scsi: hisi_sas: Reduce HISI_SAS_SGE_PAGE_CNT in size
[linux-2.6-microblaze.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2  * drivers/cpufreq/cpufreq_governor.c
3  *
4  * CPUFREQ governors common code
5  *
6  * Copyright    (C) 2001 Russell King
7  *              (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8  *              (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9  *              (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10  *              (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/slab.h>
22
23 #include "cpufreq_governor.h"
24
25 #define CPUFREQ_DBS_MIN_SAMPLING_INTERVAL       (2 * TICK_NSEC / NSEC_PER_USEC)
26
27 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
28
29 static DEFINE_MUTEX(gov_dbs_data_mutex);
30
31 /* Common sysfs tunables */
32 /**
33  * store_sampling_rate - update sampling rate effective immediately if needed.
34  *
35  * If new rate is smaller than the old, simply updating
36  * dbs.sampling_rate might not be appropriate. For example, if the
37  * original sampling_rate was 1 second and the requested new sampling rate is 10
38  * ms because the user needs immediate reaction from ondemand governor, but not
39  * sure if higher frequency will be required or not, then, the governor may
40  * change the sampling rate too late; up to 1 second later. Thus, if we are
41  * reducing the sampling rate, we need to make the new value effective
42  * immediately.
43  *
44  * This must be called with dbs_data->mutex held, otherwise traversing
45  * policy_dbs_list isn't safe.
46  */
47 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
48                             size_t count)
49 {
50         struct dbs_data *dbs_data = to_dbs_data(attr_set);
51         struct policy_dbs_info *policy_dbs;
52         unsigned int sampling_interval;
53         int ret;
54
55         ret = sscanf(buf, "%u", &sampling_interval);
56         if (ret != 1 || sampling_interval < CPUFREQ_DBS_MIN_SAMPLING_INTERVAL)
57                 return -EINVAL;
58
59         dbs_data->sampling_rate = sampling_interval;
60
61         /*
62          * We are operating under dbs_data->mutex and so the list and its
63          * entries can't be freed concurrently.
64          */
65         list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
66                 mutex_lock(&policy_dbs->update_mutex);
67                 /*
68                  * On 32-bit architectures this may race with the
69                  * sample_delay_ns read in dbs_update_util_handler(), but that
70                  * really doesn't matter.  If the read returns a value that's
71                  * too big, the sample will be skipped, but the next invocation
72                  * of dbs_update_util_handler() (when the update has been
73                  * completed) will take a sample.
74                  *
75                  * If this runs in parallel with dbs_work_handler(), we may end
76                  * up overwriting the sample_delay_ns value that it has just
77                  * written, but it will be corrected next time a sample is
78                  * taken, so it shouldn't be significant.
79                  */
80                 gov_update_sample_delay(policy_dbs, 0);
81                 mutex_unlock(&policy_dbs->update_mutex);
82         }
83
84         return count;
85 }
86 EXPORT_SYMBOL_GPL(store_sampling_rate);
87
88 /**
89  * gov_update_cpu_data - Update CPU load data.
90  * @dbs_data: Top-level governor data pointer.
91  *
92  * Update CPU load data for all CPUs in the domain governed by @dbs_data
93  * (that may be a single policy or a bunch of them if governor tunables are
94  * system-wide).
95  *
96  * Call under the @dbs_data mutex.
97  */
98 void gov_update_cpu_data(struct dbs_data *dbs_data)
99 {
100         struct policy_dbs_info *policy_dbs;
101
102         list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
103                 unsigned int j;
104
105                 for_each_cpu(j, policy_dbs->policy->cpus) {
106                         struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
107
108                         j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
109                                                                   dbs_data->io_is_busy);
110                         if (dbs_data->ignore_nice_load)
111                                 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
112                 }
113         }
114 }
115 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
116
117 unsigned int dbs_update(struct cpufreq_policy *policy)
118 {
119         struct policy_dbs_info *policy_dbs = policy->governor_data;
120         struct dbs_data *dbs_data = policy_dbs->dbs_data;
121         unsigned int ignore_nice = dbs_data->ignore_nice_load;
122         unsigned int max_load = 0, idle_periods = UINT_MAX;
123         unsigned int sampling_rate, io_busy, j;
124
125         /*
126          * Sometimes governors may use an additional multiplier to increase
127          * sample delays temporarily.  Apply that multiplier to sampling_rate
128          * so as to keep the wake-up-from-idle detection logic a bit
129          * conservative.
130          */
131         sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
132         /*
133          * For the purpose of ondemand, waiting for disk IO is an indication
134          * that you're performance critical, and not that the system is actually
135          * idle, so do not add the iowait time to the CPU idle time then.
136          */
137         io_busy = dbs_data->io_is_busy;
138
139         /* Get Absolute Load */
140         for_each_cpu(j, policy->cpus) {
141                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
142                 u64 update_time, cur_idle_time;
143                 unsigned int idle_time, time_elapsed;
144                 unsigned int load;
145
146                 cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
147
148                 time_elapsed = update_time - j_cdbs->prev_update_time;
149                 j_cdbs->prev_update_time = update_time;
150
151                 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
152                 j_cdbs->prev_cpu_idle = cur_idle_time;
153
154                 if (ignore_nice) {
155                         u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
156
157                         idle_time += div_u64(cur_nice - j_cdbs->prev_cpu_nice, NSEC_PER_USEC);
158                         j_cdbs->prev_cpu_nice = cur_nice;
159                 }
160
161                 if (unlikely(!time_elapsed)) {
162                         /*
163                          * That can only happen when this function is called
164                          * twice in a row with a very short interval between the
165                          * calls, so the previous load value can be used then.
166                          */
167                         load = j_cdbs->prev_load;
168                 } else if (unlikely((int)idle_time > 2 * sampling_rate &&
169                                     j_cdbs->prev_load)) {
170                         /*
171                          * If the CPU had gone completely idle and a task has
172                          * just woken up on this CPU now, it would be unfair to
173                          * calculate 'load' the usual way for this elapsed
174                          * time-window, because it would show near-zero load,
175                          * irrespective of how CPU intensive that task actually
176                          * was. This is undesirable for latency-sensitive bursty
177                          * workloads.
178                          *
179                          * To avoid this, reuse the 'load' from the previous
180                          * time-window and give this task a chance to start with
181                          * a reasonably high CPU frequency. However, that
182                          * shouldn't be over-done, lest we get stuck at a high
183                          * load (high frequency) for too long, even when the
184                          * current system load has actually dropped down, so
185                          * clear prev_load to guarantee that the load will be
186                          * computed again next time.
187                          *
188                          * Detecting this situation is easy: an unusually large
189                          * 'idle_time' (as compared to the sampling rate)
190                          * indicates this scenario.
191                          */
192                         load = j_cdbs->prev_load;
193                         j_cdbs->prev_load = 0;
194                 } else {
195                         if (time_elapsed >= idle_time) {
196                                 load = 100 * (time_elapsed - idle_time) / time_elapsed;
197                         } else {
198                                 /*
199                                  * That can happen if idle_time is returned by
200                                  * get_cpu_idle_time_jiffy().  In that case
201                                  * idle_time is roughly equal to the difference
202                                  * between time_elapsed and "busy time" obtained
203                                  * from CPU statistics.  Then, the "busy time"
204                                  * can end up being greater than time_elapsed
205                                  * (for example, if jiffies_64 and the CPU
206                                  * statistics are updated by different CPUs),
207                                  * so idle_time may in fact be negative.  That
208                                  * means, though, that the CPU was busy all
209                                  * the time (on the rough average) during the
210                                  * last sampling interval and 100 can be
211                                  * returned as the load.
212                                  */
213                                 load = (int)idle_time < 0 ? 100 : 0;
214                         }
215                         j_cdbs->prev_load = load;
216                 }
217
218                 if (unlikely((int)idle_time > 2 * sampling_rate)) {
219                         unsigned int periods = idle_time / sampling_rate;
220
221                         if (periods < idle_periods)
222                                 idle_periods = periods;
223                 }
224
225                 if (load > max_load)
226                         max_load = load;
227         }
228
229         policy_dbs->idle_periods = idle_periods;
230
231         return max_load;
232 }
233 EXPORT_SYMBOL_GPL(dbs_update);
234
235 static void dbs_work_handler(struct work_struct *work)
236 {
237         struct policy_dbs_info *policy_dbs;
238         struct cpufreq_policy *policy;
239         struct dbs_governor *gov;
240
241         policy_dbs = container_of(work, struct policy_dbs_info, work);
242         policy = policy_dbs->policy;
243         gov = dbs_governor_of(policy);
244
245         /*
246          * Make sure cpufreq_governor_limits() isn't evaluating load or the
247          * ondemand governor isn't updating the sampling rate in parallel.
248          */
249         mutex_lock(&policy_dbs->update_mutex);
250         gov_update_sample_delay(policy_dbs, gov->gov_dbs_update(policy));
251         mutex_unlock(&policy_dbs->update_mutex);
252
253         /* Allow the utilization update handler to queue up more work. */
254         atomic_set(&policy_dbs->work_count, 0);
255         /*
256          * If the update below is reordered with respect to the sample delay
257          * modification, the utilization update handler may end up using a stale
258          * sample delay value.
259          */
260         smp_wmb();
261         policy_dbs->work_in_progress = false;
262 }
263
264 static void dbs_irq_work(struct irq_work *irq_work)
265 {
266         struct policy_dbs_info *policy_dbs;
267
268         policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
269         schedule_work_on(smp_processor_id(), &policy_dbs->work);
270 }
271
272 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
273                                     unsigned int flags)
274 {
275         struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
276         struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
277         u64 delta_ns, lst;
278
279         if (!cpufreq_this_cpu_can_update(policy_dbs->policy))
280                 return;
281
282         /*
283          * The work may not be allowed to be queued up right now.
284          * Possible reasons:
285          * - Work has already been queued up or is in progress.
286          * - It is too early (too little time from the previous sample).
287          */
288         if (policy_dbs->work_in_progress)
289                 return;
290
291         /*
292          * If the reads below are reordered before the check above, the value
293          * of sample_delay_ns used in the computation may be stale.
294          */
295         smp_rmb();
296         lst = READ_ONCE(policy_dbs->last_sample_time);
297         delta_ns = time - lst;
298         if ((s64)delta_ns < policy_dbs->sample_delay_ns)
299                 return;
300
301         /*
302          * If the policy is not shared, the irq_work may be queued up right away
303          * at this point.  Otherwise, we need to ensure that only one of the
304          * CPUs sharing the policy will do that.
305          */
306         if (policy_dbs->is_shared) {
307                 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
308                         return;
309
310                 /*
311                  * If another CPU updated last_sample_time in the meantime, we
312                  * shouldn't be here, so clear the work counter and bail out.
313                  */
314                 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
315                         atomic_set(&policy_dbs->work_count, 0);
316                         return;
317                 }
318         }
319
320         policy_dbs->last_sample_time = time;
321         policy_dbs->work_in_progress = true;
322         irq_work_queue(&policy_dbs->irq_work);
323 }
324
325 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
326                                 unsigned int delay_us)
327 {
328         struct cpufreq_policy *policy = policy_dbs->policy;
329         int cpu;
330
331         gov_update_sample_delay(policy_dbs, delay_us);
332         policy_dbs->last_sample_time = 0;
333
334         for_each_cpu(cpu, policy->cpus) {
335                 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
336
337                 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
338                                              dbs_update_util_handler);
339         }
340 }
341
342 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
343 {
344         int i;
345
346         for_each_cpu(i, policy->cpus)
347                 cpufreq_remove_update_util_hook(i);
348
349         synchronize_rcu();
350 }
351
352 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
353                                                      struct dbs_governor *gov)
354 {
355         struct policy_dbs_info *policy_dbs;
356         int j;
357
358         /* Allocate memory for per-policy governor data. */
359         policy_dbs = gov->alloc();
360         if (!policy_dbs)
361                 return NULL;
362
363         policy_dbs->policy = policy;
364         mutex_init(&policy_dbs->update_mutex);
365         atomic_set(&policy_dbs->work_count, 0);
366         init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
367         INIT_WORK(&policy_dbs->work, dbs_work_handler);
368
369         /* Set policy_dbs for all CPUs, online+offline */
370         for_each_cpu(j, policy->related_cpus) {
371                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
372
373                 j_cdbs->policy_dbs = policy_dbs;
374         }
375         return policy_dbs;
376 }
377
378 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
379                                  struct dbs_governor *gov)
380 {
381         int j;
382
383         mutex_destroy(&policy_dbs->update_mutex);
384
385         for_each_cpu(j, policy_dbs->policy->related_cpus) {
386                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
387
388                 j_cdbs->policy_dbs = NULL;
389                 j_cdbs->update_util.func = NULL;
390         }
391         gov->free(policy_dbs);
392 }
393
394 int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
395 {
396         struct dbs_governor *gov = dbs_governor_of(policy);
397         struct dbs_data *dbs_data;
398         struct policy_dbs_info *policy_dbs;
399         int ret = 0;
400
401         /* State should be equivalent to EXIT */
402         if (policy->governor_data)
403                 return -EBUSY;
404
405         policy_dbs = alloc_policy_dbs_info(policy, gov);
406         if (!policy_dbs)
407                 return -ENOMEM;
408
409         /* Protect gov->gdbs_data against concurrent updates. */
410         mutex_lock(&gov_dbs_data_mutex);
411
412         dbs_data = gov->gdbs_data;
413         if (dbs_data) {
414                 if (WARN_ON(have_governor_per_policy())) {
415                         ret = -EINVAL;
416                         goto free_policy_dbs_info;
417                 }
418                 policy_dbs->dbs_data = dbs_data;
419                 policy->governor_data = policy_dbs;
420
421                 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
422                 goto out;
423         }
424
425         dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
426         if (!dbs_data) {
427                 ret = -ENOMEM;
428                 goto free_policy_dbs_info;
429         }
430
431         gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
432
433         ret = gov->init(dbs_data);
434         if (ret)
435                 goto free_policy_dbs_info;
436
437         /*
438          * The sampling interval should not be less than the transition latency
439          * of the CPU and it also cannot be too small for dbs_update() to work
440          * correctly.
441          */
442         dbs_data->sampling_rate = max_t(unsigned int,
443                                         CPUFREQ_DBS_MIN_SAMPLING_INTERVAL,
444                                         cpufreq_policy_transition_delay_us(policy));
445
446         if (!have_governor_per_policy())
447                 gov->gdbs_data = dbs_data;
448
449         policy_dbs->dbs_data = dbs_data;
450         policy->governor_data = policy_dbs;
451
452         gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
453         ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
454                                    get_governor_parent_kobj(policy),
455                                    "%s", gov->gov.name);
456         if (!ret)
457                 goto out;
458
459         /* Failure, so roll back. */
460         pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
461
462         kobject_put(&dbs_data->attr_set.kobj);
463
464         policy->governor_data = NULL;
465
466         if (!have_governor_per_policy())
467                 gov->gdbs_data = NULL;
468         gov->exit(dbs_data);
469         kfree(dbs_data);
470
471 free_policy_dbs_info:
472         free_policy_dbs_info(policy_dbs, gov);
473
474 out:
475         mutex_unlock(&gov_dbs_data_mutex);
476         return ret;
477 }
478 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
479
480 void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
481 {
482         struct dbs_governor *gov = dbs_governor_of(policy);
483         struct policy_dbs_info *policy_dbs = policy->governor_data;
484         struct dbs_data *dbs_data = policy_dbs->dbs_data;
485         unsigned int count;
486
487         /* Protect gov->gdbs_data against concurrent updates. */
488         mutex_lock(&gov_dbs_data_mutex);
489
490         count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
491
492         policy->governor_data = NULL;
493
494         if (!count) {
495                 if (!have_governor_per_policy())
496                         gov->gdbs_data = NULL;
497
498                 gov->exit(dbs_data);
499                 kfree(dbs_data);
500         }
501
502         free_policy_dbs_info(policy_dbs, gov);
503
504         mutex_unlock(&gov_dbs_data_mutex);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
507
508 int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
509 {
510         struct dbs_governor *gov = dbs_governor_of(policy);
511         struct policy_dbs_info *policy_dbs = policy->governor_data;
512         struct dbs_data *dbs_data = policy_dbs->dbs_data;
513         unsigned int sampling_rate, ignore_nice, j;
514         unsigned int io_busy;
515
516         if (!policy->cur)
517                 return -EINVAL;
518
519         policy_dbs->is_shared = policy_is_shared(policy);
520         policy_dbs->rate_mult = 1;
521
522         sampling_rate = dbs_data->sampling_rate;
523         ignore_nice = dbs_data->ignore_nice_load;
524         io_busy = dbs_data->io_is_busy;
525
526         for_each_cpu(j, policy->cpus) {
527                 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
528
529                 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
530                 /*
531                  * Make the first invocation of dbs_update() compute the load.
532                  */
533                 j_cdbs->prev_load = 0;
534
535                 if (ignore_nice)
536                         j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
537         }
538
539         gov->start(policy);
540
541         gov_set_update_util(policy_dbs, sampling_rate);
542         return 0;
543 }
544 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
545
546 void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
547 {
548         struct policy_dbs_info *policy_dbs = policy->governor_data;
549
550         gov_clear_update_util(policy_dbs->policy);
551         irq_work_sync(&policy_dbs->irq_work);
552         cancel_work_sync(&policy_dbs->work);
553         atomic_set(&policy_dbs->work_count, 0);
554         policy_dbs->work_in_progress = false;
555 }
556 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
557
558 void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
559 {
560         struct policy_dbs_info *policy_dbs;
561
562         /* Protect gov->gdbs_data against cpufreq_dbs_governor_exit() */
563         mutex_lock(&gov_dbs_data_mutex);
564         policy_dbs = policy->governor_data;
565         if (!policy_dbs)
566                 goto out;
567
568         mutex_lock(&policy_dbs->update_mutex);
569         cpufreq_policy_apply_limits(policy);
570         gov_update_sample_delay(policy_dbs, 0);
571         mutex_unlock(&policy_dbs->update_mutex);
572
573 out:
574         mutex_unlock(&gov_dbs_data_mutex);
575 }
576 EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);