1fcbbd53a48a29e72100a5e4fa793eb17fd751b8
[linux-2.6-microblaze.git] / drivers / cpufreq / imx6q-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Freescale Semiconductor, Inc.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/cpu.h>
8 #include <linux/cpufreq.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/pm_opp.h>
15 #include <linux/platform_device.h>
16 #include <linux/regulator/consumer.h>
17
18 #define PU_SOC_VOLTAGE_NORMAL   1250000
19 #define PU_SOC_VOLTAGE_HIGH     1275000
20 #define FREQ_1P2_GHZ            1200000000
21
22 static struct regulator *arm_reg;
23 static struct regulator *pu_reg;
24 static struct regulator *soc_reg;
25
26 enum IMX6_CPUFREQ_CLKS {
27         ARM,
28         PLL1_SYS,
29         STEP,
30         PLL1_SW,
31         PLL2_PFD2_396M,
32         /* MX6UL requires two more clks */
33         PLL2_BUS,
34         SECONDARY_SEL,
35 };
36 #define IMX6Q_CPUFREQ_CLK_NUM           5
37 #define IMX6UL_CPUFREQ_CLK_NUM          7
38
39 static int num_clks;
40 static struct clk_bulk_data clks[] = {
41         { .id = "arm" },
42         { .id = "pll1_sys" },
43         { .id = "step" },
44         { .id = "pll1_sw" },
45         { .id = "pll2_pfd2_396m" },
46         { .id = "pll2_bus" },
47         { .id = "secondary_sel" },
48 };
49
50 static struct device *cpu_dev;
51 static bool free_opp;
52 static struct cpufreq_frequency_table *freq_table;
53 static unsigned int max_freq;
54 static unsigned int transition_latency;
55
56 static u32 *imx6_soc_volt;
57 static u32 soc_opp_count;
58
59 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
60 {
61         struct dev_pm_opp *opp;
62         unsigned long freq_hz, volt, volt_old;
63         unsigned int old_freq, new_freq;
64         bool pll1_sys_temp_enabled = false;
65         int ret;
66
67         new_freq = freq_table[index].frequency;
68         freq_hz = new_freq * 1000;
69         old_freq = clk_get_rate(clks[ARM].clk) / 1000;
70
71         opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
72         if (IS_ERR(opp)) {
73                 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
74                 return PTR_ERR(opp);
75         }
76
77         volt = dev_pm_opp_get_voltage(opp);
78         dev_pm_opp_put(opp);
79
80         volt_old = regulator_get_voltage(arm_reg);
81
82         dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
83                 old_freq / 1000, volt_old / 1000,
84                 new_freq / 1000, volt / 1000);
85
86         /* scaling up?  scale voltage before frequency */
87         if (new_freq > old_freq) {
88                 if (!IS_ERR(pu_reg)) {
89                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
90                         if (ret) {
91                                 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
92                                 return ret;
93                         }
94                 }
95                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
96                 if (ret) {
97                         dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
98                         return ret;
99                 }
100                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
101                 if (ret) {
102                         dev_err(cpu_dev,
103                                 "failed to scale vddarm up: %d\n", ret);
104                         return ret;
105                 }
106         }
107
108         /*
109          * The setpoints are selected per PLL/PDF frequencies, so we need to
110          * reprogram PLL for frequency scaling.  The procedure of reprogramming
111          * PLL1 is as below.
112          * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
113          * flow is slightly different from other i.MX6 OSC.
114          * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
115          *  - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
116          *  - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
117          *  - Disable pll2_pfd2_396m_clk
118          */
119         if (of_machine_is_compatible("fsl,imx6ul") ||
120             of_machine_is_compatible("fsl,imx6ull")) {
121                 /*
122                  * When changing pll1_sw_clk's parent to pll1_sys_clk,
123                  * CPU may run at higher than 528MHz, this will lead to
124                  * the system unstable if the voltage is lower than the
125                  * voltage of 528MHz, so lower the CPU frequency to one
126                  * half before changing CPU frequency.
127                  */
128                 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
129                 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
130                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
131                         clk_set_parent(clks[SECONDARY_SEL].clk,
132                                        clks[PLL2_BUS].clk);
133                 else
134                         clk_set_parent(clks[SECONDARY_SEL].clk,
135                                        clks[PLL2_PFD2_396M].clk);
136                 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
137                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
138                 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
139                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
140                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
141                 }
142         } else {
143                 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
144                 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
145                 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
146                         clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
147                         clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
148                 } else {
149                         /* pll1_sys needs to be enabled for divider rate change to work. */
150                         pll1_sys_temp_enabled = true;
151                         clk_prepare_enable(clks[PLL1_SYS].clk);
152                 }
153         }
154
155         /* Ensure the arm clock divider is what we expect */
156         ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
157         if (ret) {
158                 int ret1;
159
160                 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
161                 ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
162                 if (ret1)
163                         dev_warn(cpu_dev,
164                                  "failed to restore vddarm voltage: %d\n", ret1);
165                 return ret;
166         }
167
168         /* PLL1 is only needed until after ARM-PODF is set. */
169         if (pll1_sys_temp_enabled)
170                 clk_disable_unprepare(clks[PLL1_SYS].clk);
171
172         /* scaling down?  scale voltage after frequency */
173         if (new_freq < old_freq) {
174                 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
175                 if (ret)
176                         dev_warn(cpu_dev,
177                                  "failed to scale vddarm down: %d\n", ret);
178                 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
179                 if (ret)
180                         dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
181                 if (!IS_ERR(pu_reg)) {
182                         ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
183                         if (ret)
184                                 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
185                 }
186         }
187
188         return 0;
189 }
190
191 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
192 {
193         policy->clk = clks[ARM].clk;
194         cpufreq_generic_init(policy, freq_table, transition_latency);
195         policy->suspend_freq = max_freq;
196         dev_pm_opp_of_register_em(policy->cpus);
197
198         return 0;
199 }
200
201 static struct cpufreq_driver imx6q_cpufreq_driver = {
202         .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
203                  CPUFREQ_IS_COOLING_DEV,
204         .verify = cpufreq_generic_frequency_table_verify,
205         .target_index = imx6q_set_target,
206         .get = cpufreq_generic_get,
207         .init = imx6q_cpufreq_init,
208         .name = "imx6q-cpufreq",
209         .attr = cpufreq_generic_attr,
210         .suspend = cpufreq_generic_suspend,
211 };
212
213 #define OCOTP_CFG3                      0x440
214 #define OCOTP_CFG3_SPEED_SHIFT          16
215 #define OCOTP_CFG3_SPEED_1P2GHZ         0x3
216 #define OCOTP_CFG3_SPEED_996MHZ         0x2
217 #define OCOTP_CFG3_SPEED_852MHZ         0x1
218
219 static void imx6q_opp_check_speed_grading(struct device *dev)
220 {
221         struct device_node *np;
222         void __iomem *base;
223         u32 val;
224
225         np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-ocotp");
226         if (!np)
227                 return;
228
229         base = of_iomap(np, 0);
230         if (!base) {
231                 dev_err(dev, "failed to map ocotp\n");
232                 goto put_node;
233         }
234
235         /*
236          * SPEED_GRADING[1:0] defines the max speed of ARM:
237          * 2b'11: 1200000000Hz;
238          * 2b'10: 996000000Hz;
239          * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
240          * 2b'00: 792000000Hz;
241          * We need to set the max speed of ARM according to fuse map.
242          */
243         val = readl_relaxed(base + OCOTP_CFG3);
244         val >>= OCOTP_CFG3_SPEED_SHIFT;
245         val &= 0x3;
246
247         if (val < OCOTP_CFG3_SPEED_996MHZ)
248                 if (dev_pm_opp_disable(dev, 996000000))
249                         dev_warn(dev, "failed to disable 996MHz OPP\n");
250
251         if (of_machine_is_compatible("fsl,imx6q") ||
252             of_machine_is_compatible("fsl,imx6qp")) {
253                 if (val != OCOTP_CFG3_SPEED_852MHZ)
254                         if (dev_pm_opp_disable(dev, 852000000))
255                                 dev_warn(dev, "failed to disable 852MHz OPP\n");
256                 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
257                         if (dev_pm_opp_disable(dev, 1200000000))
258                                 dev_warn(dev, "failed to disable 1.2GHz OPP\n");
259         }
260         iounmap(base);
261 put_node:
262         of_node_put(np);
263 }
264
265 #define OCOTP_CFG3_6UL_SPEED_696MHZ     0x2
266 #define OCOTP_CFG3_6ULL_SPEED_792MHZ    0x2
267 #define OCOTP_CFG3_6ULL_SPEED_900MHZ    0x3
268
269 static int imx6ul_opp_check_speed_grading(struct device *dev)
270 {
271         u32 val;
272         int ret = 0;
273
274         if (of_find_property(dev->of_node, "nvmem-cells", NULL)) {
275                 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
276                 if (ret)
277                         return ret;
278         } else {
279                 struct device_node *np;
280                 void __iomem *base;
281
282                 np = of_find_compatible_node(NULL, NULL, "fsl,imx6ul-ocotp");
283                 if (!np)
284                         np = of_find_compatible_node(NULL, NULL,
285                                                      "fsl,imx6ull-ocotp");
286                 if (!np)
287                         return -ENOENT;
288
289                 base = of_iomap(np, 0);
290                 of_node_put(np);
291                 if (!base) {
292                         dev_err(dev, "failed to map ocotp\n");
293                         return -EFAULT;
294                 }
295
296                 val = readl_relaxed(base + OCOTP_CFG3);
297                 iounmap(base);
298         }
299
300         /*
301          * Speed GRADING[1:0] defines the max speed of ARM:
302          * 2b'00: Reserved;
303          * 2b'01: 528000000Hz;
304          * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
305          * 2b'11: 900000000Hz on i.MX6ULL only;
306          * We need to set the max speed of ARM according to fuse map.
307          */
308         val >>= OCOTP_CFG3_SPEED_SHIFT;
309         val &= 0x3;
310
311         if (of_machine_is_compatible("fsl,imx6ul")) {
312                 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
313                         if (dev_pm_opp_disable(dev, 696000000))
314                                 dev_warn(dev, "failed to disable 696MHz OPP\n");
315         }
316
317         if (of_machine_is_compatible("fsl,imx6ull")) {
318                 if (val != OCOTP_CFG3_6ULL_SPEED_792MHZ)
319                         if (dev_pm_opp_disable(dev, 792000000))
320                                 dev_warn(dev, "failed to disable 792MHz OPP\n");
321
322                 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
323                         if (dev_pm_opp_disable(dev, 900000000))
324                                 dev_warn(dev, "failed to disable 900MHz OPP\n");
325         }
326
327         return ret;
328 }
329
330 static int imx6q_cpufreq_probe(struct platform_device *pdev)
331 {
332         struct device_node *np;
333         struct dev_pm_opp *opp;
334         unsigned long min_volt, max_volt;
335         int num, ret;
336         const struct property *prop;
337         const __be32 *val;
338         u32 nr, i, j;
339
340         cpu_dev = get_cpu_device(0);
341         if (!cpu_dev) {
342                 pr_err("failed to get cpu0 device\n");
343                 return -ENODEV;
344         }
345
346         np = of_node_get(cpu_dev->of_node);
347         if (!np) {
348                 dev_err(cpu_dev, "failed to find cpu0 node\n");
349                 return -ENOENT;
350         }
351
352         if (of_machine_is_compatible("fsl,imx6ul") ||
353             of_machine_is_compatible("fsl,imx6ull"))
354                 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
355         else
356                 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
357
358         ret = clk_bulk_get(cpu_dev, num_clks, clks);
359         if (ret)
360                 goto put_node;
361
362         arm_reg = regulator_get(cpu_dev, "arm");
363         pu_reg = regulator_get_optional(cpu_dev, "pu");
364         soc_reg = regulator_get(cpu_dev, "soc");
365         if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
366                         PTR_ERR(soc_reg) == -EPROBE_DEFER ||
367                         PTR_ERR(pu_reg) == -EPROBE_DEFER) {
368                 ret = -EPROBE_DEFER;
369                 dev_dbg(cpu_dev, "regulators not ready, defer\n");
370                 goto put_reg;
371         }
372         if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
373                 dev_err(cpu_dev, "failed to get regulators\n");
374                 ret = -ENOENT;
375                 goto put_reg;
376         }
377
378         ret = dev_pm_opp_of_add_table(cpu_dev);
379         if (ret < 0) {
380                 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
381                 goto put_reg;
382         }
383
384         if (of_machine_is_compatible("fsl,imx6ul") ||
385             of_machine_is_compatible("fsl,imx6ull")) {
386                 ret = imx6ul_opp_check_speed_grading(cpu_dev);
387                 if (ret) {
388                         if (ret == -EPROBE_DEFER)
389                                 goto put_node;
390
391                         dev_err(cpu_dev, "failed to read ocotp: %d\n",
392                                 ret);
393                         goto put_node;
394                 }
395         } else {
396                 imx6q_opp_check_speed_grading(cpu_dev);
397         }
398
399         /* Because we have added the OPPs here, we must free them */
400         free_opp = true;
401         num = dev_pm_opp_get_opp_count(cpu_dev);
402         if (num < 0) {
403                 ret = num;
404                 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
405                 goto out_free_opp;
406         }
407
408         ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
409         if (ret) {
410                 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
411                 goto out_free_opp;
412         }
413
414         /* Make imx6_soc_volt array's size same as arm opp number */
415         imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
416                                      GFP_KERNEL);
417         if (imx6_soc_volt == NULL) {
418                 ret = -ENOMEM;
419                 goto free_freq_table;
420         }
421
422         prop = of_find_property(np, "fsl,soc-operating-points", NULL);
423         if (!prop || !prop->value)
424                 goto soc_opp_out;
425
426         /*
427          * Each OPP is a set of tuples consisting of frequency and
428          * voltage like <freq-kHz vol-uV>.
429          */
430         nr = prop->length / sizeof(u32);
431         if (nr % 2 || (nr / 2) < num)
432                 goto soc_opp_out;
433
434         for (j = 0; j < num; j++) {
435                 val = prop->value;
436                 for (i = 0; i < nr / 2; i++) {
437                         unsigned long freq = be32_to_cpup(val++);
438                         unsigned long volt = be32_to_cpup(val++);
439                         if (freq_table[j].frequency == freq) {
440                                 imx6_soc_volt[soc_opp_count++] = volt;
441                                 break;
442                         }
443                 }
444         }
445
446 soc_opp_out:
447         /* use fixed soc opp volt if no valid soc opp info found in dtb */
448         if (soc_opp_count != num) {
449                 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
450                 for (j = 0; j < num; j++)
451                         imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
452                 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
453                         imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
454         }
455
456         if (of_property_read_u32(np, "clock-latency", &transition_latency))
457                 transition_latency = CPUFREQ_ETERNAL;
458
459         /*
460          * Calculate the ramp time for max voltage change in the
461          * VDDSOC and VDDPU regulators.
462          */
463         ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
464         if (ret > 0)
465                 transition_latency += ret * 1000;
466         if (!IS_ERR(pu_reg)) {
467                 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
468                 if (ret > 0)
469                         transition_latency += ret * 1000;
470         }
471
472         /*
473          * OPP is maintained in order of increasing frequency, and
474          * freq_table initialised from OPP is therefore sorted in the
475          * same order.
476          */
477         max_freq = freq_table[--num].frequency;
478         opp = dev_pm_opp_find_freq_exact(cpu_dev,
479                                   freq_table[0].frequency * 1000, true);
480         min_volt = dev_pm_opp_get_voltage(opp);
481         dev_pm_opp_put(opp);
482         opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
483         max_volt = dev_pm_opp_get_voltage(opp);
484         dev_pm_opp_put(opp);
485
486         ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
487         if (ret > 0)
488                 transition_latency += ret * 1000;
489
490         ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
491         if (ret) {
492                 dev_err(cpu_dev, "failed register driver: %d\n", ret);
493                 goto free_freq_table;
494         }
495
496         of_node_put(np);
497         return 0;
498
499 free_freq_table:
500         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
501 out_free_opp:
502         if (free_opp)
503                 dev_pm_opp_of_remove_table(cpu_dev);
504 put_reg:
505         if (!IS_ERR(arm_reg))
506                 regulator_put(arm_reg);
507         if (!IS_ERR(pu_reg))
508                 regulator_put(pu_reg);
509         if (!IS_ERR(soc_reg))
510                 regulator_put(soc_reg);
511
512         clk_bulk_put(num_clks, clks);
513 put_node:
514         of_node_put(np);
515
516         return ret;
517 }
518
519 static int imx6q_cpufreq_remove(struct platform_device *pdev)
520 {
521         cpufreq_unregister_driver(&imx6q_cpufreq_driver);
522         dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
523         if (free_opp)
524                 dev_pm_opp_of_remove_table(cpu_dev);
525         regulator_put(arm_reg);
526         if (!IS_ERR(pu_reg))
527                 regulator_put(pu_reg);
528         regulator_put(soc_reg);
529
530         clk_bulk_put(num_clks, clks);
531
532         return 0;
533 }
534
535 static struct platform_driver imx6q_cpufreq_platdrv = {
536         .driver = {
537                 .name   = "imx6q-cpufreq",
538         },
539         .probe          = imx6q_cpufreq_probe,
540         .remove         = imx6q_cpufreq_remove,
541 };
542 module_platform_driver(imx6q_cpufreq_platdrv);
543
544 MODULE_ALIAS("platform:imx6q-cpufreq");
545 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
546 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
547 MODULE_LICENSE("GPL");