cpufreq: intel_pstate: Fix active mode setting from command line
[linux-2.6-microblaze.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
40
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61
62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64         return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66
67 static inline int ceiling_fp(int32_t x)
68 {
69         int mask, ret;
70
71         ret = fp_toint(x);
72         mask = (1 << FRAC_BITS) - 1;
73         if (x & mask)
74                 ret += 1;
75         return ret;
76 }
77
78 static inline int32_t percent_fp(int percent)
79 {
80         return div_fp(percent, 100);
81 }
82
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85         return (x * y) >> EXT_FRAC_BITS;
86 }
87
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90         return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
93 static inline int32_t percent_ext_fp(int percent)
94 {
95         return div_ext_fp(percent, 100);
96 }
97
98 /**
99  * struct sample -      Store performance sample
100  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
101  *                      performance during last sample period
102  * @busy_scaled:        Scaled busy value which is used to calculate next
103  *                      P state. This can be different than core_avg_perf
104  *                      to account for cpu idle period
105  * @aperf:              Difference of actual performance frequency clock count
106  *                      read from APERF MSR between last and current sample
107  * @mperf:              Difference of maximum performance frequency clock count
108  *                      read from MPERF MSR between last and current sample
109  * @tsc:                Difference of time stamp counter between last and
110  *                      current sample
111  * @time:               Current time from scheduler
112  *
113  * This structure is used in the cpudata structure to store performance sample
114  * data for choosing next P State.
115  */
116 struct sample {
117         int32_t core_avg_perf;
118         int32_t busy_scaled;
119         u64 aperf;
120         u64 mperf;
121         u64 tsc;
122         u64 time;
123 };
124
125 /**
126  * struct pstate_data - Store P state data
127  * @current_pstate:     Current requested P state
128  * @min_pstate:         Min P state possible for this platform
129  * @max_pstate:         Max P state possible for this platform
130  * @max_pstate_physical:This is physical Max P state for a processor
131  *                      This can be higher than the max_pstate which can
132  *                      be limited by platform thermal design power limits
133  * @scaling:            Scaling factor to  convert frequency to cpufreq
134  *                      frequency units
135  * @turbo_pstate:       Max Turbo P state possible for this platform
136  * @max_freq:           @max_pstate frequency in cpufreq units
137  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
138  *
139  * Stores the per cpu model P state limits and current P state.
140  */
141 struct pstate_data {
142         int     current_pstate;
143         int     min_pstate;
144         int     max_pstate;
145         int     max_pstate_physical;
146         int     scaling;
147         int     turbo_pstate;
148         unsigned int max_freq;
149         unsigned int turbo_freq;
150 };
151
152 /**
153  * struct vid_data -    Stores voltage information data
154  * @min:                VID data for this platform corresponding to
155  *                      the lowest P state
156  * @max:                VID data corresponding to the highest P State.
157  * @turbo:              VID data for turbo P state
158  * @ratio:              Ratio of (vid max - vid min) /
159  *                      (max P state - Min P State)
160  *
161  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162  * This data is used in Atom platforms, where in addition to target P state,
163  * the voltage data needs to be specified to select next P State.
164  */
165 struct vid_data {
166         int min;
167         int max;
168         int turbo;
169         int32_t ratio;
170 };
171
172 /**
173  * struct global_params - Global parameters, mostly tunable via sysfs.
174  * @no_turbo:           Whether or not to use turbo P-states.
175  * @turbo_disabled:     Whether or not turbo P-states are available at all,
176  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
177  *                      not the maximum reported turbo P-state is different from
178  *                      the maximum reported non-turbo one.
179  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         bool turbo_disabled_mf;
189         int max_perf_pct;
190         int min_perf_pct;
191 };
192
193 /**
194  * struct cpudata -     Per CPU instance data storage
195  * @cpu:                CPU number for this instance data
196  * @policy:             CPUFreq policy value
197  * @update_util:        CPUFreq utility callback information
198  * @update_util_set:    CPUFreq utility callback is set
199  * @iowait_boost:       iowait-related boost fraction
200  * @last_update:        Time of the last update.
201  * @pstate:             Stores P state limits for this CPU
202  * @vid:                Stores VID limits for this CPU
203  * @last_sample_time:   Last Sample time
204  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
205  *                      This shift is a multiplier to mperf delta to
206  *                      calculate CPU busy.
207  * @prev_aperf:         Last APERF value read from APERF MSR
208  * @prev_mperf:         Last MPERF value read from MPERF MSR
209  * @prev_tsc:           Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *                      current sample
212  * @sample:             Storage for storing last Sample data
213  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
216  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:      Last saved HWP energy performance preference
218  *                      (EPP) or energy performance bias (EPB),
219  *                      when policy switched to performance
220  * @epp_policy:         Last saved policy used to set EPP/EPB
221  * @epp_default:        Power on default HWP energy performance
222  *                      preference/bias
223  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
224  *                      operation
225  * @hwp_req_cached:     Cached value of the last HWP Request MSR
226  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
227  * @last_io_update:     Last time when IO wake flag was set
228  * @sched_flags:        Store scheduler flags for possible cross CPU update
229  * @hwp_boost_min:      Last HWP boosted min performance
230  *
231  * This structure stores per CPU instance data for all CPUs.
232  */
233 struct cpudata {
234         int cpu;
235
236         unsigned int policy;
237         struct update_util_data update_util;
238         bool   update_util_set;
239
240         struct pstate_data pstate;
241         struct vid_data vid;
242
243         u64     last_update;
244         u64     last_sample_time;
245         u64     aperf_mperf_shift;
246         u64     prev_aperf;
247         u64     prev_mperf;
248         u64     prev_tsc;
249         u64     prev_cummulative_iowait;
250         struct sample sample;
251         int32_t min_perf_ratio;
252         int32_t max_perf_ratio;
253 #ifdef CONFIG_ACPI
254         struct acpi_processor_performance acpi_perf_data;
255         bool valid_pss_table;
256 #endif
257         unsigned int iowait_boost;
258         s16 epp_powersave;
259         s16 epp_policy;
260         s16 epp_default;
261         s16 epp_saved;
262         u64 hwp_req_cached;
263         u64 hwp_cap_cached;
264         u64 last_io_update;
265         unsigned int sched_flags;
266         u32 hwp_boost_min;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:            Callback to get maximum non turbo effective P state
274  * @get_max_physical:   Callback to get maximum non turbo physical P state
275  * @get_min:            Callback to get minimum P state
276  * @get_turbo:          Callback to get turbo P state
277  * @get_scaling:        Callback to get frequency scaling factor
278  * @get_val:            Callback to convert P state to actual MSR write value
279  * @get_vid:            Callback to get VID data for Atom platforms
280  *
281  * Core and Atom CPU models have different way to get P State limits. This
282  * structure is used to store those callbacks.
283  */
284 struct pstate_funcs {
285         int (*get_max)(void);
286         int (*get_max_physical)(void);
287         int (*get_min)(void);
288         int (*get_turbo)(void);
289         int (*get_scaling)(void);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307
308 static struct global_params global;
309
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313 #ifdef CONFIG_ACPI
314
315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319                 return true;
320
321         return false;
322 }
323
324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326         if (intel_pstate_acpi_pm_profile_server())
327                 return true;
328
329         return acpi_ppc;
330 }
331
332 #ifdef CONFIG_ACPI_CPPC_LIB
333
334 /* The work item is needed to avoid CPU hotplug locking issues */
335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337         sched_set_itmt_support();
338 }
339
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342 static void intel_pstate_set_itmt_prio(int cpu)
343 {
344         struct cppc_perf_caps cppc_perf;
345         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346         int ret;
347
348         ret = cppc_get_perf_caps(cpu, &cppc_perf);
349         if (ret)
350                 return;
351
352         /*
353          * The priorities can be set regardless of whether or not
354          * sched_set_itmt_support(true) has been called and it is valid to
355          * update them at any time after it has been called.
356          */
357         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359         if (max_highest_perf <= min_highest_perf) {
360                 if (cppc_perf.highest_perf > max_highest_perf)
361                         max_highest_perf = cppc_perf.highest_perf;
362
363                 if (cppc_perf.highest_perf < min_highest_perf)
364                         min_highest_perf = cppc_perf.highest_perf;
365
366                 if (max_highest_perf > min_highest_perf) {
367                         /*
368                          * This code can be run during CPU online under the
369                          * CPU hotplug locks, so sched_set_itmt_support()
370                          * cannot be called from here.  Queue up a work item
371                          * to invoke it.
372                          */
373                         schedule_work(&sched_itmt_work);
374                 }
375         }
376 }
377
378 static int intel_pstate_get_cppc_guranteed(int cpu)
379 {
380         struct cppc_perf_caps cppc_perf;
381         int ret;
382
383         ret = cppc_get_perf_caps(cpu, &cppc_perf);
384         if (ret)
385                 return ret;
386
387         if (cppc_perf.guaranteed_perf)
388                 return cppc_perf.guaranteed_perf;
389
390         return cppc_perf.nominal_perf;
391 }
392
393 #else /* CONFIG_ACPI_CPPC_LIB */
394 static void intel_pstate_set_itmt_prio(int cpu)
395 {
396 }
397 #endif /* CONFIG_ACPI_CPPC_LIB */
398
399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400 {
401         struct cpudata *cpu;
402         int ret;
403         int i;
404
405         if (hwp_active) {
406                 intel_pstate_set_itmt_prio(policy->cpu);
407                 return;
408         }
409
410         if (!intel_pstate_get_ppc_enable_status())
411                 return;
412
413         cpu = all_cpu_data[policy->cpu];
414
415         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416                                                   policy->cpu);
417         if (ret)
418                 return;
419
420         /*
421          * Check if the control value in _PSS is for PERF_CTL MSR, which should
422          * guarantee that the states returned by it map to the states in our
423          * list directly.
424          */
425         if (cpu->acpi_perf_data.control_register.space_id !=
426                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
427                 goto err;
428
429         /*
430          * If there is only one entry _PSS, simply ignore _PSS and continue as
431          * usual without taking _PSS into account
432          */
433         if (cpu->acpi_perf_data.state_count < 2)
434                 goto err;
435
436         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
439                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
441                          (u32) cpu->acpi_perf_data.states[i].power,
442                          (u32) cpu->acpi_perf_data.states[i].control);
443         }
444
445         /*
446          * The _PSS table doesn't contain whole turbo frequency range.
447          * This just contains +1 MHZ above the max non turbo frequency,
448          * with control value corresponding to max turbo ratio. But
449          * when cpufreq set policy is called, it will call with this
450          * max frequency, which will cause a reduced performance as
451          * this driver uses real max turbo frequency as the max
452          * frequency. So correct this frequency in _PSS table to
453          * correct max turbo frequency based on the turbo state.
454          * Also need to convert to MHz as _PSS freq is in MHz.
455          */
456         if (!global.turbo_disabled)
457                 cpu->acpi_perf_data.states[0].core_frequency =
458                                         policy->cpuinfo.max_freq / 1000;
459         cpu->valid_pss_table = true;
460         pr_debug("_PPC limits will be enforced\n");
461
462         return;
463
464  err:
465         cpu->valid_pss_table = false;
466         acpi_processor_unregister_performance(policy->cpu);
467 }
468
469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470 {
471         struct cpudata *cpu;
472
473         cpu = all_cpu_data[policy->cpu];
474         if (!cpu->valid_pss_table)
475                 return;
476
477         acpi_processor_unregister_performance(policy->cpu);
478 }
479 #else /* CONFIG_ACPI */
480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 }
487
488 static inline bool intel_pstate_acpi_pm_profile_server(void)
489 {
490         return false;
491 }
492 #endif /* CONFIG_ACPI */
493
494 #ifndef CONFIG_ACPI_CPPC_LIB
495 static int intel_pstate_get_cppc_guranteed(int cpu)
496 {
497         return -ENOTSUPP;
498 }
499 #endif /* CONFIG_ACPI_CPPC_LIB */
500
501 static inline void update_turbo_state(void)
502 {
503         u64 misc_en;
504         struct cpudata *cpu;
505
506         cpu = all_cpu_data[0];
507         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508         global.turbo_disabled =
509                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511 }
512
513 static int min_perf_pct_min(void)
514 {
515         struct cpudata *cpu = all_cpu_data[0];
516         int turbo_pstate = cpu->pstate.turbo_pstate;
517
518         return turbo_pstate ?
519                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 }
521
522 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523 {
524         u64 epb;
525         int ret;
526
527         if (!boot_cpu_has(X86_FEATURE_EPB))
528                 return -ENXIO;
529
530         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531         if (ret)
532                 return (s16)ret;
533
534         return (s16)(epb & 0x0f);
535 }
536
537 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538 {
539         s16 epp;
540
541         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542                 /*
543                  * When hwp_req_data is 0, means that caller didn't read
544                  * MSR_HWP_REQUEST, so need to read and get EPP.
545                  */
546                 if (!hwp_req_data) {
547                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548                                             &hwp_req_data);
549                         if (epp)
550                                 return epp;
551                 }
552                 epp = (hwp_req_data >> 24) & 0xff;
553         } else {
554                 /* When there is no EPP present, HWP uses EPB settings */
555                 epp = intel_pstate_get_epb(cpu_data);
556         }
557
558         return epp;
559 }
560
561 static int intel_pstate_set_epb(int cpu, s16 pref)
562 {
563         u64 epb;
564         int ret;
565
566         if (!boot_cpu_has(X86_FEATURE_EPB))
567                 return -ENXIO;
568
569         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570         if (ret)
571                 return ret;
572
573         epb = (epb & ~0x0f) | pref;
574         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575
576         return 0;
577 }
578
579 /*
580  * EPP/EPB display strings corresponding to EPP index in the
581  * energy_perf_strings[]
582  *      index           String
583  *-------------------------------------
584  *      0               default
585  *      1               performance
586  *      2               balance_performance
587  *      3               balance_power
588  *      4               power
589  */
590 static const char * const energy_perf_strings[] = {
591         "default",
592         "performance",
593         "balance_performance",
594         "balance_power",
595         "power",
596         NULL
597 };
598 static const unsigned int epp_values[] = {
599         HWP_EPP_PERFORMANCE,
600         HWP_EPP_BALANCE_PERFORMANCE,
601         HWP_EPP_BALANCE_POWERSAVE,
602         HWP_EPP_POWERSAVE
603 };
604
605 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
606 {
607         s16 epp;
608         int index = -EINVAL;
609
610         epp = intel_pstate_get_epp(cpu_data, 0);
611         if (epp < 0)
612                 return epp;
613
614         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615                 if (epp == HWP_EPP_PERFORMANCE)
616                         return 1;
617                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
618                         return 2;
619                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
620                         return 3;
621                 else
622                         return 4;
623         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
624                 /*
625                  * Range:
626                  *      0x00-0x03       :       Performance
627                  *      0x04-0x07       :       Balance performance
628                  *      0x08-0x0B       :       Balance power
629                  *      0x0C-0x0F       :       Power
630                  * The EPB is a 4 bit value, but our ranges restrict the
631                  * value which can be set. Here only using top two bits
632                  * effectively.
633                  */
634                 index = (epp >> 2) + 1;
635         }
636
637         return index;
638 }
639
640 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
641                                               int pref_index)
642 {
643         int epp = -EINVAL;
644         int ret;
645
646         if (!pref_index)
647                 epp = cpu_data->epp_default;
648
649         mutex_lock(&intel_pstate_limits_lock);
650
651         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652                 u64 value;
653
654                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
655                 if (ret)
656                         goto return_pref;
657
658                 value &= ~GENMASK_ULL(31, 24);
659
660                 if (epp == -EINVAL)
661                         epp = epp_values[pref_index - 1];
662
663                 value |= (u64)epp << 24;
664                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
665         } else {
666                 if (epp == -EINVAL)
667                         epp = (pref_index - 1) << 2;
668                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
669         }
670 return_pref:
671         mutex_unlock(&intel_pstate_limits_lock);
672
673         return ret;
674 }
675
676 static ssize_t show_energy_performance_available_preferences(
677                                 struct cpufreq_policy *policy, char *buf)
678 {
679         int i = 0;
680         int ret = 0;
681
682         while (energy_perf_strings[i] != NULL)
683                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
684
685         ret += sprintf(&buf[ret], "\n");
686
687         return ret;
688 }
689
690 cpufreq_freq_attr_ro(energy_performance_available_preferences);
691
692 static ssize_t store_energy_performance_preference(
693                 struct cpufreq_policy *policy, const char *buf, size_t count)
694 {
695         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
696         char str_preference[21];
697         int ret;
698
699         ret = sscanf(buf, "%20s", str_preference);
700         if (ret != 1)
701                 return -EINVAL;
702
703         ret = match_string(energy_perf_strings, -1, str_preference);
704         if (ret < 0)
705                 return ret;
706
707         intel_pstate_set_energy_pref_index(cpu_data, ret);
708         return count;
709 }
710
711 static ssize_t show_energy_performance_preference(
712                                 struct cpufreq_policy *policy, char *buf)
713 {
714         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
715         int preference;
716
717         preference = intel_pstate_get_energy_pref_index(cpu_data);
718         if (preference < 0)
719                 return preference;
720
721         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
722 }
723
724 cpufreq_freq_attr_rw(energy_performance_preference);
725
726 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
727 {
728         struct cpudata *cpu;
729         u64 cap;
730         int ratio;
731
732         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
733         if (ratio <= 0) {
734                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
735                 ratio = HWP_GUARANTEED_PERF(cap);
736         }
737
738         cpu = all_cpu_data[policy->cpu];
739
740         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
741 }
742
743 cpufreq_freq_attr_ro(base_frequency);
744
745 static struct freq_attr *hwp_cpufreq_attrs[] = {
746         &energy_performance_preference,
747         &energy_performance_available_preferences,
748         &base_frequency,
749         NULL,
750 };
751
752 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
753                                      int *current_max)
754 {
755         u64 cap;
756
757         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759         if (global.no_turbo)
760                 *current_max = HWP_GUARANTEED_PERF(cap);
761         else
762                 *current_max = HWP_HIGHEST_PERF(cap);
763
764         *phy_max = HWP_HIGHEST_PERF(cap);
765 }
766
767 static void intel_pstate_hwp_set(unsigned int cpu)
768 {
769         struct cpudata *cpu_data = all_cpu_data[cpu];
770         int max, min;
771         u64 value;
772         s16 epp;
773
774         max = cpu_data->max_perf_ratio;
775         min = cpu_data->min_perf_ratio;
776
777         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778                 min = max;
779
780         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
781
782         value &= ~HWP_MIN_PERF(~0L);
783         value |= HWP_MIN_PERF(min);
784
785         value &= ~HWP_MAX_PERF(~0L);
786         value |= HWP_MAX_PERF(max);
787
788         if (cpu_data->epp_policy == cpu_data->policy)
789                 goto skip_epp;
790
791         cpu_data->epp_policy = cpu_data->policy;
792
793         if (cpu_data->epp_saved >= 0) {
794                 epp = cpu_data->epp_saved;
795                 cpu_data->epp_saved = -EINVAL;
796                 goto update_epp;
797         }
798
799         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
800                 epp = intel_pstate_get_epp(cpu_data, value);
801                 cpu_data->epp_powersave = epp;
802                 /* If EPP read was failed, then don't try to write */
803                 if (epp < 0)
804                         goto skip_epp;
805
806                 epp = 0;
807         } else {
808                 /* skip setting EPP, when saved value is invalid */
809                 if (cpu_data->epp_powersave < 0)
810                         goto skip_epp;
811
812                 /*
813                  * No need to restore EPP when it is not zero. This
814                  * means:
815                  *  - Policy is not changed
816                  *  - user has manually changed
817                  *  - Error reading EPB
818                  */
819                 epp = intel_pstate_get_epp(cpu_data, value);
820                 if (epp)
821                         goto skip_epp;
822
823                 epp = cpu_data->epp_powersave;
824         }
825 update_epp:
826         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827                 value &= ~GENMASK_ULL(31, 24);
828                 value |= (u64)epp << 24;
829         } else {
830                 intel_pstate_set_epb(cpu, epp);
831         }
832 skip_epp:
833         WRITE_ONCE(cpu_data->hwp_req_cached, value);
834         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835 }
836
837 static void intel_pstate_hwp_force_min_perf(int cpu)
838 {
839         u64 value;
840         int min_perf;
841
842         value = all_cpu_data[cpu]->hwp_req_cached;
843         value &= ~GENMASK_ULL(31, 0);
844         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
845
846         /* Set hwp_max = hwp_min */
847         value |= HWP_MAX_PERF(min_perf);
848         value |= HWP_MIN_PERF(min_perf);
849
850         /* Set EPP to min */
851         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
853
854         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
855 }
856
857 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
858 {
859         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
860
861         if (!hwp_active)
862                 return 0;
863
864         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
865
866         return 0;
867 }
868
869 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
870
871 static int intel_pstate_resume(struct cpufreq_policy *policy)
872 {
873         if (!hwp_active)
874                 return 0;
875
876         mutex_lock(&intel_pstate_limits_lock);
877
878         if (policy->cpu == 0)
879                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
880
881         all_cpu_data[policy->cpu]->epp_policy = 0;
882         intel_pstate_hwp_set(policy->cpu);
883
884         mutex_unlock(&intel_pstate_limits_lock);
885
886         return 0;
887 }
888
889 static void intel_pstate_update_policies(void)
890 {
891         int cpu;
892
893         for_each_possible_cpu(cpu)
894                 cpufreq_update_policy(cpu);
895 }
896
897 static void intel_pstate_update_max_freq(unsigned int cpu)
898 {
899         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
900         struct cpudata *cpudata;
901
902         if (!policy)
903                 return;
904
905         cpudata = all_cpu_data[cpu];
906         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
907                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
908
909         refresh_frequency_limits(policy);
910
911         cpufreq_cpu_release(policy);
912 }
913
914 static void intel_pstate_update_limits(unsigned int cpu)
915 {
916         mutex_lock(&intel_pstate_driver_lock);
917
918         update_turbo_state();
919         /*
920          * If turbo has been turned on or off globally, policy limits for
921          * all CPUs need to be updated to reflect that.
922          */
923         if (global.turbo_disabled_mf != global.turbo_disabled) {
924                 global.turbo_disabled_mf = global.turbo_disabled;
925                 arch_set_max_freq_ratio(global.turbo_disabled);
926                 for_each_possible_cpu(cpu)
927                         intel_pstate_update_max_freq(cpu);
928         } else {
929                 cpufreq_update_policy(cpu);
930         }
931
932         mutex_unlock(&intel_pstate_driver_lock);
933 }
934
935 /************************** sysfs begin ************************/
936 #define show_one(file_name, object)                                     \
937         static ssize_t show_##file_name                                 \
938         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
939         {                                                               \
940                 return sprintf(buf, "%u\n", global.object);             \
941         }
942
943 static ssize_t intel_pstate_show_status(char *buf);
944 static int intel_pstate_update_status(const char *buf, size_t size);
945
946 static ssize_t show_status(struct kobject *kobj,
947                            struct kobj_attribute *attr, char *buf)
948 {
949         ssize_t ret;
950
951         mutex_lock(&intel_pstate_driver_lock);
952         ret = intel_pstate_show_status(buf);
953         mutex_unlock(&intel_pstate_driver_lock);
954
955         return ret;
956 }
957
958 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
959                             const char *buf, size_t count)
960 {
961         char *p = memchr(buf, '\n', count);
962         int ret;
963
964         mutex_lock(&intel_pstate_driver_lock);
965         ret = intel_pstate_update_status(buf, p ? p - buf : count);
966         mutex_unlock(&intel_pstate_driver_lock);
967
968         return ret < 0 ? ret : count;
969 }
970
971 static ssize_t show_turbo_pct(struct kobject *kobj,
972                                 struct kobj_attribute *attr, char *buf)
973 {
974         struct cpudata *cpu;
975         int total, no_turbo, turbo_pct;
976         uint32_t turbo_fp;
977
978         mutex_lock(&intel_pstate_driver_lock);
979
980         if (!intel_pstate_driver) {
981                 mutex_unlock(&intel_pstate_driver_lock);
982                 return -EAGAIN;
983         }
984
985         cpu = all_cpu_data[0];
986
987         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
988         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
989         turbo_fp = div_fp(no_turbo, total);
990         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
991
992         mutex_unlock(&intel_pstate_driver_lock);
993
994         return sprintf(buf, "%u\n", turbo_pct);
995 }
996
997 static ssize_t show_num_pstates(struct kobject *kobj,
998                                 struct kobj_attribute *attr, char *buf)
999 {
1000         struct cpudata *cpu;
1001         int total;
1002
1003         mutex_lock(&intel_pstate_driver_lock);
1004
1005         if (!intel_pstate_driver) {
1006                 mutex_unlock(&intel_pstate_driver_lock);
1007                 return -EAGAIN;
1008         }
1009
1010         cpu = all_cpu_data[0];
1011         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1012
1013         mutex_unlock(&intel_pstate_driver_lock);
1014
1015         return sprintf(buf, "%u\n", total);
1016 }
1017
1018 static ssize_t show_no_turbo(struct kobject *kobj,
1019                              struct kobj_attribute *attr, char *buf)
1020 {
1021         ssize_t ret;
1022
1023         mutex_lock(&intel_pstate_driver_lock);
1024
1025         if (!intel_pstate_driver) {
1026                 mutex_unlock(&intel_pstate_driver_lock);
1027                 return -EAGAIN;
1028         }
1029
1030         update_turbo_state();
1031         if (global.turbo_disabled)
1032                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1033         else
1034                 ret = sprintf(buf, "%u\n", global.no_turbo);
1035
1036         mutex_unlock(&intel_pstate_driver_lock);
1037
1038         return ret;
1039 }
1040
1041 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1042                               const char *buf, size_t count)
1043 {
1044         unsigned int input;
1045         int ret;
1046
1047         ret = sscanf(buf, "%u", &input);
1048         if (ret != 1)
1049                 return -EINVAL;
1050
1051         mutex_lock(&intel_pstate_driver_lock);
1052
1053         if (!intel_pstate_driver) {
1054                 mutex_unlock(&intel_pstate_driver_lock);
1055                 return -EAGAIN;
1056         }
1057
1058         mutex_lock(&intel_pstate_limits_lock);
1059
1060         update_turbo_state();
1061         if (global.turbo_disabled) {
1062                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1063                 mutex_unlock(&intel_pstate_limits_lock);
1064                 mutex_unlock(&intel_pstate_driver_lock);
1065                 return -EPERM;
1066         }
1067
1068         global.no_turbo = clamp_t(int, input, 0, 1);
1069
1070         if (global.no_turbo) {
1071                 struct cpudata *cpu = all_cpu_data[0];
1072                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1073
1074                 /* Squash the global minimum into the permitted range. */
1075                 if (global.min_perf_pct > pct)
1076                         global.min_perf_pct = pct;
1077         }
1078
1079         mutex_unlock(&intel_pstate_limits_lock);
1080
1081         intel_pstate_update_policies();
1082
1083         mutex_unlock(&intel_pstate_driver_lock);
1084
1085         return count;
1086 }
1087
1088 static struct cpufreq_driver intel_pstate;
1089
1090 static void update_qos_request(enum freq_qos_req_type type)
1091 {
1092         int max_state, turbo_max, freq, i, perf_pct;
1093         struct freq_qos_request *req;
1094         struct cpufreq_policy *policy;
1095
1096         for_each_possible_cpu(i) {
1097                 struct cpudata *cpu = all_cpu_data[i];
1098
1099                 policy = cpufreq_cpu_get(i);
1100                 if (!policy)
1101                         continue;
1102
1103                 req = policy->driver_data;
1104                 cpufreq_cpu_put(policy);
1105
1106                 if (!req)
1107                         continue;
1108
1109                 if (hwp_active)
1110                         intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1111                 else
1112                         turbo_max = cpu->pstate.turbo_pstate;
1113
1114                 if (type == FREQ_QOS_MIN) {
1115                         perf_pct = global.min_perf_pct;
1116                 } else {
1117                         req++;
1118                         perf_pct = global.max_perf_pct;
1119                 }
1120
1121                 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1122                 freq *= cpu->pstate.scaling;
1123
1124                 if (freq_qos_update_request(req, freq) < 0)
1125                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1126         }
1127 }
1128
1129 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1130                                   const char *buf, size_t count)
1131 {
1132         unsigned int input;
1133         int ret;
1134
1135         ret = sscanf(buf, "%u", &input);
1136         if (ret != 1)
1137                 return -EINVAL;
1138
1139         mutex_lock(&intel_pstate_driver_lock);
1140
1141         if (!intel_pstate_driver) {
1142                 mutex_unlock(&intel_pstate_driver_lock);
1143                 return -EAGAIN;
1144         }
1145
1146         mutex_lock(&intel_pstate_limits_lock);
1147
1148         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1149
1150         mutex_unlock(&intel_pstate_limits_lock);
1151
1152         if (intel_pstate_driver == &intel_pstate)
1153                 intel_pstate_update_policies();
1154         else
1155                 update_qos_request(FREQ_QOS_MAX);
1156
1157         mutex_unlock(&intel_pstate_driver_lock);
1158
1159         return count;
1160 }
1161
1162 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1163                                   const char *buf, size_t count)
1164 {
1165         unsigned int input;
1166         int ret;
1167
1168         ret = sscanf(buf, "%u", &input);
1169         if (ret != 1)
1170                 return -EINVAL;
1171
1172         mutex_lock(&intel_pstate_driver_lock);
1173
1174         if (!intel_pstate_driver) {
1175                 mutex_unlock(&intel_pstate_driver_lock);
1176                 return -EAGAIN;
1177         }
1178
1179         mutex_lock(&intel_pstate_limits_lock);
1180
1181         global.min_perf_pct = clamp_t(int, input,
1182                                       min_perf_pct_min(), global.max_perf_pct);
1183
1184         mutex_unlock(&intel_pstate_limits_lock);
1185
1186         if (intel_pstate_driver == &intel_pstate)
1187                 intel_pstate_update_policies();
1188         else
1189                 update_qos_request(FREQ_QOS_MIN);
1190
1191         mutex_unlock(&intel_pstate_driver_lock);
1192
1193         return count;
1194 }
1195
1196 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1197                                 struct kobj_attribute *attr, char *buf)
1198 {
1199         return sprintf(buf, "%u\n", hwp_boost);
1200 }
1201
1202 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1203                                        struct kobj_attribute *b,
1204                                        const char *buf, size_t count)
1205 {
1206         unsigned int input;
1207         int ret;
1208
1209         ret = kstrtouint(buf, 10, &input);
1210         if (ret)
1211                 return ret;
1212
1213         mutex_lock(&intel_pstate_driver_lock);
1214         hwp_boost = !!input;
1215         intel_pstate_update_policies();
1216         mutex_unlock(&intel_pstate_driver_lock);
1217
1218         return count;
1219 }
1220
1221 show_one(max_perf_pct, max_perf_pct);
1222 show_one(min_perf_pct, min_perf_pct);
1223
1224 define_one_global_rw(status);
1225 define_one_global_rw(no_turbo);
1226 define_one_global_rw(max_perf_pct);
1227 define_one_global_rw(min_perf_pct);
1228 define_one_global_ro(turbo_pct);
1229 define_one_global_ro(num_pstates);
1230 define_one_global_rw(hwp_dynamic_boost);
1231
1232 static struct attribute *intel_pstate_attributes[] = {
1233         &status.attr,
1234         &no_turbo.attr,
1235         &turbo_pct.attr,
1236         &num_pstates.attr,
1237         NULL
1238 };
1239
1240 static const struct attribute_group intel_pstate_attr_group = {
1241         .attrs = intel_pstate_attributes,
1242 };
1243
1244 static void __init intel_pstate_sysfs_expose_params(void)
1245 {
1246         struct kobject *intel_pstate_kobject;
1247         int rc;
1248
1249         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1250                                                 &cpu_subsys.dev_root->kobj);
1251         if (WARN_ON(!intel_pstate_kobject))
1252                 return;
1253
1254         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1255         if (WARN_ON(rc))
1256                 return;
1257
1258         /*
1259          * If per cpu limits are enforced there are no global limits, so
1260          * return without creating max/min_perf_pct attributes
1261          */
1262         if (per_cpu_limits)
1263                 return;
1264
1265         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1266         WARN_ON(rc);
1267
1268         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1269         WARN_ON(rc);
1270
1271         if (hwp_active) {
1272                 rc = sysfs_create_file(intel_pstate_kobject,
1273                                        &hwp_dynamic_boost.attr);
1274                 WARN_ON(rc);
1275         }
1276 }
1277 /************************** sysfs end ************************/
1278
1279 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1280 {
1281         /* First disable HWP notification interrupt as we don't process them */
1282         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1283                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1284
1285         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1286         cpudata->epp_policy = 0;
1287         if (cpudata->epp_default == -EINVAL)
1288                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1289 }
1290
1291 #define MSR_IA32_POWER_CTL_BIT_EE       19
1292
1293 /* Disable energy efficiency optimization */
1294 static void intel_pstate_disable_ee(int cpu)
1295 {
1296         u64 power_ctl;
1297         int ret;
1298
1299         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1300         if (ret)
1301                 return;
1302
1303         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1304                 pr_info("Disabling energy efficiency optimization\n");
1305                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1306                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1307         }
1308 }
1309
1310 static int atom_get_min_pstate(void)
1311 {
1312         u64 value;
1313
1314         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1315         return (value >> 8) & 0x7F;
1316 }
1317
1318 static int atom_get_max_pstate(void)
1319 {
1320         u64 value;
1321
1322         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1323         return (value >> 16) & 0x7F;
1324 }
1325
1326 static int atom_get_turbo_pstate(void)
1327 {
1328         u64 value;
1329
1330         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1331         return value & 0x7F;
1332 }
1333
1334 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1335 {
1336         u64 val;
1337         int32_t vid_fp;
1338         u32 vid;
1339
1340         val = (u64)pstate << 8;
1341         if (global.no_turbo && !global.turbo_disabled)
1342                 val |= (u64)1 << 32;
1343
1344         vid_fp = cpudata->vid.min + mul_fp(
1345                 int_tofp(pstate - cpudata->pstate.min_pstate),
1346                 cpudata->vid.ratio);
1347
1348         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1349         vid = ceiling_fp(vid_fp);
1350
1351         if (pstate > cpudata->pstate.max_pstate)
1352                 vid = cpudata->vid.turbo;
1353
1354         return val | vid;
1355 }
1356
1357 static int silvermont_get_scaling(void)
1358 {
1359         u64 value;
1360         int i;
1361         /* Defined in Table 35-6 from SDM (Sept 2015) */
1362         static int silvermont_freq_table[] = {
1363                 83300, 100000, 133300, 116700, 80000};
1364
1365         rdmsrl(MSR_FSB_FREQ, value);
1366         i = value & 0x7;
1367         WARN_ON(i > 4);
1368
1369         return silvermont_freq_table[i];
1370 }
1371
1372 static int airmont_get_scaling(void)
1373 {
1374         u64 value;
1375         int i;
1376         /* Defined in Table 35-10 from SDM (Sept 2015) */
1377         static int airmont_freq_table[] = {
1378                 83300, 100000, 133300, 116700, 80000,
1379                 93300, 90000, 88900, 87500};
1380
1381         rdmsrl(MSR_FSB_FREQ, value);
1382         i = value & 0xF;
1383         WARN_ON(i > 8);
1384
1385         return airmont_freq_table[i];
1386 }
1387
1388 static void atom_get_vid(struct cpudata *cpudata)
1389 {
1390         u64 value;
1391
1392         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1393         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1394         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1395         cpudata->vid.ratio = div_fp(
1396                 cpudata->vid.max - cpudata->vid.min,
1397                 int_tofp(cpudata->pstate.max_pstate -
1398                         cpudata->pstate.min_pstate));
1399
1400         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1401         cpudata->vid.turbo = value & 0x7f;
1402 }
1403
1404 static int core_get_min_pstate(void)
1405 {
1406         u64 value;
1407
1408         rdmsrl(MSR_PLATFORM_INFO, value);
1409         return (value >> 40) & 0xFF;
1410 }
1411
1412 static int core_get_max_pstate_physical(void)
1413 {
1414         u64 value;
1415
1416         rdmsrl(MSR_PLATFORM_INFO, value);
1417         return (value >> 8) & 0xFF;
1418 }
1419
1420 static int core_get_tdp_ratio(u64 plat_info)
1421 {
1422         /* Check how many TDP levels present */
1423         if (plat_info & 0x600000000) {
1424                 u64 tdp_ctrl;
1425                 u64 tdp_ratio;
1426                 int tdp_msr;
1427                 int err;
1428
1429                 /* Get the TDP level (0, 1, 2) to get ratios */
1430                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1431                 if (err)
1432                         return err;
1433
1434                 /* TDP MSR are continuous starting at 0x648 */
1435                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1436                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1437                 if (err)
1438                         return err;
1439
1440                 /* For level 1 and 2, bits[23:16] contain the ratio */
1441                 if (tdp_ctrl & 0x03)
1442                         tdp_ratio >>= 16;
1443
1444                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1445                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1446
1447                 return (int)tdp_ratio;
1448         }
1449
1450         return -ENXIO;
1451 }
1452
1453 static int core_get_max_pstate(void)
1454 {
1455         u64 tar;
1456         u64 plat_info;
1457         int max_pstate;
1458         int tdp_ratio;
1459         int err;
1460
1461         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1462         max_pstate = (plat_info >> 8) & 0xFF;
1463
1464         tdp_ratio = core_get_tdp_ratio(plat_info);
1465         if (tdp_ratio <= 0)
1466                 return max_pstate;
1467
1468         if (hwp_active) {
1469                 /* Turbo activation ratio is not used on HWP platforms */
1470                 return tdp_ratio;
1471         }
1472
1473         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1474         if (!err) {
1475                 int tar_levels;
1476
1477                 /* Do some sanity checking for safety */
1478                 tar_levels = tar & 0xff;
1479                 if (tdp_ratio - 1 == tar_levels) {
1480                         max_pstate = tar_levels;
1481                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1482                 }
1483         }
1484
1485         return max_pstate;
1486 }
1487
1488 static int core_get_turbo_pstate(void)
1489 {
1490         u64 value;
1491         int nont, ret;
1492
1493         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1494         nont = core_get_max_pstate();
1495         ret = (value) & 255;
1496         if (ret <= nont)
1497                 ret = nont;
1498         return ret;
1499 }
1500
1501 static inline int core_get_scaling(void)
1502 {
1503         return 100000;
1504 }
1505
1506 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1507 {
1508         u64 val;
1509
1510         val = (u64)pstate << 8;
1511         if (global.no_turbo && !global.turbo_disabled)
1512                 val |= (u64)1 << 32;
1513
1514         return val;
1515 }
1516
1517 static int knl_get_aperf_mperf_shift(void)
1518 {
1519         return 10;
1520 }
1521
1522 static int knl_get_turbo_pstate(void)
1523 {
1524         u64 value;
1525         int nont, ret;
1526
1527         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1528         nont = core_get_max_pstate();
1529         ret = (((value) >> 8) & 0xFF);
1530         if (ret <= nont)
1531                 ret = nont;
1532         return ret;
1533 }
1534
1535 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1536 {
1537         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1538         cpu->pstate.current_pstate = pstate;
1539         /*
1540          * Generally, there is no guarantee that this code will always run on
1541          * the CPU being updated, so force the register update to run on the
1542          * right CPU.
1543          */
1544         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1545                       pstate_funcs.get_val(cpu, pstate));
1546 }
1547
1548 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1549 {
1550         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1551 }
1552
1553 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1554 {
1555         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1556
1557         update_turbo_state();
1558         intel_pstate_set_pstate(cpu, pstate);
1559 }
1560
1561 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1562 {
1563         cpu->pstate.min_pstate = pstate_funcs.get_min();
1564         cpu->pstate.max_pstate = pstate_funcs.get_max();
1565         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1566         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1567         cpu->pstate.scaling = pstate_funcs.get_scaling();
1568         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1569
1570         if (hwp_active && !hwp_mode_bdw) {
1571                 unsigned int phy_max, current_max;
1572
1573                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1574                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1575         } else {
1576                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1577         }
1578
1579         if (pstate_funcs.get_aperf_mperf_shift)
1580                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1581
1582         if (pstate_funcs.get_vid)
1583                 pstate_funcs.get_vid(cpu);
1584
1585         intel_pstate_set_min_pstate(cpu);
1586 }
1587
1588 /*
1589  * Long hold time will keep high perf limits for long time,
1590  * which negatively impacts perf/watt for some workloads,
1591  * like specpower. 3ms is based on experiements on some
1592  * workoads.
1593  */
1594 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1595
1596 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1597 {
1598         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1599         u32 max_limit = (hwp_req & 0xff00) >> 8;
1600         u32 min_limit = (hwp_req & 0xff);
1601         u32 boost_level1;
1602
1603         /*
1604          * Cases to consider (User changes via sysfs or boot time):
1605          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1606          *      No boost, return.
1607          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1608          *     Should result in one level boost only for P0.
1609          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1610          *     Should result in two level boost:
1611          *         (min + p1)/2 and P1.
1612          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1613          *     Should result in three level boost:
1614          *        (min + p1)/2, P1 and P0.
1615          */
1616
1617         /* If max and min are equal or already at max, nothing to boost */
1618         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1619                 return;
1620
1621         if (!cpu->hwp_boost_min)
1622                 cpu->hwp_boost_min = min_limit;
1623
1624         /* level at half way mark between min and guranteed */
1625         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1626
1627         if (cpu->hwp_boost_min < boost_level1)
1628                 cpu->hwp_boost_min = boost_level1;
1629         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1630                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1631         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1632                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1633                 cpu->hwp_boost_min = max_limit;
1634         else
1635                 return;
1636
1637         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1638         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1639         cpu->last_update = cpu->sample.time;
1640 }
1641
1642 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1643 {
1644         if (cpu->hwp_boost_min) {
1645                 bool expired;
1646
1647                 /* Check if we are idle for hold time to boost down */
1648                 expired = time_after64(cpu->sample.time, cpu->last_update +
1649                                        hwp_boost_hold_time_ns);
1650                 if (expired) {
1651                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1652                         cpu->hwp_boost_min = 0;
1653                 }
1654         }
1655         cpu->last_update = cpu->sample.time;
1656 }
1657
1658 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1659                                                       u64 time)
1660 {
1661         cpu->sample.time = time;
1662
1663         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1664                 bool do_io = false;
1665
1666                 cpu->sched_flags = 0;
1667                 /*
1668                  * Set iowait_boost flag and update time. Since IO WAIT flag
1669                  * is set all the time, we can't just conclude that there is
1670                  * some IO bound activity is scheduled on this CPU with just
1671                  * one occurrence. If we receive at least two in two
1672                  * consecutive ticks, then we treat as boost candidate.
1673                  */
1674                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1675                         do_io = true;
1676
1677                 cpu->last_io_update = time;
1678
1679                 if (do_io)
1680                         intel_pstate_hwp_boost_up(cpu);
1681
1682         } else {
1683                 intel_pstate_hwp_boost_down(cpu);
1684         }
1685 }
1686
1687 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1688                                                 u64 time, unsigned int flags)
1689 {
1690         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1691
1692         cpu->sched_flags |= flags;
1693
1694         if (smp_processor_id() == cpu->cpu)
1695                 intel_pstate_update_util_hwp_local(cpu, time);
1696 }
1697
1698 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1699 {
1700         struct sample *sample = &cpu->sample;
1701
1702         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1703 }
1704
1705 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1706 {
1707         u64 aperf, mperf;
1708         unsigned long flags;
1709         u64 tsc;
1710
1711         local_irq_save(flags);
1712         rdmsrl(MSR_IA32_APERF, aperf);
1713         rdmsrl(MSR_IA32_MPERF, mperf);
1714         tsc = rdtsc();
1715         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1716                 local_irq_restore(flags);
1717                 return false;
1718         }
1719         local_irq_restore(flags);
1720
1721         cpu->last_sample_time = cpu->sample.time;
1722         cpu->sample.time = time;
1723         cpu->sample.aperf = aperf;
1724         cpu->sample.mperf = mperf;
1725         cpu->sample.tsc =  tsc;
1726         cpu->sample.aperf -= cpu->prev_aperf;
1727         cpu->sample.mperf -= cpu->prev_mperf;
1728         cpu->sample.tsc -= cpu->prev_tsc;
1729
1730         cpu->prev_aperf = aperf;
1731         cpu->prev_mperf = mperf;
1732         cpu->prev_tsc = tsc;
1733         /*
1734          * First time this function is invoked in a given cycle, all of the
1735          * previous sample data fields are equal to zero or stale and they must
1736          * be populated with meaningful numbers for things to work, so assume
1737          * that sample.time will always be reset before setting the utilization
1738          * update hook and make the caller skip the sample then.
1739          */
1740         if (cpu->last_sample_time) {
1741                 intel_pstate_calc_avg_perf(cpu);
1742                 return true;
1743         }
1744         return false;
1745 }
1746
1747 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1748 {
1749         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1750 }
1751
1752 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1753 {
1754         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1755                           cpu->sample.core_avg_perf);
1756 }
1757
1758 static inline int32_t get_target_pstate(struct cpudata *cpu)
1759 {
1760         struct sample *sample = &cpu->sample;
1761         int32_t busy_frac;
1762         int target, avg_pstate;
1763
1764         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1765                            sample->tsc);
1766
1767         if (busy_frac < cpu->iowait_boost)
1768                 busy_frac = cpu->iowait_boost;
1769
1770         sample->busy_scaled = busy_frac * 100;
1771
1772         target = global.no_turbo || global.turbo_disabled ?
1773                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1774         target += target >> 2;
1775         target = mul_fp(target, busy_frac);
1776         if (target < cpu->pstate.min_pstate)
1777                 target = cpu->pstate.min_pstate;
1778
1779         /*
1780          * If the average P-state during the previous cycle was higher than the
1781          * current target, add 50% of the difference to the target to reduce
1782          * possible performance oscillations and offset possible performance
1783          * loss related to moving the workload from one CPU to another within
1784          * a package/module.
1785          */
1786         avg_pstate = get_avg_pstate(cpu);
1787         if (avg_pstate > target)
1788                 target += (avg_pstate - target) >> 1;
1789
1790         return target;
1791 }
1792
1793 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1794 {
1795         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1796         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1797
1798         return clamp_t(int, pstate, min_pstate, max_pstate);
1799 }
1800
1801 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1802 {
1803         if (pstate == cpu->pstate.current_pstate)
1804                 return;
1805
1806         cpu->pstate.current_pstate = pstate;
1807         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1808 }
1809
1810 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1811 {
1812         int from = cpu->pstate.current_pstate;
1813         struct sample *sample;
1814         int target_pstate;
1815
1816         update_turbo_state();
1817
1818         target_pstate = get_target_pstate(cpu);
1819         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1820         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1821         intel_pstate_update_pstate(cpu, target_pstate);
1822
1823         sample = &cpu->sample;
1824         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1825                 fp_toint(sample->busy_scaled),
1826                 from,
1827                 cpu->pstate.current_pstate,
1828                 sample->mperf,
1829                 sample->aperf,
1830                 sample->tsc,
1831                 get_avg_frequency(cpu),
1832                 fp_toint(cpu->iowait_boost * 100));
1833 }
1834
1835 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1836                                      unsigned int flags)
1837 {
1838         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1839         u64 delta_ns;
1840
1841         /* Don't allow remote callbacks */
1842         if (smp_processor_id() != cpu->cpu)
1843                 return;
1844
1845         delta_ns = time - cpu->last_update;
1846         if (flags & SCHED_CPUFREQ_IOWAIT) {
1847                 /* Start over if the CPU may have been idle. */
1848                 if (delta_ns > TICK_NSEC) {
1849                         cpu->iowait_boost = ONE_EIGHTH_FP;
1850                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1851                         cpu->iowait_boost <<= 1;
1852                         if (cpu->iowait_boost > int_tofp(1))
1853                                 cpu->iowait_boost = int_tofp(1);
1854                 } else {
1855                         cpu->iowait_boost = ONE_EIGHTH_FP;
1856                 }
1857         } else if (cpu->iowait_boost) {
1858                 /* Clear iowait_boost if the CPU may have been idle. */
1859                 if (delta_ns > TICK_NSEC)
1860                         cpu->iowait_boost = 0;
1861                 else
1862                         cpu->iowait_boost >>= 1;
1863         }
1864         cpu->last_update = time;
1865         delta_ns = time - cpu->sample.time;
1866         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1867                 return;
1868
1869         if (intel_pstate_sample(cpu, time))
1870                 intel_pstate_adjust_pstate(cpu);
1871 }
1872
1873 static struct pstate_funcs core_funcs = {
1874         .get_max = core_get_max_pstate,
1875         .get_max_physical = core_get_max_pstate_physical,
1876         .get_min = core_get_min_pstate,
1877         .get_turbo = core_get_turbo_pstate,
1878         .get_scaling = core_get_scaling,
1879         .get_val = core_get_val,
1880 };
1881
1882 static const struct pstate_funcs silvermont_funcs = {
1883         .get_max = atom_get_max_pstate,
1884         .get_max_physical = atom_get_max_pstate,
1885         .get_min = atom_get_min_pstate,
1886         .get_turbo = atom_get_turbo_pstate,
1887         .get_val = atom_get_val,
1888         .get_scaling = silvermont_get_scaling,
1889         .get_vid = atom_get_vid,
1890 };
1891
1892 static const struct pstate_funcs airmont_funcs = {
1893         .get_max = atom_get_max_pstate,
1894         .get_max_physical = atom_get_max_pstate,
1895         .get_min = atom_get_min_pstate,
1896         .get_turbo = atom_get_turbo_pstate,
1897         .get_val = atom_get_val,
1898         .get_scaling = airmont_get_scaling,
1899         .get_vid = atom_get_vid,
1900 };
1901
1902 static const struct pstate_funcs knl_funcs = {
1903         .get_max = core_get_max_pstate,
1904         .get_max_physical = core_get_max_pstate_physical,
1905         .get_min = core_get_min_pstate,
1906         .get_turbo = knl_get_turbo_pstate,
1907         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1908         .get_scaling = core_get_scaling,
1909         .get_val = core_get_val,
1910 };
1911
1912 #define X86_MATCH(model, policy)                                         \
1913         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
1914                                            X86_FEATURE_APERFMPERF, &policy)
1915
1916 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1917         X86_MATCH(SANDYBRIDGE,          core_funcs),
1918         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
1919         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
1920         X86_MATCH(IVYBRIDGE,            core_funcs),
1921         X86_MATCH(HASWELL,              core_funcs),
1922         X86_MATCH(BROADWELL,            core_funcs),
1923         X86_MATCH(IVYBRIDGE_X,          core_funcs),
1924         X86_MATCH(HASWELL_X,            core_funcs),
1925         X86_MATCH(HASWELL_L,            core_funcs),
1926         X86_MATCH(HASWELL_G,            core_funcs),
1927         X86_MATCH(BROADWELL_G,          core_funcs),
1928         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
1929         X86_MATCH(SKYLAKE_L,            core_funcs),
1930         X86_MATCH(BROADWELL_X,          core_funcs),
1931         X86_MATCH(SKYLAKE,              core_funcs),
1932         X86_MATCH(BROADWELL_D,          core_funcs),
1933         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
1934         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
1935         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
1936         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
1937         X86_MATCH(SKYLAKE_X,            core_funcs),
1938         {}
1939 };
1940 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1941
1942 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1943         X86_MATCH(BROADWELL_D,          core_funcs),
1944         X86_MATCH(BROADWELL_X,          core_funcs),
1945         X86_MATCH(SKYLAKE_X,            core_funcs),
1946         {}
1947 };
1948
1949 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1950         X86_MATCH(KABYLAKE,             core_funcs),
1951         {}
1952 };
1953
1954 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1955         X86_MATCH(SKYLAKE_X,            core_funcs),
1956         X86_MATCH(SKYLAKE,              core_funcs),
1957         {}
1958 };
1959
1960 static int intel_pstate_init_cpu(unsigned int cpunum)
1961 {
1962         struct cpudata *cpu;
1963
1964         cpu = all_cpu_data[cpunum];
1965
1966         if (!cpu) {
1967                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1968                 if (!cpu)
1969                         return -ENOMEM;
1970
1971                 all_cpu_data[cpunum] = cpu;
1972
1973                 cpu->epp_default = -EINVAL;
1974                 cpu->epp_powersave = -EINVAL;
1975                 cpu->epp_saved = -EINVAL;
1976         }
1977
1978         cpu = all_cpu_data[cpunum];
1979
1980         cpu->cpu = cpunum;
1981
1982         if (hwp_active) {
1983                 const struct x86_cpu_id *id;
1984
1985                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1986                 if (id)
1987                         intel_pstate_disable_ee(cpunum);
1988
1989                 intel_pstate_hwp_enable(cpu);
1990
1991                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1992                 if (id && intel_pstate_acpi_pm_profile_server())
1993                         hwp_boost = true;
1994         }
1995
1996         intel_pstate_get_cpu_pstates(cpu);
1997
1998         pr_debug("controlling: cpu %d\n", cpunum);
1999
2000         return 0;
2001 }
2002
2003 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2004 {
2005         struct cpudata *cpu = all_cpu_data[cpu_num];
2006
2007         if (hwp_active && !hwp_boost)
2008                 return;
2009
2010         if (cpu->update_util_set)
2011                 return;
2012
2013         /* Prevent intel_pstate_update_util() from using stale data. */
2014         cpu->sample.time = 0;
2015         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2016                                      (hwp_active ?
2017                                       intel_pstate_update_util_hwp :
2018                                       intel_pstate_update_util));
2019         cpu->update_util_set = true;
2020 }
2021
2022 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2023 {
2024         struct cpudata *cpu_data = all_cpu_data[cpu];
2025
2026         if (!cpu_data->update_util_set)
2027                 return;
2028
2029         cpufreq_remove_update_util_hook(cpu);
2030         cpu_data->update_util_set = false;
2031         synchronize_rcu();
2032 }
2033
2034 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2035 {
2036         return global.turbo_disabled || global.no_turbo ?
2037                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2038 }
2039
2040 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2041                                             unsigned int policy_min,
2042                                             unsigned int policy_max)
2043 {
2044         int max_freq = intel_pstate_get_max_freq(cpu);
2045         int32_t max_policy_perf, min_policy_perf;
2046         int max_state, turbo_max;
2047
2048         /*
2049          * HWP needs some special consideration, because on BDX the
2050          * HWP_REQUEST uses abstract value to represent performance
2051          * rather than pure ratios.
2052          */
2053         if (hwp_active) {
2054                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2055         } else {
2056                 max_state = global.no_turbo || global.turbo_disabled ?
2057                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2058                 turbo_max = cpu->pstate.turbo_pstate;
2059         }
2060
2061         max_policy_perf = max_state * policy_max / max_freq;
2062         if (policy_max == policy_min) {
2063                 min_policy_perf = max_policy_perf;
2064         } else {
2065                 min_policy_perf = max_state * policy_min / max_freq;
2066                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2067                                           0, max_policy_perf);
2068         }
2069
2070         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2071                  cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2072
2073         /* Normalize user input to [min_perf, max_perf] */
2074         if (per_cpu_limits) {
2075                 cpu->min_perf_ratio = min_policy_perf;
2076                 cpu->max_perf_ratio = max_policy_perf;
2077         } else {
2078                 int32_t global_min, global_max;
2079
2080                 /* Global limits are in percent of the maximum turbo P-state. */
2081                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2082                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2083                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2084
2085                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2086                          global_min, global_max);
2087
2088                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2089                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2090                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2091                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2092
2093                 /* Make sure min_perf <= max_perf */
2094                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2095                                           cpu->max_perf_ratio);
2096
2097         }
2098         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2099                  cpu->max_perf_ratio,
2100                  cpu->min_perf_ratio);
2101 }
2102
2103 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2104 {
2105         struct cpudata *cpu;
2106
2107         if (!policy->cpuinfo.max_freq)
2108                 return -ENODEV;
2109
2110         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2111                  policy->cpuinfo.max_freq, policy->max);
2112
2113         cpu = all_cpu_data[policy->cpu];
2114         cpu->policy = policy->policy;
2115
2116         mutex_lock(&intel_pstate_limits_lock);
2117
2118         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2119
2120         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2121                 /*
2122                  * NOHZ_FULL CPUs need this as the governor callback may not
2123                  * be invoked on them.
2124                  */
2125                 intel_pstate_clear_update_util_hook(policy->cpu);
2126                 intel_pstate_max_within_limits(cpu);
2127         } else {
2128                 intel_pstate_set_update_util_hook(policy->cpu);
2129         }
2130
2131         if (hwp_active) {
2132                 /*
2133                  * When hwp_boost was active before and dynamically it
2134                  * was turned off, in that case we need to clear the
2135                  * update util hook.
2136                  */
2137                 if (!hwp_boost)
2138                         intel_pstate_clear_update_util_hook(policy->cpu);
2139                 intel_pstate_hwp_set(policy->cpu);
2140         }
2141
2142         mutex_unlock(&intel_pstate_limits_lock);
2143
2144         return 0;
2145 }
2146
2147 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2148                                            struct cpufreq_policy_data *policy)
2149 {
2150         if (!hwp_active &&
2151             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2152             policy->max < policy->cpuinfo.max_freq &&
2153             policy->max > cpu->pstate.max_freq) {
2154                 pr_debug("policy->max > max non turbo frequency\n");
2155                 policy->max = policy->cpuinfo.max_freq;
2156         }
2157 }
2158
2159 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2160                                            struct cpufreq_policy_data *policy)
2161 {
2162         update_turbo_state();
2163         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2164                                      intel_pstate_get_max_freq(cpu));
2165
2166         intel_pstate_adjust_policy_max(cpu, policy);
2167 }
2168
2169 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2170 {
2171         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2172
2173         return 0;
2174 }
2175
2176 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2177 {
2178         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2179 }
2180
2181 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2182 {
2183         pr_debug("CPU %d exiting\n", policy->cpu);
2184
2185         intel_pstate_clear_update_util_hook(policy->cpu);
2186         if (hwp_active) {
2187                 intel_pstate_hwp_save_state(policy);
2188                 intel_pstate_hwp_force_min_perf(policy->cpu);
2189         } else {
2190                 intel_cpufreq_stop_cpu(policy);
2191         }
2192 }
2193
2194 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2195 {
2196         intel_pstate_exit_perf_limits(policy);
2197
2198         policy->fast_switch_possible = false;
2199
2200         return 0;
2201 }
2202
2203 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2204 {
2205         struct cpudata *cpu;
2206         int rc;
2207
2208         rc = intel_pstate_init_cpu(policy->cpu);
2209         if (rc)
2210                 return rc;
2211
2212         cpu = all_cpu_data[policy->cpu];
2213
2214         cpu->max_perf_ratio = 0xFF;
2215         cpu->min_perf_ratio = 0;
2216
2217         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2218         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2219
2220         /* cpuinfo and default policy values */
2221         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2222         update_turbo_state();
2223         global.turbo_disabled_mf = global.turbo_disabled;
2224         policy->cpuinfo.max_freq = global.turbo_disabled ?
2225                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2226         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2227
2228         if (hwp_active) {
2229                 unsigned int max_freq;
2230
2231                 max_freq = global.turbo_disabled ?
2232                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2233                 if (max_freq < policy->cpuinfo.max_freq)
2234                         policy->cpuinfo.max_freq = max_freq;
2235         }
2236
2237         intel_pstate_init_acpi_perf_limits(policy);
2238
2239         policy->fast_switch_possible = true;
2240
2241         return 0;
2242 }
2243
2244 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2245 {
2246         int ret = __intel_pstate_cpu_init(policy);
2247
2248         if (ret)
2249                 return ret;
2250
2251         /*
2252          * Set the policy to powersave to provide a valid fallback value in case
2253          * the default cpufreq governor is neither powersave nor performance.
2254          */
2255         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2256
2257         return 0;
2258 }
2259
2260 static struct cpufreq_driver intel_pstate = {
2261         .flags          = CPUFREQ_CONST_LOOPS,
2262         .verify         = intel_pstate_verify_policy,
2263         .setpolicy      = intel_pstate_set_policy,
2264         .suspend        = intel_pstate_hwp_save_state,
2265         .resume         = intel_pstate_resume,
2266         .init           = intel_pstate_cpu_init,
2267         .exit           = intel_pstate_cpu_exit,
2268         .stop_cpu       = intel_pstate_stop_cpu,
2269         .update_limits  = intel_pstate_update_limits,
2270         .name           = "intel_pstate",
2271 };
2272
2273 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2274 {
2275         struct cpudata *cpu = all_cpu_data[policy->cpu];
2276
2277         intel_pstate_verify_cpu_policy(cpu, policy);
2278         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2279
2280         return 0;
2281 }
2282
2283 /* Use of trace in passive mode:
2284  *
2285  * In passive mode the trace core_busy field (also known as the
2286  * performance field, and lablelled as such on the graphs; also known as
2287  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2288  * driver call was via the normal or fast switch path. Various graphs
2289  * output from the intel_pstate_tracer.py utility that include core_busy
2290  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2291  * so we use 10 to indicate the the normal path through the driver, and
2292  * 90 to indicate the fast switch path through the driver.
2293  * The scaled_busy field is not used, and is set to 0.
2294  */
2295
2296 #define INTEL_PSTATE_TRACE_TARGET 10
2297 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2298
2299 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2300 {
2301         struct sample *sample;
2302
2303         if (!trace_pstate_sample_enabled())
2304                 return;
2305
2306         if (!intel_pstate_sample(cpu, ktime_get()))
2307                 return;
2308
2309         sample = &cpu->sample;
2310         trace_pstate_sample(trace_type,
2311                 0,
2312                 old_pstate,
2313                 cpu->pstate.current_pstate,
2314                 sample->mperf,
2315                 sample->aperf,
2316                 sample->tsc,
2317                 get_avg_frequency(cpu),
2318                 fp_toint(cpu->iowait_boost * 100));
2319 }
2320
2321 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2322                                 unsigned int target_freq,
2323                                 unsigned int relation)
2324 {
2325         struct cpudata *cpu = all_cpu_data[policy->cpu];
2326         struct cpufreq_freqs freqs;
2327         int target_pstate, old_pstate;
2328
2329         update_turbo_state();
2330
2331         freqs.old = policy->cur;
2332         freqs.new = target_freq;
2333
2334         cpufreq_freq_transition_begin(policy, &freqs);
2335         switch (relation) {
2336         case CPUFREQ_RELATION_L:
2337                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2338                 break;
2339         case CPUFREQ_RELATION_H:
2340                 target_pstate = freqs.new / cpu->pstate.scaling;
2341                 break;
2342         default:
2343                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2344                 break;
2345         }
2346         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2347         old_pstate = cpu->pstate.current_pstate;
2348         if (target_pstate != cpu->pstate.current_pstate) {
2349                 cpu->pstate.current_pstate = target_pstate;
2350                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2351                               pstate_funcs.get_val(cpu, target_pstate));
2352         }
2353         freqs.new = target_pstate * cpu->pstate.scaling;
2354         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2355         cpufreq_freq_transition_end(policy, &freqs, false);
2356
2357         return 0;
2358 }
2359
2360 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2361                                               unsigned int target_freq)
2362 {
2363         struct cpudata *cpu = all_cpu_data[policy->cpu];
2364         int target_pstate, old_pstate;
2365
2366         update_turbo_state();
2367
2368         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2369         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2370         old_pstate = cpu->pstate.current_pstate;
2371         intel_pstate_update_pstate(cpu, target_pstate);
2372         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2373         return target_pstate * cpu->pstate.scaling;
2374 }
2375
2376 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2377 {
2378         int max_state, turbo_max, min_freq, max_freq, ret;
2379         struct freq_qos_request *req;
2380         struct cpudata *cpu;
2381         struct device *dev;
2382
2383         dev = get_cpu_device(policy->cpu);
2384         if (!dev)
2385                 return -ENODEV;
2386
2387         ret = __intel_pstate_cpu_init(policy);
2388         if (ret)
2389                 return ret;
2390
2391         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2392         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2393         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2394         policy->cur = policy->cpuinfo.min_freq;
2395
2396         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2397         if (!req) {
2398                 ret = -ENOMEM;
2399                 goto pstate_exit;
2400         }
2401
2402         cpu = all_cpu_data[policy->cpu];
2403
2404         if (hwp_active)
2405                 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2406         else
2407                 turbo_max = cpu->pstate.turbo_pstate;
2408
2409         min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2410         min_freq *= cpu->pstate.scaling;
2411         max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2412         max_freq *= cpu->pstate.scaling;
2413
2414         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2415                                    min_freq);
2416         if (ret < 0) {
2417                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2418                 goto free_req;
2419         }
2420
2421         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2422                                    max_freq);
2423         if (ret < 0) {
2424                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2425                 goto remove_min_req;
2426         }
2427
2428         policy->driver_data = req;
2429
2430         return 0;
2431
2432 remove_min_req:
2433         freq_qos_remove_request(req);
2434 free_req:
2435         kfree(req);
2436 pstate_exit:
2437         intel_pstate_exit_perf_limits(policy);
2438
2439         return ret;
2440 }
2441
2442 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2443 {
2444         struct freq_qos_request *req;
2445
2446         req = policy->driver_data;
2447
2448         freq_qos_remove_request(req + 1);
2449         freq_qos_remove_request(req);
2450         kfree(req);
2451
2452         return intel_pstate_cpu_exit(policy);
2453 }
2454
2455 static struct cpufreq_driver intel_cpufreq = {
2456         .flags          = CPUFREQ_CONST_LOOPS,
2457         .verify         = intel_cpufreq_verify_policy,
2458         .target         = intel_cpufreq_target,
2459         .fast_switch    = intel_cpufreq_fast_switch,
2460         .init           = intel_cpufreq_cpu_init,
2461         .exit           = intel_cpufreq_cpu_exit,
2462         .stop_cpu       = intel_cpufreq_stop_cpu,
2463         .update_limits  = intel_pstate_update_limits,
2464         .name           = "intel_cpufreq",
2465 };
2466
2467 static struct cpufreq_driver *default_driver;
2468
2469 static void intel_pstate_driver_cleanup(void)
2470 {
2471         unsigned int cpu;
2472
2473         get_online_cpus();
2474         for_each_online_cpu(cpu) {
2475                 if (all_cpu_data[cpu]) {
2476                         if (intel_pstate_driver == &intel_pstate)
2477                                 intel_pstate_clear_update_util_hook(cpu);
2478
2479                         kfree(all_cpu_data[cpu]);
2480                         all_cpu_data[cpu] = NULL;
2481                 }
2482         }
2483         put_online_cpus();
2484         intel_pstate_driver = NULL;
2485 }
2486
2487 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2488 {
2489         int ret;
2490
2491         memset(&global, 0, sizeof(global));
2492         global.max_perf_pct = 100;
2493
2494         intel_pstate_driver = driver;
2495         ret = cpufreq_register_driver(intel_pstate_driver);
2496         if (ret) {
2497                 intel_pstate_driver_cleanup();
2498                 return ret;
2499         }
2500
2501         global.min_perf_pct = min_perf_pct_min();
2502
2503         return 0;
2504 }
2505
2506 static int intel_pstate_unregister_driver(void)
2507 {
2508         if (hwp_active)
2509                 return -EBUSY;
2510
2511         cpufreq_unregister_driver(intel_pstate_driver);
2512         intel_pstate_driver_cleanup();
2513
2514         return 0;
2515 }
2516
2517 static ssize_t intel_pstate_show_status(char *buf)
2518 {
2519         if (!intel_pstate_driver)
2520                 return sprintf(buf, "off\n");
2521
2522         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2523                                         "active" : "passive");
2524 }
2525
2526 static int intel_pstate_update_status(const char *buf, size_t size)
2527 {
2528         int ret;
2529
2530         if (size == 3 && !strncmp(buf, "off", size))
2531                 return intel_pstate_driver ?
2532                         intel_pstate_unregister_driver() : -EINVAL;
2533
2534         if (size == 6 && !strncmp(buf, "active", size)) {
2535                 if (intel_pstate_driver) {
2536                         if (intel_pstate_driver == &intel_pstate)
2537                                 return 0;
2538
2539                         ret = intel_pstate_unregister_driver();
2540                         if (ret)
2541                                 return ret;
2542                 }
2543
2544                 return intel_pstate_register_driver(&intel_pstate);
2545         }
2546
2547         if (size == 7 && !strncmp(buf, "passive", size)) {
2548                 if (intel_pstate_driver) {
2549                         if (intel_pstate_driver == &intel_cpufreq)
2550                                 return 0;
2551
2552                         ret = intel_pstate_unregister_driver();
2553                         if (ret)
2554                                 return ret;
2555                 }
2556
2557                 return intel_pstate_register_driver(&intel_cpufreq);
2558         }
2559
2560         return -EINVAL;
2561 }
2562
2563 static int no_load __initdata;
2564 static int no_hwp __initdata;
2565 static int hwp_only __initdata;
2566 static unsigned int force_load __initdata;
2567
2568 static int __init intel_pstate_msrs_not_valid(void)
2569 {
2570         if (!pstate_funcs.get_max() ||
2571             !pstate_funcs.get_min() ||
2572             !pstate_funcs.get_turbo())
2573                 return -ENODEV;
2574
2575         return 0;
2576 }
2577
2578 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2579 {
2580         pstate_funcs.get_max   = funcs->get_max;
2581         pstate_funcs.get_max_physical = funcs->get_max_physical;
2582         pstate_funcs.get_min   = funcs->get_min;
2583         pstate_funcs.get_turbo = funcs->get_turbo;
2584         pstate_funcs.get_scaling = funcs->get_scaling;
2585         pstate_funcs.get_val   = funcs->get_val;
2586         pstate_funcs.get_vid   = funcs->get_vid;
2587         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2588 }
2589
2590 #ifdef CONFIG_ACPI
2591
2592 static bool __init intel_pstate_no_acpi_pss(void)
2593 {
2594         int i;
2595
2596         for_each_possible_cpu(i) {
2597                 acpi_status status;
2598                 union acpi_object *pss;
2599                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2600                 struct acpi_processor *pr = per_cpu(processors, i);
2601
2602                 if (!pr)
2603                         continue;
2604
2605                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2606                 if (ACPI_FAILURE(status))
2607                         continue;
2608
2609                 pss = buffer.pointer;
2610                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2611                         kfree(pss);
2612                         return false;
2613                 }
2614
2615                 kfree(pss);
2616         }
2617
2618         pr_debug("ACPI _PSS not found\n");
2619         return true;
2620 }
2621
2622 static bool __init intel_pstate_no_acpi_pcch(void)
2623 {
2624         acpi_status status;
2625         acpi_handle handle;
2626
2627         status = acpi_get_handle(NULL, "\\_SB", &handle);
2628         if (ACPI_FAILURE(status))
2629                 goto not_found;
2630
2631         if (acpi_has_method(handle, "PCCH"))
2632                 return false;
2633
2634 not_found:
2635         pr_debug("ACPI PCCH not found\n");
2636         return true;
2637 }
2638
2639 static bool __init intel_pstate_has_acpi_ppc(void)
2640 {
2641         int i;
2642
2643         for_each_possible_cpu(i) {
2644                 struct acpi_processor *pr = per_cpu(processors, i);
2645
2646                 if (!pr)
2647                         continue;
2648                 if (acpi_has_method(pr->handle, "_PPC"))
2649                         return true;
2650         }
2651         pr_debug("ACPI _PPC not found\n");
2652         return false;
2653 }
2654
2655 enum {
2656         PSS,
2657         PPC,
2658 };
2659
2660 /* Hardware vendor-specific info that has its own power management modes */
2661 static struct acpi_platform_list plat_info[] __initdata = {
2662         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2663         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2664         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2665         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2666         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2667         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2668         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2669         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2670         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2671         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2672         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2673         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2674         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2675         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2676         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2677         { } /* End */
2678 };
2679
2680 #define BITMASK_OOB     (BIT(8) | BIT(18))
2681
2682 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2683 {
2684         const struct x86_cpu_id *id;
2685         u64 misc_pwr;
2686         int idx;
2687
2688         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2689         if (id) {
2690                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2691                 if (misc_pwr & BITMASK_OOB) {
2692                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
2693                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
2694                         return true;
2695                 }
2696         }
2697
2698         idx = acpi_match_platform_list(plat_info);
2699         if (idx < 0)
2700                 return false;
2701
2702         switch (plat_info[idx].data) {
2703         case PSS:
2704                 if (!intel_pstate_no_acpi_pss())
2705                         return false;
2706
2707                 return intel_pstate_no_acpi_pcch();
2708         case PPC:
2709                 return intel_pstate_has_acpi_ppc() && !force_load;
2710         }
2711
2712         return false;
2713 }
2714
2715 static void intel_pstate_request_control_from_smm(void)
2716 {
2717         /*
2718          * It may be unsafe to request P-states control from SMM if _PPC support
2719          * has not been enabled.
2720          */
2721         if (acpi_ppc)
2722                 acpi_processor_pstate_control();
2723 }
2724 #else /* CONFIG_ACPI not enabled */
2725 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2726 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2727 static inline void intel_pstate_request_control_from_smm(void) {}
2728 #endif /* CONFIG_ACPI */
2729
2730 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2731
2732 #define X86_MATCH_HWP(model, hwp_mode)                                  \
2733         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2734                                            X86_FEATURE_HWP, hwp_mode)
2735
2736 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2737         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
2738         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
2739         X86_MATCH_HWP(ANY,              0),
2740         {}
2741 };
2742
2743 static int __init intel_pstate_init(void)
2744 {
2745         const struct x86_cpu_id *id;
2746         int rc;
2747
2748         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2749                 return -ENODEV;
2750
2751         if (no_load)
2752                 return -ENODEV;
2753
2754         id = x86_match_cpu(hwp_support_ids);
2755         if (id) {
2756                 copy_cpu_funcs(&core_funcs);
2757                 if (!no_hwp) {
2758                         hwp_active++;
2759                         hwp_mode_bdw = id->driver_data;
2760                         intel_pstate.attr = hwp_cpufreq_attrs;
2761                         default_driver = &intel_pstate;
2762                         goto hwp_cpu_matched;
2763                 }
2764         } else {
2765                 id = x86_match_cpu(intel_pstate_cpu_ids);
2766                 if (!id) {
2767                         pr_info("CPU model not supported\n");
2768                         return -ENODEV;
2769                 }
2770
2771                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2772         }
2773
2774         if (intel_pstate_msrs_not_valid()) {
2775                 pr_info("Invalid MSRs\n");
2776                 return -ENODEV;
2777         }
2778         /* Without HWP start in the passive mode. */
2779         if (!default_driver)
2780                 default_driver = &intel_cpufreq;
2781
2782 hwp_cpu_matched:
2783         /*
2784          * The Intel pstate driver will be ignored if the platform
2785          * firmware has its own power management modes.
2786          */
2787         if (intel_pstate_platform_pwr_mgmt_exists()) {
2788                 pr_info("P-states controlled by the platform\n");
2789                 return -ENODEV;
2790         }
2791
2792         if (!hwp_active && hwp_only)
2793                 return -ENOTSUPP;
2794
2795         pr_info("Intel P-state driver initializing\n");
2796
2797         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2798         if (!all_cpu_data)
2799                 return -ENOMEM;
2800
2801         intel_pstate_request_control_from_smm();
2802
2803         intel_pstate_sysfs_expose_params();
2804
2805         mutex_lock(&intel_pstate_driver_lock);
2806         rc = intel_pstate_register_driver(default_driver);
2807         mutex_unlock(&intel_pstate_driver_lock);
2808         if (rc)
2809                 return rc;
2810
2811         if (hwp_active)
2812                 pr_info("HWP enabled\n");
2813
2814         return 0;
2815 }
2816 device_initcall(intel_pstate_init);
2817
2818 static int __init intel_pstate_setup(char *str)
2819 {
2820         if (!str)
2821                 return -EINVAL;
2822
2823         if (!strcmp(str, "disable")) {
2824                 no_load = 1;
2825         } else if (!strcmp(str, "active")) {
2826                 default_driver = &intel_pstate;
2827         } else if (!strcmp(str, "passive")) {
2828                 default_driver = &intel_cpufreq;
2829                 no_hwp = 1;
2830         }
2831         if (!strcmp(str, "no_hwp")) {
2832                 pr_info("HWP disabled\n");
2833                 no_hwp = 1;
2834         }
2835         if (!strcmp(str, "force"))
2836                 force_load = 1;
2837         if (!strcmp(str, "hwp_only"))
2838                 hwp_only = 1;
2839         if (!strcmp(str, "per_cpu_perf_limits"))
2840                 per_cpu_limits = true;
2841
2842 #ifdef CONFIG_ACPI
2843         if (!strcmp(str, "support_acpi_ppc"))
2844                 acpi_ppc = true;
2845 #endif
2846
2847         return 0;
2848 }
2849 early_param("intel_pstate", intel_pstate_setup);
2850
2851 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2852 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2853 MODULE_LICENSE("GPL");