ASoC: Intel: kbl_rt5660: Add a new machine driver for kbl with rt5660
[linux-2.6-microblaze.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2  * Copyright (C) 2013 Freescale Semiconductor, Inc.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/cpu_cooling.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/nvmem-consumer.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regulator/consumer.h>
21
22 #define PU_SOC_VOLTAGE_NORMAL   1250000
23 #define PU_SOC_VOLTAGE_HIGH     1275000
24 #define FREQ_1P2_GHZ            1200000000
25
26 static struct regulator *arm_reg;
27 static struct regulator *pu_reg;
28 static struct regulator *soc_reg;
29
30 enum IMX6_CPUFREQ_CLKS {
31         ARM,
32         PLL1_SYS,
33         STEP,
34         PLL1_SW,
35         PLL2_PFD2_396M,
36         /* MX6UL requires two more clks */
37         PLL2_BUS,
38         SECONDARY_SEL,
39 };
40 #define IMX6Q_CPUFREQ_CLK_NUM           5
41 #define IMX6UL_CPUFREQ_CLK_NUM          7
42
43 static int num_clks;
44 static struct clk_bulk_data clks[] = {
45         { .id = "arm" },
46         { .id = "pll1_sys" },
47         { .id = "step" },
48         { .id = "pll1_sw" },
49         { .id = "pll2_pfd2_396m" },
50         { .id = "pll2_bus" },
51         { .id = "secondary_sel" },
52 };
53
54 static struct device *cpu_dev;
55 static struct thermal_cooling_device *cdev;
56 static bool free_opp;
57 static struct cpufreq_frequency_table *freq_table;
58 static unsigned int max_freq;
59 static unsigned int transition_latency;
60
61 static u32 *imx6_soc_volt;
62 static u32 soc_opp_count;
63
64 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
65 {
66         struct dev_pm_opp *opp;
67         unsigned long freq_hz, volt, volt_old;
68         unsigned int old_freq, new_freq;
69         bool pll1_sys_temp_enabled = false;
70         int ret;
71
72         new_freq = freq_table[index].frequency;
73         freq_hz = new_freq * 1000;
74         old_freq = clk_get_rate(clks[ARM].clk) / 1000;
75
76         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
77         if (IS_ERR(opp)) {
78                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
79                 return PTR_ERR(opp);
80         }
81
82         volt = dev_pm_opp_get_voltage(opp);
83         dev_pm_opp_put(opp);
84
85         volt_old = regulator_get_voltage(arm_reg);
86
87         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
88                 old_freq / 1000, volt_old / 1000,
89                 new_freq / 1000, volt / 1000);
90
91         /* scaling up?  scale voltage before frequency */
92         if (new_freq > old_freq) {
93                 if (!IS_ERR(pu_reg)) {
94                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
95                         if (ret) {
96                                 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
97                                 return ret;
98                         }
99                 }
100                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
101                 if (ret) {
102                         dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
103                         return ret;
104                 }
105                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
106                 if (ret) {
107                         dev_err(cpu_dev,
108                                 "failed to scale vddarm up: %d\n", ret);
109                         return ret;
110                 }
111         }
112
113         /*
114          * The setpoints are selected per PLL/PDF frequencies, so we need to
115          * reprogram PLL for frequency scaling.  The procedure of reprogramming
116          * PLL1 is as below.
117          * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
118          * flow is slightly different from other i.MX6 OSC.
119          * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
120          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
121          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
122          *  - Disable pll2_pfd2_396m_clk
123          */
124         if (of_machine_is_compatible("fsl,imx6ul") ||
125             of_machine_is_compatible("fsl,imx6ull")) {
126                 /*
127                  * When changing pll1_sw_clk's parent to pll1_sys_clk,
128                  * CPU may run at higher than 528MHz, this will lead to
129                  * the system unstable if the voltage is lower than the
130                  * voltage of 528MHz, so lower the CPU frequency to one
131                  * half before changing CPU frequency.
132                  */
133                 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
134                 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
135                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
136                         clk_set_parent(clks[SECONDARY_SEL].clk,
137                                        clks[PLL2_BUS].clk);
138                 else
139                         clk_set_parent(clks[SECONDARY_SEL].clk,
140                                        clks[PLL2_PFD2_396M].clk);
141                 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
142                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
143                 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
144                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
145                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
146                 }
147         } else {
148                 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
149                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
150                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
151                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
152                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
153                 } else {
154                         /* pll1_sys needs to be enabled for divider rate change to work. */
155                         pll1_sys_temp_enabled = true;
156                         clk_prepare_enable(clks[PLL1_SYS].clk);
157                 }
158         }
159
160         /* Ensure the arm clock divider is what we expect */
161         ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
162         if (ret) {
163                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
164                 regulator_set_voltage_tol(arm_reg, volt_old, 0);
165                 return ret;
166         }
167
168         /* PLL1 is only needed until after ARM-PODF is set. */
169         if (pll1_sys_temp_enabled)
170                 clk_disable_unprepare(clks[PLL1_SYS].clk);
171
172         /* scaling down?  scale voltage after frequency */
173         if (new_freq < old_freq) {
174                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
175                 if (ret) {
176                         dev_warn(cpu_dev,
177                                  "failed to scale vddarm down: %d\n", ret);
178                         ret = 0;
179                 }
180                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
181                 if (ret) {
182                         dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
183                         ret = 0;
184                 }
185                 if (!IS_ERR(pu_reg)) {
186                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
187                         if (ret) {
188                                 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
189                                 ret = 0;
190                         }
191                 }
192         }
193
194         return 0;
195 }
196
197 static void imx6q_cpufreq_ready(struct cpufreq_policy *policy)
198 {
199         cdev = of_cpufreq_cooling_register(policy);
200
201         if (!cdev)
202                 dev_err(cpu_dev,
203                         "running cpufreq without cooling device: %ld\n",
204                         PTR_ERR(cdev));
205 }
206
207 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
208 {
209         int ret;
210
211         policy->clk = clks[ARM].clk;
212         ret = cpufreq_generic_init(policy, freq_table, transition_latency);
213         policy->suspend_freq = max_freq;
214
215         return ret;
216 }
217
218 static int imx6q_cpufreq_exit(struct cpufreq_policy *policy)
219 {
220         cpufreq_cooling_unregister(cdev);
221
222         return 0;
223 }
224
225 static struct cpufreq_driver imx6q_cpufreq_driver = {
226         .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
227         .verify = cpufreq_generic_frequency_table_verify,
228         .target_index = imx6q_set_target,
229         .get = cpufreq_generic_get,
230         .init = imx6q_cpufreq_init,
231         .exit = imx6q_cpufreq_exit,
232         .name = "imx6q-cpufreq",
233         .ready = imx6q_cpufreq_ready,
234         .attr = cpufreq_generic_attr,
235         .suspend = cpufreq_generic_suspend,
236 };
237
238 #define OCOTP_CFG3                      0x440
239 #define OCOTP_CFG3_SPEED_SHIFT          16
240 #define OCOTP_CFG3_SPEED_1P2GHZ         0x3
241 #define OCOTP_CFG3_SPEED_996MHZ         0x2
242 #define OCOTP_CFG3_SPEED_852MHZ         0x1
243
244 static void imx6q_opp_check_speed_grading(struct device *dev)
245 {
246         struct device_node *np;
247         void __iomem *base;
248         u32 val;
249
250         np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
251         if (!np)
252                 return;
253
254         base = of_iomap(np, 0);
255         if (!base) {
256                 dev_err(dev, "failed to map ocotp\n");
257                 goto put_node;
258         }
259
260         /*
261          * SPEED_GRADING[1:0] defines the max speed of ARM:
262          * 2b'11: 1200000000Hz;
263          * 2b'10: 996000000Hz;
264          * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
265          * 2b'00: 792000000Hz;
266          * We need to set the max speed of ARM according to fuse map.
267          */
268         val = readl_relaxed(base + OCOTP_CFG3);
269         val >>= OCOTP_CFG3_SPEED_SHIFT;
270         val &= 0x3;
271
272         if (val < OCOTP_CFG3_SPEED_996MHZ)
273                 if (dev_pm_opp_disable(dev, 996000000))
274                         dev_warn(dev, "failed to disable 996MHz OPP\n");
275
276         if (of_machine_is_compatible("fsl,imx6q") ||
277             of_machine_is_compatible("fsl,imx6qp")) {
278                 if (val != OCOTP_CFG3_SPEED_852MHZ)
279                         if (dev_pm_opp_disable(dev, 852000000))
280                                 dev_warn(dev, "failed to disable 852MHz OPP\n");
281                 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
282                         if (dev_pm_opp_disable(dev, 1200000000))
283                                 dev_warn(dev, "failed to disable 1.2GHz OPP\n");
284         }
285         iounmap(base);
286 put_node:
287         of_node_put(np);
288 }
289
290 #define OCOTP_CFG3_6UL_SPEED_696MHZ     0x2
291 #define OCOTP_CFG3_6ULL_SPEED_792MHZ    0x2
292 #define OCOTP_CFG3_6ULL_SPEED_900MHZ    0x3
293
294 static int imx6ul_opp_check_speed_grading(struct device *dev)
295 {
296         u32 val;
297         int ret = 0;
298
299         if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
300                 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
301                 if (ret)
302                         return ret;
303         } else {
304                 struct device_node *np;
305                 void __iomem *base;
306
307                 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
308                 if (!np)
309                         return -ENOENT;
310
311                 base = of_iomap(np, 0);
312                 of_node_put(np);
313                 if (!base) {
314                         dev_err(dev, "failed to map ocotp\n");
315                         return -EFAULT;
316                 }
317
318                 val = readl_relaxed(base + OCOTP_CFG3);
319                 iounmap(base);
320         }
321
322         /*
323          * Speed GRADING[1:0] defines the max speed of ARM:
324          * 2b'00: Reserved;
325          * 2b'01: 528000000Hz;
326          * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
327          * 2b'11: 900000000Hz on i.MX6ULL only;
328          * We need to set the max speed of ARM according to fuse map.
329          */
330         val >>= OCOTP_CFG3_SPEED_SHIFT;
331         val &= 0x3;
332
333         if (of_machine_is_compatible("fsl,imx6ul")) {
334                 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
335                         if (dev_pm_opp_disable(dev, 696000000))
336                                 dev_warn(dev, "failed to disable 696MHz OPP\n");
337         }
338
339         if (of_machine_is_compatible("fsl,imx6ull")) {
340                 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
341                         if (dev_pm_opp_disable(dev, 792000000))
342                                 dev_warn(dev, "failed to disable 792MHz OPP\n");
343
344                 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
345                         if (dev_pm_opp_disable(dev, 900000000))
346                                 dev_warn(dev, "failed to disable 900MHz OPP\n");
347         }
348
349         return ret;
350 }
351
352 static int imx6q_cpufreq_probe(struct platform_device *pdev)
353 {
354         struct device_node *np;
355         struct dev_pm_opp *opp;
356         unsigned long min_volt, max_volt;
357         int num, ret;
358         const struct property *prop;
359         const __be32 *val;
360         u32 nr, i, j;
361
362         cpu_dev = get_cpu_device(0);
363         if (!cpu_dev) {
364                 pr_err("failed to get cpu0 device\n");
365                 return -ENODEV;
366         }
367
368         np = of_node_get(cpu_dev->of_node);
369         if (!np) {
370                 dev_err(cpu_dev, "failed to find cpu0 node\n");
371                 return -ENOENT;
372         }
373
374         if (of_machine_is_compatible("fsl,imx6ul") ||
375             of_machine_is_compatible("fsl,imx6ull"))
376                 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
377         else
378                 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
379
380         ret = clk_bulk_get(cpu_dev, num_clks, clks);
381         if (ret)
382                 goto put_node;
383
384         arm_reg = regulator_get(cpu_dev, "arm");
385         pu_reg = regulator_get_optional(cpu_dev, "pu");
386         soc_reg = regulator_get(cpu_dev, "soc");
387         if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
388                         PTR_ERR(soc_reg) == -EPROBE_DEFER ||
389                         PTR_ERR(pu_reg) == -EPROBE_DEFER) {
390                 ret = -EPROBE_DEFER;
391                 dev_dbg(cpu_dev, "regulators not ready, defer\n");
392                 goto put_reg;
393         }
394         if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
395                 dev_err(cpu_dev, "failed to get regulators\n");
396                 ret = -ENOENT;
397                 goto put_reg;
398         }
399
400         ret = dev_pm_opp_of_add_table(cpu_dev);
401         if (ret < 0) {
402                 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
403                 goto put_reg;
404         }
405
406         if (of_machine_is_compatible("fsl,imx6ul") ||
407             of_machine_is_compatible("fsl,imx6ull")) {
408                 ret = imx6ul_opp_check_speed_grading(cpu_dev);
409                 if (ret == -EPROBE_DEFER)
410                         return ret;
411                 if (ret) {
412                         dev_err(cpu_dev, "failed to read ocotp: %d\n",
413                                 ret);
414                         return ret;
415                 }
416         } else {
417                 imx6q_opp_check_speed_grading(cpu_dev);
418         }
419
420         /* Because we have added the OPPs here, we must free them */
421         free_opp = true;
422         num = dev_pm_opp_get_opp_count(cpu_dev);
423         if (num < 0) {
424                 ret = num;
425                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
426                 goto out_free_opp;
427         }
428
429         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
430         if (ret) {
431                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
432                 goto out_free_opp;
433         }
434
435         /* Make imx6_soc_volt array's size same as arm opp number */
436         imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
437                                      GFP_KERNEL);
438         if (imx6_soc_volt == NULL) {
439                 ret = -ENOMEM;
440                 goto free_freq_table;
441         }
442
443         prop = of_find_property(np, "fsl,soc-operating-points", NULL);
444         if (!prop || !prop->value)
445                 goto soc_opp_out;
446
447         /*
448          * Each OPP is a set of tuples consisting of frequency and
449          * voltage like <freq-kHz vol-uV>.
450          */
451         nr = prop->length / sizeof(u32);
452         if (nr % 2 || (nr / 2) < num)
453                 goto soc_opp_out;
454
455         for (j = 0; j < num; j++) {
456                 val = prop->value;
457                 for (i = 0; i < nr / 2; i++) {
458                         unsigned long freq = be32_to_cpup(val++);
459                         unsigned long volt = be32_to_cpup(val++);
460                         if (freq_table[j].frequency == freq) {
461                                 imx6_soc_volt[soc_opp_count++] = volt;
462                                 break;
463                         }
464                 }
465         }
466
467 soc_opp_out:
468         /* use fixed soc opp volt if no valid soc opp info found in dtb */
469         if (soc_opp_count != num) {
470                 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
471                 for (j = 0; j < num; j++)
472                         imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
473                 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
474                         imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
475         }
476
477         if (of_property_read_u32(np, "clock-latency", &transition_latency))
478                 transition_latency = CPUFREQ_ETERNAL;
479
480         /*
481          * Calculate the ramp time for max voltage change in the
482          * VDDSOC and VDDPU regulators.
483          */
484         ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
485         if (ret > 0)
486                 transition_latency += ret * 1000;
487         if (!IS_ERR(pu_reg)) {
488                 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
489                 if (ret > 0)
490                         transition_latency += ret * 1000;
491         }
492
493         /*
494          * OPP is maintained in order of increasing frequency, and
495          * freq_table initialised from OPP is therefore sorted in the
496          * same order.
497          */
498         max_freq = freq_table[--num].frequency;
499         opp = dev_pm_opp_find_freq_exact(cpu_dev,
500                                   freq_table[0].frequency * 1000, true);
501         min_volt = dev_pm_opp_get_voltage(opp);
502         dev_pm_opp_put(opp);
503         opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
504         max_volt = dev_pm_opp_get_voltage(opp);
505         dev_pm_opp_put(opp);
506
507         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
508         if (ret > 0)
509                 transition_latency += ret * 1000;
510
511         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
512         if (ret) {
513                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
514                 goto free_freq_table;
515         }
516
517         of_node_put(np);
518         return 0;
519
520 free_freq_table:
521         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
522 out_free_opp:
523         if (free_opp)
524                 dev_pm_opp_of_remove_table(cpu_dev);
525 put_reg:
526         if (!IS_ERR(arm_reg))
527                 regulator_put(arm_reg);
528         if (!IS_ERR(pu_reg))
529                 regulator_put(pu_reg);
530         if (!IS_ERR(soc_reg))
531                 regulator_put(soc_reg);
532
533         clk_bulk_put(num_clks, clks);
534 put_node:
535         of_node_put(np);
536
537         return ret;
538 }
539
540 static int imx6q_cpufreq_remove(struct platform_device *pdev)
541 {
542         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
543         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
544         if (free_opp)
545                 dev_pm_opp_of_remove_table(cpu_dev);
546         regulator_put(arm_reg);
547         if (!IS_ERR(pu_reg))
548                 regulator_put(pu_reg);
549         regulator_put(soc_reg);
550
551         clk_bulk_put(num_clks, clks);
552
553         return 0;
554 }
555
556 static struct platform_driver imx6q_cpufreq_platdrv = {
557         .driver = {
558                 .name   = "imx6q-cpufreq",
559         },
560         .probe          = imx6q_cpufreq_probe,
561         .remove         = imx6q_cpufreq_remove,
562 };
563 module_platform_driver(imx6q_cpufreq_platdrv);
564
565 MODULE_ALIAS("platform:imx6q-cpufreq");
566 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
567 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
568 MODULE_LICENSE("GPL");