Merge tag 'acpi-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-2.6-microblaze.git] / drivers / crypto / atmel-aes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/scatterlist.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/delay.h>
32 #include <linux/crypto.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35 #include <crypto/aes.h>
36 #include <crypto/gcm.h>
37 #include <crypto/xts.h>
38 #include <crypto/internal/aead.h>
39 #include <crypto/internal/skcipher.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
43 #include "atmel-authenc.h"
44
45 #define ATMEL_AES_PRIORITY      300
46
47 #define ATMEL_AES_BUFFER_ORDER  2
48 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
49
50 #define CFB8_BLOCK_SIZE         1
51 #define CFB16_BLOCK_SIZE        2
52 #define CFB32_BLOCK_SIZE        4
53 #define CFB64_BLOCK_SIZE        8
54
55 #define SIZE_IN_WORDS(x)        ((x) >> 2)
56
57 /* AES flags */
58 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
59 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
60 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
61 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
62 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
63 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
64 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
65 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
66 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
67 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
68 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
69 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
70 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
71 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
72 #define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
73
74 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
75                                  AES_FLAGS_ENCRYPT |            \
76                                  AES_FLAGS_GTAGEN)
77
78 #define AES_FLAGS_BUSY          BIT(3)
79 #define AES_FLAGS_DUMP_REG      BIT(4)
80 #define AES_FLAGS_OWN_SHA       BIT(5)
81
82 #define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
83
84 #define ATMEL_AES_QUEUE_LENGTH  50
85
86 #define ATMEL_AES_DMA_THRESHOLD         256
87
88
89 struct atmel_aes_caps {
90         bool                    has_dualbuff;
91         bool                    has_cfb64;
92         bool                    has_ctr32;
93         bool                    has_gcm;
94         bool                    has_xts;
95         bool                    has_authenc;
96         u32                     max_burst_size;
97 };
98
99 struct atmel_aes_dev;
100
101
102 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
103
104
105 struct atmel_aes_base_ctx {
106         struct atmel_aes_dev    *dd;
107         atmel_aes_fn_t          start;
108         int                     keylen;
109         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
110         u16                     block_size;
111         bool                    is_aead;
112 };
113
114 struct atmel_aes_ctx {
115         struct atmel_aes_base_ctx       base;
116 };
117
118 struct atmel_aes_ctr_ctx {
119         struct atmel_aes_base_ctx       base;
120
121         __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
122         size_t                  offset;
123         struct scatterlist      src[2];
124         struct scatterlist      dst[2];
125 };
126
127 struct atmel_aes_gcm_ctx {
128         struct atmel_aes_base_ctx       base;
129
130         struct scatterlist      src[2];
131         struct scatterlist      dst[2];
132
133         __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
134         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
135         __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
136         size_t                  textlen;
137
138         const __be32            *ghash_in;
139         __be32                  *ghash_out;
140         atmel_aes_fn_t          ghash_resume;
141 };
142
143 struct atmel_aes_xts_ctx {
144         struct atmel_aes_base_ctx       base;
145
146         u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
147 };
148
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151         struct atmel_aes_base_ctx       base;
152         struct atmel_sha_authenc_ctx    *auth;
153 };
154 #endif
155
156 struct atmel_aes_reqctx {
157         unsigned long           mode;
158         u8                      lastc[AES_BLOCK_SIZE];
159 };
160
161 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
162 struct atmel_aes_authenc_reqctx {
163         struct atmel_aes_reqctx base;
164
165         struct scatterlist      src[2];
166         struct scatterlist      dst[2];
167         size_t                  textlen;
168         u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
169
170         /* auth_req MUST be place last. */
171         struct ahash_request    auth_req;
172 };
173 #endif
174
175 struct atmel_aes_dma {
176         struct dma_chan         *chan;
177         struct scatterlist      *sg;
178         int                     nents;
179         unsigned int            remainder;
180         unsigned int            sg_len;
181 };
182
183 struct atmel_aes_dev {
184         struct list_head        list;
185         unsigned long           phys_base;
186         void __iomem            *io_base;
187
188         struct crypto_async_request     *areq;
189         struct atmel_aes_base_ctx       *ctx;
190
191         bool                    is_async;
192         atmel_aes_fn_t          resume;
193         atmel_aes_fn_t          cpu_transfer_complete;
194
195         struct device           *dev;
196         struct clk              *iclk;
197         int                     irq;
198
199         unsigned long           flags;
200
201         spinlock_t              lock;
202         struct crypto_queue     queue;
203
204         struct tasklet_struct   done_task;
205         struct tasklet_struct   queue_task;
206
207         size_t                  total;
208         size_t                  datalen;
209         u32                     *data;
210
211         struct atmel_aes_dma    src;
212         struct atmel_aes_dma    dst;
213
214         size_t                  buflen;
215         void                    *buf;
216         struct scatterlist      aligned_sg;
217         struct scatterlist      *real_dst;
218
219         struct atmel_aes_caps   caps;
220
221         u32                     hw_version;
222 };
223
224 struct atmel_aes_drv {
225         struct list_head        dev_list;
226         spinlock_t              lock;
227 };
228
229 static struct atmel_aes_drv atmel_aes = {
230         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
231         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
232 };
233
234 #ifdef VERBOSE_DEBUG
235 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
236 {
237         switch (offset) {
238         case AES_CR:
239                 return "CR";
240
241         case AES_MR:
242                 return "MR";
243
244         case AES_ISR:
245                 return "ISR";
246
247         case AES_IMR:
248                 return "IMR";
249
250         case AES_IER:
251                 return "IER";
252
253         case AES_IDR:
254                 return "IDR";
255
256         case AES_KEYWR(0):
257         case AES_KEYWR(1):
258         case AES_KEYWR(2):
259         case AES_KEYWR(3):
260         case AES_KEYWR(4):
261         case AES_KEYWR(5):
262         case AES_KEYWR(6):
263         case AES_KEYWR(7):
264                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
265                 break;
266
267         case AES_IDATAR(0):
268         case AES_IDATAR(1):
269         case AES_IDATAR(2):
270         case AES_IDATAR(3):
271                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
272                 break;
273
274         case AES_ODATAR(0):
275         case AES_ODATAR(1):
276         case AES_ODATAR(2):
277         case AES_ODATAR(3):
278                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
279                 break;
280
281         case AES_IVR(0):
282         case AES_IVR(1):
283         case AES_IVR(2):
284         case AES_IVR(3):
285                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
286                 break;
287
288         case AES_AADLENR:
289                 return "AADLENR";
290
291         case AES_CLENR:
292                 return "CLENR";
293
294         case AES_GHASHR(0):
295         case AES_GHASHR(1):
296         case AES_GHASHR(2):
297         case AES_GHASHR(3):
298                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
299                 break;
300
301         case AES_TAGR(0):
302         case AES_TAGR(1):
303         case AES_TAGR(2):
304         case AES_TAGR(3):
305                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
306                 break;
307
308         case AES_CTRR:
309                 return "CTRR";
310
311         case AES_GCMHR(0):
312         case AES_GCMHR(1):
313         case AES_GCMHR(2):
314         case AES_GCMHR(3):
315                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
316                 break;
317
318         case AES_EMR:
319                 return "EMR";
320
321         case AES_TWR(0):
322         case AES_TWR(1):
323         case AES_TWR(2):
324         case AES_TWR(3):
325                 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
326                 break;
327
328         case AES_ALPHAR(0):
329         case AES_ALPHAR(1):
330         case AES_ALPHAR(2):
331         case AES_ALPHAR(3):
332                 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
333                 break;
334
335         default:
336                 snprintf(tmp, sz, "0x%02x", offset);
337                 break;
338         }
339
340         return tmp;
341 }
342 #endif /* VERBOSE_DEBUG */
343
344 /* Shared functions */
345
346 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
347 {
348         u32 value = readl_relaxed(dd->io_base + offset);
349
350 #ifdef VERBOSE_DEBUG
351         if (dd->flags & AES_FLAGS_DUMP_REG) {
352                 char tmp[16];
353
354                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
355                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
356         }
357 #endif /* VERBOSE_DEBUG */
358
359         return value;
360 }
361
362 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
363                                         u32 offset, u32 value)
364 {
365 #ifdef VERBOSE_DEBUG
366         if (dd->flags & AES_FLAGS_DUMP_REG) {
367                 char tmp[16];
368
369                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
370                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
371         }
372 #endif /* VERBOSE_DEBUG */
373
374         writel_relaxed(value, dd->io_base + offset);
375 }
376
377 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
378                                         u32 *value, int count)
379 {
380         for (; count--; value++, offset += 4)
381                 *value = atmel_aes_read(dd, offset);
382 }
383
384 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
385                               const u32 *value, int count)
386 {
387         for (; count--; value++, offset += 4)
388                 atmel_aes_write(dd, offset, *value);
389 }
390
391 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
392                                         void *value)
393 {
394         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
395 }
396
397 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
398                                          const void *value)
399 {
400         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
401 }
402
403 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
404                                                 atmel_aes_fn_t resume)
405 {
406         u32 isr = atmel_aes_read(dd, AES_ISR);
407
408         if (unlikely(isr & AES_INT_DATARDY))
409                 return resume(dd);
410
411         dd->resume = resume;
412         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
413         return -EINPROGRESS;
414 }
415
416 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
417 {
418         len &= block_size - 1;
419         return len ? block_size - len : 0;
420 }
421
422 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
423 {
424         struct atmel_aes_dev *aes_dd = NULL;
425         struct atmel_aes_dev *tmp;
426
427         spin_lock_bh(&atmel_aes.lock);
428         if (!ctx->dd) {
429                 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
430                         aes_dd = tmp;
431                         break;
432                 }
433                 ctx->dd = aes_dd;
434         } else {
435                 aes_dd = ctx->dd;
436         }
437
438         spin_unlock_bh(&atmel_aes.lock);
439
440         return aes_dd;
441 }
442
443 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
444 {
445         int err;
446
447         err = clk_enable(dd->iclk);
448         if (err)
449                 return err;
450
451         atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
452         atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
453
454         return 0;
455 }
456
457 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
458 {
459         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
460 }
461
462 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
463 {
464         int err;
465
466         err = atmel_aes_hw_init(dd);
467         if (err)
468                 return err;
469
470         dd->hw_version = atmel_aes_get_version(dd);
471
472         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
473
474         clk_disable(dd->iclk);
475         return 0;
476 }
477
478 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
479                                       const struct atmel_aes_reqctx *rctx)
480 {
481         /* Clear all but persistent flags and set request flags. */
482         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
483 }
484
485 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
486 {
487         return (dd->flags & AES_FLAGS_ENCRYPT);
488 }
489
490 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
491 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
492 #endif
493
494 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
495 {
496         struct skcipher_request *req = skcipher_request_cast(dd->areq);
497         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
498         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
499         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
500
501         if (req->cryptlen < ivsize)
502                 return;
503
504         if (rctx->mode & AES_FLAGS_ENCRYPT) {
505                 scatterwalk_map_and_copy(req->iv, req->dst,
506                                          req->cryptlen - ivsize, ivsize, 0);
507         } else {
508                 if (req->src == req->dst)
509                         memcpy(req->iv, rctx->lastc, ivsize);
510                 else
511                         scatterwalk_map_and_copy(req->iv, req->src,
512                                                  req->cryptlen - ivsize,
513                                                  ivsize, 0);
514         }
515 }
516
517 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
518 {
519 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
520         if (dd->ctx->is_aead)
521                 atmel_aes_authenc_complete(dd, err);
522 #endif
523
524         clk_disable(dd->iclk);
525         dd->flags &= ~AES_FLAGS_BUSY;
526
527         if (!dd->ctx->is_aead)
528                 atmel_aes_set_iv_as_last_ciphertext_block(dd);
529
530         if (dd->is_async)
531                 dd->areq->complete(dd->areq, err);
532
533         tasklet_schedule(&dd->queue_task);
534
535         return err;
536 }
537
538 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
539                                      const __be32 *iv, const u32 *key, int keylen)
540 {
541         u32 valmr = 0;
542
543         /* MR register must be set before IV registers */
544         if (keylen == AES_KEYSIZE_128)
545                 valmr |= AES_MR_KEYSIZE_128;
546         else if (keylen == AES_KEYSIZE_192)
547                 valmr |= AES_MR_KEYSIZE_192;
548         else
549                 valmr |= AES_MR_KEYSIZE_256;
550
551         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
552
553         if (use_dma) {
554                 valmr |= AES_MR_SMOD_IDATAR0;
555                 if (dd->caps.has_dualbuff)
556                         valmr |= AES_MR_DUALBUFF;
557         } else {
558                 valmr |= AES_MR_SMOD_AUTO;
559         }
560
561         atmel_aes_write(dd, AES_MR, valmr);
562
563         atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
564
565         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
566                 atmel_aes_write_block(dd, AES_IVR(0), iv);
567 }
568
569 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
570                                         const __be32 *iv)
571
572 {
573         atmel_aes_write_ctrl_key(dd, use_dma, iv,
574                                  dd->ctx->key, dd->ctx->keylen);
575 }
576
577 /* CPU transfer */
578
579 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
580 {
581         int err = 0;
582         u32 isr;
583
584         for (;;) {
585                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
586                 dd->data += 4;
587                 dd->datalen -= AES_BLOCK_SIZE;
588
589                 if (dd->datalen < AES_BLOCK_SIZE)
590                         break;
591
592                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
593
594                 isr = atmel_aes_read(dd, AES_ISR);
595                 if (!(isr & AES_INT_DATARDY)) {
596                         dd->resume = atmel_aes_cpu_transfer;
597                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
598                         return -EINPROGRESS;
599                 }
600         }
601
602         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
603                                  dd->buf, dd->total))
604                 err = -EINVAL;
605
606         if (err)
607                 return atmel_aes_complete(dd, err);
608
609         return dd->cpu_transfer_complete(dd);
610 }
611
612 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
613                                struct scatterlist *src,
614                                struct scatterlist *dst,
615                                size_t len,
616                                atmel_aes_fn_t resume)
617 {
618         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
619
620         if (unlikely(len == 0))
621                 return -EINVAL;
622
623         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
624
625         dd->total = len;
626         dd->real_dst = dst;
627         dd->cpu_transfer_complete = resume;
628         dd->datalen = len + padlen;
629         dd->data = (u32 *)dd->buf;
630         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
631         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
632 }
633
634
635 /* DMA transfer */
636
637 static void atmel_aes_dma_callback(void *data);
638
639 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
640                                     struct scatterlist *sg,
641                                     size_t len,
642                                     struct atmel_aes_dma *dma)
643 {
644         int nents;
645
646         if (!IS_ALIGNED(len, dd->ctx->block_size))
647                 return false;
648
649         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
650                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
651                         return false;
652
653                 if (len <= sg->length) {
654                         if (!IS_ALIGNED(len, dd->ctx->block_size))
655                                 return false;
656
657                         dma->nents = nents+1;
658                         dma->remainder = sg->length - len;
659                         sg->length = len;
660                         return true;
661                 }
662
663                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
664                         return false;
665
666                 len -= sg->length;
667         }
668
669         return false;
670 }
671
672 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
673 {
674         struct scatterlist *sg = dma->sg;
675         int nents = dma->nents;
676
677         if (!dma->remainder)
678                 return;
679
680         while (--nents > 0 && sg)
681                 sg = sg_next(sg);
682
683         if (!sg)
684                 return;
685
686         sg->length += dma->remainder;
687 }
688
689 static int atmel_aes_map(struct atmel_aes_dev *dd,
690                          struct scatterlist *src,
691                          struct scatterlist *dst,
692                          size_t len)
693 {
694         bool src_aligned, dst_aligned;
695         size_t padlen;
696
697         dd->total = len;
698         dd->src.sg = src;
699         dd->dst.sg = dst;
700         dd->real_dst = dst;
701
702         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
703         if (src == dst)
704                 dst_aligned = src_aligned;
705         else
706                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
707         if (!src_aligned || !dst_aligned) {
708                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
709
710                 if (dd->buflen < len + padlen)
711                         return -ENOMEM;
712
713                 if (!src_aligned) {
714                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
715                         dd->src.sg = &dd->aligned_sg;
716                         dd->src.nents = 1;
717                         dd->src.remainder = 0;
718                 }
719
720                 if (!dst_aligned) {
721                         dd->dst.sg = &dd->aligned_sg;
722                         dd->dst.nents = 1;
723                         dd->dst.remainder = 0;
724                 }
725
726                 sg_init_table(&dd->aligned_sg, 1);
727                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
728         }
729
730         if (dd->src.sg == dd->dst.sg) {
731                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
732                                             DMA_BIDIRECTIONAL);
733                 dd->dst.sg_len = dd->src.sg_len;
734                 if (!dd->src.sg_len)
735                         return -EFAULT;
736         } else {
737                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
738                                             DMA_TO_DEVICE);
739                 if (!dd->src.sg_len)
740                         return -EFAULT;
741
742                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
743                                             DMA_FROM_DEVICE);
744                 if (!dd->dst.sg_len) {
745                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
746                                      DMA_TO_DEVICE);
747                         return -EFAULT;
748                 }
749         }
750
751         return 0;
752 }
753
754 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
755 {
756         if (dd->src.sg == dd->dst.sg) {
757                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
758                              DMA_BIDIRECTIONAL);
759
760                 if (dd->src.sg != &dd->aligned_sg)
761                         atmel_aes_restore_sg(&dd->src);
762         } else {
763                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
764                              DMA_FROM_DEVICE);
765
766                 if (dd->dst.sg != &dd->aligned_sg)
767                         atmel_aes_restore_sg(&dd->dst);
768
769                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
770                              DMA_TO_DEVICE);
771
772                 if (dd->src.sg != &dd->aligned_sg)
773                         atmel_aes_restore_sg(&dd->src);
774         }
775
776         if (dd->dst.sg == &dd->aligned_sg)
777                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
778                                     dd->buf, dd->total);
779 }
780
781 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
782                                         enum dma_slave_buswidth addr_width,
783                                         enum dma_transfer_direction dir,
784                                         u32 maxburst)
785 {
786         struct dma_async_tx_descriptor *desc;
787         struct dma_slave_config config;
788         dma_async_tx_callback callback;
789         struct atmel_aes_dma *dma;
790         int err;
791
792         memset(&config, 0, sizeof(config));
793         config.direction = dir;
794         config.src_addr_width = addr_width;
795         config.dst_addr_width = addr_width;
796         config.src_maxburst = maxburst;
797         config.dst_maxburst = maxburst;
798
799         switch (dir) {
800         case DMA_MEM_TO_DEV:
801                 dma = &dd->src;
802                 callback = NULL;
803                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
804                 break;
805
806         case DMA_DEV_TO_MEM:
807                 dma = &dd->dst;
808                 callback = atmel_aes_dma_callback;
809                 config.src_addr = dd->phys_base + AES_ODATAR(0);
810                 break;
811
812         default:
813                 return -EINVAL;
814         }
815
816         err = dmaengine_slave_config(dma->chan, &config);
817         if (err)
818                 return err;
819
820         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
821                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
822         if (!desc)
823                 return -ENOMEM;
824
825         desc->callback = callback;
826         desc->callback_param = dd;
827         dmaengine_submit(desc);
828         dma_async_issue_pending(dma->chan);
829
830         return 0;
831 }
832
833 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
834                                         enum dma_transfer_direction dir)
835 {
836         struct atmel_aes_dma *dma;
837
838         switch (dir) {
839         case DMA_MEM_TO_DEV:
840                 dma = &dd->src;
841                 break;
842
843         case DMA_DEV_TO_MEM:
844                 dma = &dd->dst;
845                 break;
846
847         default:
848                 return;
849         }
850
851         dmaengine_terminate_all(dma->chan);
852 }
853
854 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
855                                struct scatterlist *src,
856                                struct scatterlist *dst,
857                                size_t len,
858                                atmel_aes_fn_t resume)
859 {
860         enum dma_slave_buswidth addr_width;
861         u32 maxburst;
862         int err;
863
864         switch (dd->ctx->block_size) {
865         case CFB8_BLOCK_SIZE:
866                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
867                 maxburst = 1;
868                 break;
869
870         case CFB16_BLOCK_SIZE:
871                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
872                 maxburst = 1;
873                 break;
874
875         case CFB32_BLOCK_SIZE:
876         case CFB64_BLOCK_SIZE:
877                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
878                 maxburst = 1;
879                 break;
880
881         case AES_BLOCK_SIZE:
882                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
883                 maxburst = dd->caps.max_burst_size;
884                 break;
885
886         default:
887                 err = -EINVAL;
888                 goto exit;
889         }
890
891         err = atmel_aes_map(dd, src, dst, len);
892         if (err)
893                 goto exit;
894
895         dd->resume = resume;
896
897         /* Set output DMA transfer first */
898         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
899                                            maxburst);
900         if (err)
901                 goto unmap;
902
903         /* Then set input DMA transfer */
904         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
905                                            maxburst);
906         if (err)
907                 goto output_transfer_stop;
908
909         return -EINPROGRESS;
910
911 output_transfer_stop:
912         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
913 unmap:
914         atmel_aes_unmap(dd);
915 exit:
916         return atmel_aes_complete(dd, err);
917 }
918
919 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
920 {
921         atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
922         atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
923         atmel_aes_unmap(dd);
924 }
925
926 static void atmel_aes_dma_callback(void *data)
927 {
928         struct atmel_aes_dev *dd = data;
929
930         atmel_aes_dma_stop(dd);
931         dd->is_async = true;
932         (void)dd->resume(dd);
933 }
934
935 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
936                                   struct crypto_async_request *new_areq)
937 {
938         struct crypto_async_request *areq, *backlog;
939         struct atmel_aes_base_ctx *ctx;
940         unsigned long flags;
941         bool start_async;
942         int err, ret = 0;
943
944         spin_lock_irqsave(&dd->lock, flags);
945         if (new_areq)
946                 ret = crypto_enqueue_request(&dd->queue, new_areq);
947         if (dd->flags & AES_FLAGS_BUSY) {
948                 spin_unlock_irqrestore(&dd->lock, flags);
949                 return ret;
950         }
951         backlog = crypto_get_backlog(&dd->queue);
952         areq = crypto_dequeue_request(&dd->queue);
953         if (areq)
954                 dd->flags |= AES_FLAGS_BUSY;
955         spin_unlock_irqrestore(&dd->lock, flags);
956
957         if (!areq)
958                 return ret;
959
960         if (backlog)
961                 backlog->complete(backlog, -EINPROGRESS);
962
963         ctx = crypto_tfm_ctx(areq->tfm);
964
965         dd->areq = areq;
966         dd->ctx = ctx;
967         start_async = (areq != new_areq);
968         dd->is_async = start_async;
969
970         /* WARNING: ctx->start() MAY change dd->is_async. */
971         err = ctx->start(dd);
972         return (start_async) ? ret : err;
973 }
974
975
976 /* AES async block ciphers */
977
978 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
979 {
980         return atmel_aes_complete(dd, 0);
981 }
982
983 static int atmel_aes_start(struct atmel_aes_dev *dd)
984 {
985         struct skcipher_request *req = skcipher_request_cast(dd->areq);
986         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
987         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
988                         dd->ctx->block_size != AES_BLOCK_SIZE);
989         int err;
990
991         atmel_aes_set_mode(dd, rctx);
992
993         err = atmel_aes_hw_init(dd);
994         if (err)
995                 return atmel_aes_complete(dd, err);
996
997         atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
998         if (use_dma)
999                 return atmel_aes_dma_start(dd, req->src, req->dst,
1000                                            req->cryptlen,
1001                                            atmel_aes_transfer_complete);
1002
1003         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1004                                    atmel_aes_transfer_complete);
1005 }
1006
1007 static inline struct atmel_aes_ctr_ctx *
1008 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1009 {
1010         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1011 }
1012
1013 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1014 {
1015         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1016         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1017         struct scatterlist *src, *dst;
1018         u32 ctr, blocks;
1019         size_t datalen;
1020         bool use_dma, fragmented = false;
1021
1022         /* Check for transfer completion. */
1023         ctx->offset += dd->total;
1024         if (ctx->offset >= req->cryptlen)
1025                 return atmel_aes_transfer_complete(dd);
1026
1027         /* Compute data length. */
1028         datalen = req->cryptlen - ctx->offset;
1029         blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1030         ctr = be32_to_cpu(ctx->iv[3]);
1031         if (dd->caps.has_ctr32) {
1032                 /* Check 32bit counter overflow. */
1033                 u32 start = ctr;
1034                 u32 end = start + blocks - 1;
1035
1036                 if (end < start) {
1037                         ctr |= 0xffffffff;
1038                         datalen = AES_BLOCK_SIZE * -start;
1039                         fragmented = true;
1040                 }
1041         } else {
1042                 /* Check 16bit counter overflow. */
1043                 u16 start = ctr & 0xffff;
1044                 u16 end = start + (u16)blocks - 1;
1045
1046                 if (blocks >> 16 || end < start) {
1047                         ctr |= 0xffff;
1048                         datalen = AES_BLOCK_SIZE * (0x10000-start);
1049                         fragmented = true;
1050                 }
1051         }
1052         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1053
1054         /* Jump to offset. */
1055         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1056         dst = ((req->src == req->dst) ? src :
1057                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1058
1059         /* Configure hardware. */
1060         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1061         if (unlikely(fragmented)) {
1062                 /*
1063                  * Increment the counter manually to cope with the hardware
1064                  * counter overflow.
1065                  */
1066                 ctx->iv[3] = cpu_to_be32(ctr);
1067                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1068         }
1069
1070         if (use_dma)
1071                 return atmel_aes_dma_start(dd, src, dst, datalen,
1072                                            atmel_aes_ctr_transfer);
1073
1074         return atmel_aes_cpu_start(dd, src, dst, datalen,
1075                                    atmel_aes_ctr_transfer);
1076 }
1077
1078 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1079 {
1080         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1081         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1082         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1083         int err;
1084
1085         atmel_aes_set_mode(dd, rctx);
1086
1087         err = atmel_aes_hw_init(dd);
1088         if (err)
1089                 return atmel_aes_complete(dd, err);
1090
1091         memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1092         ctx->offset = 0;
1093         dd->total = 0;
1094         return atmel_aes_ctr_transfer(dd);
1095 }
1096
1097 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1098 {
1099         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1100         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1101         struct atmel_aes_reqctx *rctx;
1102         struct atmel_aes_dev *dd;
1103
1104         switch (mode & AES_FLAGS_OPMODE_MASK) {
1105         case AES_FLAGS_CFB8:
1106                 ctx->block_size = CFB8_BLOCK_SIZE;
1107                 break;
1108
1109         case AES_FLAGS_CFB16:
1110                 ctx->block_size = CFB16_BLOCK_SIZE;
1111                 break;
1112
1113         case AES_FLAGS_CFB32:
1114                 ctx->block_size = CFB32_BLOCK_SIZE;
1115                 break;
1116
1117         case AES_FLAGS_CFB64:
1118                 ctx->block_size = CFB64_BLOCK_SIZE;
1119                 break;
1120
1121         default:
1122                 ctx->block_size = AES_BLOCK_SIZE;
1123                 break;
1124         }
1125         ctx->is_aead = false;
1126
1127         dd = atmel_aes_find_dev(ctx);
1128         if (!dd)
1129                 return -ENODEV;
1130
1131         rctx = skcipher_request_ctx(req);
1132         rctx->mode = mode;
1133
1134         if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1135                 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1136
1137                 if (req->cryptlen >= ivsize)
1138                         scatterwalk_map_and_copy(rctx->lastc, req->src,
1139                                                  req->cryptlen - ivsize,
1140                                                  ivsize, 0);
1141         }
1142
1143         return atmel_aes_handle_queue(dd, &req->base);
1144 }
1145
1146 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1147                            unsigned int keylen)
1148 {
1149         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1150
1151         if (keylen != AES_KEYSIZE_128 &&
1152             keylen != AES_KEYSIZE_192 &&
1153             keylen != AES_KEYSIZE_256) {
1154                 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1155                 return -EINVAL;
1156         }
1157
1158         memcpy(ctx->key, key, keylen);
1159         ctx->keylen = keylen;
1160
1161         return 0;
1162 }
1163
1164 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1165 {
1166         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1167 }
1168
1169 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1170 {
1171         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1172 }
1173
1174 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1175 {
1176         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1177 }
1178
1179 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1180 {
1181         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1182 }
1183
1184 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1185 {
1186         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1187 }
1188
1189 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1190 {
1191         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1192 }
1193
1194 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1195 {
1196         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1197 }
1198
1199 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1200 {
1201         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1202 }
1203
1204 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1205 {
1206         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1207 }
1208
1209 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1210 {
1211         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1212 }
1213
1214 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1215 {
1216         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1217 }
1218
1219 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1220 {
1221         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1222 }
1223
1224 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1225 {
1226         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1227 }
1228
1229 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1230 {
1231         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1232 }
1233
1234 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1235 {
1236         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1237 }
1238
1239 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1240 {
1241         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1242 }
1243
1244 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1245 {
1246         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1247 }
1248
1249 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1250 {
1251         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1252 }
1253
1254 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1255 {
1256         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1257
1258         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1259         ctx->base.start = atmel_aes_start;
1260
1261         return 0;
1262 }
1263
1264 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1265 {
1266         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1267
1268         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1269         ctx->base.start = atmel_aes_ctr_start;
1270
1271         return 0;
1272 }
1273
1274 static struct skcipher_alg aes_algs[] = {
1275 {
1276         .base.cra_name          = "ecb(aes)",
1277         .base.cra_driver_name   = "atmel-ecb-aes",
1278         .base.cra_priority      = ATMEL_AES_PRIORITY,
1279         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1280         .base.cra_blocksize     = AES_BLOCK_SIZE,
1281         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1282         .base.cra_alignmask     = 0xf,
1283         .base.cra_module        = THIS_MODULE,
1284
1285         .init                   = atmel_aes_init_tfm,
1286         .min_keysize            = AES_MIN_KEY_SIZE,
1287         .max_keysize            = AES_MAX_KEY_SIZE,
1288         .setkey                 = atmel_aes_setkey,
1289         .encrypt                = atmel_aes_ecb_encrypt,
1290         .decrypt                = atmel_aes_ecb_decrypt,
1291 },
1292 {
1293         .base.cra_name          = "cbc(aes)",
1294         .base.cra_driver_name   = "atmel-cbc-aes",
1295         .base.cra_priority      = ATMEL_AES_PRIORITY,
1296         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1297         .base.cra_blocksize     = AES_BLOCK_SIZE,
1298         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1299         .base.cra_alignmask     = 0xf,
1300         .base.cra_module        = THIS_MODULE,
1301
1302         .init                   = atmel_aes_init_tfm,
1303         .min_keysize            = AES_MIN_KEY_SIZE,
1304         .max_keysize            = AES_MAX_KEY_SIZE,
1305         .setkey                 = atmel_aes_setkey,
1306         .encrypt                = atmel_aes_cbc_encrypt,
1307         .decrypt                = atmel_aes_cbc_decrypt,
1308         .ivsize                 = AES_BLOCK_SIZE,
1309 },
1310 {
1311         .base.cra_name          = "ofb(aes)",
1312         .base.cra_driver_name   = "atmel-ofb-aes",
1313         .base.cra_priority      = ATMEL_AES_PRIORITY,
1314         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1315         .base.cra_blocksize     = AES_BLOCK_SIZE,
1316         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1317         .base.cra_alignmask     = 0xf,
1318         .base.cra_module        = THIS_MODULE,
1319
1320         .init                   = atmel_aes_init_tfm,
1321         .min_keysize            = AES_MIN_KEY_SIZE,
1322         .max_keysize            = AES_MAX_KEY_SIZE,
1323         .setkey                 = atmel_aes_setkey,
1324         .encrypt                = atmel_aes_ofb_encrypt,
1325         .decrypt                = atmel_aes_ofb_decrypt,
1326         .ivsize                 = AES_BLOCK_SIZE,
1327 },
1328 {
1329         .base.cra_name          = "cfb(aes)",
1330         .base.cra_driver_name   = "atmel-cfb-aes",
1331         .base.cra_priority      = ATMEL_AES_PRIORITY,
1332         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1333         .base.cra_blocksize     = AES_BLOCK_SIZE,
1334         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1335         .base.cra_alignmask     = 0xf,
1336         .base.cra_module        = THIS_MODULE,
1337
1338         .init                   = atmel_aes_init_tfm,
1339         .min_keysize            = AES_MIN_KEY_SIZE,
1340         .max_keysize            = AES_MAX_KEY_SIZE,
1341         .setkey                 = atmel_aes_setkey,
1342         .encrypt                = atmel_aes_cfb_encrypt,
1343         .decrypt                = atmel_aes_cfb_decrypt,
1344         .ivsize                 = AES_BLOCK_SIZE,
1345 },
1346 {
1347         .base.cra_name          = "cfb32(aes)",
1348         .base.cra_driver_name   = "atmel-cfb32-aes",
1349         .base.cra_priority      = ATMEL_AES_PRIORITY,
1350         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1351         .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1352         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1353         .base.cra_alignmask     = 0xf,
1354         .base.cra_module        = THIS_MODULE,
1355
1356         .init                   = atmel_aes_init_tfm,
1357         .min_keysize            = AES_MIN_KEY_SIZE,
1358         .max_keysize            = AES_MAX_KEY_SIZE,
1359         .setkey                 = atmel_aes_setkey,
1360         .encrypt                = atmel_aes_cfb32_encrypt,
1361         .decrypt                = atmel_aes_cfb32_decrypt,
1362         .ivsize                 = AES_BLOCK_SIZE,
1363 },
1364 {
1365         .base.cra_name          = "cfb16(aes)",
1366         .base.cra_driver_name   = "atmel-cfb16-aes",
1367         .base.cra_priority      = ATMEL_AES_PRIORITY,
1368         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1369         .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1370         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1371         .base.cra_alignmask     = 0xf,
1372         .base.cra_module        = THIS_MODULE,
1373
1374         .init                   = atmel_aes_init_tfm,
1375         .min_keysize            = AES_MIN_KEY_SIZE,
1376         .max_keysize            = AES_MAX_KEY_SIZE,
1377         .setkey                 = atmel_aes_setkey,
1378         .encrypt                = atmel_aes_cfb16_encrypt,
1379         .decrypt                = atmel_aes_cfb16_decrypt,
1380         .ivsize                 = AES_BLOCK_SIZE,
1381 },
1382 {
1383         .base.cra_name          = "cfb8(aes)",
1384         .base.cra_driver_name   = "atmel-cfb8-aes",
1385         .base.cra_priority      = ATMEL_AES_PRIORITY,
1386         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1387         .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1388         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1389         .base.cra_alignmask     = 0xf,
1390         .base.cra_module        = THIS_MODULE,
1391
1392         .init                   = atmel_aes_init_tfm,
1393         .min_keysize            = AES_MIN_KEY_SIZE,
1394         .max_keysize            = AES_MAX_KEY_SIZE,
1395         .setkey                 = atmel_aes_setkey,
1396         .encrypt                = atmel_aes_cfb8_encrypt,
1397         .decrypt                = atmel_aes_cfb8_decrypt,
1398         .ivsize                 = AES_BLOCK_SIZE,
1399 },
1400 {
1401         .base.cra_name          = "ctr(aes)",
1402         .base.cra_driver_name   = "atmel-ctr-aes",
1403         .base.cra_priority      = ATMEL_AES_PRIORITY,
1404         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1405         .base.cra_blocksize     = 1,
1406         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1407         .base.cra_alignmask     = 0xf,
1408         .base.cra_module        = THIS_MODULE,
1409
1410         .init                   = atmel_aes_ctr_init_tfm,
1411         .min_keysize            = AES_MIN_KEY_SIZE,
1412         .max_keysize            = AES_MAX_KEY_SIZE,
1413         .setkey                 = atmel_aes_setkey,
1414         .encrypt                = atmel_aes_ctr_encrypt,
1415         .decrypt                = atmel_aes_ctr_decrypt,
1416         .ivsize                 = AES_BLOCK_SIZE,
1417 },
1418 };
1419
1420 static struct skcipher_alg aes_cfb64_alg = {
1421         .base.cra_name          = "cfb64(aes)",
1422         .base.cra_driver_name   = "atmel-cfb64-aes",
1423         .base.cra_priority      = ATMEL_AES_PRIORITY,
1424         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1425         .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1426         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1427         .base.cra_alignmask     = 0xf,
1428         .base.cra_module        = THIS_MODULE,
1429
1430         .init                   = atmel_aes_init_tfm,
1431         .min_keysize            = AES_MIN_KEY_SIZE,
1432         .max_keysize            = AES_MAX_KEY_SIZE,
1433         .setkey                 = atmel_aes_setkey,
1434         .encrypt                = atmel_aes_cfb64_encrypt,
1435         .decrypt                = atmel_aes_cfb64_decrypt,
1436         .ivsize                 = AES_BLOCK_SIZE,
1437 };
1438
1439
1440 /* gcm aead functions */
1441
1442 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1443                                const u32 *data, size_t datalen,
1444                                const __be32 *ghash_in, __be32 *ghash_out,
1445                                atmel_aes_fn_t resume);
1446 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1447 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1448
1449 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1450 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1451 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1452 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1453 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1454 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1455 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1456
1457 static inline struct atmel_aes_gcm_ctx *
1458 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1459 {
1460         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1461 }
1462
1463 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1464                                const u32 *data, size_t datalen,
1465                                const __be32 *ghash_in, __be32 *ghash_out,
1466                                atmel_aes_fn_t resume)
1467 {
1468         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1469
1470         dd->data = (u32 *)data;
1471         dd->datalen = datalen;
1472         ctx->ghash_in = ghash_in;
1473         ctx->ghash_out = ghash_out;
1474         ctx->ghash_resume = resume;
1475
1476         atmel_aes_write_ctrl(dd, false, NULL);
1477         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1478 }
1479
1480 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1481 {
1482         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1483
1484         /* Set the data length. */
1485         atmel_aes_write(dd, AES_AADLENR, dd->total);
1486         atmel_aes_write(dd, AES_CLENR, 0);
1487
1488         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1489         if (ctx->ghash_in)
1490                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1491
1492         return atmel_aes_gcm_ghash_finalize(dd);
1493 }
1494
1495 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1496 {
1497         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1498         u32 isr;
1499
1500         /* Write data into the Input Data Registers. */
1501         while (dd->datalen > 0) {
1502                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1503                 dd->data += 4;
1504                 dd->datalen -= AES_BLOCK_SIZE;
1505
1506                 isr = atmel_aes_read(dd, AES_ISR);
1507                 if (!(isr & AES_INT_DATARDY)) {
1508                         dd->resume = atmel_aes_gcm_ghash_finalize;
1509                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1510                         return -EINPROGRESS;
1511                 }
1512         }
1513
1514         /* Read the computed hash from GHASHRx. */
1515         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1516
1517         return ctx->ghash_resume(dd);
1518 }
1519
1520
1521 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1522 {
1523         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1524         struct aead_request *req = aead_request_cast(dd->areq);
1525         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1526         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1527         size_t ivsize = crypto_aead_ivsize(tfm);
1528         size_t datalen, padlen;
1529         const void *iv = req->iv;
1530         u8 *data = dd->buf;
1531         int err;
1532
1533         atmel_aes_set_mode(dd, rctx);
1534
1535         err = atmel_aes_hw_init(dd);
1536         if (err)
1537                 return atmel_aes_complete(dd, err);
1538
1539         if (likely(ivsize == GCM_AES_IV_SIZE)) {
1540                 memcpy(ctx->j0, iv, ivsize);
1541                 ctx->j0[3] = cpu_to_be32(1);
1542                 return atmel_aes_gcm_process(dd);
1543         }
1544
1545         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1546         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1547         if (datalen > dd->buflen)
1548                 return atmel_aes_complete(dd, -EINVAL);
1549
1550         memcpy(data, iv, ivsize);
1551         memset(data + ivsize, 0, padlen + sizeof(u64));
1552         ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1553
1554         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1555                                    NULL, ctx->j0, atmel_aes_gcm_process);
1556 }
1557
1558 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1559 {
1560         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1561         struct aead_request *req = aead_request_cast(dd->areq);
1562         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1563         bool enc = atmel_aes_is_encrypt(dd);
1564         u32 authsize;
1565
1566         /* Compute text length. */
1567         authsize = crypto_aead_authsize(tfm);
1568         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1569
1570         /*
1571          * According to tcrypt test suite, the GCM Automatic Tag Generation
1572          * fails when both the message and its associated data are empty.
1573          */
1574         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1575                 dd->flags |= AES_FLAGS_GTAGEN;
1576
1577         atmel_aes_write_ctrl(dd, false, NULL);
1578         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1579 }
1580
1581 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1582 {
1583         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1584         struct aead_request *req = aead_request_cast(dd->areq);
1585         __be32 j0_lsw, *j0 = ctx->j0;
1586         size_t padlen;
1587
1588         /* Write incr32(J0) into IV. */
1589         j0_lsw = j0[3];
1590         j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1591         atmel_aes_write_block(dd, AES_IVR(0), j0);
1592         j0[3] = j0_lsw;
1593
1594         /* Set aad and text lengths. */
1595         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1596         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1597
1598         /* Check whether AAD are present. */
1599         if (unlikely(req->assoclen == 0)) {
1600                 dd->datalen = 0;
1601                 return atmel_aes_gcm_data(dd);
1602         }
1603
1604         /* Copy assoc data and add padding. */
1605         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1606         if (unlikely(req->assoclen + padlen > dd->buflen))
1607                 return atmel_aes_complete(dd, -EINVAL);
1608         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1609
1610         /* Write assoc data into the Input Data register. */
1611         dd->data = (u32 *)dd->buf;
1612         dd->datalen = req->assoclen + padlen;
1613         return atmel_aes_gcm_data(dd);
1614 }
1615
1616 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1617 {
1618         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1619         struct aead_request *req = aead_request_cast(dd->areq);
1620         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1621         struct scatterlist *src, *dst;
1622         u32 isr, mr;
1623
1624         /* Write AAD first. */
1625         while (dd->datalen > 0) {
1626                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1627                 dd->data += 4;
1628                 dd->datalen -= AES_BLOCK_SIZE;
1629
1630                 isr = atmel_aes_read(dd, AES_ISR);
1631                 if (!(isr & AES_INT_DATARDY)) {
1632                         dd->resume = atmel_aes_gcm_data;
1633                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1634                         return -EINPROGRESS;
1635                 }
1636         }
1637
1638         /* GMAC only. */
1639         if (unlikely(ctx->textlen == 0))
1640                 return atmel_aes_gcm_tag_init(dd);
1641
1642         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1643         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1644         dst = ((req->src == req->dst) ? src :
1645                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1646
1647         if (use_dma) {
1648                 /* Update the Mode Register for DMA transfers. */
1649                 mr = atmel_aes_read(dd, AES_MR);
1650                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1651                 mr |= AES_MR_SMOD_IDATAR0;
1652                 if (dd->caps.has_dualbuff)
1653                         mr |= AES_MR_DUALBUFF;
1654                 atmel_aes_write(dd, AES_MR, mr);
1655
1656                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1657                                            atmel_aes_gcm_tag_init);
1658         }
1659
1660         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1661                                    atmel_aes_gcm_tag_init);
1662 }
1663
1664 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1665 {
1666         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1667         struct aead_request *req = aead_request_cast(dd->areq);
1668         __be64 *data = dd->buf;
1669
1670         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1671                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1672                         dd->resume = atmel_aes_gcm_tag_init;
1673                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1674                         return -EINPROGRESS;
1675                 }
1676
1677                 return atmel_aes_gcm_finalize(dd);
1678         }
1679
1680         /* Read the GCM Intermediate Hash Word Registers. */
1681         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1682
1683         data[0] = cpu_to_be64(req->assoclen * 8);
1684         data[1] = cpu_to_be64(ctx->textlen * 8);
1685
1686         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1687                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1688 }
1689
1690 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1691 {
1692         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1693         unsigned long flags;
1694
1695         /*
1696          * Change mode to CTR to complete the tag generation.
1697          * Use J0 as Initialization Vector.
1698          */
1699         flags = dd->flags;
1700         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1701         dd->flags |= AES_FLAGS_CTR;
1702         atmel_aes_write_ctrl(dd, false, ctx->j0);
1703         dd->flags = flags;
1704
1705         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1706         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1707 }
1708
1709 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1710 {
1711         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1712         struct aead_request *req = aead_request_cast(dd->areq);
1713         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1714         bool enc = atmel_aes_is_encrypt(dd);
1715         u32 offset, authsize, itag[4], *otag = ctx->tag;
1716         int err;
1717
1718         /* Read the computed tag. */
1719         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1720                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1721         else
1722                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1723
1724         offset = req->assoclen + ctx->textlen;
1725         authsize = crypto_aead_authsize(tfm);
1726         if (enc) {
1727                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1728                 err = 0;
1729         } else {
1730                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1731                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1732         }
1733
1734         return atmel_aes_complete(dd, err);
1735 }
1736
1737 static int atmel_aes_gcm_crypt(struct aead_request *req,
1738                                unsigned long mode)
1739 {
1740         struct atmel_aes_base_ctx *ctx;
1741         struct atmel_aes_reqctx *rctx;
1742         struct atmel_aes_dev *dd;
1743
1744         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1745         ctx->block_size = AES_BLOCK_SIZE;
1746         ctx->is_aead = true;
1747
1748         dd = atmel_aes_find_dev(ctx);
1749         if (!dd)
1750                 return -ENODEV;
1751
1752         rctx = aead_request_ctx(req);
1753         rctx->mode = AES_FLAGS_GCM | mode;
1754
1755         return atmel_aes_handle_queue(dd, &req->base);
1756 }
1757
1758 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1759                                 unsigned int keylen)
1760 {
1761         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1762
1763         if (keylen != AES_KEYSIZE_256 &&
1764             keylen != AES_KEYSIZE_192 &&
1765             keylen != AES_KEYSIZE_128) {
1766                 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1767                 return -EINVAL;
1768         }
1769
1770         memcpy(ctx->key, key, keylen);
1771         ctx->keylen = keylen;
1772
1773         return 0;
1774 }
1775
1776 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1777                                      unsigned int authsize)
1778 {
1779         /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1780         switch (authsize) {
1781         case 4:
1782         case 8:
1783         case 12:
1784         case 13:
1785         case 14:
1786         case 15:
1787         case 16:
1788                 break;
1789         default:
1790                 return -EINVAL;
1791         }
1792
1793         return 0;
1794 }
1795
1796 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1797 {
1798         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1799 }
1800
1801 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1802 {
1803         return atmel_aes_gcm_crypt(req, 0);
1804 }
1805
1806 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1807 {
1808         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1809
1810         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1811         ctx->base.start = atmel_aes_gcm_start;
1812
1813         return 0;
1814 }
1815
1816 static struct aead_alg aes_gcm_alg = {
1817         .setkey         = atmel_aes_gcm_setkey,
1818         .setauthsize    = atmel_aes_gcm_setauthsize,
1819         .encrypt        = atmel_aes_gcm_encrypt,
1820         .decrypt        = atmel_aes_gcm_decrypt,
1821         .init           = atmel_aes_gcm_init,
1822         .ivsize         = GCM_AES_IV_SIZE,
1823         .maxauthsize    = AES_BLOCK_SIZE,
1824
1825         .base = {
1826                 .cra_name               = "gcm(aes)",
1827                 .cra_driver_name        = "atmel-gcm-aes",
1828                 .cra_priority           = ATMEL_AES_PRIORITY,
1829                 .cra_flags              = CRYPTO_ALG_ASYNC,
1830                 .cra_blocksize          = 1,
1831                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1832                 .cra_alignmask          = 0xf,
1833                 .cra_module             = THIS_MODULE,
1834         },
1835 };
1836
1837
1838 /* xts functions */
1839
1840 static inline struct atmel_aes_xts_ctx *
1841 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1842 {
1843         return container_of(ctx, struct atmel_aes_xts_ctx, base);
1844 }
1845
1846 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1847
1848 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1849 {
1850         struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1851         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1852         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1853         unsigned long flags;
1854         int err;
1855
1856         atmel_aes_set_mode(dd, rctx);
1857
1858         err = atmel_aes_hw_init(dd);
1859         if (err)
1860                 return atmel_aes_complete(dd, err);
1861
1862         /* Compute the tweak value from req->iv with ecb(aes). */
1863         flags = dd->flags;
1864         dd->flags &= ~AES_FLAGS_MODE_MASK;
1865         dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1866         atmel_aes_write_ctrl_key(dd, false, NULL,
1867                                  ctx->key2, ctx->base.keylen);
1868         dd->flags = flags;
1869
1870         atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1871         return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1872 }
1873
1874 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1875 {
1876         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1877         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1878         u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1879         static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1880         u8 *tweak_bytes = (u8 *)tweak;
1881         int i;
1882
1883         /* Read the computed ciphered tweak value. */
1884         atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1885         /*
1886          * Hardware quirk:
1887          * the order of the ciphered tweak bytes need to be reversed before
1888          * writing them into the ODATARx registers.
1889          */
1890         for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1891                 u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1892
1893                 tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1894                 tweak_bytes[i] = tmp;
1895         }
1896
1897         /* Process the data. */
1898         atmel_aes_write_ctrl(dd, use_dma, NULL);
1899         atmel_aes_write_block(dd, AES_TWR(0), tweak);
1900         atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1901         if (use_dma)
1902                 return atmel_aes_dma_start(dd, req->src, req->dst,
1903                                            req->cryptlen,
1904                                            atmel_aes_transfer_complete);
1905
1906         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1907                                    atmel_aes_transfer_complete);
1908 }
1909
1910 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1911                                 unsigned int keylen)
1912 {
1913         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1914         int err;
1915
1916         err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1917         if (err)
1918                 return err;
1919
1920         memcpy(ctx->base.key, key, keylen/2);
1921         memcpy(ctx->key2, key + keylen/2, keylen/2);
1922         ctx->base.keylen = keylen/2;
1923
1924         return 0;
1925 }
1926
1927 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1928 {
1929         return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1930 }
1931
1932 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1933 {
1934         return atmel_aes_crypt(req, AES_FLAGS_XTS);
1935 }
1936
1937 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1938 {
1939         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1940
1941         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1942         ctx->base.start = atmel_aes_xts_start;
1943
1944         return 0;
1945 }
1946
1947 static struct skcipher_alg aes_xts_alg = {
1948         .base.cra_name          = "xts(aes)",
1949         .base.cra_driver_name   = "atmel-xts-aes",
1950         .base.cra_priority      = ATMEL_AES_PRIORITY,
1951         .base.cra_flags         = CRYPTO_ALG_ASYNC,
1952         .base.cra_blocksize     = AES_BLOCK_SIZE,
1953         .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1954         .base.cra_alignmask     = 0xf,
1955         .base.cra_module        = THIS_MODULE,
1956
1957         .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1958         .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1959         .ivsize                 = AES_BLOCK_SIZE,
1960         .setkey                 = atmel_aes_xts_setkey,
1961         .encrypt                = atmel_aes_xts_encrypt,
1962         .decrypt                = atmel_aes_xts_decrypt,
1963         .init                   = atmel_aes_xts_init_tfm,
1964 };
1965
1966 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1967 /* authenc aead functions */
1968
1969 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1970 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1971                                   bool is_async);
1972 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1973                                       bool is_async);
1974 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1975 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1976                                    bool is_async);
1977
1978 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1979 {
1980         struct aead_request *req = aead_request_cast(dd->areq);
1981         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1982
1983         if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1984                 atmel_sha_authenc_abort(&rctx->auth_req);
1985         dd->flags &= ~AES_FLAGS_OWN_SHA;
1986 }
1987
1988 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1989 {
1990         struct aead_request *req = aead_request_cast(dd->areq);
1991         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1993         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1994         int err;
1995
1996         atmel_aes_set_mode(dd, &rctx->base);
1997
1998         err = atmel_aes_hw_init(dd);
1999         if (err)
2000                 return atmel_aes_complete(dd, err);
2001
2002         return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2003                                           atmel_aes_authenc_init, dd);
2004 }
2005
2006 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2007                                   bool is_async)
2008 {
2009         struct aead_request *req = aead_request_cast(dd->areq);
2010         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2011
2012         if (is_async)
2013                 dd->is_async = true;
2014         if (err)
2015                 return atmel_aes_complete(dd, err);
2016
2017         /* If here, we've got the ownership of the SHA device. */
2018         dd->flags |= AES_FLAGS_OWN_SHA;
2019
2020         /* Configure the SHA device. */
2021         return atmel_sha_authenc_init(&rctx->auth_req,
2022                                       req->src, req->assoclen,
2023                                       rctx->textlen,
2024                                       atmel_aes_authenc_transfer, dd);
2025 }
2026
2027 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2028                                       bool is_async)
2029 {
2030         struct aead_request *req = aead_request_cast(dd->areq);
2031         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2032         bool enc = atmel_aes_is_encrypt(dd);
2033         struct scatterlist *src, *dst;
2034         __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2035         u32 emr;
2036
2037         if (is_async)
2038                 dd->is_async = true;
2039         if (err)
2040                 return atmel_aes_complete(dd, err);
2041
2042         /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2043         src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2044         dst = src;
2045
2046         if (req->src != req->dst)
2047                 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2048
2049         /* Configure the AES device. */
2050         memcpy(iv, req->iv, sizeof(iv));
2051
2052         /*
2053          * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2054          * 'true' even if the data transfer is actually performed by the CPU (so
2055          * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2056          * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2057          * must be set to *_MR_SMOD_IDATAR0.
2058          */
2059         atmel_aes_write_ctrl(dd, true, iv);
2060         emr = AES_EMR_PLIPEN;
2061         if (!enc)
2062                 emr |= AES_EMR_PLIPD;
2063         atmel_aes_write(dd, AES_EMR, emr);
2064
2065         /* Transfer data. */
2066         return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2067                                    atmel_aes_authenc_digest);
2068 }
2069
2070 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2071 {
2072         struct aead_request *req = aead_request_cast(dd->areq);
2073         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2074
2075         /* atmel_sha_authenc_final() releases the SHA device. */
2076         dd->flags &= ~AES_FLAGS_OWN_SHA;
2077         return atmel_sha_authenc_final(&rctx->auth_req,
2078                                        rctx->digest, sizeof(rctx->digest),
2079                                        atmel_aes_authenc_final, dd);
2080 }
2081
2082 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2083                                    bool is_async)
2084 {
2085         struct aead_request *req = aead_request_cast(dd->areq);
2086         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2087         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2088         bool enc = atmel_aes_is_encrypt(dd);
2089         u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2090         u32 offs, authsize;
2091
2092         if (is_async)
2093                 dd->is_async = true;
2094         if (err)
2095                 goto complete;
2096
2097         offs = req->assoclen + rctx->textlen;
2098         authsize = crypto_aead_authsize(tfm);
2099         if (enc) {
2100                 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2101         } else {
2102                 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2103                 if (crypto_memneq(idigest, odigest, authsize))
2104                         err = -EBADMSG;
2105         }
2106
2107 complete:
2108         return atmel_aes_complete(dd, err);
2109 }
2110
2111 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2112                                     unsigned int keylen)
2113 {
2114         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2115         struct crypto_authenc_keys keys;
2116         u32 flags;
2117         int err;
2118
2119         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2120                 goto badkey;
2121
2122         if (keys.enckeylen > sizeof(ctx->base.key))
2123                 goto badkey;
2124
2125         /* Save auth key. */
2126         flags = crypto_aead_get_flags(tfm);
2127         err = atmel_sha_authenc_setkey(ctx->auth,
2128                                        keys.authkey, keys.authkeylen,
2129                                        &flags);
2130         crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2131         if (err) {
2132                 memzero_explicit(&keys, sizeof(keys));
2133                 return err;
2134         }
2135
2136         /* Save enc key. */
2137         ctx->base.keylen = keys.enckeylen;
2138         memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2139
2140         memzero_explicit(&keys, sizeof(keys));
2141         return 0;
2142
2143 badkey:
2144         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2145         memzero_explicit(&keys, sizeof(keys));
2146         return -EINVAL;
2147 }
2148
2149 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2150                                       unsigned long auth_mode)
2151 {
2152         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2153         unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2154
2155         ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2156         if (IS_ERR(ctx->auth))
2157                 return PTR_ERR(ctx->auth);
2158
2159         crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2160                                       auth_reqsize));
2161         ctx->base.start = atmel_aes_authenc_start;
2162
2163         return 0;
2164 }
2165
2166 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2167 {
2168         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2169 }
2170
2171 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2172 {
2173         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2174 }
2175
2176 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2177 {
2178         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2179 }
2180
2181 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2182 {
2183         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2184 }
2185
2186 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2187 {
2188         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2189 }
2190
2191 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2192 {
2193         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2194
2195         atmel_sha_authenc_free(ctx->auth);
2196 }
2197
2198 static int atmel_aes_authenc_crypt(struct aead_request *req,
2199                                    unsigned long mode)
2200 {
2201         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2202         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2203         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2204         u32 authsize = crypto_aead_authsize(tfm);
2205         bool enc = (mode & AES_FLAGS_ENCRYPT);
2206         struct atmel_aes_dev *dd;
2207
2208         /* Compute text length. */
2209         if (!enc && req->cryptlen < authsize)
2210                 return -EINVAL;
2211         rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2212
2213         /*
2214          * Currently, empty messages are not supported yet:
2215          * the SHA auto-padding can be used only on non-empty messages.
2216          * Hence a special case needs to be implemented for empty message.
2217          */
2218         if (!rctx->textlen && !req->assoclen)
2219                 return -EINVAL;
2220
2221         rctx->base.mode = mode;
2222         ctx->block_size = AES_BLOCK_SIZE;
2223         ctx->is_aead = true;
2224
2225         dd = atmel_aes_find_dev(ctx);
2226         if (!dd)
2227                 return -ENODEV;
2228
2229         return atmel_aes_handle_queue(dd, &req->base);
2230 }
2231
2232 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2233 {
2234         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2235 }
2236
2237 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2238 {
2239         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2240 }
2241
2242 static struct aead_alg aes_authenc_algs[] = {
2243 {
2244         .setkey         = atmel_aes_authenc_setkey,
2245         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2246         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2247         .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2248         .exit           = atmel_aes_authenc_exit_tfm,
2249         .ivsize         = AES_BLOCK_SIZE,
2250         .maxauthsize    = SHA1_DIGEST_SIZE,
2251
2252         .base = {
2253                 .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2254                 .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2255                 .cra_priority           = ATMEL_AES_PRIORITY,
2256                 .cra_flags              = CRYPTO_ALG_ASYNC,
2257                 .cra_blocksize          = AES_BLOCK_SIZE,
2258                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2259                 .cra_alignmask          = 0xf,
2260                 .cra_module             = THIS_MODULE,
2261         },
2262 },
2263 {
2264         .setkey         = atmel_aes_authenc_setkey,
2265         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2266         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2267         .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2268         .exit           = atmel_aes_authenc_exit_tfm,
2269         .ivsize         = AES_BLOCK_SIZE,
2270         .maxauthsize    = SHA224_DIGEST_SIZE,
2271
2272         .base = {
2273                 .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2274                 .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2275                 .cra_priority           = ATMEL_AES_PRIORITY,
2276                 .cra_flags              = CRYPTO_ALG_ASYNC,
2277                 .cra_blocksize          = AES_BLOCK_SIZE,
2278                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2279                 .cra_alignmask          = 0xf,
2280                 .cra_module             = THIS_MODULE,
2281         },
2282 },
2283 {
2284         .setkey         = atmel_aes_authenc_setkey,
2285         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2286         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2287         .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2288         .exit           = atmel_aes_authenc_exit_tfm,
2289         .ivsize         = AES_BLOCK_SIZE,
2290         .maxauthsize    = SHA256_DIGEST_SIZE,
2291
2292         .base = {
2293                 .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2294                 .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2295                 .cra_priority           = ATMEL_AES_PRIORITY,
2296                 .cra_flags              = CRYPTO_ALG_ASYNC,
2297                 .cra_blocksize          = AES_BLOCK_SIZE,
2298                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2299                 .cra_alignmask          = 0xf,
2300                 .cra_module             = THIS_MODULE,
2301         },
2302 },
2303 {
2304         .setkey         = atmel_aes_authenc_setkey,
2305         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2306         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2307         .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2308         .exit           = atmel_aes_authenc_exit_tfm,
2309         .ivsize         = AES_BLOCK_SIZE,
2310         .maxauthsize    = SHA384_DIGEST_SIZE,
2311
2312         .base = {
2313                 .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2314                 .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2315                 .cra_priority           = ATMEL_AES_PRIORITY,
2316                 .cra_flags              = CRYPTO_ALG_ASYNC,
2317                 .cra_blocksize          = AES_BLOCK_SIZE,
2318                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2319                 .cra_alignmask          = 0xf,
2320                 .cra_module             = THIS_MODULE,
2321         },
2322 },
2323 {
2324         .setkey         = atmel_aes_authenc_setkey,
2325         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2326         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2327         .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2328         .exit           = atmel_aes_authenc_exit_tfm,
2329         .ivsize         = AES_BLOCK_SIZE,
2330         .maxauthsize    = SHA512_DIGEST_SIZE,
2331
2332         .base = {
2333                 .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2334                 .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2335                 .cra_priority           = ATMEL_AES_PRIORITY,
2336                 .cra_flags              = CRYPTO_ALG_ASYNC,
2337                 .cra_blocksize          = AES_BLOCK_SIZE,
2338                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2339                 .cra_alignmask          = 0xf,
2340                 .cra_module             = THIS_MODULE,
2341         },
2342 },
2343 };
2344 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2345
2346 /* Probe functions */
2347
2348 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2349 {
2350         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2351         dd->buflen = ATMEL_AES_BUFFER_SIZE;
2352         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2353
2354         if (!dd->buf) {
2355                 dev_err(dd->dev, "unable to alloc pages.\n");
2356                 return -ENOMEM;
2357         }
2358
2359         return 0;
2360 }
2361
2362 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2363 {
2364         free_page((unsigned long)dd->buf);
2365 }
2366
2367 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2368 {
2369         struct at_dma_slave     *sl = slave;
2370
2371         if (sl && sl->dma_dev == chan->device->dev) {
2372                 chan->private = sl;
2373                 return true;
2374         } else {
2375                 return false;
2376         }
2377 }
2378
2379 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2380                               struct crypto_platform_data *pdata)
2381 {
2382         struct at_dma_slave *slave;
2383         dma_cap_mask_t mask;
2384
2385         dma_cap_zero(mask);
2386         dma_cap_set(DMA_SLAVE, mask);
2387
2388         /* Try to grab 2 DMA channels */
2389         slave = &pdata->dma_slave->rxdata;
2390         dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2391                                                         slave, dd->dev, "tx");
2392         if (!dd->src.chan)
2393                 goto err_dma_in;
2394
2395         slave = &pdata->dma_slave->txdata;
2396         dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2397                                                         slave, dd->dev, "rx");
2398         if (!dd->dst.chan)
2399                 goto err_dma_out;
2400
2401         return 0;
2402
2403 err_dma_out:
2404         dma_release_channel(dd->src.chan);
2405 err_dma_in:
2406         dev_warn(dd->dev, "no DMA channel available\n");
2407         return -ENODEV;
2408 }
2409
2410 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2411 {
2412         dma_release_channel(dd->dst.chan);
2413         dma_release_channel(dd->src.chan);
2414 }
2415
2416 static void atmel_aes_queue_task(unsigned long data)
2417 {
2418         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2419
2420         atmel_aes_handle_queue(dd, NULL);
2421 }
2422
2423 static void atmel_aes_done_task(unsigned long data)
2424 {
2425         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2426
2427         dd->is_async = true;
2428         (void)dd->resume(dd);
2429 }
2430
2431 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2432 {
2433         struct atmel_aes_dev *aes_dd = dev_id;
2434         u32 reg;
2435
2436         reg = atmel_aes_read(aes_dd, AES_ISR);
2437         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2438                 atmel_aes_write(aes_dd, AES_IDR, reg);
2439                 if (AES_FLAGS_BUSY & aes_dd->flags)
2440                         tasklet_schedule(&aes_dd->done_task);
2441                 else
2442                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2443                 return IRQ_HANDLED;
2444         }
2445
2446         return IRQ_NONE;
2447 }
2448
2449 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2450 {
2451         int i;
2452
2453 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2454         if (dd->caps.has_authenc)
2455                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2456                         crypto_unregister_aead(&aes_authenc_algs[i]);
2457 #endif
2458
2459         if (dd->caps.has_xts)
2460                 crypto_unregister_skcipher(&aes_xts_alg);
2461
2462         if (dd->caps.has_gcm)
2463                 crypto_unregister_aead(&aes_gcm_alg);
2464
2465         if (dd->caps.has_cfb64)
2466                 crypto_unregister_skcipher(&aes_cfb64_alg);
2467
2468         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2469                 crypto_unregister_skcipher(&aes_algs[i]);
2470 }
2471
2472 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2473 {
2474         int err, i, j;
2475
2476         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2477                 err = crypto_register_skcipher(&aes_algs[i]);
2478                 if (err)
2479                         goto err_aes_algs;
2480         }
2481
2482         if (dd->caps.has_cfb64) {
2483                 err = crypto_register_skcipher(&aes_cfb64_alg);
2484                 if (err)
2485                         goto err_aes_cfb64_alg;
2486         }
2487
2488         if (dd->caps.has_gcm) {
2489                 err = crypto_register_aead(&aes_gcm_alg);
2490                 if (err)
2491                         goto err_aes_gcm_alg;
2492         }
2493
2494         if (dd->caps.has_xts) {
2495                 err = crypto_register_skcipher(&aes_xts_alg);
2496                 if (err)
2497                         goto err_aes_xts_alg;
2498         }
2499
2500 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2501         if (dd->caps.has_authenc) {
2502                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2503                         err = crypto_register_aead(&aes_authenc_algs[i]);
2504                         if (err)
2505                                 goto err_aes_authenc_alg;
2506                 }
2507         }
2508 #endif
2509
2510         return 0;
2511
2512 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2513         /* i = ARRAY_SIZE(aes_authenc_algs); */
2514 err_aes_authenc_alg:
2515         for (j = 0; j < i; j++)
2516                 crypto_unregister_aead(&aes_authenc_algs[j]);
2517         crypto_unregister_skcipher(&aes_xts_alg);
2518 #endif
2519 err_aes_xts_alg:
2520         crypto_unregister_aead(&aes_gcm_alg);
2521 err_aes_gcm_alg:
2522         crypto_unregister_skcipher(&aes_cfb64_alg);
2523 err_aes_cfb64_alg:
2524         i = ARRAY_SIZE(aes_algs);
2525 err_aes_algs:
2526         for (j = 0; j < i; j++)
2527                 crypto_unregister_skcipher(&aes_algs[j]);
2528
2529         return err;
2530 }
2531
2532 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2533 {
2534         dd->caps.has_dualbuff = 0;
2535         dd->caps.has_cfb64 = 0;
2536         dd->caps.has_ctr32 = 0;
2537         dd->caps.has_gcm = 0;
2538         dd->caps.has_xts = 0;
2539         dd->caps.has_authenc = 0;
2540         dd->caps.max_burst_size = 1;
2541
2542         /* keep only major version number */
2543         switch (dd->hw_version & 0xff0) {
2544         case 0x500:
2545                 dd->caps.has_dualbuff = 1;
2546                 dd->caps.has_cfb64 = 1;
2547                 dd->caps.has_ctr32 = 1;
2548                 dd->caps.has_gcm = 1;
2549                 dd->caps.has_xts = 1;
2550                 dd->caps.has_authenc = 1;
2551                 dd->caps.max_burst_size = 4;
2552                 break;
2553         case 0x200:
2554                 dd->caps.has_dualbuff = 1;
2555                 dd->caps.has_cfb64 = 1;
2556                 dd->caps.has_ctr32 = 1;
2557                 dd->caps.has_gcm = 1;
2558                 dd->caps.max_burst_size = 4;
2559                 break;
2560         case 0x130:
2561                 dd->caps.has_dualbuff = 1;
2562                 dd->caps.has_cfb64 = 1;
2563                 dd->caps.max_burst_size = 4;
2564                 break;
2565         case 0x120:
2566                 break;
2567         default:
2568                 dev_warn(dd->dev,
2569                                 "Unmanaged aes version, set minimum capabilities\n");
2570                 break;
2571         }
2572 }
2573
2574 #if defined(CONFIG_OF)
2575 static const struct of_device_id atmel_aes_dt_ids[] = {
2576         { .compatible = "atmel,at91sam9g46-aes" },
2577         { /* sentinel */ }
2578 };
2579 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2580
2581 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2582 {
2583         struct device_node *np = pdev->dev.of_node;
2584         struct crypto_platform_data *pdata;
2585
2586         if (!np) {
2587                 dev_err(&pdev->dev, "device node not found\n");
2588                 return ERR_PTR(-EINVAL);
2589         }
2590
2591         pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2592         if (!pdata)
2593                 return ERR_PTR(-ENOMEM);
2594
2595         pdata->dma_slave = devm_kzalloc(&pdev->dev,
2596                                         sizeof(*(pdata->dma_slave)),
2597                                         GFP_KERNEL);
2598         if (!pdata->dma_slave) {
2599                 devm_kfree(&pdev->dev, pdata);
2600                 return ERR_PTR(-ENOMEM);
2601         }
2602
2603         return pdata;
2604 }
2605 #else
2606 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2607 {
2608         return ERR_PTR(-EINVAL);
2609 }
2610 #endif
2611
2612 static int atmel_aes_probe(struct platform_device *pdev)
2613 {
2614         struct atmel_aes_dev *aes_dd;
2615         struct crypto_platform_data *pdata;
2616         struct device *dev = &pdev->dev;
2617         struct resource *aes_res;
2618         int err;
2619
2620         pdata = pdev->dev.platform_data;
2621         if (!pdata) {
2622                 pdata = atmel_aes_of_init(pdev);
2623                 if (IS_ERR(pdata)) {
2624                         err = PTR_ERR(pdata);
2625                         goto aes_dd_err;
2626                 }
2627         }
2628
2629         if (!pdata->dma_slave) {
2630                 err = -ENXIO;
2631                 goto aes_dd_err;
2632         }
2633
2634         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2635         if (aes_dd == NULL) {
2636                 err = -ENOMEM;
2637                 goto aes_dd_err;
2638         }
2639
2640         aes_dd->dev = dev;
2641
2642         platform_set_drvdata(pdev, aes_dd);
2643
2644         INIT_LIST_HEAD(&aes_dd->list);
2645         spin_lock_init(&aes_dd->lock);
2646
2647         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2648                                         (unsigned long)aes_dd);
2649         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2650                                         (unsigned long)aes_dd);
2651
2652         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2653
2654         /* Get the base address */
2655         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2656         if (!aes_res) {
2657                 dev_err(dev, "no MEM resource info\n");
2658                 err = -ENODEV;
2659                 goto res_err;
2660         }
2661         aes_dd->phys_base = aes_res->start;
2662
2663         /* Get the IRQ */
2664         aes_dd->irq = platform_get_irq(pdev,  0);
2665         if (aes_dd->irq < 0) {
2666                 err = aes_dd->irq;
2667                 goto res_err;
2668         }
2669
2670         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2671                                IRQF_SHARED, "atmel-aes", aes_dd);
2672         if (err) {
2673                 dev_err(dev, "unable to request aes irq.\n");
2674                 goto res_err;
2675         }
2676
2677         /* Initializing the clock */
2678         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2679         if (IS_ERR(aes_dd->iclk)) {
2680                 dev_err(dev, "clock initialization failed.\n");
2681                 err = PTR_ERR(aes_dd->iclk);
2682                 goto res_err;
2683         }
2684
2685         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2686         if (IS_ERR(aes_dd->io_base)) {
2687                 dev_err(dev, "can't ioremap\n");
2688                 err = PTR_ERR(aes_dd->io_base);
2689                 goto res_err;
2690         }
2691
2692         err = clk_prepare(aes_dd->iclk);
2693         if (err)
2694                 goto res_err;
2695
2696         err = atmel_aes_hw_version_init(aes_dd);
2697         if (err)
2698                 goto iclk_unprepare;
2699
2700         atmel_aes_get_cap(aes_dd);
2701
2702 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2703         if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2704                 err = -EPROBE_DEFER;
2705                 goto iclk_unprepare;
2706         }
2707 #endif
2708
2709         err = atmel_aes_buff_init(aes_dd);
2710         if (err)
2711                 goto err_aes_buff;
2712
2713         err = atmel_aes_dma_init(aes_dd, pdata);
2714         if (err)
2715                 goto err_aes_dma;
2716
2717         spin_lock(&atmel_aes.lock);
2718         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2719         spin_unlock(&atmel_aes.lock);
2720
2721         err = atmel_aes_register_algs(aes_dd);
2722         if (err)
2723                 goto err_algs;
2724
2725         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2726                         dma_chan_name(aes_dd->src.chan),
2727                         dma_chan_name(aes_dd->dst.chan));
2728
2729         return 0;
2730
2731 err_algs:
2732         spin_lock(&atmel_aes.lock);
2733         list_del(&aes_dd->list);
2734         spin_unlock(&atmel_aes.lock);
2735         atmel_aes_dma_cleanup(aes_dd);
2736 err_aes_dma:
2737         atmel_aes_buff_cleanup(aes_dd);
2738 err_aes_buff:
2739 iclk_unprepare:
2740         clk_unprepare(aes_dd->iclk);
2741 res_err:
2742         tasklet_kill(&aes_dd->done_task);
2743         tasklet_kill(&aes_dd->queue_task);
2744 aes_dd_err:
2745         if (err != -EPROBE_DEFER)
2746                 dev_err(dev, "initialization failed.\n");
2747
2748         return err;
2749 }
2750
2751 static int atmel_aes_remove(struct platform_device *pdev)
2752 {
2753         struct atmel_aes_dev *aes_dd;
2754
2755         aes_dd = platform_get_drvdata(pdev);
2756         if (!aes_dd)
2757                 return -ENODEV;
2758         spin_lock(&atmel_aes.lock);
2759         list_del(&aes_dd->list);
2760         spin_unlock(&atmel_aes.lock);
2761
2762         atmel_aes_unregister_algs(aes_dd);
2763
2764         tasklet_kill(&aes_dd->done_task);
2765         tasklet_kill(&aes_dd->queue_task);
2766
2767         atmel_aes_dma_cleanup(aes_dd);
2768         atmel_aes_buff_cleanup(aes_dd);
2769
2770         clk_unprepare(aes_dd->iclk);
2771
2772         return 0;
2773 }
2774
2775 static struct platform_driver atmel_aes_driver = {
2776         .probe          = atmel_aes_probe,
2777         .remove         = atmel_aes_remove,
2778         .driver         = {
2779                 .name   = "atmel_aes",
2780                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2781         },
2782 };
2783
2784 module_platform_driver(atmel_aes_driver);
2785
2786 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2787 MODULE_LICENSE("GPL v2");
2788 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");