ctx->base.dd = dd;
1278         ctx->base.start = atmel_aes_start;
1279
1280         return 0;
1281 }
1282
1283 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1284 {
1285         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1286         struct atmel_aes_dev *dd;
1287
1288         dd = atmel_aes_dev_alloc(&ctx->base);
1289         if (!dd)
1290                 return -ENODEV;
1291
1292         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1293         ctx->base.dd = dd;
1294         ctx->base.start = atmel_aes_ctr_start;
1295
1296         return 0;
1297 }
1298
1299 static struct skcipher_alg aes_algs[] = {
1300 {
1301         .base.cra_name          = "ecb(aes)",
1302         .base.cra_driver_name   = "atmel-ecb-aes",
1303         .base.cra_blocksize     = AES_BLOCK_SIZE,
1304         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1305
1306         .init                   = atmel_aes_init_tfm,
1307         .min_keysize            = AES_MIN_KEY_SIZE,
1308         .max_keysize            = AES_MAX_KEY_SIZE,
1309         .setkey                 = atmel_aes_setkey,
1310         .encrypt                = atmel_aes_ecb_encrypt,
1311         .decrypt                = atmel_aes_ecb_decrypt,
1312 },
1313 {
1314         .base.cra_name          = "cbc(aes)",
1315         .base.cra_driver_name   = "atmel-cbc-aes",
1316         .base.cra_blocksize     = AES_BLOCK_SIZE,
1317         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1318
1319         .init                   = atmel_aes_init_tfm,
1320         .min_keysize            = AES_MIN_KEY_SIZE,
1321         .max_keysize            = AES_MAX_KEY_SIZE,
1322         .setkey                 = atmel_aes_setkey,
1323         .encrypt                = atmel_aes_cbc_encrypt,
1324         .decrypt                = atmel_aes_cbc_decrypt,
1325         .ivsize                 = AES_BLOCK_SIZE,
1326 },
1327 {
1328         .base.cra_name          = "ofb(aes)",
1329         .base.cra_driver_name   = "atmel-ofb-aes",
1330         .base.cra_blocksize     = 1,
1331         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1332
1333         .init                   = atmel_aes_init_tfm,
1334         .min_keysize            = AES_MIN_KEY_SIZE,
1335         .max_keysize            = AES_MAX_KEY_SIZE,
1336         .setkey                 = atmel_aes_setkey,
1337         .encrypt                = atmel_aes_ofb_encrypt,
1338         .decrypt                = atmel_aes_ofb_decrypt,
1339         .ivsize                 = AES_BLOCK_SIZE,
1340 },
1341 {
1342         .base.cra_name          = "cfb(aes)",
1343         .base.cra_driver_name   = "atmel-cfb-aes",
1344         .base.cra_blocksize     = AES_BLOCK_SIZE,
1345         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1346
1347         .init                   = atmel_aes_init_tfm,
1348         .min_keysize            = AES_MIN_KEY_SIZE,
1349         .max_keysize            = AES_MAX_KEY_SIZE,
1350         .setkey                 = atmel_aes_setkey,
1351         .encrypt                = atmel_aes_cfb_encrypt,
1352         .decrypt                = atmel_aes_cfb_decrypt,
1353         .ivsize                 = AES_BLOCK_SIZE,
1354 },
1355 {
1356         .base.cra_name          = "cfb32(aes)",
1357         .base.cra_driver_name   = "atmel-cfb32-aes",
1358         .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1359         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1360
1361         .init                   = atmel_aes_init_tfm,
1362         .min_keysize            = AES_MIN_KEY_SIZE,
1363         .max_keysize            = AES_MAX_KEY_SIZE,
1364         .setkey                 = atmel_aes_setkey,
1365         .encrypt                = atmel_aes_cfb32_encrypt,
1366         .decrypt                = atmel_aes_cfb32_decrypt,
1367         .ivsize                 = AES_BLOCK_SIZE,
1368 },
1369 {
1370         .base.cra_name          = "cfb16(aes)",
1371         .base.cra_driver_name   = "atmel-cfb16-aes",
1372         .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1373         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1374
1375         .init                   = atmel_aes_init_tfm,
1376         .min_keysize            = AES_MIN_KEY_SIZE,
1377         .max_keysize            = AES_MAX_KEY_SIZE,
1378         .setkey                 = atmel_aes_setkey,
1379         .encrypt                = atmel_aes_cfb16_encrypt,
1380         .decrypt                = atmel_aes_cfb16_decrypt,
1381         .ivsize                 = AES_BLOCK_SIZE,
1382 },
1383 {
1384         .base.cra_name          = "cfb8(aes)",
1385         .base.cra_driver_name   = "atmel-cfb8-aes",
1386         .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1387         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1388
1389         .init                   = atmel_aes_init_tfm,
1390         .min_keysize            = AES_MIN_KEY_SIZE,
1391         .max_keysize            = AES_MAX_KEY_SIZE,
1392         .setkey                 = atmel_aes_setkey,
1393         .encrypt                = atmel_aes_cfb8_encrypt,
1394         .decrypt                = atmel_aes_cfb8_decrypt,
1395         .ivsize                 = AES_BLOCK_SIZE,
1396 },
1397 {
1398         .base.cra_name          = "ctr(aes)",
1399         .base.cra_driver_name   = "atmel-ctr-aes",
1400         .base.cra_blocksize     = 1,
1401         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1402
1403         .init                   = atmel_aes_ctr_init_tfm,
1404         .min_keysize            = AES_MIN_KEY_SIZE,
1405         .max_keysize            = AES_MAX_KEY_SIZE,
1406         .setkey                 = atmel_aes_setkey,
1407         .encrypt                = atmel_aes_ctr_encrypt,
1408         .decrypt                = atmel_aes_ctr_decrypt,
1409         .ivsize                 = AES_BLOCK_SIZE,
1410 },
1411 };
1412
1413 static struct skcipher_alg aes_cfb64_alg = {
1414         .base.cra_name          = "cfb64(aes)",
1415         .base.cra_driver_name   = "atmel-cfb64-aes",
1416         .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1417         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1418
1419         .init                   = atmel_aes_init_tfm,
1420         .min_keysize            = AES_MIN_KEY_SIZE,
1421         .max_keysize            = AES_MAX_KEY_SIZE,
1422         .setkey                 = atmel_aes_setkey,
1423         .encrypt                = atmel_aes_cfb64_encrypt,
1424         .decrypt                = atmel_aes_cfb64_decrypt,
1425         .ivsize                 = AES_BLOCK_SIZE,
1426 };
1427
1428
1429 /* gcm aead functions */
1430
1431 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1432                                const u32 *data, size_t datalen,
1433                                const __be32 *ghash_in, __be32 *ghash_out,
1434                                atmel_aes_fn_t resume);
1435 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1436 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1437
1438 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1439 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1440 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1441 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1442 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1443 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1444 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1445
1446 static inline struct atmel_aes_gcm_ctx *
1447 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1448 {
1449         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1450 }
1451
1452 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1453                                const u32 *data, size_t datalen,
1454                                const __be32 *ghash_in, __be32 *ghash_out,
1455                                atmel_aes_fn_t resume)
1456 {
1457         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1458
1459         dd->data = (u32 *)data;
1460         dd->datalen = datalen;
1461         ctx->ghash_in = ghash_in;
1462         ctx->ghash_out = ghash_out;
1463         ctx->ghash_resume = resume;
1464
1465         atmel_aes_write_ctrl(dd, false, NULL);
1466         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1467 }
1468
1469 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1470 {
1471         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1472
1473         /* Set the data length. */
1474         atmel_aes_write(dd, AES_AADLENR, dd->total);
1475         atmel_aes_write(dd, AES_CLENR, 0);
1476
1477         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1478         if (ctx->ghash_in)
1479                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1480
1481         return atmel_aes_gcm_ghash_finalize(dd);
1482 }
1483
1484 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1485 {
1486         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1487         u32 isr;
1488
1489         /* Write data into the Input Data Registers. */
1490         while (dd->datalen > 0) {
1491                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1492                 dd->data += 4;
1493                 dd->datalen -= AES_BLOCK_SIZE;
1494
1495                 isr = atmel_aes_read(dd, AES_ISR);
1496                 if (!(isr & AES_INT_DATARDY)) {
1497                         dd->resume = atmel_aes_gcm_ghash_finalize;
1498                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1499                         return -EINPROGRESS;
1500                 }
1501         }
1502
1503         /* Read the computed hash from GHASHRx. */
1504         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1505
1506         return ctx->ghash_resume(dd);
1507 }
1508
1509
1510 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1511 {
1512         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513         struct aead_request *req = aead_request_cast(dd->areq);
1514         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1515         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1516         size_t ivsize = crypto_aead_ivsize(tfm);
1517         size_t datalen, padlen;
1518         const void *iv = req->iv;
1519         u8 *data = dd->buf;
1520         int err;
1521
1522         atmel_aes_set_mode(dd, rctx);
1523
1524         err = atmel_aes_hw_init(dd);
1525         if (err)
1526                 return atmel_aes_complete(dd, err);
1527
1528         if (likely(ivsize == GCM_AES_IV_SIZE)) {
1529                 memcpy(ctx->j0, iv, ivsize);
1530                 ctx->j0[3] = cpu_to_be32(1);
1531                 return atmel_aes_gcm_process(dd);
1532         }
1533
1534         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1535         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1536         if (datalen > dd->buflen)
1537                 return atmel_aes_complete(dd, -EINVAL);
1538
1539         memcpy(data, iv, ivsize);
1540         memset(data + ivsize, 0, padlen + sizeof(u64));
1541         ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1542
1543         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1544                                    NULL, ctx->j0, atmel_aes_gcm_process);
1545 }
1546
1547 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1548 {
1549         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1550         struct aead_request *req = aead_request_cast(dd->areq);
1551         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1552         bool enc = atmel_aes_is_encrypt(dd);
1553         u32 authsize;
1554
1555         /* Compute text length. */
1556         authsize = crypto_aead_authsize(tfm);
1557         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1558
1559         /*
1560          * According to tcrypt test suite, the GCM Automatic Tag Generation
1561          * fails when both the message and its associated data are empty.
1562          */
1563         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1564                 dd->flags |= AES_FLAGS_GTAGEN;
1565
1566         atmel_aes_write_ctrl(dd, false, NULL);
1567         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1568 }
1569
1570 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1571 {
1572         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1573         struct aead_request *req = aead_request_cast(dd->areq);
1574         __be32 j0_lsw, *j0 = ctx->j0;
1575         size_t padlen;
1576
1577         /* Write incr32(J0) into IV. */
1578         j0_lsw = j0[3];
1579         be32_add_cpu(&j0[3], 1);
1580         atmel_aes_write_block(dd, AES_IVR(0), j0);
1581         j0[3] = j0_lsw;
1582
1583         /* Set aad and text lengths. */
1584         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1585         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1586
1587         /* Check whether AAD are present. */
1588         if (unlikely(req->assoclen == 0)) {
1589                 dd->datalen = 0;
1590                 return atmel_aes_gcm_data(dd);
1591         }
1592
1593         /* Copy assoc data and add padding. */
1594         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1595         if (unlikely(req->assoclen + padlen > dd->buflen))
1596                 return atmel_aes_complete(dd, -EINVAL);
1597         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1598
1599         /* Write assoc data into the Input Data register. */
1600         dd->data = (u32 *)dd->buf;
1601         dd->datalen = req->assoclen + padlen;
1602         return atmel_aes_gcm_data(dd);
1603 }
1604
1605 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1606 {
1607         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1608         struct aead_request *req = aead_request_cast(dd->areq);
1609         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1610         struct scatterlist *src, *dst;
1611         u32 isr, mr;
1612
1613         /* Write AAD first. */
1614         while (dd->datalen > 0) {
1615                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1616                 dd->data += 4;
1617                 dd->datalen -= AES_BLOCK_SIZE;
1618
1619                 isr = atmel_aes_read(dd, AES_ISR);
1620                 if (!(isr & AES_INT_DATARDY)) {
1621                         dd->resume = atmel_aes_gcm_data;
1622                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1623                         return -EINPROGRESS;
1624                 }
1625         }
1626
1627         /* GMAC only. */
1628         if (unlikely(ctx->textlen == 0))
1629                 return atmel_aes_gcm_tag_init(dd);
1630
1631         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1632         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1633         dst = ((req->src == req->dst) ? src :
1634                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1635
1636         if (use_dma) {
1637                 /* Update the Mode Register for DMA transfers. */
1638                 mr = atmel_aes_read(dd, AES_MR);
1639                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1640                 mr |= AES_MR_SMOD_IDATAR0;
1641                 if (dd->caps.has_dualbuff)
1642                         mr |= AES_MR_DUALBUFF;
1643                 atmel_aes_write(dd, AES_MR, mr);
1644
1645                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1646                                            atmel_aes_gcm_tag_init);
1647         }
1648
1649         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1650                                    atmel_aes_gcm_tag_init);
1651 }
1652
1653 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1654 {
1655         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1656         struct aead_request *req = aead_request_cast(dd->areq);
1657         __be64 *data = dd->buf;
1658
1659         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1660                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1661                         dd->resume = atmel_aes_gcm_tag_init;
1662                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1663                         return -EINPROGRESS;
1664                 }
1665
1666                 return atmel_aes_gcm_finalize(dd);
1667         }
1668
1669         /* Read the GCM Intermediate Hash Word Registers. */
1670         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1671
1672         data[0] = cpu_to_be64(req->assoclen * 8);
1673         data[1] = cpu_to_be64(ctx->textlen * 8);
1674
1675         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1676                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1677 }
1678
1679 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1680 {
1681         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1682         unsigned long flags;
1683
1684         /*
1685          * Change mode to CTR to complete the tag generation.
1686          * Use J0 as Initialization Vector.
1687          */
1688         flags = dd->flags;
1689         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1690         dd->flags |= AES_FLAGS_CTR;
1691         atmel_aes_write_ctrl(dd, false, ctx->j0);
1692         dd->flags = flags;
1693
1694         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1695         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1696 }
1697
1698 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1699 {
1700         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1701         struct aead_request *req = aead_request_cast(dd->areq);
1702         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1703         bool enc = atmel_aes_is_encrypt(dd);
1704         u32 offset, authsize, itag[4], *otag = ctx->tag;
1705         int err;
1706
1707         /* Read the computed tag. */
1708         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1709                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1710         else
1711                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1712
1713         offset = req->assoclen + ctx->textlen;
1714         authsize = crypto_aead_authsize(tfm);
1715         if (enc) {
1716                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1717                 err = 0;
1718         } else {
1719                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1720                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1721         }
1722
1723         return atmel_aes_complete(dd, err);
1724 }
1725
1726 static int atmel_aes_gcm_crypt(struct aead_request *req,
1727                                unsigned long mode)
1728 {
1729         struct atmel_aes_base_ctx *ctx;
1730         struct atmel_aes_reqctx *rctx;
1731
1732         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1733         ctx->block_size = AES_BLOCK_SIZE;
1734         ctx->is_aead = true;
1735
1736         rctx = aead_request_ctx(req);
1737         rctx->mode = AES_FLAGS_GCM | mode;
1738
1739         return atmel_aes_handle_queue(ctx->dd, &req->base);
1740 }
1741
1742 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1743                                 unsigned int keylen)
1744 {
1745         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1746
1747         if (keylen != AES_KEYSIZE_256 &&
1748             keylen != AES_KEYSIZE_192 &&
1749             keylen != AES_KEYSIZE_128)
1750                 return -EINVAL;
1751
1752         memcpy(ctx->key, key, keylen);
1753         ctx->keylen = keylen;
1754
1755         return 0;
1756 }
1757
1758 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1759                                      unsigned int authsize)
1760 {
1761         return crypto_gcm_check_authsize(authsize);
1762 }
1763
1764 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1765 {
1766         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1767 }
1768
1769 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1770 {
1771         return atmel_aes_gcm_crypt(req, 0);
1772 }
1773
1774 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1775 {
1776         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1777         struct atmel_aes_dev *dd;
1778
1779         dd = atmel_aes_dev_alloc(&ctx->base);
1780         if (!dd)
1781                 return -ENODEV;
1782
1783         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1784         ctx->base.dd = dd;
1785         ctx->base.start = atmel_aes_gcm_start;
1786
1787         return 0;
1788 }
1789
1790 static struct aead_alg aes_gcm_alg = {
1791         .setkey         = atmel_aes_gcm_setkey,
1792         .setauthsize    = atmel_aes_gcm_setauthsize,
1793         .encrypt        = atmel_aes_gcm_encrypt,
1794         .decrypt        = atmel_aes_gcm_decrypt,
1795         .init           = atmel_aes_gcm_init,
1796         .ivsize         = GCM_AES_IV_SIZE,
1797         .maxauthsize    = AES_BLOCK_SIZE,
1798
1799         .base = {
1800                 .cra_name               = "gcm(aes)",
1801                 .cra_driver_name        = "atmel-gcm-aes",
1802                 .cra_blocksize          = 1,
1803                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1804         },
1805 };
1806
1807
1808 /* xts functions */
1809
1810 static inline struct atmel_aes_xts_ctx *
1811 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1812 {
1813         return container_of(ctx, struct atmel_aes_xts_ctx, base);
1814 }
1815
1816 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1817
1818 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1819 {
1820         struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1821         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1822         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1823         unsigned long flags;
1824         int err;
1825
1826         atmel_aes_set_mode(dd, rctx);
1827
1828         err = atmel_aes_hw_init(dd);
1829         if (err)
1830                 return atmel_aes_complete(dd, err);
1831
1832         /* Compute the tweak value from req->iv with ecb(aes). */
1833         flags = dd->flags;
1834         dd->flags &= ~AES_FLAGS_MODE_MASK;
1835         dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1836         atmel_aes_write_ctrl_key(dd, false, NULL,
1837                                  ctx->key2, ctx->base.keylen);
1838         dd->flags = flags;
1839
1840         atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1841         return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1842 }
1843
1844 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1845 {
1846         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1847         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1848         u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1849         static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1850         u8 *tweak_bytes = (u8 *)tweak;
1851         int i;
1852
1853         /* Read the computed ciphered tweak value. */
1854         atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1855         /*
1856          * Hardware quirk:
1857          * the order of the ciphered tweak bytes need to be reversed before
1858          * writing them into the ODATARx registers.
1859          */
1860         for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1861                 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1862
1863         /* Process the data. */
1864         atmel_aes_write_ctrl(dd, use_dma, NULL);
1865         atmel_aes_write_block(dd, AES_TWR(0), tweak);
1866         atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1867         if (use_dma)
1868                 return atmel_aes_dma_start(dd, req->src, req->dst,
1869                                            req->cryptlen,
1870                                            atmel_aes_transfer_complete);
1871
1872         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1873                                    atmel_aes_transfer_complete);
1874 }
1875
1876 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1877                                 unsigned int keylen)
1878 {
1879         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1880         int err;
1881
1882         err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1883         if (err)
1884                 return err;
1885
1886         crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1887         crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1888                                   CRYPTO_TFM_REQ_MASK);
1889         err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1890         if (err)
1891                 return err;
1892
1893         memcpy(ctx->base.key, key, keylen/2);
1894         memcpy(ctx->key2, key + keylen/2, keylen/2);
1895         ctx->base.keylen = keylen/2;
1896
1897         return 0;
1898 }
1899
1900 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1901 {
1902         return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1903 }
1904
1905 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1906 {
1907         return atmel_aes_crypt(req, AES_FLAGS_XTS);
1908 }
1909
1910 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1911 {
1912         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1913         struct atmel_aes_dev *dd;
1914         const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1915
1916         dd = atmel_aes_dev_alloc(&ctx->base);
1917         if (!dd)
1918                 return -ENODEV;
1919
1920         ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1921                                                   CRYPTO_ALG_NEED_FALLBACK);
1922         if (IS_ERR(ctx->fallback_tfm))
1923                 return PTR_ERR(ctx->fallback_tfm);
1924
1925         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1926                                     crypto_skcipher_reqsize(ctx->fallback_tfm));
1927         ctx->base.dd = dd;
1928         ctx->base.start = atmel_aes_xts_start;
1929
1930         return 0;
1931 }
1932
1933 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1934 {
1935         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1936
1937         crypto_free_skcipher(ctx->fallback_tfm);
1938 }
1939
1940 static struct skcipher_alg aes_xts_alg = {
1941         .base.cra_name          = "xts(aes)",
1942         .base.cra_driver_name   = "atmel-xts-aes",
1943         .base.cra_blocksize     = AES_BLOCK_SIZE,
1944         .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1945         .base.cra_flags         = CRYPTO_ALG_NEED_FALLBACK,
1946
1947         .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1948         .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1949         .ivsize                 = AES_BLOCK_SIZE,
1950         .setkey                 = atmel_aes_xts_setkey,
1951         .encrypt                = atmel_aes_xts_encrypt,
1952         .decrypt                = atmel_aes_xts_decrypt,
1953         .init                   = atmel_aes_xts_init_tfm,
1954         .exit                   = atmel_aes_xts_exit_tfm,
1955 };
1956
1957 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1958 /* authenc aead functions */
1959
1960 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1961 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1962                                   bool is_async);
1963 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1964                                       bool is_async);
1965 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1966 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1967                                    bool is_async);
1968
1969 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1970 {
1971         struct aead_request *req = aead_request_cast(dd->areq);
1972         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1973
1974         if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1975                 atmel_sha_authenc_abort(&rctx->auth_req);
1976         dd->flags &= ~AES_FLAGS_OWN_SHA;
1977 }
1978
1979 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1980 {
1981         struct aead_request *req = aead_request_cast(dd->areq);
1982         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1983         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1984         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1985         int err;
1986
1987         atmel_aes_set_mode(dd, &rctx->base);
1988
1989         err = atmel_aes_hw_init(dd);
1990         if (err)
1991                 return atmel_aes_complete(dd, err);
1992
1993         return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1994                                           atmel_aes_authenc_init, dd);
1995 }
1996
1997 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1998                                   bool is_async)
1999 {
2000         struct aead_request *req = aead_request_cast(dd->areq);
2001         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002
2003         if (is_async)
2004                 dd->is_async = true;
2005         if (err)
2006                 return atmel_aes_complete(dd, err);
2007
2008         /* If here, we've got the ownership of the SHA device. */
2009         dd->flags |= AES_FLAGS_OWN_SHA;
2010
2011         /* Configure the SHA device. */
2012         return atmel_sha_authenc_init(&rctx->auth_req,
2013                                       req->src, req->assoclen,
2014                                       rctx->textlen,
2015                                       atmel_aes_authenc_transfer, dd);
2016 }
2017
2018 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2019                                       bool is_async)
2020 {
2021         struct aead_request *req = aead_request_cast(dd->areq);
2022         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2023         bool enc = atmel_aes_is_encrypt(dd);
2024         struct scatterlist *src, *dst;
2025         __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2026         u32 emr;
2027
2028         if (is_async)
2029                 dd->is_async = true;
2030         if (err)
2031                 return atmel_aes_complete(dd, err);
2032
2033         /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2034         src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2035         dst = src;
2036
2037         if (req->src != req->dst)
2038                 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2039
2040         /* Configure the AES device. */
2041         memcpy(iv, req->iv, sizeof(iv));
2042
2043         /*
2044          * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2045          * 'true' even if the data transfer is actually performed by the CPU (so
2046          * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2047          * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2048          * must be set to *_MR_SMOD_IDATAR0.
2049          */
2050         atmel_aes_write_ctrl(dd, true, iv);
2051         emr = AES_EMR_PLIPEN;
2052         if (!enc)
2053                 emr |= AES_EMR_PLIPD;
2054         atmel_aes_write(dd, AES_EMR, emr);
2055
2056         /* Transfer data. */
2057         return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2058                                    atmel_aes_authenc_digest);
2059 }
2060
2061 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2062 {
2063         struct aead_request *req = aead_request_cast(dd->areq);
2064         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2065
2066         /* atmel_sha_authenc_final() releases the SHA device. */
2067         dd->flags &= ~AES_FLAGS_OWN_SHA;
2068         return atmel_sha_authenc_final(&rctx->auth_req,
2069                                        rctx->digest, sizeof(rctx->digest),
2070                                        atmel_aes_authenc_final, dd);
2071 }
2072
2073 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2074                                    bool is_async)
2075 {
2076         struct aead_request *req = aead_request_cast(dd->areq);
2077         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2078         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2079         bool enc = atmel_aes_is_encrypt(dd);
2080         u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2081         u32 offs, authsize;
2082
2083         if (is_async)
2084                 dd->is_async = true;
2085         if (err)
2086                 goto complete;
2087
2088         offs = req->assoclen + rctx->textlen;
2089         authsize = crypto_aead_authsize(tfm);
2090         if (enc) {
2091                 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2092         } else {
2093                 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2094                 if (crypto_memneq(idigest, odigest, authsize))
2095                         err = -EBADMSG;
2096         }
2097
2098 complete:
2099         return atmel_aes_complete(dd, err);
2100 }
2101
2102 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2103                                     unsigned int keylen)
2104 {
2105         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2106         struct crypto_authenc_keys keys;
2107         int err;
2108
2109         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2110                 goto badkey;
2111
2112         if (keys.enckeylen > sizeof(ctx->base.key))
2113                 goto badkey;
2114
2115         /* Save auth key. */
2116         err = atmel_sha_authenc_setkey(ctx->auth,
2117                                        keys.authkey, keys.authkeylen,
2118                                        crypto_aead_get_flags(tfm));
2119         if (err) {
2120                 memzero_explicit(&keys, sizeof(keys));
2121                 return err;
2122         }
2123
2124         /* Save enc key. */
2125         ctx->base.keylen = keys.enckeylen;
2126         memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2127
2128         memzero_explicit(&keys, sizeof(keys));
2129         return 0;
2130
2131 badkey:
2132         memzero_explicit(&keys, sizeof(keys));
2133         return -EINVAL;
2134 }
2135
2136 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2137                                       unsigned long auth_mode)
2138 {
2139         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2140         unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2141         struct atmel_aes_dev *dd;
2142
2143         dd = atmel_aes_dev_alloc(&ctx->base);
2144         if (!dd)
2145                 return -ENODEV;
2146
2147         ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2148         if (IS_ERR(ctx->auth))
2149                 return PTR_ERR(ctx->auth);
2150
2151         crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2152                                       auth_reqsize));
2153         ctx->base.dd = dd;
2154         ctx->base.start = atmel_aes_authenc_start;
2155
2156         return 0;
2157 }
2158
2159 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2160 {
2161         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2162 }
2163
2164 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2165 {
2166         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2167 }
2168
2169 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2170 {
2171         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2172 }
2173
2174 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2175 {
2176         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2177 }
2178
2179 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2180 {
2181         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2182 }
2183
2184 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2185 {
2186         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2187
2188         atmel_sha_authenc_free(ctx->auth);
2189 }
2190
2191 static int atmel_aes_authenc_crypt(struct aead_request *req,
2192                                    unsigned long mode)
2193 {
2194         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2195         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2196         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2197         u32 authsize = crypto_aead_authsize(tfm);
2198         bool enc = (mode & AES_FLAGS_ENCRYPT);
2199
2200         /* Compute text length. */
2201         if (!enc && req->cryptlen < authsize)
2202                 return -EINVAL;
2203         rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2204
2205         /*
2206          * Currently, empty messages are not supported yet:
2207          * the SHA auto-padding can be used only on non-empty messages.
2208          * Hence a special case needs to be implemented for empty message.
2209          */
2210         if (!rctx->textlen && !req->assoclen)
2211                 return -EINVAL;
2212
2213         rctx->base.mode = mode;
2214         ctx->block_size = AES_BLOCK_SIZE;
2215         ctx->is_aead = true;
2216
2217         return atmel_aes_handle_queue(ctx->dd, &req->base);
2218 }
2219
2220 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2221 {
2222         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2223 }
2224
2225 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2226 {
2227         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2228 }
2229
2230 static struct aead_alg aes_authenc_algs[] = {
2231 {
2232         .setkey         = atmel_aes_authenc_setkey,
2233         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2234         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2235         .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2236         .exit           = atmel_aes_authenc_exit_tfm,
2237         .ivsize         = AES_BLOCK_SIZE,
2238         .maxauthsize    = SHA1_DIGEST_SIZE,
2239
2240         .base = {
2241                 .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2242                 .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2243                 .cra_blocksize          = AES_BLOCK_SIZE,
2244                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2245         },
2246 },
2247 {
2248         .setkey         = atmel_aes_authenc_setkey,
2249         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2250         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2251         .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2252         .exit           = atmel_aes_authenc_exit_tfm,
2253         .ivsize         = AES_BLOCK_SIZE,
2254         .maxauthsize    = SHA224_DIGEST_SIZE,
2255
2256         .base = {
2257                 .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2258                 .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2259                 .cra_blocksize          = AES_BLOCK_SIZE,
2260                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2261         },
2262 },
2263 {
2264         .setkey         = atmel_aes_authenc_setkey,
2265         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2266         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2267         .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2268         .exit           = atmel_aes_authenc_exit_tfm,
2269         .ivsize         = AES_BLOCK_SIZE,
2270         .maxauthsize    = SHA256_DIGEST_SIZE,
2271
2272         .base = {
2273                 .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2274                 .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2275                 .cra_blocksize          = AES_BLOCK_SIZE,
2276                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2277         },
2278 },
2279 {
2280         .setkey         = atmel_aes_authenc_setkey,
2281         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2282         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2283         .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2284         .exit           = atmel_aes_authenc_exit_tfm,
2285         .ivsize         = AES_BLOCK_SIZE,
2286         .maxauthsize    = SHA384_DIGEST_SIZE,
2287
2288         .base = {
2289                 .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2290                 .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2291                 .cra_blocksize          = AES_BLOCK_SIZE,
2292                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2293         },
2294 },
2295 {
2296         .setkey         = atmel_aes_authenc_setkey,
2297         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2298         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2299         .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2300         .exit           = atmel_aes_authenc_exit_tfm,
2301         .ivsize         = AES_BLOCK_SIZE,
2302         .maxauthsize    = SHA512_DIGEST_SIZE,
2303
2304         .base = {
2305                 .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2306                 .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2307                 .cra_blocksize          = AES_BLOCK_SIZE,
2308                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2309         },
2310 },
2311 };
2312 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2313
2314 /* Probe functions */
2315
2316 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2317 {
2318         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2319         dd->buflen = ATMEL_AES_BUFFER_SIZE;
2320         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2321
2322         if (!dd->buf) {
2323                 dev_err(dd->dev, "unable to alloc pages.\n");
2324                 return -ENOMEM;
2325         }
2326
2327         return 0;
2328 }
2329
2330 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2331 {
2332         free_page((unsigned long)dd->buf);
2333 }
2334
2335 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2336 {
2337         int ret;
2338
2339         /* Try to grab 2 DMA channels */
2340         dd->src.chan = dma_request_chan(dd->dev, "tx");
2341         if (IS_ERR(dd->src.chan)) {
2342                 ret = PTR_ERR(dd->src.chan);
2343                 goto err_dma_in;
2344         }
2345
2346         dd->dst.chan = dma_request_chan(dd->dev, "rx");
2347         if (IS_ERR(dd->dst.chan)) {
2348                 ret = PTR_ERR(dd->dst.chan);
2349                 goto err_dma_out;
2350         }
2351
2352         return 0;
2353
2354 err_dma_out:
2355         dma_release_channel(dd->src.chan);
2356 err_dma_in:
2357         dev_err(dd->dev, "no DMA channel available\n");
2358         return ret;
2359 }
2360
2361 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2362 {
2363         dma_release_channel(dd->dst.chan);
2364         dma_release_channel(dd->src.chan);
2365 }
2366
2367 static void atmel_aes_queue_task(unsigned long data)
2368 {
2369         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2370
2371         atmel_aes_handle_queue(dd, NULL);
2372 }
2373
2374 static void atmel_aes_done_task(unsigned long data)
2375 {
2376         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2377
2378         dd->is_async = true;
2379         (void)dd->resume(dd);
2380 }
2381
2382 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2383 {
2384         struct atmel_aes_dev *aes_dd = dev_id;
2385         u32 reg;
2386
2387         reg = atmel_aes_read(aes_dd, AES_ISR);
2388         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2389                 atmel_aes_write(aes_dd, AES_IDR, reg);
2390                 if (AES_FLAGS_BUSY & aes_dd->flags)
2391                         tasklet_schedule(&aes_dd->done_task);
2392                 else
2393                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2394                 return IRQ_HANDLED;
2395         }
2396
2397         return IRQ_NONE;
2398 }
2399
2400 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2401 {
2402         int i;
2403
2404 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2405         if (dd->caps.has_authenc)
2406                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2407                         crypto_unregister_aead(&aes_authenc_algs[i]);
2408 #endif
2409
2410         if (dd->caps.has_xts)
2411                 crypto_unregister_skcipher(&aes_xts_alg);
2412
2413         if (dd->caps.has_gcm)
2414                 crypto_unregister_aead(&aes_gcm_alg);
2415
2416         if (dd->caps.has_cfb64)
2417                 crypto_unregister_skcipher(&aes_cfb64_alg);
2418
2419         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2420                 crypto_unregister_skcipher(&aes_algs[i]);
2421 }
2422
2423 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2424 {
2425         alg->cra_flags |= CRYPTO_ALG_ASYNC;
2426         alg->cra_alignmask = 0xf;
2427         alg->cra_priority = ATMEL_AES_PRIORITY;
2428         alg->cra_module = THIS_MODULE;
2429 }
2430
2431 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2432 {
2433         int err, i, j;
2434
2435         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2436                 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2437
2438                 err = crypto_register_skcipher(&aes_algs[i]);
2439                 if (err)
2440                         goto err_aes_algs;
2441         }
2442
2443         if (dd->caps.has_cfb64) {
2444                 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2445
2446                 err = crypto_register_skcipher(&aes_cfb64_alg);
2447                 if (err)
2448                         goto err_aes_cfb64_alg;
2449         }
2450
2451         if (dd->caps.has_gcm) {
2452                 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2453
2454                 err = crypto_register_aead(&aes_gcm_alg);
2455                 if (err)
2456                         goto err_aes_gcm_alg;
2457         }
2458
2459         if (dd->caps.has_xts) {
2460                 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2461
2462                 err = crypto_register_skcipher(&aes_xts_alg);
2463                 if (err)
2464                         goto err_aes_xts_alg;
2465         }
2466
2467 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2468         if (dd->caps.has_authenc) {
2469                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2470                         atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2471
2472                         err = crypto_register_aead(&aes_authenc_algs[i]);
2473                         if (err)
2474                                 goto err_aes_authenc_alg;
2475                 }
2476         }
2477 #endif
2478
2479         return 0;
2480
2481 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2482         /* i = ARRAY_SIZE(aes_authenc_algs); */
2483 err_aes_authenc_alg:
2484         for (j = 0; j < i; j++)
2485                 crypto_unregister_aead(&aes_authenc_algs[j]);
2486         crypto_unregister_skcipher(&aes_xts_alg);
2487 #endif
2488 err_aes_xts_alg:
2489         crypto_unregister_aead(&aes_gcm_alg);
2490 err_aes_gcm_alg:
2491         crypto_unregister_skcipher(&aes_cfb64_alg);
2492 err_aes_cfb64_alg:
2493         i = ARRAY_SIZE(aes_algs);
2494 err_aes_algs:
2495         for (j = 0; j < i; j++)
2496                 crypto_unregister_skcipher(&aes_algs[j]);
2497
2498         return err;
2499 }
2500
2501 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2502 {
2503         dd->caps.has_dualbuff = 0;
2504         dd->caps.has_cfb64 = 0;
2505         dd->caps.has_gcm = 0;
2506         dd->caps.has_xts = 0;
2507         dd->caps.has_authenc = 0;
2508         dd->caps.max_burst_size = 1;
2509
2510         /* keep only major version number */
2511         switch (dd->hw_version & 0xff0) {
2512         case 0x700:
2513         case 0x500:
2514                 dd->caps.has_dualbuff = 1;
2515                 dd->caps.has_cfb64 = 1;
2516                 dd->caps.has_gcm = 1;
2517                 dd->caps.has_xts = 1;
2518                 dd->caps.has_authenc = 1;
2519                 dd->caps.max_burst_size = 4;
2520                 break;
2521         case 0x200:
2522                 dd->caps.has_dualbuff = 1;
2523                 dd->caps.has_cfb64 = 1;
2524                 dd->caps.has_gcm = 1;
2525                 dd->caps.max_burst_size = 4;
2526                 break;
2527         case 0x130:
2528                 dd->caps.has_dualbuff = 1;
2529                 dd->caps.has_cfb64 = 1;
2530                 dd->caps.max_burst_size = 4;
2531                 break;
2532         case 0x120:
2533                 break;
2534         default:
2535                 dev_warn(dd->dev,
2536                                 "Unmanaged aes version, set minimum capabilities\n");
2537                 break;
2538         }
2539 }
2540
2541 #if defined(CONFIG_OF)
2542 static const struct of_device_id atmel_aes_dt_ids[] = {
2543         { .compatible = "atmel,at91sam9g46-aes" },
2544         { /* sentinel */ }
2545 };
2546 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2547 #endif
2548
2549 static int atmel_aes_probe(struct platform_device *pdev)
2550 {
2551         struct atmel_aes_dev *aes_dd;
2552         struct device *dev = &pdev->dev;
2553         struct resource *aes_res;
2554         int err;
2555
2556         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2557         if (!aes_dd)
2558                 return -ENOMEM;
2559
2560         aes_dd->dev = dev;
2561
2562         platform_set_drvdata(pdev, aes_dd);
2563
2564         INIT_LIST_HEAD(&aes_dd->list);
2565         spin_lock_init(&aes_dd->lock);
2566
2567         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2568                                         (unsigned long)aes_dd);
2569         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2570                                         (unsigned long)aes_dd);
2571
2572         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2573
2574         /* Get the base address */
2575         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2576         if (!aes_res) {
2577                 dev_err(dev, "no MEM resource info\n");
2578                 err = -ENODEV;
2579                 goto err_tasklet_kill;
2580         }
2581         aes_dd->phys_base = aes_res->start;
2582
2583         /* Get the IRQ */
2584         aes_dd->irq = platform_get_irq(pdev,  0);
2585         if (aes_dd->irq < 0) {
2586                 err = aes_dd->irq;
2587                 goto err_tasklet_kill;
2588         }
2589
2590         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2591                                IRQF_SHARED, "atmel-aes", aes_dd);
2592         if (err) {
2593                 dev_err(dev, "unable to request aes irq.\n");
2594                 goto err_tasklet_kill;
2595         }
2596
2597         /* Initializing the clock */
2598         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2599         if (IS_ERR(aes_dd->iclk)) {
2600                 dev_err(dev, "clock initialization failed.\n");
2601                 err = PTR_ERR(aes_dd->iclk);
2602                 goto err_tasklet_kill;
2603         }
2604
2605         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2606         if (IS_ERR(aes_dd->io_base)) {
2607                 dev_err(dev, "can't ioremap\n");
2608                 err = PTR_ERR(aes_dd->io_base);
2609                 goto err_tasklet_kill;
2610         }
2611
2612         err = clk_prepare(aes_dd->iclk);
2613         if (err)
2614                 goto err_tasklet_kill;
2615
2616         err = atmel_aes_hw_version_init(aes_dd);
2617         if (err)
2618                 goto err_iclk_unprepare;
2619
2620         atmel_aes_get_cap(aes_dd);
2621
2622 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2623         if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2624                 err = -EPROBE_DEFER;
2625                 goto err_iclk_unprepare;
2626         }
2627 #endif
2628
2629         err = atmel_aes_buff_init(aes_dd);
2630         if (err)
2631                 goto err_iclk_unprepare;
2632
2633         err = atmel_aes_dma_init(aes_dd);
2634         if (err)
2635                 goto err_buff_cleanup;
2636
2637         spin_lock(&atmel_aes.lock);
2638         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2639         spin_unlock(&atmel_aes.lock);
2640
2641         err = atmel_aes_register_algs(aes_dd);
2642         if (err)
2643                 goto err_algs;
2644
2645         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2646                         dma_chan_name(aes_dd->src.chan),
2647                         dma_chan_name(aes_dd->dst.chan));
2648
2649         return 0;
2650
2651 err_algs:
2652         spin_lock(&atmel_aes.lock);
2653         list_del(&aes_dd->list);
2654         spin_unlock(&atmel_aes.lock);
2655         atmel_aes_dma_cleanup(aes_dd);
2656 err_buff_cleanup:
2657         atmel_aes_buff_cleanup(aes_dd);
2658 err_iclk_unprepare:
2659         clk_unprepare(aes_dd->iclk);
2660 err_tasklet_kill:
2661         tasklet_kill(&aes_dd->done_task);
2662         tasklet_kill(&aes_dd->queue_task);
2663
2664         return err;
2665 }
2666
2667 static int atmel_aes_remove(struct platform_device *pdev)
2668 {
2669         struct atmel_aes_dev *aes_dd;
2670
2671         aes_dd = platform_get_drvdata(pdev);
2672         if (!aes_dd)
2673                 return -ENODEV;
2674         spin_lock(&atmel_aes.lock);
2675         list_del(&aes_dd->list);
2676         spin_unlock(&atmel_aes.lock);
2677
2678         atmel_aes_unregister_algs(aes_dd);
2679
2680         tasklet_kill(&aes_dd->done_task);
2681         tasklet_kill(&aes_dd->queue_task);
2682
2683         atmel_aes_dma_cleanup(aes_dd);
2684         atmel_aes_buff_cleanup(aes_dd);
2685
2686         clk_unprepare(aes_dd->iclk);
2687
2688         return 0;
2689 }
2690
2691 static struct platform_driver atmel_aes_driver = {
2692         .probe          = atmel_aes_probe,
2693         .remove         = atmel_aes_remove,
2694         .driver         = {
2695                 .name   = "atmel_aes",
2696                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2697         },
2698 };
2699
2700 module_platform_driver(atmel_aes_driver);
2701
2702 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2703 MODULE_LICENSE("GPL v2");
2704 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");