Merge tag 'f2fs-for-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeu...
[linux-2.6-microblaze.git] / drivers / crypto / atmel-aes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Cryptographic API.
4  *
5  * Support for ATMEL AES HW acceleration.
6  *
7  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
8  * Author: Nicolas Royer <nicolas@eukrea.com>
9  *
10  * Some ideas are from omap-aes.c driver.
11  */
12
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/clk.h>
19 #include <linux/io.h>
20 #include <linux/hw_random.h>
21 #include <linux/platform_device.h>
22
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/of_device.h>
32 #include <linux/delay.h>
33 #include <linux/crypto.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36 #include <crypto/aes.h>
37 #include <crypto/gcm.h>
38 #include <crypto/xts.h>
39 #include <crypto/internal/aead.h>
40 #include <crypto/internal/skcipher.h>
41 #include "atmel-aes-regs.h"
42 #include "atmel-authenc.h"
43
44 #define ATMEL_AES_PRIORITY      300
45
46 #define ATMEL_AES_BUFFER_ORDER  2
47 #define ATMEL_AES_BUFFER_SIZE   (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
48
49 #define CFB8_BLOCK_SIZE         1
50 #define CFB16_BLOCK_SIZE        2
51 #define CFB32_BLOCK_SIZE        4
52 #define CFB64_BLOCK_SIZE        8
53
54 #define SIZE_IN_WORDS(x)        ((x) >> 2)
55
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT       AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN        AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK   (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB           AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC           AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB           AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128        (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64         (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32         (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16         (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8          (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR           AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM           AES_MR_OPMOD_GCM
71 #define AES_FLAGS_XTS           AES_MR_OPMOD_XTS
72
73 #define AES_FLAGS_MODE_MASK     (AES_FLAGS_OPMODE_MASK |        \
74                                  AES_FLAGS_ENCRYPT |            \
75                                  AES_FLAGS_GTAGEN)
76
77 #define AES_FLAGS_BUSY          BIT(3)
78 #define AES_FLAGS_DUMP_REG      BIT(4)
79 #define AES_FLAGS_OWN_SHA       BIT(5)
80
81 #define AES_FLAGS_PERSISTENT    AES_FLAGS_BUSY
82
83 #define ATMEL_AES_QUEUE_LENGTH  50
84
85 #define ATMEL_AES_DMA_THRESHOLD         256
86
87
88 struct atmel_aes_caps {
89         bool                    has_dualbuff;
90         bool                    has_cfb64;
91         bool                    has_gcm;
92         bool                    has_xts;
93         bool                    has_authenc;
94         u32                     max_burst_size;
95 };
96
97 struct atmel_aes_dev;
98
99
100 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101
102
103 struct atmel_aes_base_ctx {
104         struct atmel_aes_dev    *dd;
105         atmel_aes_fn_t          start;
106         int                     keylen;
107         u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
108         u16                     block_size;
109         bool                    is_aead;
110 };
111
112 struct atmel_aes_ctx {
113         struct atmel_aes_base_ctx       base;
114 };
115
116 struct atmel_aes_ctr_ctx {
117         struct atmel_aes_base_ctx       base;
118
119         __be32                  iv[AES_BLOCK_SIZE / sizeof(u32)];
120         size_t                  offset;
121         struct scatterlist      src[2];
122         struct scatterlist      dst[2];
123         u32                     blocks;
124 };
125
126 struct atmel_aes_gcm_ctx {
127         struct atmel_aes_base_ctx       base;
128
129         struct scatterlist      src[2];
130         struct scatterlist      dst[2];
131
132         __be32                  j0[AES_BLOCK_SIZE / sizeof(u32)];
133         u32                     tag[AES_BLOCK_SIZE / sizeof(u32)];
134         __be32                  ghash[AES_BLOCK_SIZE / sizeof(u32)];
135         size_t                  textlen;
136
137         const __be32            *ghash_in;
138         __be32                  *ghash_out;
139         atmel_aes_fn_t          ghash_resume;
140 };
141
142 struct atmel_aes_xts_ctx {
143         struct atmel_aes_base_ctx       base;
144
145         u32                     key2[AES_KEYSIZE_256 / sizeof(u32)];
146         struct crypto_skcipher *fallback_tfm;
147 };
148
149 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
150 struct atmel_aes_authenc_ctx {
151         struct atmel_aes_base_ctx       base;
152         struct atmel_sha_authenc_ctx    *auth;
153 };
154 #endif
155
156 struct atmel_aes_reqctx {
157         unsigned long           mode;
158         u8                      lastc[AES_BLOCK_SIZE];
159         struct skcipher_request fallback_req;
160 };
161
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164         struct atmel_aes_reqctx base;
165
166         struct scatterlist      src[2];
167         struct scatterlist      dst[2];
168         size_t                  textlen;
169         u32                     digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170
171         /* auth_req MUST be place last. */
172         struct ahash_request    auth_req;
173 };
174 #endif
175
176 struct atmel_aes_dma {
177         struct dma_chan         *chan;
178         struct scatterlist      *sg;
179         int                     nents;
180         unsigned int            remainder;
181         unsigned int            sg_len;
182 };
183
184 struct atmel_aes_dev {
185         struct list_head        list;
186         unsigned long           phys_base;
187         void __iomem            *io_base;
188
189         struct crypto_async_request     *areq;
190         struct atmel_aes_base_ctx       *ctx;
191
192         bool                    is_async;
193         atmel_aes_fn_t          resume;
194         atmel_aes_fn_t          cpu_transfer_complete;
195
196         struct device           *dev;
197         struct clk              *iclk;
198         int                     irq;
199
200         unsigned long           flags;
201
202         spinlock_t              lock;
203         struct crypto_queue     queue;
204
205         struct tasklet_struct   done_task;
206         struct tasklet_struct   queue_task;
207
208         size_t                  total;
209         size_t                  datalen;
210         u32                     *data;
211
212         struct atmel_aes_dma    src;
213         struct atmel_aes_dma    dst;
214
215         size_t                  buflen;
216         void                    *buf;
217         struct scatterlist      aligned_sg;
218         struct scatterlist      *real_dst;
219
220         struct atmel_aes_caps   caps;
221
222         u32                     hw_version;
223 };
224
225 struct atmel_aes_drv {
226         struct list_head        dev_list;
227         spinlock_t              lock;
228 };
229
230 static struct atmel_aes_drv atmel_aes = {
231         .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232         .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 };
234
235 #ifdef VERBOSE_DEBUG
236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 {
238         switch (offset) {
239         case AES_CR:
240                 return "CR";
241
242         case AES_MR:
243                 return "MR";
244
245         case AES_ISR:
246                 return "ISR";
247
248         case AES_IMR:
249                 return "IMR";
250
251         case AES_IER:
252                 return "IER";
253
254         case AES_IDR:
255                 return "IDR";
256
257         case AES_KEYWR(0):
258         case AES_KEYWR(1):
259         case AES_KEYWR(2):
260         case AES_KEYWR(3):
261         case AES_KEYWR(4):
262         case AES_KEYWR(5):
263         case AES_KEYWR(6):
264         case AES_KEYWR(7):
265                 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266                 break;
267
268         case AES_IDATAR(0):
269         case AES_IDATAR(1):
270         case AES_IDATAR(2):
271         case AES_IDATAR(3):
272                 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273                 break;
274
275         case AES_ODATAR(0):
276         case AES_ODATAR(1):
277         case AES_ODATAR(2):
278         case AES_ODATAR(3):
279                 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280                 break;
281
282         case AES_IVR(0):
283         case AES_IVR(1):
284         case AES_IVR(2):
285         case AES_IVR(3):
286                 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287                 break;
288
289         case AES_AADLENR:
290                 return "AADLENR";
291
292         case AES_CLENR:
293                 return "CLENR";
294
295         case AES_GHASHR(0):
296         case AES_GHASHR(1):
297         case AES_GHASHR(2):
298         case AES_GHASHR(3):
299                 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300                 break;
301
302         case AES_TAGR(0):
303         case AES_TAGR(1):
304         case AES_TAGR(2):
305         case AES_TAGR(3):
306                 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307                 break;
308
309         case AES_CTRR:
310                 return "CTRR";
311
312         case AES_GCMHR(0):
313         case AES_GCMHR(1):
314         case AES_GCMHR(2):
315         case AES_GCMHR(3):
316                 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317                 break;
318
319         case AES_EMR:
320                 return "EMR";
321
322         case AES_TWR(0):
323         case AES_TWR(1):
324         case AES_TWR(2):
325         case AES_TWR(3):
326                 snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327                 break;
328
329         case AES_ALPHAR(0):
330         case AES_ALPHAR(1):
331         case AES_ALPHAR(2):
332         case AES_ALPHAR(3):
333                 snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334                 break;
335
336         default:
337                 snprintf(tmp, sz, "0x%02x", offset);
338                 break;
339         }
340
341         return tmp;
342 }
343 #endif /* VERBOSE_DEBUG */
344
345 /* Shared functions */
346
347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 {
349         u32 value = readl_relaxed(dd->io_base + offset);
350
351 #ifdef VERBOSE_DEBUG
352         if (dd->flags & AES_FLAGS_DUMP_REG) {
353                 char tmp[16];
354
355                 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357         }
358 #endif /* VERBOSE_DEBUG */
359
360         return value;
361 }
362
363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364                                         u32 offset, u32 value)
365 {
366 #ifdef VERBOSE_DEBUG
367         if (dd->flags & AES_FLAGS_DUMP_REG) {
368                 char tmp[16];
369
370                 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371                          atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372         }
373 #endif /* VERBOSE_DEBUG */
374
375         writel_relaxed(value, dd->io_base + offset);
376 }
377
378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379                                         u32 *value, int count)
380 {
381         for (; count--; value++, offset += 4)
382                 *value = atmel_aes_read(dd, offset);
383 }
384
385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386                               const u32 *value, int count)
387 {
388         for (; count--; value++, offset += 4)
389                 atmel_aes_write(dd, offset, *value);
390 }
391
392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393                                         void *value)
394 {
395         atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 }
397
398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399                                          const void *value)
400 {
401         atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 }
403
404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405                                                 atmel_aes_fn_t resume)
406 {
407         u32 isr = atmel_aes_read(dd, AES_ISR);
408
409         if (unlikely(isr & AES_INT_DATARDY))
410                 return resume(dd);
411
412         dd->resume = resume;
413         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414         return -EINPROGRESS;
415 }
416
417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 {
419         len &= block_size - 1;
420         return len ? block_size - len : 0;
421 }
422
423 static struct atmel_aes_dev *atmel_aes_dev_alloc(struct atmel_aes_base_ctx *ctx)
424 {
425         struct atmel_aes_dev *aes_dd;
426
427         spin_lock_bh(&atmel_aes.lock);
428         /* One AES IP per SoC. */
429         aes_dd = list_first_entry_or_null(&atmel_aes.dev_list,
430                                           struct atmel_aes_dev, list);
431         spin_unlock_bh(&atmel_aes.lock);
432         return aes_dd;
433 }
434
435 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
436 {
437         int err;
438
439         err = clk_enable(dd->iclk);
440         if (err)
441                 return err;
442
443         atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
444         atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
445
446         return 0;
447 }
448
449 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
450 {
451         return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
452 }
453
454 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
455 {
456         int err;
457
458         err = atmel_aes_hw_init(dd);
459         if (err)
460                 return err;
461
462         dd->hw_version = atmel_aes_get_version(dd);
463
464         dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
465
466         clk_disable(dd->iclk);
467         return 0;
468 }
469
470 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
471                                       const struct atmel_aes_reqctx *rctx)
472 {
473         /* Clear all but persistent flags and set request flags. */
474         dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
475 }
476
477 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
478 {
479         return (dd->flags & AES_FLAGS_ENCRYPT);
480 }
481
482 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
483 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
484 #endif
485
486 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
487 {
488         struct skcipher_request *req = skcipher_request_cast(dd->areq);
489         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
490         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
491         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
492
493         if (req->cryptlen < ivsize)
494                 return;
495
496         if (rctx->mode & AES_FLAGS_ENCRYPT) {
497                 scatterwalk_map_and_copy(req->iv, req->dst,
498                                          req->cryptlen - ivsize, ivsize, 0);
499         } else {
500                 if (req->src == req->dst)
501                         memcpy(req->iv, rctx->lastc, ivsize);
502                 else
503                         scatterwalk_map_and_copy(req->iv, req->src,
504                                                  req->cryptlen - ivsize,
505                                                  ivsize, 0);
506         }
507 }
508
509 static inline struct atmel_aes_ctr_ctx *
510 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
511 {
512         return container_of(ctx, struct atmel_aes_ctr_ctx, base);
513 }
514
515 static void atmel_aes_ctr_update_req_iv(struct atmel_aes_dev *dd)
516 {
517         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
518         struct skcipher_request *req = skcipher_request_cast(dd->areq);
519         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
520         unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
521         int i;
522
523         /*
524          * The CTR transfer works in fragments of data of maximum 1 MByte
525          * because of the 16 bit CTR counter embedded in the IP. When reaching
526          * here, ctx->blocks contains the number of blocks of the last fragment
527          * processed, there is no need to explicit cast it to u16.
528          */
529         for (i = 0; i < ctx->blocks; i++)
530                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
531
532         memcpy(req->iv, ctx->iv, ivsize);
533 }
534
535 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
536 {
537         struct skcipher_request *req = skcipher_request_cast(dd->areq);
538         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
539
540 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
541         if (dd->ctx->is_aead)
542                 atmel_aes_authenc_complete(dd, err);
543 #endif
544
545         clk_disable(dd->iclk);
546         dd->flags &= ~AES_FLAGS_BUSY;
547
548         if (!err && !dd->ctx->is_aead &&
549             (rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_ECB) {
550                 if ((rctx->mode & AES_FLAGS_OPMODE_MASK) != AES_FLAGS_CTR)
551                         atmel_aes_set_iv_as_last_ciphertext_block(dd);
552                 else
553                         atmel_aes_ctr_update_req_iv(dd);
554         }
555
556         if (dd->is_async)
557                 dd->areq->complete(dd->areq, err);
558
559         tasklet_schedule(&dd->queue_task);
560
561         return err;
562 }
563
564 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
565                                      const __be32 *iv, const u32 *key, int keylen)
566 {
567         u32 valmr = 0;
568
569         /* MR register must be set before IV registers */
570         if (keylen == AES_KEYSIZE_128)
571                 valmr |= AES_MR_KEYSIZE_128;
572         else if (keylen == AES_KEYSIZE_192)
573                 valmr |= AES_MR_KEYSIZE_192;
574         else
575                 valmr |= AES_MR_KEYSIZE_256;
576
577         valmr |= dd->flags & AES_FLAGS_MODE_MASK;
578
579         if (use_dma) {
580                 valmr |= AES_MR_SMOD_IDATAR0;
581                 if (dd->caps.has_dualbuff)
582                         valmr |= AES_MR_DUALBUFF;
583         } else {
584                 valmr |= AES_MR_SMOD_AUTO;
585         }
586
587         atmel_aes_write(dd, AES_MR, valmr);
588
589         atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
590
591         if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
592                 atmel_aes_write_block(dd, AES_IVR(0), iv);
593 }
594
595 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
596                                         const __be32 *iv)
597
598 {
599         atmel_aes_write_ctrl_key(dd, use_dma, iv,
600                                  dd->ctx->key, dd->ctx->keylen);
601 }
602
603 /* CPU transfer */
604
605 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
606 {
607         int err = 0;
608         u32 isr;
609
610         for (;;) {
611                 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
612                 dd->data += 4;
613                 dd->datalen -= AES_BLOCK_SIZE;
614
615                 if (dd->datalen < AES_BLOCK_SIZE)
616                         break;
617
618                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
619
620                 isr = atmel_aes_read(dd, AES_ISR);
621                 if (!(isr & AES_INT_DATARDY)) {
622                         dd->resume = atmel_aes_cpu_transfer;
623                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
624                         return -EINPROGRESS;
625                 }
626         }
627
628         if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
629                                  dd->buf, dd->total))
630                 err = -EINVAL;
631
632         if (err)
633                 return atmel_aes_complete(dd, err);
634
635         return dd->cpu_transfer_complete(dd);
636 }
637
638 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
639                                struct scatterlist *src,
640                                struct scatterlist *dst,
641                                size_t len,
642                                atmel_aes_fn_t resume)
643 {
644         size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
645
646         if (unlikely(len == 0))
647                 return -EINVAL;
648
649         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
650
651         dd->total = len;
652         dd->real_dst = dst;
653         dd->cpu_transfer_complete = resume;
654         dd->datalen = len + padlen;
655         dd->data = (u32 *)dd->buf;
656         atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
657         return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
658 }
659
660
661 /* DMA transfer */
662
663 static void atmel_aes_dma_callback(void *data);
664
665 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
666                                     struct scatterlist *sg,
667                                     size_t len,
668                                     struct atmel_aes_dma *dma)
669 {
670         int nents;
671
672         if (!IS_ALIGNED(len, dd->ctx->block_size))
673                 return false;
674
675         for (nents = 0; sg; sg = sg_next(sg), ++nents) {
676                 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
677                         return false;
678
679                 if (len <= sg->length) {
680                         if (!IS_ALIGNED(len, dd->ctx->block_size))
681                                 return false;
682
683                         dma->nents = nents+1;
684                         dma->remainder = sg->length - len;
685                         sg->length = len;
686                         return true;
687                 }
688
689                 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
690                         return false;
691
692                 len -= sg->length;
693         }
694
695         return false;
696 }
697
698 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
699 {
700         struct scatterlist *sg = dma->sg;
701         int nents = dma->nents;
702
703         if (!dma->remainder)
704                 return;
705
706         while (--nents > 0 && sg)
707                 sg = sg_next(sg);
708
709         if (!sg)
710                 return;
711
712         sg->length += dma->remainder;
713 }
714
715 static int atmel_aes_map(struct atmel_aes_dev *dd,
716                          struct scatterlist *src,
717                          struct scatterlist *dst,
718                          size_t len)
719 {
720         bool src_aligned, dst_aligned;
721         size_t padlen;
722
723         dd->total = len;
724         dd->src.sg = src;
725         dd->dst.sg = dst;
726         dd->real_dst = dst;
727
728         src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
729         if (src == dst)
730                 dst_aligned = src_aligned;
731         else
732                 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
733         if (!src_aligned || !dst_aligned) {
734                 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
735
736                 if (dd->buflen < len + padlen)
737                         return -ENOMEM;
738
739                 if (!src_aligned) {
740                         sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
741                         dd->src.sg = &dd->aligned_sg;
742                         dd->src.nents = 1;
743                         dd->src.remainder = 0;
744                 }
745
746                 if (!dst_aligned) {
747                         dd->dst.sg = &dd->aligned_sg;
748                         dd->dst.nents = 1;
749                         dd->dst.remainder = 0;
750                 }
751
752                 sg_init_table(&dd->aligned_sg, 1);
753                 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
754         }
755
756         if (dd->src.sg == dd->dst.sg) {
757                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
758                                             DMA_BIDIRECTIONAL);
759                 dd->dst.sg_len = dd->src.sg_len;
760                 if (!dd->src.sg_len)
761                         return -EFAULT;
762         } else {
763                 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
764                                             DMA_TO_DEVICE);
765                 if (!dd->src.sg_len)
766                         return -EFAULT;
767
768                 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
769                                             DMA_FROM_DEVICE);
770                 if (!dd->dst.sg_len) {
771                         dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
772                                      DMA_TO_DEVICE);
773                         return -EFAULT;
774                 }
775         }
776
777         return 0;
778 }
779
780 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
781 {
782         if (dd->src.sg == dd->dst.sg) {
783                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
784                              DMA_BIDIRECTIONAL);
785
786                 if (dd->src.sg != &dd->aligned_sg)
787                         atmel_aes_restore_sg(&dd->src);
788         } else {
789                 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
790                              DMA_FROM_DEVICE);
791
792                 if (dd->dst.sg != &dd->aligned_sg)
793                         atmel_aes_restore_sg(&dd->dst);
794
795                 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
796                              DMA_TO_DEVICE);
797
798                 if (dd->src.sg != &dd->aligned_sg)
799                         atmel_aes_restore_sg(&dd->src);
800         }
801
802         if (dd->dst.sg == &dd->aligned_sg)
803                 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
804                                     dd->buf, dd->total);
805 }
806
807 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
808                                         enum dma_slave_buswidth addr_width,
809                                         enum dma_transfer_direction dir,
810                                         u32 maxburst)
811 {
812         struct dma_async_tx_descriptor *desc;
813         struct dma_slave_config config;
814         dma_async_tx_callback callback;
815         struct atmel_aes_dma *dma;
816         int err;
817
818         memset(&config, 0, sizeof(config));
819         config.src_addr_width = addr_width;
820         config.dst_addr_width = addr_width;
821         config.src_maxburst = maxburst;
822         config.dst_maxburst = maxburst;
823
824         switch (dir) {
825         case DMA_MEM_TO_DEV:
826                 dma = &dd->src;
827                 callback = NULL;
828                 config.dst_addr = dd->phys_base + AES_IDATAR(0);
829                 break;
830
831         case DMA_DEV_TO_MEM:
832                 dma = &dd->dst;
833                 callback = atmel_aes_dma_callback;
834                 config.src_addr = dd->phys_base + AES_ODATAR(0);
835                 break;
836
837         default:
838                 return -EINVAL;
839         }
840
841         err = dmaengine_slave_config(dma->chan, &config);
842         if (err)
843                 return err;
844
845         desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
846                                        DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
847         if (!desc)
848                 return -ENOMEM;
849
850         desc->callback = callback;
851         desc->callback_param = dd;
852         dmaengine_submit(desc);
853         dma_async_issue_pending(dma->chan);
854
855         return 0;
856 }
857
858 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
859                                struct scatterlist *src,
860                                struct scatterlist *dst,
861                                size_t len,
862                                atmel_aes_fn_t resume)
863 {
864         enum dma_slave_buswidth addr_width;
865         u32 maxburst;
866         int err;
867
868         switch (dd->ctx->block_size) {
869         case CFB8_BLOCK_SIZE:
870                 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
871                 maxburst = 1;
872                 break;
873
874         case CFB16_BLOCK_SIZE:
875                 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
876                 maxburst = 1;
877                 break;
878
879         case CFB32_BLOCK_SIZE:
880         case CFB64_BLOCK_SIZE:
881                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
882                 maxburst = 1;
883                 break;
884
885         case AES_BLOCK_SIZE:
886                 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
887                 maxburst = dd->caps.max_burst_size;
888                 break;
889
890         default:
891                 err = -EINVAL;
892                 goto exit;
893         }
894
895         err = atmel_aes_map(dd, src, dst, len);
896         if (err)
897                 goto exit;
898
899         dd->resume = resume;
900
901         /* Set output DMA transfer first */
902         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
903                                            maxburst);
904         if (err)
905                 goto unmap;
906
907         /* Then set input DMA transfer */
908         err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
909                                            maxburst);
910         if (err)
911                 goto output_transfer_stop;
912
913         return -EINPROGRESS;
914
915 output_transfer_stop:
916         dmaengine_terminate_sync(dd->dst.chan);
917 unmap:
918         atmel_aes_unmap(dd);
919 exit:
920         return atmel_aes_complete(dd, err);
921 }
922
923 static void atmel_aes_dma_callback(void *data)
924 {
925         struct atmel_aes_dev *dd = data;
926
927         atmel_aes_unmap(dd);
928         dd->is_async = true;
929         (void)dd->resume(dd);
930 }
931
932 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
933                                   struct crypto_async_request *new_areq)
934 {
935         struct crypto_async_request *areq, *backlog;
936         struct atmel_aes_base_ctx *ctx;
937         unsigned long flags;
938         bool start_async;
939         int err, ret = 0;
940
941         spin_lock_irqsave(&dd->lock, flags);
942         if (new_areq)
943                 ret = crypto_enqueue_request(&dd->queue, new_areq);
944         if (dd->flags & AES_FLAGS_BUSY) {
945                 spin_unlock_irqrestore(&dd->lock, flags);
946                 return ret;
947         }
948         backlog = crypto_get_backlog(&dd->queue);
949         areq = crypto_dequeue_request(&dd->queue);
950         if (areq)
951                 dd->flags |= AES_FLAGS_BUSY;
952         spin_unlock_irqrestore(&dd->lock, flags);
953
954         if (!areq)
955                 return ret;
956
957         if (backlog)
958                 backlog->complete(backlog, -EINPROGRESS);
959
960         ctx = crypto_tfm_ctx(areq->tfm);
961
962         dd->areq = areq;
963         start_async = (areq != new_areq);
964         dd->is_async = start_async;
965
966         /* WARNING: ctx->start() MAY change dd->is_async. */
967         err = ctx->start(dd);
968         return (start_async) ? ret : err;
969 }
970
971
972 /* AES async block ciphers */
973
974 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
975 {
976         return atmel_aes_complete(dd, 0);
977 }
978
979 static int atmel_aes_start(struct atmel_aes_dev *dd)
980 {
981         struct skcipher_request *req = skcipher_request_cast(dd->areq);
982         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
983         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD ||
984                         dd->ctx->block_size != AES_BLOCK_SIZE);
985         int err;
986
987         atmel_aes_set_mode(dd, rctx);
988
989         err = atmel_aes_hw_init(dd);
990         if (err)
991                 return atmel_aes_complete(dd, err);
992
993         atmel_aes_write_ctrl(dd, use_dma, (void *)req->iv);
994         if (use_dma)
995                 return atmel_aes_dma_start(dd, req->src, req->dst,
996                                            req->cryptlen,
997                                            atmel_aes_transfer_complete);
998
999         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1000                                    atmel_aes_transfer_complete);
1001 }
1002
1003 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1004 {
1005         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1006         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1007         struct scatterlist *src, *dst;
1008         size_t datalen;
1009         u32 ctr;
1010         u16 start, end;
1011         bool use_dma, fragmented = false;
1012
1013         /* Check for transfer completion. */
1014         ctx->offset += dd->total;
1015         if (ctx->offset >= req->cryptlen)
1016                 return atmel_aes_transfer_complete(dd);
1017
1018         /* Compute data length. */
1019         datalen = req->cryptlen - ctx->offset;
1020         ctx->blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1021         ctr = be32_to_cpu(ctx->iv[3]);
1022
1023         /* Check 16bit counter overflow. */
1024         start = ctr & 0xffff;
1025         end = start + ctx->blocks - 1;
1026
1027         if (ctx->blocks >> 16 || end < start) {
1028                 ctr |= 0xffff;
1029                 datalen = AES_BLOCK_SIZE * (0x10000 - start);
1030                 fragmented = true;
1031         }
1032
1033         use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1034
1035         /* Jump to offset. */
1036         src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1037         dst = ((req->src == req->dst) ? src :
1038                scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1039
1040         /* Configure hardware. */
1041         atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1042         if (unlikely(fragmented)) {
1043                 /*
1044                  * Increment the counter manually to cope with the hardware
1045                  * counter overflow.
1046                  */
1047                 ctx->iv[3] = cpu_to_be32(ctr);
1048                 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1049         }
1050
1051         if (use_dma)
1052                 return atmel_aes_dma_start(dd, src, dst, datalen,
1053                                            atmel_aes_ctr_transfer);
1054
1055         return atmel_aes_cpu_start(dd, src, dst, datalen,
1056                                    atmel_aes_ctr_transfer);
1057 }
1058
1059 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1060 {
1061         struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1062         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1063         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1064         int err;
1065
1066         atmel_aes_set_mode(dd, rctx);
1067
1068         err = atmel_aes_hw_init(dd);
1069         if (err)
1070                 return atmel_aes_complete(dd, err);
1071
1072         memcpy(ctx->iv, req->iv, AES_BLOCK_SIZE);
1073         ctx->offset = 0;
1074         dd->total = 0;
1075         return atmel_aes_ctr_transfer(dd);
1076 }
1077
1078 static int atmel_aes_xts_fallback(struct skcipher_request *req, bool enc)
1079 {
1080         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1081         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(
1082                         crypto_skcipher_reqtfm(req));
1083
1084         skcipher_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
1085         skcipher_request_set_callback(&rctx->fallback_req, req->base.flags,
1086                                       req->base.complete, req->base.data);
1087         skcipher_request_set_crypt(&rctx->fallback_req, req->src, req->dst,
1088                                    req->cryptlen, req->iv);
1089
1090         return enc ? crypto_skcipher_encrypt(&rctx->fallback_req) :
1091                      crypto_skcipher_decrypt(&rctx->fallback_req);
1092 }
1093
1094 static int atmel_aes_crypt(struct skcipher_request *req, unsigned long mode)
1095 {
1096         struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req);
1097         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(skcipher);
1098         struct atmel_aes_reqctx *rctx;
1099         u32 opmode = mode & AES_FLAGS_OPMODE_MASK;
1100
1101         if (opmode == AES_FLAGS_XTS) {
1102                 if (req->cryptlen < XTS_BLOCK_SIZE)
1103                         return -EINVAL;
1104
1105                 if (!IS_ALIGNED(req->cryptlen, XTS_BLOCK_SIZE))
1106                         return atmel_aes_xts_fallback(req,
1107                                                       mode & AES_FLAGS_ENCRYPT);
1108         }
1109
1110         /*
1111          * ECB, CBC, CFB, OFB or CTR mode require the plaintext and ciphertext
1112          * to have a positve integer length.
1113          */
1114         if (!req->cryptlen && opmode != AES_FLAGS_XTS)
1115                 return 0;
1116
1117         if ((opmode == AES_FLAGS_ECB || opmode == AES_FLAGS_CBC) &&
1118             !IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(skcipher)))
1119                 return -EINVAL;
1120
1121         switch (mode & AES_FLAGS_OPMODE_MASK) {
1122         case AES_FLAGS_CFB8:
1123                 ctx->block_size = CFB8_BLOCK_SIZE;
1124                 break;
1125
1126         case AES_FLAGS_CFB16:
1127                 ctx->block_size = CFB16_BLOCK_SIZE;
1128                 break;
1129
1130         case AES_FLAGS_CFB32:
1131                 ctx->block_size = CFB32_BLOCK_SIZE;
1132                 break;
1133
1134         case AES_FLAGS_CFB64:
1135                 ctx->block_size = CFB64_BLOCK_SIZE;
1136                 break;
1137
1138         default:
1139                 ctx->block_size = AES_BLOCK_SIZE;
1140                 break;
1141         }
1142         ctx->is_aead = false;
1143
1144         rctx = skcipher_request_ctx(req);
1145         rctx->mode = mode;
1146
1147         if (opmode != AES_FLAGS_ECB &&
1148             !(mode & AES_FLAGS_ENCRYPT) && req->src == req->dst) {
1149                 unsigned int ivsize = crypto_skcipher_ivsize(skcipher);
1150
1151                 if (req->cryptlen >= ivsize)
1152                         scatterwalk_map_and_copy(rctx->lastc, req->src,
1153                                                  req->cryptlen - ivsize,
1154                                                  ivsize, 0);
1155         }
1156
1157         return atmel_aes_handle_queue(ctx->dd, &req->base);
1158 }
1159
1160 static int atmel_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1161                            unsigned int keylen)
1162 {
1163         struct atmel_aes_base_ctx *ctx = crypto_skcipher_ctx(tfm);
1164
1165         if (keylen != AES_KEYSIZE_128 &&
1166             keylen != AES_KEYSIZE_192 &&
1167             keylen != AES_KEYSIZE_256)
1168                 return -EINVAL;
1169
1170         memcpy(ctx->key, key, keylen);
1171         ctx->keylen = keylen;
1172
1173         return 0;
1174 }
1175
1176 static int atmel_aes_ecb_encrypt(struct skcipher_request *req)
1177 {
1178         return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1179 }
1180
1181 static int atmel_aes_ecb_decrypt(struct skcipher_request *req)
1182 {
1183         return atmel_aes_crypt(req, AES_FLAGS_ECB);
1184 }
1185
1186 static int atmel_aes_cbc_encrypt(struct skcipher_request *req)
1187 {
1188         return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1189 }
1190
1191 static int atmel_aes_cbc_decrypt(struct skcipher_request *req)
1192 {
1193         return atmel_aes_crypt(req, AES_FLAGS_CBC);
1194 }
1195
1196 static int atmel_aes_ofb_encrypt(struct skcipher_request *req)
1197 {
1198         return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1199 }
1200
1201 static int atmel_aes_ofb_decrypt(struct skcipher_request *req)
1202 {
1203         return atmel_aes_crypt(req, AES_FLAGS_OFB);
1204 }
1205
1206 static int atmel_aes_cfb_encrypt(struct skcipher_request *req)
1207 {
1208         return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1209 }
1210
1211 static int atmel_aes_cfb_decrypt(struct skcipher_request *req)
1212 {
1213         return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1214 }
1215
1216 static int atmel_aes_cfb64_encrypt(struct skcipher_request *req)
1217 {
1218         return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1219 }
1220
1221 static int atmel_aes_cfb64_decrypt(struct skcipher_request *req)
1222 {
1223         return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1224 }
1225
1226 static int atmel_aes_cfb32_encrypt(struct skcipher_request *req)
1227 {
1228         return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1229 }
1230
1231 static int atmel_aes_cfb32_decrypt(struct skcipher_request *req)
1232 {
1233         return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1234 }
1235
1236 static int atmel_aes_cfb16_encrypt(struct skcipher_request *req)
1237 {
1238         return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1239 }
1240
1241 static int atmel_aes_cfb16_decrypt(struct skcipher_request *req)
1242 {
1243         return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1244 }
1245
1246 static int atmel_aes_cfb8_encrypt(struct skcipher_request *req)
1247 {
1248         return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1249 }
1250
1251 static int atmel_aes_cfb8_decrypt(struct skcipher_request *req)
1252 {
1253         return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1254 }
1255
1256 static int atmel_aes_ctr_encrypt(struct skcipher_request *req)
1257 {
1258         return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1259 }
1260
1261 static int atmel_aes_ctr_decrypt(struct skcipher_request *req)
1262 {
1263         return atmel_aes_crypt(req, AES_FLAGS_CTR);
1264 }
1265
1266 static int atmel_aes_init_tfm(struct crypto_skcipher *tfm)
1267 {
1268         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1269         struct atmel_aes_dev *dd;
1270
1271         dd = atmel_aes_dev_alloc(&ctx->base);
1272         if (!dd)
1273                 return -ENODEV;
1274
1275         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1276         ctx->base.dd = dd;
1277         ctx->base.dd->ctx = &ctx->base;
1278         ctx->base.start = atmel_aes_start;
1279
1280         return 0;
1281 }
1282
1283 static int atmel_aes_ctr_init_tfm(struct crypto_skcipher *tfm)
1284 {
1285         struct atmel_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
1286         struct atmel_aes_dev *dd;
1287
1288         dd = atmel_aes_dev_alloc(&ctx->base);
1289         if (!dd)
1290                 return -ENODEV;
1291
1292         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1293         ctx->base.dd = dd;
1294         ctx->base.dd->ctx = &ctx->base;
1295         ctx->base.start = atmel_aes_ctr_start;
1296
1297         return 0;
1298 }
1299
1300 static struct skcipher_alg aes_algs[] = {
1301 {
1302         .base.cra_name          = "ecb(aes)",
1303         .base.cra_driver_name   = "atmel-ecb-aes",
1304         .base.cra_blocksize     = AES_BLOCK_SIZE,
1305         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1306
1307         .init                   = atmel_aes_init_tfm,
1308         .min_keysize            = AES_MIN_KEY_SIZE,
1309         .max_keysize            = AES_MAX_KEY_SIZE,
1310         .setkey                 = atmel_aes_setkey,
1311         .encrypt                = atmel_aes_ecb_encrypt,
1312         .decrypt                = atmel_aes_ecb_decrypt,
1313 },
1314 {
1315         .base.cra_name          = "cbc(aes)",
1316         .base.cra_driver_name   = "atmel-cbc-aes",
1317         .base.cra_blocksize     = AES_BLOCK_SIZE,
1318         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1319
1320         .init                   = atmel_aes_init_tfm,
1321         .min_keysize            = AES_MIN_KEY_SIZE,
1322         .max_keysize            = AES_MAX_KEY_SIZE,
1323         .setkey                 = atmel_aes_setkey,
1324         .encrypt                = atmel_aes_cbc_encrypt,
1325         .decrypt                = atmel_aes_cbc_decrypt,
1326         .ivsize                 = AES_BLOCK_SIZE,
1327 },
1328 {
1329         .base.cra_name          = "ofb(aes)",
1330         .base.cra_driver_name   = "atmel-ofb-aes",
1331         .base.cra_blocksize     = 1,
1332         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1333
1334         .init                   = atmel_aes_init_tfm,
1335         .min_keysize            = AES_MIN_KEY_SIZE,
1336         .max_keysize            = AES_MAX_KEY_SIZE,
1337         .setkey                 = atmel_aes_setkey,
1338         .encrypt                = atmel_aes_ofb_encrypt,
1339         .decrypt                = atmel_aes_ofb_decrypt,
1340         .ivsize                 = AES_BLOCK_SIZE,
1341 },
1342 {
1343         .base.cra_name          = "cfb(aes)",
1344         .base.cra_driver_name   = "atmel-cfb-aes",
1345         .base.cra_blocksize     = AES_BLOCK_SIZE,
1346         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1347
1348         .init                   = atmel_aes_init_tfm,
1349         .min_keysize            = AES_MIN_KEY_SIZE,
1350         .max_keysize            = AES_MAX_KEY_SIZE,
1351         .setkey                 = atmel_aes_setkey,
1352         .encrypt                = atmel_aes_cfb_encrypt,
1353         .decrypt                = atmel_aes_cfb_decrypt,
1354         .ivsize                 = AES_BLOCK_SIZE,
1355 },
1356 {
1357         .base.cra_name          = "cfb32(aes)",
1358         .base.cra_driver_name   = "atmel-cfb32-aes",
1359         .base.cra_blocksize     = CFB32_BLOCK_SIZE,
1360         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1361
1362         .init                   = atmel_aes_init_tfm,
1363         .min_keysize            = AES_MIN_KEY_SIZE,
1364         .max_keysize            = AES_MAX_KEY_SIZE,
1365         .setkey                 = atmel_aes_setkey,
1366         .encrypt                = atmel_aes_cfb32_encrypt,
1367         .decrypt                = atmel_aes_cfb32_decrypt,
1368         .ivsize                 = AES_BLOCK_SIZE,
1369 },
1370 {
1371         .base.cra_name          = "cfb16(aes)",
1372         .base.cra_driver_name   = "atmel-cfb16-aes",
1373         .base.cra_blocksize     = CFB16_BLOCK_SIZE,
1374         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1375
1376         .init                   = atmel_aes_init_tfm,
1377         .min_keysize            = AES_MIN_KEY_SIZE,
1378         .max_keysize            = AES_MAX_KEY_SIZE,
1379         .setkey                 = atmel_aes_setkey,
1380         .encrypt                = atmel_aes_cfb16_encrypt,
1381         .decrypt                = atmel_aes_cfb16_decrypt,
1382         .ivsize                 = AES_BLOCK_SIZE,
1383 },
1384 {
1385         .base.cra_name          = "cfb8(aes)",
1386         .base.cra_driver_name   = "atmel-cfb8-aes",
1387         .base.cra_blocksize     = CFB8_BLOCK_SIZE,
1388         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1389
1390         .init                   = atmel_aes_init_tfm,
1391         .min_keysize            = AES_MIN_KEY_SIZE,
1392         .max_keysize            = AES_MAX_KEY_SIZE,
1393         .setkey                 = atmel_aes_setkey,
1394         .encrypt                = atmel_aes_cfb8_encrypt,
1395         .decrypt                = atmel_aes_cfb8_decrypt,
1396         .ivsize                 = AES_BLOCK_SIZE,
1397 },
1398 {
1399         .base.cra_name          = "ctr(aes)",
1400         .base.cra_driver_name   = "atmel-ctr-aes",
1401         .base.cra_blocksize     = 1,
1402         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctr_ctx),
1403
1404         .init                   = atmel_aes_ctr_init_tfm,
1405         .min_keysize            = AES_MIN_KEY_SIZE,
1406         .max_keysize            = AES_MAX_KEY_SIZE,
1407         .setkey                 = atmel_aes_setkey,
1408         .encrypt                = atmel_aes_ctr_encrypt,
1409         .decrypt                = atmel_aes_ctr_decrypt,
1410         .ivsize                 = AES_BLOCK_SIZE,
1411 },
1412 };
1413
1414 static struct skcipher_alg aes_cfb64_alg = {
1415         .base.cra_name          = "cfb64(aes)",
1416         .base.cra_driver_name   = "atmel-cfb64-aes",
1417         .base.cra_blocksize     = CFB64_BLOCK_SIZE,
1418         .base.cra_ctxsize       = sizeof(struct atmel_aes_ctx),
1419
1420         .init                   = atmel_aes_init_tfm,
1421         .min_keysize            = AES_MIN_KEY_SIZE,
1422         .max_keysize            = AES_MAX_KEY_SIZE,
1423         .setkey                 = atmel_aes_setkey,
1424         .encrypt                = atmel_aes_cfb64_encrypt,
1425         .decrypt                = atmel_aes_cfb64_decrypt,
1426         .ivsize                 = AES_BLOCK_SIZE,
1427 };
1428
1429
1430 /* gcm aead functions */
1431
1432 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1433                                const u32 *data, size_t datalen,
1434                                const __be32 *ghash_in, __be32 *ghash_out,
1435                                atmel_aes_fn_t resume);
1436 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1437 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1438
1439 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1440 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1441 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1442 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1443 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1444 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1445 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1446
1447 static inline struct atmel_aes_gcm_ctx *
1448 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1449 {
1450         return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1451 }
1452
1453 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1454                                const u32 *data, size_t datalen,
1455                                const __be32 *ghash_in, __be32 *ghash_out,
1456                                atmel_aes_fn_t resume)
1457 {
1458         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1459
1460         dd->data = (u32 *)data;
1461         dd->datalen = datalen;
1462         ctx->ghash_in = ghash_in;
1463         ctx->ghash_out = ghash_out;
1464         ctx->ghash_resume = resume;
1465
1466         atmel_aes_write_ctrl(dd, false, NULL);
1467         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1468 }
1469
1470 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1471 {
1472         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1473
1474         /* Set the data length. */
1475         atmel_aes_write(dd, AES_AADLENR, dd->total);
1476         atmel_aes_write(dd, AES_CLENR, 0);
1477
1478         /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1479         if (ctx->ghash_in)
1480                 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1481
1482         return atmel_aes_gcm_ghash_finalize(dd);
1483 }
1484
1485 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1486 {
1487         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1488         u32 isr;
1489
1490         /* Write data into the Input Data Registers. */
1491         while (dd->datalen > 0) {
1492                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1493                 dd->data += 4;
1494                 dd->datalen -= AES_BLOCK_SIZE;
1495
1496                 isr = atmel_aes_read(dd, AES_ISR);
1497                 if (!(isr & AES_INT_DATARDY)) {
1498                         dd->resume = atmel_aes_gcm_ghash_finalize;
1499                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1500                         return -EINPROGRESS;
1501                 }
1502         }
1503
1504         /* Read the computed hash from GHASHRx. */
1505         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1506
1507         return ctx->ghash_resume(dd);
1508 }
1509
1510
1511 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1512 {
1513         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1514         struct aead_request *req = aead_request_cast(dd->areq);
1515         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1516         struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1517         size_t ivsize = crypto_aead_ivsize(tfm);
1518         size_t datalen, padlen;
1519         const void *iv = req->iv;
1520         u8 *data = dd->buf;
1521         int err;
1522
1523         atmel_aes_set_mode(dd, rctx);
1524
1525         err = atmel_aes_hw_init(dd);
1526         if (err)
1527                 return atmel_aes_complete(dd, err);
1528
1529         if (likely(ivsize == GCM_AES_IV_SIZE)) {
1530                 memcpy(ctx->j0, iv, ivsize);
1531                 ctx->j0[3] = cpu_to_be32(1);
1532                 return atmel_aes_gcm_process(dd);
1533         }
1534
1535         padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1536         datalen = ivsize + padlen + AES_BLOCK_SIZE;
1537         if (datalen > dd->buflen)
1538                 return atmel_aes_complete(dd, -EINVAL);
1539
1540         memcpy(data, iv, ivsize);
1541         memset(data + ivsize, 0, padlen + sizeof(u64));
1542         ((__be64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1543
1544         return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1545                                    NULL, ctx->j0, atmel_aes_gcm_process);
1546 }
1547
1548 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1549 {
1550         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1551         struct aead_request *req = aead_request_cast(dd->areq);
1552         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1553         bool enc = atmel_aes_is_encrypt(dd);
1554         u32 authsize;
1555
1556         /* Compute text length. */
1557         authsize = crypto_aead_authsize(tfm);
1558         ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1559
1560         /*
1561          * According to tcrypt test suite, the GCM Automatic Tag Generation
1562          * fails when both the message and its associated data are empty.
1563          */
1564         if (likely(req->assoclen != 0 || ctx->textlen != 0))
1565                 dd->flags |= AES_FLAGS_GTAGEN;
1566
1567         atmel_aes_write_ctrl(dd, false, NULL);
1568         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1569 }
1570
1571 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1572 {
1573         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1574         struct aead_request *req = aead_request_cast(dd->areq);
1575         __be32 j0_lsw, *j0 = ctx->j0;
1576         size_t padlen;
1577
1578         /* Write incr32(J0) into IV. */
1579         j0_lsw = j0[3];
1580         be32_add_cpu(&j0[3], 1);
1581         atmel_aes_write_block(dd, AES_IVR(0), j0);
1582         j0[3] = j0_lsw;
1583
1584         /* Set aad and text lengths. */
1585         atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1586         atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1587
1588         /* Check whether AAD are present. */
1589         if (unlikely(req->assoclen == 0)) {
1590                 dd->datalen = 0;
1591                 return atmel_aes_gcm_data(dd);
1592         }
1593
1594         /* Copy assoc data and add padding. */
1595         padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1596         if (unlikely(req->assoclen + padlen > dd->buflen))
1597                 return atmel_aes_complete(dd, -EINVAL);
1598         sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1599
1600         /* Write assoc data into the Input Data register. */
1601         dd->data = (u32 *)dd->buf;
1602         dd->datalen = req->assoclen + padlen;
1603         return atmel_aes_gcm_data(dd);
1604 }
1605
1606 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1607 {
1608         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1609         struct aead_request *req = aead_request_cast(dd->areq);
1610         bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1611         struct scatterlist *src, *dst;
1612         u32 isr, mr;
1613
1614         /* Write AAD first. */
1615         while (dd->datalen > 0) {
1616                 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1617                 dd->data += 4;
1618                 dd->datalen -= AES_BLOCK_SIZE;
1619
1620                 isr = atmel_aes_read(dd, AES_ISR);
1621                 if (!(isr & AES_INT_DATARDY)) {
1622                         dd->resume = atmel_aes_gcm_data;
1623                         atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1624                         return -EINPROGRESS;
1625                 }
1626         }
1627
1628         /* GMAC only. */
1629         if (unlikely(ctx->textlen == 0))
1630                 return atmel_aes_gcm_tag_init(dd);
1631
1632         /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1633         src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1634         dst = ((req->src == req->dst) ? src :
1635                scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1636
1637         if (use_dma) {
1638                 /* Update the Mode Register for DMA transfers. */
1639                 mr = atmel_aes_read(dd, AES_MR);
1640                 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1641                 mr |= AES_MR_SMOD_IDATAR0;
1642                 if (dd->caps.has_dualbuff)
1643                         mr |= AES_MR_DUALBUFF;
1644                 atmel_aes_write(dd, AES_MR, mr);
1645
1646                 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1647                                            atmel_aes_gcm_tag_init);
1648         }
1649
1650         return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1651                                    atmel_aes_gcm_tag_init);
1652 }
1653
1654 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1655 {
1656         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1657         struct aead_request *req = aead_request_cast(dd->areq);
1658         __be64 *data = dd->buf;
1659
1660         if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1661                 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1662                         dd->resume = atmel_aes_gcm_tag_init;
1663                         atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1664                         return -EINPROGRESS;
1665                 }
1666
1667                 return atmel_aes_gcm_finalize(dd);
1668         }
1669
1670         /* Read the GCM Intermediate Hash Word Registers. */
1671         atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1672
1673         data[0] = cpu_to_be64(req->assoclen * 8);
1674         data[1] = cpu_to_be64(ctx->textlen * 8);
1675
1676         return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1677                                    ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1678 }
1679
1680 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1681 {
1682         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1683         unsigned long flags;
1684
1685         /*
1686          * Change mode to CTR to complete the tag generation.
1687          * Use J0 as Initialization Vector.
1688          */
1689         flags = dd->flags;
1690         dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1691         dd->flags |= AES_FLAGS_CTR;
1692         atmel_aes_write_ctrl(dd, false, ctx->j0);
1693         dd->flags = flags;
1694
1695         atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1696         return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1697 }
1698
1699 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1700 {
1701         struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702         struct aead_request *req = aead_request_cast(dd->areq);
1703         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1704         bool enc = atmel_aes_is_encrypt(dd);
1705         u32 offset, authsize, itag[4], *otag = ctx->tag;
1706         int err;
1707
1708         /* Read the computed tag. */
1709         if (likely(dd->flags & AES_FLAGS_GTAGEN))
1710                 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1711         else
1712                 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1713
1714         offset = req->assoclen + ctx->textlen;
1715         authsize = crypto_aead_authsize(tfm);
1716         if (enc) {
1717                 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1718                 err = 0;
1719         } else {
1720                 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1721                 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1722         }
1723
1724         return atmel_aes_complete(dd, err);
1725 }
1726
1727 static int atmel_aes_gcm_crypt(struct aead_request *req,
1728                                unsigned long mode)
1729 {
1730         struct atmel_aes_base_ctx *ctx;
1731         struct atmel_aes_reqctx *rctx;
1732
1733         ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1734         ctx->block_size = AES_BLOCK_SIZE;
1735         ctx->is_aead = true;
1736
1737         rctx = aead_request_ctx(req);
1738         rctx->mode = AES_FLAGS_GCM | mode;
1739
1740         return atmel_aes_handle_queue(ctx->dd, &req->base);
1741 }
1742
1743 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1744                                 unsigned int keylen)
1745 {
1746         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1747
1748         if (keylen != AES_KEYSIZE_256 &&
1749             keylen != AES_KEYSIZE_192 &&
1750             keylen != AES_KEYSIZE_128)
1751                 return -EINVAL;
1752
1753         memcpy(ctx->key, key, keylen);
1754         ctx->keylen = keylen;
1755
1756         return 0;
1757 }
1758
1759 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1760                                      unsigned int authsize)
1761 {
1762         return crypto_gcm_check_authsize(authsize);
1763 }
1764
1765 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1766 {
1767         return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1768 }
1769
1770 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1771 {
1772         return atmel_aes_gcm_crypt(req, 0);
1773 }
1774
1775 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1776 {
1777         struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1778         struct atmel_aes_dev *dd;
1779
1780         dd = atmel_aes_dev_alloc(&ctx->base);
1781         if (!dd)
1782                 return -ENODEV;
1783
1784         crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1785         ctx->base.dd = dd;
1786         ctx->base.dd->ctx = &ctx->base;
1787         ctx->base.start = atmel_aes_gcm_start;
1788
1789         return 0;
1790 }
1791
1792 static struct aead_alg aes_gcm_alg = {
1793         .setkey         = atmel_aes_gcm_setkey,
1794         .setauthsize    = atmel_aes_gcm_setauthsize,
1795         .encrypt        = atmel_aes_gcm_encrypt,
1796         .decrypt        = atmel_aes_gcm_decrypt,
1797         .init           = atmel_aes_gcm_init,
1798         .ivsize         = GCM_AES_IV_SIZE,
1799         .maxauthsize    = AES_BLOCK_SIZE,
1800
1801         .base = {
1802                 .cra_name               = "gcm(aes)",
1803                 .cra_driver_name        = "atmel-gcm-aes",
1804                 .cra_blocksize          = 1,
1805                 .cra_ctxsize            = sizeof(struct atmel_aes_gcm_ctx),
1806         },
1807 };
1808
1809
1810 /* xts functions */
1811
1812 static inline struct atmel_aes_xts_ctx *
1813 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1814 {
1815         return container_of(ctx, struct atmel_aes_xts_ctx, base);
1816 }
1817
1818 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1819
1820 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1821 {
1822         struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1823         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1824         struct atmel_aes_reqctx *rctx = skcipher_request_ctx(req);
1825         unsigned long flags;
1826         int err;
1827
1828         atmel_aes_set_mode(dd, rctx);
1829
1830         err = atmel_aes_hw_init(dd);
1831         if (err)
1832                 return atmel_aes_complete(dd, err);
1833
1834         /* Compute the tweak value from req->iv with ecb(aes). */
1835         flags = dd->flags;
1836         dd->flags &= ~AES_FLAGS_MODE_MASK;
1837         dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1838         atmel_aes_write_ctrl_key(dd, false, NULL,
1839                                  ctx->key2, ctx->base.keylen);
1840         dd->flags = flags;
1841
1842         atmel_aes_write_block(dd, AES_IDATAR(0), req->iv);
1843         return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1844 }
1845
1846 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1847 {
1848         struct skcipher_request *req = skcipher_request_cast(dd->areq);
1849         bool use_dma = (req->cryptlen >= ATMEL_AES_DMA_THRESHOLD);
1850         u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1851         static const __le32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1852         u8 *tweak_bytes = (u8 *)tweak;
1853         int i;
1854
1855         /* Read the computed ciphered tweak value. */
1856         atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1857         /*
1858          * Hardware quirk:
1859          * the order of the ciphered tweak bytes need to be reversed before
1860          * writing them into the ODATARx registers.
1861          */
1862         for (i = 0; i < AES_BLOCK_SIZE/2; ++i)
1863                 swap(tweak_bytes[i], tweak_bytes[AES_BLOCK_SIZE - 1 - i]);
1864
1865         /* Process the data. */
1866         atmel_aes_write_ctrl(dd, use_dma, NULL);
1867         atmel_aes_write_block(dd, AES_TWR(0), tweak);
1868         atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1869         if (use_dma)
1870                 return atmel_aes_dma_start(dd, req->src, req->dst,
1871                                            req->cryptlen,
1872                                            atmel_aes_transfer_complete);
1873
1874         return atmel_aes_cpu_start(dd, req->src, req->dst, req->cryptlen,
1875                                    atmel_aes_transfer_complete);
1876 }
1877
1878 static int atmel_aes_xts_setkey(struct crypto_skcipher *tfm, const u8 *key,
1879                                 unsigned int keylen)
1880 {
1881         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1882         int err;
1883
1884         err = xts_check_key(crypto_skcipher_tfm(tfm), key, keylen);
1885         if (err)
1886                 return err;
1887
1888         crypto_skcipher_clear_flags(ctx->fallback_tfm, CRYPTO_TFM_REQ_MASK);
1889         crypto_skcipher_set_flags(ctx->fallback_tfm, tfm->base.crt_flags &
1890                                   CRYPTO_TFM_REQ_MASK);
1891         err = crypto_skcipher_setkey(ctx->fallback_tfm, key, keylen);
1892         if (err)
1893                 return err;
1894
1895         memcpy(ctx->base.key, key, keylen/2);
1896         memcpy(ctx->key2, key + keylen/2, keylen/2);
1897         ctx->base.keylen = keylen/2;
1898
1899         return 0;
1900 }
1901
1902 static int atmel_aes_xts_encrypt(struct skcipher_request *req)
1903 {
1904         return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1905 }
1906
1907 static int atmel_aes_xts_decrypt(struct skcipher_request *req)
1908 {
1909         return atmel_aes_crypt(req, AES_FLAGS_XTS);
1910 }
1911
1912 static int atmel_aes_xts_init_tfm(struct crypto_skcipher *tfm)
1913 {
1914         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1915         struct atmel_aes_dev *dd;
1916         const char *tfm_name = crypto_tfm_alg_name(&tfm->base);
1917
1918         dd = atmel_aes_dev_alloc(&ctx->base);
1919         if (!dd)
1920                 return -ENODEV;
1921
1922         ctx->fallback_tfm = crypto_alloc_skcipher(tfm_name, 0,
1923                                                   CRYPTO_ALG_NEED_FALLBACK);
1924         if (IS_ERR(ctx->fallback_tfm))
1925                 return PTR_ERR(ctx->fallback_tfm);
1926
1927         crypto_skcipher_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx) +
1928                                     crypto_skcipher_reqsize(ctx->fallback_tfm));
1929         ctx->base.dd = dd;
1930         ctx->base.dd->ctx = &ctx->base;
1931         ctx->base.start = atmel_aes_xts_start;
1932
1933         return 0;
1934 }
1935
1936 static void atmel_aes_xts_exit_tfm(struct crypto_skcipher *tfm)
1937 {
1938         struct atmel_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
1939
1940         crypto_free_skcipher(ctx->fallback_tfm);
1941 }
1942
1943 static struct skcipher_alg aes_xts_alg = {
1944         .base.cra_name          = "xts(aes)",
1945         .base.cra_driver_name   = "atmel-xts-aes",
1946         .base.cra_blocksize     = AES_BLOCK_SIZE,
1947         .base.cra_ctxsize       = sizeof(struct atmel_aes_xts_ctx),
1948         .base.cra_flags         = CRYPTO_ALG_NEED_FALLBACK,
1949
1950         .min_keysize            = 2 * AES_MIN_KEY_SIZE,
1951         .max_keysize            = 2 * AES_MAX_KEY_SIZE,
1952         .ivsize                 = AES_BLOCK_SIZE,
1953         .setkey                 = atmel_aes_xts_setkey,
1954         .encrypt                = atmel_aes_xts_encrypt,
1955         .decrypt                = atmel_aes_xts_decrypt,
1956         .init                   = atmel_aes_xts_init_tfm,
1957         .exit                   = atmel_aes_xts_exit_tfm,
1958 };
1959
1960 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1961 /* authenc aead functions */
1962
1963 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1964 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1965                                   bool is_async);
1966 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1967                                       bool is_async);
1968 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1969 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1970                                    bool is_async);
1971
1972 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1973 {
1974         struct aead_request *req = aead_request_cast(dd->areq);
1975         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1976
1977         if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1978                 atmel_sha_authenc_abort(&rctx->auth_req);
1979         dd->flags &= ~AES_FLAGS_OWN_SHA;
1980 }
1981
1982 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1983 {
1984         struct aead_request *req = aead_request_cast(dd->areq);
1985         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1986         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1987         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
1988         int err;
1989
1990         atmel_aes_set_mode(dd, &rctx->base);
1991
1992         err = atmel_aes_hw_init(dd);
1993         if (err)
1994                 return atmel_aes_complete(dd, err);
1995
1996         return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
1997                                           atmel_aes_authenc_init, dd);
1998 }
1999
2000 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2001                                   bool is_async)
2002 {
2003         struct aead_request *req = aead_request_cast(dd->areq);
2004         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2005
2006         if (is_async)
2007                 dd->is_async = true;
2008         if (err)
2009                 return atmel_aes_complete(dd, err);
2010
2011         /* If here, we've got the ownership of the SHA device. */
2012         dd->flags |= AES_FLAGS_OWN_SHA;
2013
2014         /* Configure the SHA device. */
2015         return atmel_sha_authenc_init(&rctx->auth_req,
2016                                       req->src, req->assoclen,
2017                                       rctx->textlen,
2018                                       atmel_aes_authenc_transfer, dd);
2019 }
2020
2021 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2022                                       bool is_async)
2023 {
2024         struct aead_request *req = aead_request_cast(dd->areq);
2025         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2026         bool enc = atmel_aes_is_encrypt(dd);
2027         struct scatterlist *src, *dst;
2028         __be32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2029         u32 emr;
2030
2031         if (is_async)
2032                 dd->is_async = true;
2033         if (err)
2034                 return atmel_aes_complete(dd, err);
2035
2036         /* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2037         src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2038         dst = src;
2039
2040         if (req->src != req->dst)
2041                 dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2042
2043         /* Configure the AES device. */
2044         memcpy(iv, req->iv, sizeof(iv));
2045
2046         /*
2047          * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2048          * 'true' even if the data transfer is actually performed by the CPU (so
2049          * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2050          * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2051          * must be set to *_MR_SMOD_IDATAR0.
2052          */
2053         atmel_aes_write_ctrl(dd, true, iv);
2054         emr = AES_EMR_PLIPEN;
2055         if (!enc)
2056                 emr |= AES_EMR_PLIPD;
2057         atmel_aes_write(dd, AES_EMR, emr);
2058
2059         /* Transfer data. */
2060         return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2061                                    atmel_aes_authenc_digest);
2062 }
2063
2064 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2065 {
2066         struct aead_request *req = aead_request_cast(dd->areq);
2067         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2068
2069         /* atmel_sha_authenc_final() releases the SHA device. */
2070         dd->flags &= ~AES_FLAGS_OWN_SHA;
2071         return atmel_sha_authenc_final(&rctx->auth_req,
2072                                        rctx->digest, sizeof(rctx->digest),
2073                                        atmel_aes_authenc_final, dd);
2074 }
2075
2076 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2077                                    bool is_async)
2078 {
2079         struct aead_request *req = aead_request_cast(dd->areq);
2080         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2081         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2082         bool enc = atmel_aes_is_encrypt(dd);
2083         u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2084         u32 offs, authsize;
2085
2086         if (is_async)
2087                 dd->is_async = true;
2088         if (err)
2089                 goto complete;
2090
2091         offs = req->assoclen + rctx->textlen;
2092         authsize = crypto_aead_authsize(tfm);
2093         if (enc) {
2094                 scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2095         } else {
2096                 scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2097                 if (crypto_memneq(idigest, odigest, authsize))
2098                         err = -EBADMSG;
2099         }
2100
2101 complete:
2102         return atmel_aes_complete(dd, err);
2103 }
2104
2105 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2106                                     unsigned int keylen)
2107 {
2108         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2109         struct crypto_authenc_keys keys;
2110         int err;
2111
2112         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2113                 goto badkey;
2114
2115         if (keys.enckeylen > sizeof(ctx->base.key))
2116                 goto badkey;
2117
2118         /* Save auth key. */
2119         err = atmel_sha_authenc_setkey(ctx->auth,
2120                                        keys.authkey, keys.authkeylen,
2121                                        crypto_aead_get_flags(tfm));
2122         if (err) {
2123                 memzero_explicit(&keys, sizeof(keys));
2124                 return err;
2125         }
2126
2127         /* Save enc key. */
2128         ctx->base.keylen = keys.enckeylen;
2129         memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2130
2131         memzero_explicit(&keys, sizeof(keys));
2132         return 0;
2133
2134 badkey:
2135         memzero_explicit(&keys, sizeof(keys));
2136         return -EINVAL;
2137 }
2138
2139 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2140                                       unsigned long auth_mode)
2141 {
2142         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2143         unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2144         struct atmel_aes_dev *dd;
2145
2146         dd = atmel_aes_dev_alloc(&ctx->base);
2147         if (!dd)
2148                 return -ENODEV;
2149
2150         ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2151         if (IS_ERR(ctx->auth))
2152                 return PTR_ERR(ctx->auth);
2153
2154         crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2155                                       auth_reqsize));
2156         ctx->base.dd = dd;
2157         ctx->base.dd->ctx = &ctx->base;
2158         ctx->base.start = atmel_aes_authenc_start;
2159
2160         return 0;
2161 }
2162
2163 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2164 {
2165         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2166 }
2167
2168 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2169 {
2170         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2171 }
2172
2173 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2174 {
2175         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2176 }
2177
2178 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2179 {
2180         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2181 }
2182
2183 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2184 {
2185         return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2186 }
2187
2188 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2189 {
2190         struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2191
2192         atmel_sha_authenc_free(ctx->auth);
2193 }
2194
2195 static int atmel_aes_authenc_crypt(struct aead_request *req,
2196                                    unsigned long mode)
2197 {
2198         struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2199         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2200         struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2201         u32 authsize = crypto_aead_authsize(tfm);
2202         bool enc = (mode & AES_FLAGS_ENCRYPT);
2203
2204         /* Compute text length. */
2205         if (!enc && req->cryptlen < authsize)
2206                 return -EINVAL;
2207         rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2208
2209         /*
2210          * Currently, empty messages are not supported yet:
2211          * the SHA auto-padding can be used only on non-empty messages.
2212          * Hence a special case needs to be implemented for empty message.
2213          */
2214         if (!rctx->textlen && !req->assoclen)
2215                 return -EINVAL;
2216
2217         rctx->base.mode = mode;
2218         ctx->block_size = AES_BLOCK_SIZE;
2219         ctx->is_aead = true;
2220
2221         return atmel_aes_handle_queue(ctx->dd, &req->base);
2222 }
2223
2224 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2225 {
2226         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2227 }
2228
2229 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2230 {
2231         return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2232 }
2233
2234 static struct aead_alg aes_authenc_algs[] = {
2235 {
2236         .setkey         = atmel_aes_authenc_setkey,
2237         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2238         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2239         .init           = atmel_aes_authenc_hmac_sha1_init_tfm,
2240         .exit           = atmel_aes_authenc_exit_tfm,
2241         .ivsize         = AES_BLOCK_SIZE,
2242         .maxauthsize    = SHA1_DIGEST_SIZE,
2243
2244         .base = {
2245                 .cra_name               = "authenc(hmac(sha1),cbc(aes))",
2246                 .cra_driver_name        = "atmel-authenc-hmac-sha1-cbc-aes",
2247                 .cra_blocksize          = AES_BLOCK_SIZE,
2248                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2249         },
2250 },
2251 {
2252         .setkey         = atmel_aes_authenc_setkey,
2253         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2254         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2255         .init           = atmel_aes_authenc_hmac_sha224_init_tfm,
2256         .exit           = atmel_aes_authenc_exit_tfm,
2257         .ivsize         = AES_BLOCK_SIZE,
2258         .maxauthsize    = SHA224_DIGEST_SIZE,
2259
2260         .base = {
2261                 .cra_name               = "authenc(hmac(sha224),cbc(aes))",
2262                 .cra_driver_name        = "atmel-authenc-hmac-sha224-cbc-aes",
2263                 .cra_blocksize          = AES_BLOCK_SIZE,
2264                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2265         },
2266 },
2267 {
2268         .setkey         = atmel_aes_authenc_setkey,
2269         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2270         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2271         .init           = atmel_aes_authenc_hmac_sha256_init_tfm,
2272         .exit           = atmel_aes_authenc_exit_tfm,
2273         .ivsize         = AES_BLOCK_SIZE,
2274         .maxauthsize    = SHA256_DIGEST_SIZE,
2275
2276         .base = {
2277                 .cra_name               = "authenc(hmac(sha256),cbc(aes))",
2278                 .cra_driver_name        = "atmel-authenc-hmac-sha256-cbc-aes",
2279                 .cra_blocksize          = AES_BLOCK_SIZE,
2280                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2281         },
2282 },
2283 {
2284         .setkey         = atmel_aes_authenc_setkey,
2285         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2286         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2287         .init           = atmel_aes_authenc_hmac_sha384_init_tfm,
2288         .exit           = atmel_aes_authenc_exit_tfm,
2289         .ivsize         = AES_BLOCK_SIZE,
2290         .maxauthsize    = SHA384_DIGEST_SIZE,
2291
2292         .base = {
2293                 .cra_name               = "authenc(hmac(sha384),cbc(aes))",
2294                 .cra_driver_name        = "atmel-authenc-hmac-sha384-cbc-aes",
2295                 .cra_blocksize          = AES_BLOCK_SIZE,
2296                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2297         },
2298 },
2299 {
2300         .setkey         = atmel_aes_authenc_setkey,
2301         .encrypt        = atmel_aes_authenc_cbc_aes_encrypt,
2302         .decrypt        = atmel_aes_authenc_cbc_aes_decrypt,
2303         .init           = atmel_aes_authenc_hmac_sha512_init_tfm,
2304         .exit           = atmel_aes_authenc_exit_tfm,
2305         .ivsize         = AES_BLOCK_SIZE,
2306         .maxauthsize    = SHA512_DIGEST_SIZE,
2307
2308         .base = {
2309                 .cra_name               = "authenc(hmac(sha512),cbc(aes))",
2310                 .cra_driver_name        = "atmel-authenc-hmac-sha512-cbc-aes",
2311                 .cra_blocksize          = AES_BLOCK_SIZE,
2312                 .cra_ctxsize            = sizeof(struct atmel_aes_authenc_ctx),
2313         },
2314 },
2315 };
2316 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2317
2318 /* Probe functions */
2319
2320 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2321 {
2322         dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2323         dd->buflen = ATMEL_AES_BUFFER_SIZE;
2324         dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2325
2326         if (!dd->buf) {
2327                 dev_err(dd->dev, "unable to alloc pages.\n");
2328                 return -ENOMEM;
2329         }
2330
2331         return 0;
2332 }
2333
2334 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2335 {
2336         free_page((unsigned long)dd->buf);
2337 }
2338
2339 static int atmel_aes_dma_init(struct atmel_aes_dev *dd)
2340 {
2341         int ret;
2342
2343         /* Try to grab 2 DMA channels */
2344         dd->src.chan = dma_request_chan(dd->dev, "tx");
2345         if (IS_ERR(dd->src.chan)) {
2346                 ret = PTR_ERR(dd->src.chan);
2347                 goto err_dma_in;
2348         }
2349
2350         dd->dst.chan = dma_request_chan(dd->dev, "rx");
2351         if (IS_ERR(dd->dst.chan)) {
2352                 ret = PTR_ERR(dd->dst.chan);
2353                 goto err_dma_out;
2354         }
2355
2356         return 0;
2357
2358 err_dma_out:
2359         dma_release_channel(dd->src.chan);
2360 err_dma_in:
2361         dev_err(dd->dev, "no DMA channel available\n");
2362         return ret;
2363 }
2364
2365 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2366 {
2367         dma_release_channel(dd->dst.chan);
2368         dma_release_channel(dd->src.chan);
2369 }
2370
2371 static void atmel_aes_queue_task(unsigned long data)
2372 {
2373         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2374
2375         atmel_aes_handle_queue(dd, NULL);
2376 }
2377
2378 static void atmel_aes_done_task(unsigned long data)
2379 {
2380         struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2381
2382         dd->is_async = true;
2383         (void)dd->resume(dd);
2384 }
2385
2386 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2387 {
2388         struct atmel_aes_dev *aes_dd = dev_id;
2389         u32 reg;
2390
2391         reg = atmel_aes_read(aes_dd, AES_ISR);
2392         if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2393                 atmel_aes_write(aes_dd, AES_IDR, reg);
2394                 if (AES_FLAGS_BUSY & aes_dd->flags)
2395                         tasklet_schedule(&aes_dd->done_task);
2396                 else
2397                         dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2398                 return IRQ_HANDLED;
2399         }
2400
2401         return IRQ_NONE;
2402 }
2403
2404 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2405 {
2406         int i;
2407
2408 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2409         if (dd->caps.has_authenc)
2410                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2411                         crypto_unregister_aead(&aes_authenc_algs[i]);
2412 #endif
2413
2414         if (dd->caps.has_xts)
2415                 crypto_unregister_skcipher(&aes_xts_alg);
2416
2417         if (dd->caps.has_gcm)
2418                 crypto_unregister_aead(&aes_gcm_alg);
2419
2420         if (dd->caps.has_cfb64)
2421                 crypto_unregister_skcipher(&aes_cfb64_alg);
2422
2423         for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2424                 crypto_unregister_skcipher(&aes_algs[i]);
2425 }
2426
2427 static void atmel_aes_crypto_alg_init(struct crypto_alg *alg)
2428 {
2429         alg->cra_flags |= CRYPTO_ALG_ASYNC;
2430         alg->cra_alignmask = 0xf;
2431         alg->cra_priority = ATMEL_AES_PRIORITY;
2432         alg->cra_module = THIS_MODULE;
2433 }
2434
2435 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2436 {
2437         int err, i, j;
2438
2439         for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2440                 atmel_aes_crypto_alg_init(&aes_algs[i].base);
2441
2442                 err = crypto_register_skcipher(&aes_algs[i]);
2443                 if (err)
2444                         goto err_aes_algs;
2445         }
2446
2447         if (dd->caps.has_cfb64) {
2448                 atmel_aes_crypto_alg_init(&aes_cfb64_alg.base);
2449
2450                 err = crypto_register_skcipher(&aes_cfb64_alg);
2451                 if (err)
2452                         goto err_aes_cfb64_alg;
2453         }
2454
2455         if (dd->caps.has_gcm) {
2456                 atmel_aes_crypto_alg_init(&aes_gcm_alg.base);
2457
2458                 err = crypto_register_aead(&aes_gcm_alg);
2459                 if (err)
2460                         goto err_aes_gcm_alg;
2461         }
2462
2463         if (dd->caps.has_xts) {
2464                 atmel_aes_crypto_alg_init(&aes_xts_alg.base);
2465
2466                 err = crypto_register_skcipher(&aes_xts_alg);
2467                 if (err)
2468                         goto err_aes_xts_alg;
2469         }
2470
2471 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2472         if (dd->caps.has_authenc) {
2473                 for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2474                         atmel_aes_crypto_alg_init(&aes_authenc_algs[i].base);
2475
2476                         err = crypto_register_aead(&aes_authenc_algs[i]);
2477                         if (err)
2478                                 goto err_aes_authenc_alg;
2479                 }
2480         }
2481 #endif
2482
2483         return 0;
2484
2485 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2486         /* i = ARRAY_SIZE(aes_authenc_algs); */
2487 err_aes_authenc_alg:
2488         for (j = 0; j < i; j++)
2489                 crypto_unregister_aead(&aes_authenc_algs[j]);
2490         crypto_unregister_skcipher(&aes_xts_alg);
2491 #endif
2492 err_aes_xts_alg:
2493         crypto_unregister_aead(&aes_gcm_alg);
2494 err_aes_gcm_alg:
2495         crypto_unregister_skcipher(&aes_cfb64_alg);
2496 err_aes_cfb64_alg:
2497         i = ARRAY_SIZE(aes_algs);
2498 err_aes_algs:
2499         for (j = 0; j < i; j++)
2500                 crypto_unregister_skcipher(&aes_algs[j]);
2501
2502         return err;
2503 }
2504
2505 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2506 {
2507         dd->caps.has_dualbuff = 0;
2508         dd->caps.has_cfb64 = 0;
2509         dd->caps.has_gcm = 0;
2510         dd->caps.has_xts = 0;
2511         dd->caps.has_authenc = 0;
2512         dd->caps.max_burst_size = 1;
2513
2514         /* keep only major version number */
2515         switch (dd->hw_version & 0xff0) {
2516         case 0x500:
2517                 dd->caps.has_dualbuff = 1;
2518                 dd->caps.has_cfb64 = 1;
2519                 dd->caps.has_gcm = 1;
2520                 dd->caps.has_xts = 1;
2521                 dd->caps.has_authenc = 1;
2522                 dd->caps.max_burst_size = 4;
2523                 break;
2524         case 0x200:
2525                 dd->caps.has_dualbuff = 1;
2526                 dd->caps.has_cfb64 = 1;
2527                 dd->caps.has_gcm = 1;
2528                 dd->caps.max_burst_size = 4;
2529                 break;
2530         case 0x130:
2531                 dd->caps.has_dualbuff = 1;
2532                 dd->caps.has_cfb64 = 1;
2533                 dd->caps.max_burst_size = 4;
2534                 break;
2535         case 0x120:
2536                 break;
2537         default:
2538                 dev_warn(dd->dev,
2539                                 "Unmanaged aes version, set minimum capabilities\n");
2540                 break;
2541         }
2542 }
2543
2544 #if defined(CONFIG_OF)
2545 static const struct of_device_id atmel_aes_dt_ids[] = {
2546         { .compatible = "atmel,at91sam9g46-aes" },
2547         { /* sentinel */ }
2548 };
2549 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2550 #endif
2551
2552 static int atmel_aes_probe(struct platform_device *pdev)
2553 {
2554         struct atmel_aes_dev *aes_dd;
2555         struct device *dev = &pdev->dev;
2556         struct resource *aes_res;
2557         int err;
2558
2559         aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2560         if (!aes_dd)
2561                 return -ENOMEM;
2562
2563         aes_dd->dev = dev;
2564
2565         platform_set_drvdata(pdev, aes_dd);
2566
2567         INIT_LIST_HEAD(&aes_dd->list);
2568         spin_lock_init(&aes_dd->lock);
2569
2570         tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2571                                         (unsigned long)aes_dd);
2572         tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2573                                         (unsigned long)aes_dd);
2574
2575         crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2576
2577         /* Get the base address */
2578         aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2579         if (!aes_res) {
2580                 dev_err(dev, "no MEM resource info\n");
2581                 err = -ENODEV;
2582                 goto err_tasklet_kill;
2583         }
2584         aes_dd->phys_base = aes_res->start;
2585
2586         /* Get the IRQ */
2587         aes_dd->irq = platform_get_irq(pdev,  0);
2588         if (aes_dd->irq < 0) {
2589                 err = aes_dd->irq;
2590                 goto err_tasklet_kill;
2591         }
2592
2593         err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2594                                IRQF_SHARED, "atmel-aes", aes_dd);
2595         if (err) {
2596                 dev_err(dev, "unable to request aes irq.\n");
2597                 goto err_tasklet_kill;
2598         }
2599
2600         /* Initializing the clock */
2601         aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2602         if (IS_ERR(aes_dd->iclk)) {
2603                 dev_err(dev, "clock initialization failed.\n");
2604                 err = PTR_ERR(aes_dd->iclk);
2605                 goto err_tasklet_kill;
2606         }
2607
2608         aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2609         if (IS_ERR(aes_dd->io_base)) {
2610                 dev_err(dev, "can't ioremap\n");
2611                 err = PTR_ERR(aes_dd->io_base);
2612                 goto err_tasklet_kill;
2613         }
2614
2615         err = clk_prepare(aes_dd->iclk);
2616         if (err)
2617                 goto err_tasklet_kill;
2618
2619         err = atmel_aes_hw_version_init(aes_dd);
2620         if (err)
2621                 goto err_iclk_unprepare;
2622
2623         atmel_aes_get_cap(aes_dd);
2624
2625 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2626         if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2627                 err = -EPROBE_DEFER;
2628                 goto err_iclk_unprepare;
2629         }
2630 #endif
2631
2632         err = atmel_aes_buff_init(aes_dd);
2633         if (err)
2634                 goto err_iclk_unprepare;
2635
2636         err = atmel_aes_dma_init(aes_dd);
2637         if (err)
2638                 goto err_buff_cleanup;
2639
2640         spin_lock(&atmel_aes.lock);
2641         list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2642         spin_unlock(&atmel_aes.lock);
2643
2644         err = atmel_aes_register_algs(aes_dd);
2645         if (err)
2646                 goto err_algs;
2647
2648         dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2649                         dma_chan_name(aes_dd->src.chan),
2650                         dma_chan_name(aes_dd->dst.chan));
2651
2652         return 0;
2653
2654 err_algs:
2655         spin_lock(&atmel_aes.lock);
2656         list_del(&aes_dd->list);
2657         spin_unlock(&atmel_aes.lock);
2658         atmel_aes_dma_cleanup(aes_dd);
2659 err_buff_cleanup:
2660         atmel_aes_buff_cleanup(aes_dd);
2661 err_iclk_unprepare:
2662         clk_unprepare(aes_dd->iclk);
2663 err_tasklet_kill:
2664         tasklet_kill(&aes_dd->done_task);
2665         tasklet_kill(&aes_dd->queue_task);
2666
2667         return err;
2668 }
2669
2670 static int atmel_aes_remove(struct platform_device *pdev)
2671 {
2672         struct atmel_aes_dev *aes_dd;
2673
2674         aes_dd = platform_get_drvdata(pdev);
2675         if (!aes_dd)
2676                 return -ENODEV;
2677         spin_lock(&atmel_aes.lock);
2678         list_del(&aes_dd->list);
2679         spin_unlock(&atmel_aes.lock);
2680
2681         atmel_aes_unregister_algs(aes_dd);
2682
2683         tasklet_kill(&aes_dd->done_task);
2684         tasklet_kill(&aes_dd->queue_task);
2685
2686         atmel_aes_dma_cleanup(aes_dd);
2687         atmel_aes_buff_cleanup(aes_dd);
2688
2689         clk_unprepare(aes_dd->iclk);
2690
2691         return 0;
2692 }
2693
2694 static struct platform_driver atmel_aes_driver = {
2695         .probe          = atmel_aes_probe,
2696         .remove         = atmel_aes_remove,
2697         .driver         = {
2698                 .name   = "atmel_aes",
2699                 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2700         },
2701 };
2702
2703 module_platform_driver(atmel_aes_driver);
2704
2705 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2706 MODULE_LICENSE("GPL v2");
2707 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");