powernv-cpufreq: Fix pstate_to_idx() to handle non-continguous pstates
[linux-2.6-microblaze.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2  * POWERNV cpufreq driver for the IBM POWER processors
3  *
4  * (C) Copyright IBM 2014
5  *
6  * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  */
19
20 #define pr_fmt(fmt)     "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <linux/hashtable.h>
33 #include <trace/events/power.h>
34
35 #include <asm/cputhreads.h>
36 #include <asm/firmware.h>
37 #include <asm/reg.h>
38 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
39 #include <asm/opal.h>
40 #include <linux/timer.h>
41
42 #define POWERNV_MAX_PSTATES_ORDER  8
43 #define POWERNV_MAX_PSTATES     (1UL << (POWERNV_MAX_PSTATES_ORDER))
44 #define PMSR_PSAFE_ENABLE       (1UL << 30)
45 #define PMSR_SPR_EM_DISABLE     (1UL << 31)
46 #define MAX_PSTATE_SHIFT        32
47 #define LPSTATE_SHIFT           48
48 #define GPSTATE_SHIFT           56
49
50 #define MAX_RAMP_DOWN_TIME                              5120
51 /*
52  * On an idle system we want the global pstate to ramp-down from max value to
53  * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
54  * then ramp-down rapidly later on.
55  *
56  * This gives a percentage rampdown for time elapsed in milliseconds.
57  * ramp_down_percentage = ((ms * ms) >> 18)
58  *                      ~= 3.8 * (sec * sec)
59  *
60  * At 0 ms      ramp_down_percent = 0
61  * At 5120 ms   ramp_down_percent = 100
62  */
63 #define ramp_down_percent(time)         ((time * time) >> 18)
64
65 /* Interval after which the timer is queued to bring down global pstate */
66 #define GPSTATE_TIMER_INTERVAL                          2000
67
68 /**
69  * struct global_pstate_info -  Per policy data structure to maintain history of
70  *                              global pstates
71  * @highest_lpstate_idx:        The local pstate index from which we are
72  *                              ramping down
73  * @elapsed_time:               Time in ms spent in ramping down from
74  *                              highest_lpstate_idx
75  * @last_sampled_time:          Time from boot in ms when global pstates were
76  *                              last set
77  * @last_lpstate_idx,           Last set value of local pstate and global
78  * last_gpstate_idx             pstate in terms of cpufreq table index
79  * @timer:                      Is used for ramping down if cpu goes idle for
80  *                              a long time with global pstate held high
81  * @gpstate_lock:               A spinlock to maintain synchronization between
82  *                              routines called by the timer handler and
83  *                              governer's target_index calls
84  */
85 struct global_pstate_info {
86         int highest_lpstate_idx;
87         unsigned int elapsed_time;
88         unsigned int last_sampled_time;
89         int last_lpstate_idx;
90         int last_gpstate_idx;
91         spinlock_t gpstate_lock;
92         struct timer_list timer;
93         struct cpufreq_policy *policy;
94 };
95
96 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
97
98 DEFINE_HASHTABLE(pstate_revmap, POWERNV_MAX_PSTATES_ORDER);
99 /**
100  * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
101  *                                indexed by a function of pstate id.
102  *
103  * @pstate_id: pstate id for this entry.
104  *
105  * @cpufreq_table_idx: Index into the powernv_freqs
106  *                     cpufreq_frequency_table for frequency
107  *                     corresponding to pstate_id.
108  *
109  * @hentry: hlist_node that hooks this entry into the pstate_revmap
110  *          hashtable
111  */
112 struct pstate_idx_revmap_data {
113         int pstate_id;
114         unsigned int cpufreq_table_idx;
115         struct hlist_node hentry;
116 };
117
118 u32 pstate_sign_prefix;
119 static bool rebooting, throttled, occ_reset;
120
121 static const char * const throttle_reason[] = {
122         "No throttling",
123         "Power Cap",
124         "Processor Over Temperature",
125         "Power Supply Failure",
126         "Over Current",
127         "OCC Reset"
128 };
129
130 enum throttle_reason_type {
131         NO_THROTTLE = 0,
132         POWERCAP,
133         CPU_OVERTEMP,
134         POWER_SUPPLY_FAILURE,
135         OVERCURRENT,
136         OCC_RESET_THROTTLE,
137         OCC_MAX_REASON
138 };
139
140 static struct chip {
141         unsigned int id;
142         bool throttled;
143         bool restore;
144         u8 throttle_reason;
145         cpumask_t mask;
146         struct work_struct throttle;
147         int throttle_turbo;
148         int throttle_sub_turbo;
149         int reason[OCC_MAX_REASON];
150 } *chips;
151
152 static int nr_chips;
153 static DEFINE_PER_CPU(struct chip *, chip_info);
154
155 /*
156  * Note:
157  * The set of pstates consists of contiguous integers.
158  * powernv_pstate_info stores the index of the frequency table for
159  * max, min and nominal frequencies. It also stores number of
160  * available frequencies.
161  *
162  * powernv_pstate_info.nominal indicates the index to the highest
163  * non-turbo frequency.
164  */
165 static struct powernv_pstate_info {
166         unsigned int min;
167         unsigned int max;
168         unsigned int nominal;
169         unsigned int nr_pstates;
170         bool wof_enabled;
171 } powernv_pstate_info;
172
173 static inline int extract_pstate(u64 pmsr_val, unsigned int shift)
174 {
175         int ret = ((pmsr_val >> shift) & 0xFF);
176
177         if (!ret)
178                 return ret;
179
180         return (pstate_sign_prefix | ret);
181 }
182
183 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
184 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
185 #define extract_max_pstate(x)  extract_pstate(x, MAX_PSTATE_SHIFT)
186
187 /* Use following functions for conversions between pstate_id and index */
188
189 /**
190  * idx_to_pstate : Returns the pstate id corresponding to the
191  *                 frequency in the cpufreq frequency table
192  *                 powernv_freqs indexed by @i.
193  *
194  *                 If @i is out of bound, this will return the pstate
195  *                 corresponding to the nominal frequency.
196  */
197 static inline int idx_to_pstate(unsigned int i)
198 {
199         if (unlikely(i >= powernv_pstate_info.nr_pstates)) {
200                 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i);
201                 return powernv_freqs[powernv_pstate_info.nominal].driver_data;
202         }
203
204         return powernv_freqs[i].driver_data;
205 }
206
207 /**
208  * pstate_to_idx : Returns the index in the cpufreq frequencytable
209  *                 powernv_freqs for the frequency whose corresponding
210  *                 pstate id is @pstate.
211  *
212  *                 If no frequency corresponding to @pstate is found,
213  *                 this will return the index of the nominal
214  *                 frequency.
215  */
216 static unsigned int pstate_to_idx(int pstate)
217 {
218         unsigned int key = pstate % POWERNV_MAX_PSTATES;
219         struct pstate_idx_revmap_data *revmap_data;
220
221         hash_for_each_possible(pstate_revmap, revmap_data, hentry, key) {
222                 if (revmap_data->pstate_id == pstate)
223                         return revmap_data->cpufreq_table_idx;
224         }
225
226         pr_warn_once("pstate_to_idx: pstate %d not found\n", pstate);
227         return powernv_pstate_info.nominal;
228 }
229
230 static inline void reset_gpstates(struct cpufreq_policy *policy)
231 {
232         struct global_pstate_info *gpstates = policy->driver_data;
233
234         gpstates->highest_lpstate_idx = 0;
235         gpstates->elapsed_time = 0;
236         gpstates->last_sampled_time = 0;
237         gpstates->last_lpstate_idx = 0;
238         gpstates->last_gpstate_idx = 0;
239 }
240
241 /*
242  * Initialize the freq table based on data obtained
243  * from the firmware passed via device-tree
244  */
245 static int init_powernv_pstates(void)
246 {
247         struct device_node *power_mgt;
248         int i, nr_pstates = 0;
249         const __be32 *pstate_ids, *pstate_freqs;
250         u32 len_ids, len_freqs;
251         u32 pstate_min, pstate_max, pstate_nominal;
252         u32 pstate_turbo, pstate_ultra_turbo;
253
254         power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
255         if (!power_mgt) {
256                 pr_warn("power-mgt node not found\n");
257                 return -ENODEV;
258         }
259
260         if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
261                 pr_warn("ibm,pstate-min node not found\n");
262                 return -ENODEV;
263         }
264
265         if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
266                 pr_warn("ibm,pstate-max node not found\n");
267                 return -ENODEV;
268         }
269
270         if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
271                                  &pstate_nominal)) {
272                 pr_warn("ibm,pstate-nominal not found\n");
273                 return -ENODEV;
274         }
275
276         if (of_property_read_u32(power_mgt, "ibm,pstate-ultra-turbo",
277                                  &pstate_ultra_turbo)) {
278                 powernv_pstate_info.wof_enabled = false;
279                 goto next;
280         }
281
282         if (of_property_read_u32(power_mgt, "ibm,pstate-turbo",
283                                  &pstate_turbo)) {
284                 powernv_pstate_info.wof_enabled = false;
285                 goto next;
286         }
287
288         if (pstate_turbo == pstate_ultra_turbo)
289                 powernv_pstate_info.wof_enabled = false;
290         else
291                 powernv_pstate_info.wof_enabled = true;
292
293 next:
294         pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
295                 pstate_nominal, pstate_max);
296         pr_info("Workload Optimized Frequency is %s in the platform\n",
297                 (powernv_pstate_info.wof_enabled) ? "enabled" : "disabled");
298
299         pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
300         if (!pstate_ids) {
301                 pr_warn("ibm,pstate-ids not found\n");
302                 return -ENODEV;
303         }
304
305         pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
306                                       &len_freqs);
307         if (!pstate_freqs) {
308                 pr_warn("ibm,pstate-frequencies-mhz not found\n");
309                 return -ENODEV;
310         }
311
312         if (len_ids != len_freqs) {
313                 pr_warn("Entries in ibm,pstate-ids and "
314                         "ibm,pstate-frequencies-mhz does not match\n");
315         }
316
317         nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
318         if (!nr_pstates) {
319                 pr_warn("No PStates found\n");
320                 return -ENODEV;
321         }
322
323         powernv_pstate_info.nr_pstates = nr_pstates;
324         pr_debug("NR PStates %d\n", nr_pstates);
325
326         pstate_sign_prefix = pstate_min & ~0xFF;
327
328         for (i = 0; i < nr_pstates; i++) {
329                 u32 id = be32_to_cpu(pstate_ids[i]);
330                 u32 freq = be32_to_cpu(pstate_freqs[i]);
331                 struct pstate_idx_revmap_data *revmap_data;
332                 unsigned int key;
333
334                 pr_debug("PState id %d freq %d MHz\n", id, freq);
335                 powernv_freqs[i].frequency = freq * 1000; /* kHz */
336                 powernv_freqs[i].driver_data = id;
337
338                 revmap_data = (struct pstate_idx_revmap_data *)
339                               kmalloc(sizeof(*revmap_data), GFP_KERNEL);
340
341                 revmap_data->pstate_id = id;
342                 revmap_data->cpufreq_table_idx = i;
343                 key = id % POWERNV_MAX_PSTATES;
344                 hash_add(pstate_revmap, &revmap_data->hentry, key);
345
346                 if (id == pstate_max)
347                         powernv_pstate_info.max = i;
348                 else if (id == pstate_nominal)
349                         powernv_pstate_info.nominal = i;
350                 else if (id == pstate_min)
351                         powernv_pstate_info.min = i;
352
353                 if (powernv_pstate_info.wof_enabled && id == pstate_turbo) {
354                         int j;
355
356                         for (j = i - 1; j >= (int)powernv_pstate_info.max; j--)
357                                 powernv_freqs[j].flags = CPUFREQ_BOOST_FREQ;
358                 }
359         }
360
361         /* End of list marker entry */
362         powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
363         return 0;
364 }
365
366 /* Returns the CPU frequency corresponding to the pstate_id. */
367 static unsigned int pstate_id_to_freq(int pstate_id)
368 {
369         int i;
370
371         i = pstate_to_idx(pstate_id);
372         if (i >= powernv_pstate_info.nr_pstates || i < 0) {
373                 pr_warn("PState id %d outside of PState table, "
374                         "reporting nominal id %d instead\n",
375                         pstate_id, idx_to_pstate(powernv_pstate_info.nominal));
376                 i = powernv_pstate_info.nominal;
377         }
378
379         return powernv_freqs[i].frequency;
380 }
381
382 /*
383  * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
384  * the firmware
385  */
386 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
387                                         char *buf)
388 {
389         return sprintf(buf, "%u\n",
390                 powernv_freqs[powernv_pstate_info.nominal].frequency);
391 }
392
393 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
394         __ATTR_RO(cpuinfo_nominal_freq);
395
396 #define SCALING_BOOST_FREQS_ATTR_INDEX          2
397
398 static struct freq_attr *powernv_cpu_freq_attr[] = {
399         &cpufreq_freq_attr_scaling_available_freqs,
400         &cpufreq_freq_attr_cpuinfo_nominal_freq,
401         &cpufreq_freq_attr_scaling_boost_freqs,
402         NULL,
403 };
404
405 #define throttle_attr(name, member)                                     \
406 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf)    \
407 {                                                                       \
408         struct chip *chip = per_cpu(chip_info, policy->cpu);            \
409                                                                         \
410         return sprintf(buf, "%u\n", chip->member);                      \
411 }                                                                       \
412                                                                         \
413 static struct freq_attr throttle_attr_##name = __ATTR_RO(name)          \
414
415 throttle_attr(unthrottle, reason[NO_THROTTLE]);
416 throttle_attr(powercap, reason[POWERCAP]);
417 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
418 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
419 throttle_attr(overcurrent, reason[OVERCURRENT]);
420 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
421 throttle_attr(turbo_stat, throttle_turbo);
422 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
423
424 static struct attribute *throttle_attrs[] = {
425         &throttle_attr_unthrottle.attr,
426         &throttle_attr_powercap.attr,
427         &throttle_attr_overtemp.attr,
428         &throttle_attr_supply_fault.attr,
429         &throttle_attr_overcurrent.attr,
430         &throttle_attr_occ_reset.attr,
431         &throttle_attr_turbo_stat.attr,
432         &throttle_attr_sub_turbo_stat.attr,
433         NULL,
434 };
435
436 static const struct attribute_group throttle_attr_grp = {
437         .name   = "throttle_stats",
438         .attrs  = throttle_attrs,
439 };
440
441 /* Helper routines */
442
443 /* Access helpers to power mgt SPR */
444
445 static inline unsigned long get_pmspr(unsigned long sprn)
446 {
447         switch (sprn) {
448         case SPRN_PMCR:
449                 return mfspr(SPRN_PMCR);
450
451         case SPRN_PMICR:
452                 return mfspr(SPRN_PMICR);
453
454         case SPRN_PMSR:
455                 return mfspr(SPRN_PMSR);
456         }
457         BUG();
458 }
459
460 static inline void set_pmspr(unsigned long sprn, unsigned long val)
461 {
462         switch (sprn) {
463         case SPRN_PMCR:
464                 mtspr(SPRN_PMCR, val);
465                 return;
466
467         case SPRN_PMICR:
468                 mtspr(SPRN_PMICR, val);
469                 return;
470         }
471         BUG();
472 }
473
474 /*
475  * Use objects of this type to query/update
476  * pstates on a remote CPU via smp_call_function.
477  */
478 struct powernv_smp_call_data {
479         unsigned int freq;
480         int pstate_id;
481         int gpstate_id;
482 };
483
484 /*
485  * powernv_read_cpu_freq: Reads the current frequency on this CPU.
486  *
487  * Called via smp_call_function.
488  *
489  * Note: The caller of the smp_call_function should pass an argument of
490  * the type 'struct powernv_smp_call_data *' along with this function.
491  *
492  * The current frequency on this CPU will be returned via
493  * ((struct powernv_smp_call_data *)arg)->freq;
494  */
495 static void powernv_read_cpu_freq(void *arg)
496 {
497         unsigned long pmspr_val;
498         struct powernv_smp_call_data *freq_data = arg;
499
500         pmspr_val = get_pmspr(SPRN_PMSR);
501         freq_data->pstate_id = extract_local_pstate(pmspr_val);
502         freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
503
504         pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
505                 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
506                 freq_data->freq);
507 }
508
509 /*
510  * powernv_cpufreq_get: Returns the CPU frequency as reported by the
511  * firmware for CPU 'cpu'. This value is reported through the sysfs
512  * file cpuinfo_cur_freq.
513  */
514 static unsigned int powernv_cpufreq_get(unsigned int cpu)
515 {
516         struct powernv_smp_call_data freq_data;
517
518         smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
519                         &freq_data, 1);
520
521         return freq_data.freq;
522 }
523
524 /*
525  * set_pstate: Sets the pstate on this CPU.
526  *
527  * This is called via an smp_call_function.
528  *
529  * The caller must ensure that freq_data is of the type
530  * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
531  * on this CPU should be present in freq_data->pstate_id.
532  */
533 static void set_pstate(void *data)
534 {
535         unsigned long val;
536         struct powernv_smp_call_data *freq_data = data;
537         unsigned long pstate_ul = freq_data->pstate_id;
538         unsigned long gpstate_ul = freq_data->gpstate_id;
539
540         val = get_pmspr(SPRN_PMCR);
541         val = val & 0x0000FFFFFFFFFFFFULL;
542
543         pstate_ul = pstate_ul & 0xFF;
544         gpstate_ul = gpstate_ul & 0xFF;
545
546         /* Set both global(bits 56..63) and local(bits 48..55) PStates */
547         val = val | (gpstate_ul << 56) | (pstate_ul << 48);
548
549         pr_debug("Setting cpu %d pmcr to %016lX\n",
550                         raw_smp_processor_id(), val);
551         set_pmspr(SPRN_PMCR, val);
552 }
553
554 /*
555  * get_nominal_index: Returns the index corresponding to the nominal
556  * pstate in the cpufreq table
557  */
558 static inline unsigned int get_nominal_index(void)
559 {
560         return powernv_pstate_info.nominal;
561 }
562
563 static void powernv_cpufreq_throttle_check(void *data)
564 {
565         struct chip *chip;
566         unsigned int cpu = smp_processor_id();
567         unsigned long pmsr;
568         int pmsr_pmax;
569         unsigned int pmsr_pmax_idx;
570
571         pmsr = get_pmspr(SPRN_PMSR);
572         chip = this_cpu_read(chip_info);
573
574         /* Check for Pmax Capping */
575         pmsr_pmax = extract_max_pstate(pmsr);
576         pmsr_pmax_idx = pstate_to_idx(pmsr_pmax);
577         if (pmsr_pmax_idx != powernv_pstate_info.max) {
578                 if (chip->throttled)
579                         goto next;
580                 chip->throttled = true;
581                 if (pmsr_pmax_idx > powernv_pstate_info.nominal) {
582                         pr_warn_once("CPU %d on Chip %u has Pmax(%d) reduced below nominal frequency(%d)\n",
583                                      cpu, chip->id, pmsr_pmax,
584                                      idx_to_pstate(powernv_pstate_info.nominal));
585                         chip->throttle_sub_turbo++;
586                 } else {
587                         chip->throttle_turbo++;
588                 }
589                 trace_powernv_throttle(chip->id,
590                                       throttle_reason[chip->throttle_reason],
591                                       pmsr_pmax);
592         } else if (chip->throttled) {
593                 chip->throttled = false;
594                 trace_powernv_throttle(chip->id,
595                                       throttle_reason[chip->throttle_reason],
596                                       pmsr_pmax);
597         }
598
599         /* Check if Psafe_mode_active is set in PMSR. */
600 next:
601         if (pmsr & PMSR_PSAFE_ENABLE) {
602                 throttled = true;
603                 pr_info("Pstate set to safe frequency\n");
604         }
605
606         /* Check if SPR_EM_DISABLE is set in PMSR */
607         if (pmsr & PMSR_SPR_EM_DISABLE) {
608                 throttled = true;
609                 pr_info("Frequency Control disabled from OS\n");
610         }
611
612         if (throttled) {
613                 pr_info("PMSR = %16lx\n", pmsr);
614                 pr_warn("CPU Frequency could be throttled\n");
615         }
616 }
617
618 /**
619  * calc_global_pstate - Calculate global pstate
620  * @elapsed_time:               Elapsed time in milliseconds
621  * @local_pstate_idx:           New local pstate
622  * @highest_lpstate_idx:        pstate from which its ramping down
623  *
624  * Finds the appropriate global pstate based on the pstate from which its
625  * ramping down and the time elapsed in ramping down. It follows a quadratic
626  * equation which ensures that it reaches ramping down to pmin in 5sec.
627  */
628 static inline int calc_global_pstate(unsigned int elapsed_time,
629                                      int highest_lpstate_idx,
630                                      int local_pstate_idx)
631 {
632         int index_diff;
633
634         /*
635          * Using ramp_down_percent we get the percentage of rampdown
636          * that we are expecting to be dropping. Difference between
637          * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
638          * number of how many pstates we will drop eventually by the end of
639          * 5 seconds, then just scale it get the number pstates to be dropped.
640          */
641         index_diff =  ((int)ramp_down_percent(elapsed_time) *
642                         (powernv_pstate_info.min - highest_lpstate_idx)) / 100;
643
644         /* Ensure that global pstate is >= to local pstate */
645         if (highest_lpstate_idx + index_diff >= local_pstate_idx)
646                 return local_pstate_idx;
647         else
648                 return highest_lpstate_idx + index_diff;
649 }
650
651 static inline void  queue_gpstate_timer(struct global_pstate_info *gpstates)
652 {
653         unsigned int timer_interval;
654
655         /*
656          * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
657          * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
658          * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
659          * seconds of ramp down time.
660          */
661         if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
662              > MAX_RAMP_DOWN_TIME)
663                 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
664         else
665                 timer_interval = GPSTATE_TIMER_INTERVAL;
666
667         mod_timer(&gpstates->timer, jiffies + msecs_to_jiffies(timer_interval));
668 }
669
670 /**
671  * gpstate_timer_handler
672  *
673  * @data: pointer to cpufreq_policy on which timer was queued
674  *
675  * This handler brings down the global pstate closer to the local pstate
676  * according quadratic equation. Queues a new timer if it is still not equal
677  * to local pstate
678  */
679 void gpstate_timer_handler(struct timer_list *t)
680 {
681         struct global_pstate_info *gpstates = from_timer(gpstates, t, timer);
682         struct cpufreq_policy *policy = gpstates->policy;
683         int gpstate_idx, lpstate_idx;
684         unsigned long val;
685         unsigned int time_diff = jiffies_to_msecs(jiffies)
686                                         - gpstates->last_sampled_time;
687         struct powernv_smp_call_data freq_data;
688
689         if (!spin_trylock(&gpstates->gpstate_lock))
690                 return;
691
692         /*
693          * If PMCR was last updated was using fast_swtich then
694          * We may have wrong in gpstate->last_lpstate_idx
695          * value. Hence, read from PMCR to get correct data.
696          */
697         val = get_pmspr(SPRN_PMCR);
698         freq_data.gpstate_id = extract_global_pstate(val);
699         freq_data.pstate_id = extract_local_pstate(val);
700         if (freq_data.gpstate_id  == freq_data.pstate_id) {
701                 reset_gpstates(policy);
702                 spin_unlock(&gpstates->gpstate_lock);
703                 return;
704         }
705
706         gpstates->last_sampled_time += time_diff;
707         gpstates->elapsed_time += time_diff;
708
709         if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
710                 gpstate_idx = pstate_to_idx(freq_data.pstate_id);
711                 lpstate_idx = gpstate_idx;
712                 reset_gpstates(policy);
713                 gpstates->highest_lpstate_idx = gpstate_idx;
714         } else {
715                 lpstate_idx = pstate_to_idx(freq_data.pstate_id);
716                 gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
717                                                  gpstates->highest_lpstate_idx,
718                                                  lpstate_idx);
719         }
720         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
721         gpstates->last_gpstate_idx = gpstate_idx;
722         gpstates->last_lpstate_idx = lpstate_idx;
723         /*
724          * If local pstate is equal to global pstate, rampdown is over
725          * So timer is not required to be queued.
726          */
727         if (gpstate_idx != gpstates->last_lpstate_idx)
728                 queue_gpstate_timer(gpstates);
729
730         spin_unlock(&gpstates->gpstate_lock);
731
732         /* Timer may get migrated to a different cpu on cpu hot unplug */
733         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
734 }
735
736 /*
737  * powernv_cpufreq_target_index: Sets the frequency corresponding to
738  * the cpufreq table entry indexed by new_index on the cpus in the
739  * mask policy->cpus
740  */
741 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
742                                         unsigned int new_index)
743 {
744         struct powernv_smp_call_data freq_data;
745         unsigned int cur_msec, gpstate_idx;
746         struct global_pstate_info *gpstates = policy->driver_data;
747
748         if (unlikely(rebooting) && new_index != get_nominal_index())
749                 return 0;
750
751         if (!throttled) {
752                 /* we don't want to be preempted while
753                  * checking if the CPU frequency has been throttled
754                  */
755                 preempt_disable();
756                 powernv_cpufreq_throttle_check(NULL);
757                 preempt_enable();
758         }
759
760         cur_msec = jiffies_to_msecs(get_jiffies_64());
761
762         spin_lock(&gpstates->gpstate_lock);
763         freq_data.pstate_id = idx_to_pstate(new_index);
764
765         if (!gpstates->last_sampled_time) {
766                 gpstate_idx = new_index;
767                 gpstates->highest_lpstate_idx = new_index;
768                 goto gpstates_done;
769         }
770
771         if (gpstates->last_gpstate_idx < new_index) {
772                 gpstates->elapsed_time += cur_msec -
773                                                  gpstates->last_sampled_time;
774
775                 /*
776                  * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
777                  * we should be resetting all global pstate related data. Set it
778                  * equal to local pstate to start fresh.
779                  */
780                 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
781                         reset_gpstates(policy);
782                         gpstates->highest_lpstate_idx = new_index;
783                         gpstate_idx = new_index;
784                 } else {
785                 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
786                         gpstate_idx = calc_global_pstate(gpstates->elapsed_time,
787                                                          gpstates->highest_lpstate_idx,
788                                                          new_index);
789                 }
790         } else {
791                 reset_gpstates(policy);
792                 gpstates->highest_lpstate_idx = new_index;
793                 gpstate_idx = new_index;
794         }
795
796         /*
797          * If local pstate is equal to global pstate, rampdown is over
798          * So timer is not required to be queued.
799          */
800         if (gpstate_idx != new_index)
801                 queue_gpstate_timer(gpstates);
802         else
803                 del_timer_sync(&gpstates->timer);
804
805 gpstates_done:
806         freq_data.gpstate_id = idx_to_pstate(gpstate_idx);
807         gpstates->last_sampled_time = cur_msec;
808         gpstates->last_gpstate_idx = gpstate_idx;
809         gpstates->last_lpstate_idx = new_index;
810
811         spin_unlock(&gpstates->gpstate_lock);
812
813         /*
814          * Use smp_call_function to send IPI and execute the
815          * mtspr on target CPU.  We could do that without IPI
816          * if current CPU is within policy->cpus (core)
817          */
818         smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
819         return 0;
820 }
821
822 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
823 {
824         int base, i, ret;
825         struct kernfs_node *kn;
826         struct global_pstate_info *gpstates;
827
828         base = cpu_first_thread_sibling(policy->cpu);
829
830         for (i = 0; i < threads_per_core; i++)
831                 cpumask_set_cpu(base + i, policy->cpus);
832
833         kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
834         if (!kn) {
835                 int ret;
836
837                 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
838                 if (ret) {
839                         pr_info("Failed to create throttle stats directory for cpu %d\n",
840                                 policy->cpu);
841                         return ret;
842                 }
843         } else {
844                 kernfs_put(kn);
845         }
846
847         gpstates =  kzalloc(sizeof(*gpstates), GFP_KERNEL);
848         if (!gpstates)
849                 return -ENOMEM;
850
851         policy->driver_data = gpstates;
852
853         /* initialize timer */
854         gpstates->policy = policy;
855         timer_setup(&gpstates->timer, gpstate_timer_handler,
856                     TIMER_PINNED | TIMER_DEFERRABLE);
857         gpstates->timer.expires = jiffies +
858                                 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
859         spin_lock_init(&gpstates->gpstate_lock);
860         ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
861
862         if (ret < 0) {
863                 kfree(policy->driver_data);
864                 return ret;
865         }
866
867         policy->fast_switch_possible = true;
868         return ret;
869 }
870
871 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
872 {
873         /* timer is deleted in cpufreq_cpu_stop() */
874         kfree(policy->driver_data);
875
876         return 0;
877 }
878
879 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
880                                 unsigned long action, void *unused)
881 {
882         int cpu;
883         struct cpufreq_policy cpu_policy;
884
885         rebooting = true;
886         for_each_online_cpu(cpu) {
887                 cpufreq_get_policy(&cpu_policy, cpu);
888                 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
889         }
890
891         return NOTIFY_DONE;
892 }
893
894 static struct notifier_block powernv_cpufreq_reboot_nb = {
895         .notifier_call = powernv_cpufreq_reboot_notifier,
896 };
897
898 void powernv_cpufreq_work_fn(struct work_struct *work)
899 {
900         struct chip *chip = container_of(work, struct chip, throttle);
901         unsigned int cpu;
902         cpumask_t mask;
903
904         get_online_cpus();
905         cpumask_and(&mask, &chip->mask, cpu_online_mask);
906         smp_call_function_any(&mask,
907                               powernv_cpufreq_throttle_check, NULL, 0);
908
909         if (!chip->restore)
910                 goto out;
911
912         chip->restore = false;
913         for_each_cpu(cpu, &mask) {
914                 int index;
915                 struct cpufreq_policy policy;
916
917                 cpufreq_get_policy(&policy, cpu);
918                 index = cpufreq_table_find_index_c(&policy, policy.cur);
919                 powernv_cpufreq_target_index(&policy, index);
920                 cpumask_andnot(&mask, &mask, policy.cpus);
921         }
922 out:
923         put_online_cpus();
924 }
925
926 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
927                                    unsigned long msg_type, void *_msg)
928 {
929         struct opal_msg *msg = _msg;
930         struct opal_occ_msg omsg;
931         int i;
932
933         if (msg_type != OPAL_MSG_OCC)
934                 return 0;
935
936         omsg.type = be64_to_cpu(msg->params[0]);
937
938         switch (omsg.type) {
939         case OCC_RESET:
940                 occ_reset = true;
941                 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
942                 /*
943                  * powernv_cpufreq_throttle_check() is called in
944                  * target() callback which can detect the throttle state
945                  * for governors like ondemand.
946                  * But static governors will not call target() often thus
947                  * report throttling here.
948                  */
949                 if (!throttled) {
950                         throttled = true;
951                         pr_warn("CPU frequency is throttled for duration\n");
952                 }
953
954                 break;
955         case OCC_LOAD:
956                 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
957                 break;
958         case OCC_THROTTLE:
959                 omsg.chip = be64_to_cpu(msg->params[1]);
960                 omsg.throttle_status = be64_to_cpu(msg->params[2]);
961
962                 if (occ_reset) {
963                         occ_reset = false;
964                         throttled = false;
965                         pr_info("OCC Active, CPU frequency is no longer throttled\n");
966
967                         for (i = 0; i < nr_chips; i++) {
968                                 chips[i].restore = true;
969                                 schedule_work(&chips[i].throttle);
970                         }
971
972                         return 0;
973                 }
974
975                 for (i = 0; i < nr_chips; i++)
976                         if (chips[i].id == omsg.chip)
977                                 break;
978
979                 if (omsg.throttle_status >= 0 &&
980                     omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
981                         chips[i].throttle_reason = omsg.throttle_status;
982                         chips[i].reason[omsg.throttle_status]++;
983                 }
984
985                 if (!omsg.throttle_status)
986                         chips[i].restore = true;
987
988                 schedule_work(&chips[i].throttle);
989         }
990         return 0;
991 }
992
993 static struct notifier_block powernv_cpufreq_opal_nb = {
994         .notifier_call  = powernv_cpufreq_occ_msg,
995         .next           = NULL,
996         .priority       = 0,
997 };
998
999 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
1000 {
1001         struct powernv_smp_call_data freq_data;
1002         struct global_pstate_info *gpstates = policy->driver_data;
1003
1004         freq_data.pstate_id = idx_to_pstate(powernv_pstate_info.min);
1005         freq_data.gpstate_id = idx_to_pstate(powernv_pstate_info.min);
1006         smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
1007         del_timer_sync(&gpstates->timer);
1008 }
1009
1010 static unsigned int powernv_fast_switch(struct cpufreq_policy *policy,
1011                                         unsigned int target_freq)
1012 {
1013         int index;
1014         struct powernv_smp_call_data freq_data;
1015
1016         index = cpufreq_table_find_index_dl(policy, target_freq);
1017         freq_data.pstate_id = powernv_freqs[index].driver_data;
1018         freq_data.gpstate_id = powernv_freqs[index].driver_data;
1019         set_pstate(&freq_data);
1020
1021         return powernv_freqs[index].frequency;
1022 }
1023
1024 static struct cpufreq_driver powernv_cpufreq_driver = {
1025         .name           = "powernv-cpufreq",
1026         .flags          = CPUFREQ_CONST_LOOPS,
1027         .init           = powernv_cpufreq_cpu_init,
1028         .exit           = powernv_cpufreq_cpu_exit,
1029         .verify         = cpufreq_generic_frequency_table_verify,
1030         .target_index   = powernv_cpufreq_target_index,
1031         .fast_switch    = powernv_fast_switch,
1032         .get            = powernv_cpufreq_get,
1033         .stop_cpu       = powernv_cpufreq_stop_cpu,
1034         .attr           = powernv_cpu_freq_attr,
1035 };
1036
1037 static int init_chip_info(void)
1038 {
1039         unsigned int chip[256];
1040         unsigned int cpu, i;
1041         unsigned int prev_chip_id = UINT_MAX;
1042
1043         for_each_possible_cpu(cpu) {
1044                 unsigned int id = cpu_to_chip_id(cpu);
1045
1046                 if (prev_chip_id != id) {
1047                         prev_chip_id = id;
1048                         chip[nr_chips++] = id;
1049                 }
1050         }
1051
1052         chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
1053         if (!chips)
1054                 return -ENOMEM;
1055
1056         for (i = 0; i < nr_chips; i++) {
1057                 chips[i].id = chip[i];
1058                 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
1059                 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
1060                 for_each_cpu(cpu, &chips[i].mask)
1061                         per_cpu(chip_info, cpu) =  &chips[i];
1062         }
1063
1064         return 0;
1065 }
1066
1067 static inline void clean_chip_info(void)
1068 {
1069         kfree(chips);
1070 }
1071
1072 static inline void unregister_all_notifiers(void)
1073 {
1074         opal_message_notifier_unregister(OPAL_MSG_OCC,
1075                                          &powernv_cpufreq_opal_nb);
1076         unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
1077 }
1078
1079 static int __init powernv_cpufreq_init(void)
1080 {
1081         int rc = 0;
1082
1083         /* Don't probe on pseries (guest) platforms */
1084         if (!firmware_has_feature(FW_FEATURE_OPAL))
1085                 return -ENODEV;
1086
1087         /* Discover pstates from device tree and init */
1088         rc = init_powernv_pstates();
1089         if (rc)
1090                 goto out;
1091
1092         /* Populate chip info */
1093         rc = init_chip_info();
1094         if (rc)
1095                 goto out;
1096
1097         register_reboot_notifier(&powernv_cpufreq_reboot_nb);
1098         opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
1099
1100         if (powernv_pstate_info.wof_enabled)
1101                 powernv_cpufreq_driver.boost_enabled = true;
1102         else
1103                 powernv_cpu_freq_attr[SCALING_BOOST_FREQS_ATTR_INDEX] = NULL;
1104
1105         rc = cpufreq_register_driver(&powernv_cpufreq_driver);
1106         if (rc) {
1107                 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
1108                 goto cleanup_notifiers;
1109         }
1110
1111         if (powernv_pstate_info.wof_enabled)
1112                 cpufreq_enable_boost_support();
1113
1114         return 0;
1115 cleanup_notifiers:
1116         unregister_all_notifiers();
1117         clean_chip_info();
1118 out:
1119         pr_info("Platform driver disabled. System does not support PState control\n");
1120         return rc;
1121 }
1122 module_init(powernv_cpufreq_init);
1123
1124 static void __exit powernv_cpufreq_exit(void)
1125 {
1126         cpufreq_unregister_driver(&powernv_cpufreq_driver);
1127         unregister_all_notifiers();
1128         clean_chip_info();
1129 }
1130 module_exit(powernv_cpufreq_exit);
1131
1132 MODULE_LICENSE("GPL");
1133 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");