Merge tag 'arc-5.2-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6-microblaze.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/slab.h>
27 #include <linux/suspend.h>
28 #include <linux/syscore_ops.h>
29 #include <linux/tick.h>
30 #include <trace/events/power.h>
31
32 static LIST_HEAD(cpufreq_policy_list);
33
34 /* Macros to iterate over CPU policies */
35 #define for_each_suitable_policy(__policy, __active)                     \
36         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
37                 if ((__active) == !policy_is_inactive(__policy))
38
39 #define for_each_active_policy(__policy)                \
40         for_each_suitable_policy(__policy, true)
41 #define for_each_inactive_policy(__policy)              \
42         for_each_suitable_policy(__policy, false)
43
44 #define for_each_policy(__policy)                       \
45         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
46
47 /* Iterate over governors */
48 static LIST_HEAD(cpufreq_governor_list);
49 #define for_each_governor(__governor)                           \
50         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
51
52 /**
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60
61 /* Flag to suspend/resume CPUFreq governors */
62 static bool cpufreq_suspended;
63
64 static inline bool has_target(void)
65 {
66         return cpufreq_driver->target_index || cpufreq_driver->target;
67 }
68
69 /* internal prototypes */
70 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
71 static int cpufreq_init_governor(struct cpufreq_policy *policy);
72 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
73 static int cpufreq_start_governor(struct cpufreq_policy *policy);
74 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
75 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
76
77 /**
78  * Two notifier lists: the "policy" list is involved in the
79  * validation process for a new CPU frequency policy; the
80  * "transition" list for kernel code that needs to handle
81  * changes to devices when the CPU clock speed changes.
82  * The mutex locks both lists.
83  */
84 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
85 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
86
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90         return off;
91 }
92 void disable_cpufreq(void)
93 {
94         off = 1;
95 }
96 static DEFINE_MUTEX(cpufreq_governor_mutex);
97
98 bool have_governor_per_policy(void)
99 {
100         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
101 }
102 EXPORT_SYMBOL_GPL(have_governor_per_policy);
103
104 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
105 {
106         if (have_governor_per_policy())
107                 return &policy->kobj;
108         else
109                 return cpufreq_global_kobject;
110 }
111 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
112
113 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
114 {
115         u64 idle_time;
116         u64 cur_wall_time;
117         u64 busy_time;
118
119         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
120
121         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
122         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
123         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
124         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
125         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
126         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
127
128         idle_time = cur_wall_time - busy_time;
129         if (wall)
130                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
131
132         return div_u64(idle_time, NSEC_PER_USEC);
133 }
134
135 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
136 {
137         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
138
139         if (idle_time == -1ULL)
140                 return get_cpu_idle_time_jiffy(cpu, wall);
141         else if (!io_busy)
142                 idle_time += get_cpu_iowait_time_us(cpu, wall);
143
144         return idle_time;
145 }
146 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
147
148 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
149                 unsigned long max_freq)
150 {
151 }
152 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
153
154 /*
155  * This is a generic cpufreq init() routine which can be used by cpufreq
156  * drivers of SMP systems. It will do following:
157  * - validate & show freq table passed
158  * - set policies transition latency
159  * - policy->cpus with all possible CPUs
160  */
161 int cpufreq_generic_init(struct cpufreq_policy *policy,
162                 struct cpufreq_frequency_table *table,
163                 unsigned int transition_latency)
164 {
165         policy->freq_table = table;
166         policy->cpuinfo.transition_latency = transition_latency;
167
168         /*
169          * The driver only supports the SMP configuration where all processors
170          * share the clock and voltage and clock.
171          */
172         cpumask_setall(policy->cpus);
173
174         return 0;
175 }
176 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
177
178 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
179 {
180         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
181
182         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
183 }
184 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
185
186 unsigned int cpufreq_generic_get(unsigned int cpu)
187 {
188         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
189
190         if (!policy || IS_ERR(policy->clk)) {
191                 pr_err("%s: No %s associated to cpu: %d\n",
192                        __func__, policy ? "clk" : "policy", cpu);
193                 return 0;
194         }
195
196         return clk_get_rate(policy->clk) / 1000;
197 }
198 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
199
200 /**
201  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
202  * @cpu: CPU to find the policy for.
203  *
204  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
205  * the kobject reference counter of that policy.  Return a valid policy on
206  * success or NULL on failure.
207  *
208  * The policy returned by this function has to be released with the help of
209  * cpufreq_cpu_put() to balance its kobject reference counter properly.
210  */
211 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
212 {
213         struct cpufreq_policy *policy = NULL;
214         unsigned long flags;
215
216         if (WARN_ON(cpu >= nr_cpu_ids))
217                 return NULL;
218
219         /* get the cpufreq driver */
220         read_lock_irqsave(&cpufreq_driver_lock, flags);
221
222         if (cpufreq_driver) {
223                 /* get the CPU */
224                 policy = cpufreq_cpu_get_raw(cpu);
225                 if (policy)
226                         kobject_get(&policy->kobj);
227         }
228
229         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
230
231         return policy;
232 }
233 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
234
235 /**
236  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
237  * @policy: cpufreq policy returned by cpufreq_cpu_get().
238  */
239 void cpufreq_cpu_put(struct cpufreq_policy *policy)
240 {
241         kobject_put(&policy->kobj);
242 }
243 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
244
245 /**
246  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
247  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
248  */
249 void cpufreq_cpu_release(struct cpufreq_policy *policy)
250 {
251         if (WARN_ON(!policy))
252                 return;
253
254         lockdep_assert_held(&policy->rwsem);
255
256         up_write(&policy->rwsem);
257
258         cpufreq_cpu_put(policy);
259 }
260
261 /**
262  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
263  * @cpu: CPU to find the policy for.
264  *
265  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
266  * if the policy returned by it is not NULL, acquire its rwsem for writing.
267  * Return the policy if it is active or release it and return NULL otherwise.
268  *
269  * The policy returned by this function has to be released with the help of
270  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
271  * counter properly.
272  */
273 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
274 {
275         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
276
277         if (!policy)
278                 return NULL;
279
280         down_write(&policy->rwsem);
281
282         if (policy_is_inactive(policy)) {
283                 cpufreq_cpu_release(policy);
284                 return NULL;
285         }
286
287         return policy;
288 }
289
290 /*********************************************************************
291  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
292  *********************************************************************/
293
294 /**
295  * adjust_jiffies - adjust the system "loops_per_jiffy"
296  *
297  * This function alters the system "loops_per_jiffy" for the clock
298  * speed change. Note that loops_per_jiffy cannot be updated on SMP
299  * systems as each CPU might be scaled differently. So, use the arch
300  * per-CPU loops_per_jiffy value wherever possible.
301  */
302 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
303 {
304 #ifndef CONFIG_SMP
305         static unsigned long l_p_j_ref;
306         static unsigned int l_p_j_ref_freq;
307
308         if (ci->flags & CPUFREQ_CONST_LOOPS)
309                 return;
310
311         if (!l_p_j_ref_freq) {
312                 l_p_j_ref = loops_per_jiffy;
313                 l_p_j_ref_freq = ci->old;
314                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
315                          l_p_j_ref, l_p_j_ref_freq);
316         }
317         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
318                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
319                                                                 ci->new);
320                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
321                          loops_per_jiffy, ci->new);
322         }
323 #endif
324 }
325
326 /**
327  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
328  * @policy: cpufreq policy to enable fast frequency switching for.
329  * @freqs: contain details of the frequency update.
330  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
331  *
332  * This function calls the transition notifiers and the "adjust_jiffies"
333  * function. It is called twice on all CPU frequency changes that have
334  * external effects.
335  */
336 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
337                                       struct cpufreq_freqs *freqs,
338                                       unsigned int state)
339 {
340         int cpu;
341
342         BUG_ON(irqs_disabled());
343
344         if (cpufreq_disabled())
345                 return;
346
347         freqs->policy = policy;
348         freqs->flags = cpufreq_driver->flags;
349         pr_debug("notification %u of frequency transition to %u kHz\n",
350                  state, freqs->new);
351
352         switch (state) {
353         case CPUFREQ_PRECHANGE:
354                 /*
355                  * Detect if the driver reported a value as "old frequency"
356                  * which is not equal to what the cpufreq core thinks is
357                  * "old frequency".
358                  */
359                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
360                         if (policy->cur && (policy->cur != freqs->old)) {
361                                 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
362                                          freqs->old, policy->cur);
363                                 freqs->old = policy->cur;
364                         }
365                 }
366
367                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
368                                          CPUFREQ_PRECHANGE, freqs);
369
370                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
371                 break;
372
373         case CPUFREQ_POSTCHANGE:
374                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
375                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
376                          cpumask_pr_args(policy->cpus));
377
378                 for_each_cpu(cpu, policy->cpus)
379                         trace_cpu_frequency(freqs->new, cpu);
380
381                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
382                                          CPUFREQ_POSTCHANGE, freqs);
383
384                 cpufreq_stats_record_transition(policy, freqs->new);
385                 policy->cur = freqs->new;
386         }
387 }
388
389 /* Do post notifications when there are chances that transition has failed */
390 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
391                 struct cpufreq_freqs *freqs, int transition_failed)
392 {
393         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
394         if (!transition_failed)
395                 return;
396
397         swap(freqs->old, freqs->new);
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
399         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
400 }
401
402 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
403                 struct cpufreq_freqs *freqs)
404 {
405
406         /*
407          * Catch double invocations of _begin() which lead to self-deadlock.
408          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
409          * doesn't invoke _begin() on their behalf, and hence the chances of
410          * double invocations are very low. Moreover, there are scenarios
411          * where these checks can emit false-positive warnings in these
412          * drivers; so we avoid that by skipping them altogether.
413          */
414         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
415                                 && current == policy->transition_task);
416
417 wait:
418         wait_event(policy->transition_wait, !policy->transition_ongoing);
419
420         spin_lock(&policy->transition_lock);
421
422         if (unlikely(policy->transition_ongoing)) {
423                 spin_unlock(&policy->transition_lock);
424                 goto wait;
425         }
426
427         policy->transition_ongoing = true;
428         policy->transition_task = current;
429
430         spin_unlock(&policy->transition_lock);
431
432         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
433 }
434 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
435
436 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
437                 struct cpufreq_freqs *freqs, int transition_failed)
438 {
439         if (WARN_ON(!policy->transition_ongoing))
440                 return;
441
442         cpufreq_notify_post_transition(policy, freqs, transition_failed);
443
444         policy->transition_ongoing = false;
445         policy->transition_task = NULL;
446
447         wake_up(&policy->transition_wait);
448 }
449 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
450
451 /*
452  * Fast frequency switching status count.  Positive means "enabled", negative
453  * means "disabled" and 0 means "not decided yet".
454  */
455 static int cpufreq_fast_switch_count;
456 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
457
458 static void cpufreq_list_transition_notifiers(void)
459 {
460         struct notifier_block *nb;
461
462         pr_info("Registered transition notifiers:\n");
463
464         mutex_lock(&cpufreq_transition_notifier_list.mutex);
465
466         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
467                 pr_info("%pS\n", nb->notifier_call);
468
469         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
470 }
471
472 /**
473  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
474  * @policy: cpufreq policy to enable fast frequency switching for.
475  *
476  * Try to enable fast frequency switching for @policy.
477  *
478  * The attempt will fail if there is at least one transition notifier registered
479  * at this point, as fast frequency switching is quite fundamentally at odds
480  * with transition notifiers.  Thus if successful, it will make registration of
481  * transition notifiers fail going forward.
482  */
483 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
484 {
485         lockdep_assert_held(&policy->rwsem);
486
487         if (!policy->fast_switch_possible)
488                 return;
489
490         mutex_lock(&cpufreq_fast_switch_lock);
491         if (cpufreq_fast_switch_count >= 0) {
492                 cpufreq_fast_switch_count++;
493                 policy->fast_switch_enabled = true;
494         } else {
495                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
496                         policy->cpu);
497                 cpufreq_list_transition_notifiers();
498         }
499         mutex_unlock(&cpufreq_fast_switch_lock);
500 }
501 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
502
503 /**
504  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
505  * @policy: cpufreq policy to disable fast frequency switching for.
506  */
507 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
508 {
509         mutex_lock(&cpufreq_fast_switch_lock);
510         if (policy->fast_switch_enabled) {
511                 policy->fast_switch_enabled = false;
512                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
513                         cpufreq_fast_switch_count--;
514         }
515         mutex_unlock(&cpufreq_fast_switch_lock);
516 }
517 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
518
519 /**
520  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
521  * one.
522  * @target_freq: target frequency to resolve.
523  *
524  * The target to driver frequency mapping is cached in the policy.
525  *
526  * Return: Lowest driver-supported frequency greater than or equal to the
527  * given target_freq, subject to policy (min/max) and driver limitations.
528  */
529 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
530                                          unsigned int target_freq)
531 {
532         target_freq = clamp_val(target_freq, policy->min, policy->max);
533         policy->cached_target_freq = target_freq;
534
535         if (cpufreq_driver->target_index) {
536                 int idx;
537
538                 idx = cpufreq_frequency_table_target(policy, target_freq,
539                                                      CPUFREQ_RELATION_L);
540                 policy->cached_resolved_idx = idx;
541                 return policy->freq_table[idx].frequency;
542         }
543
544         if (cpufreq_driver->resolve_freq)
545                 return cpufreq_driver->resolve_freq(policy, target_freq);
546
547         return target_freq;
548 }
549 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
550
551 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
552 {
553         unsigned int latency;
554
555         if (policy->transition_delay_us)
556                 return policy->transition_delay_us;
557
558         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
559         if (latency) {
560                 /*
561                  * For platforms that can change the frequency very fast (< 10
562                  * us), the above formula gives a decent transition delay. But
563                  * for platforms where transition_latency is in milliseconds, it
564                  * ends up giving unrealistic values.
565                  *
566                  * Cap the default transition delay to 10 ms, which seems to be
567                  * a reasonable amount of time after which we should reevaluate
568                  * the frequency.
569                  */
570                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
571         }
572
573         return LATENCY_MULTIPLIER;
574 }
575 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
576
577 /*********************************************************************
578  *                          SYSFS INTERFACE                          *
579  *********************************************************************/
580 static ssize_t show_boost(struct kobject *kobj,
581                           struct kobj_attribute *attr, char *buf)
582 {
583         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
584 }
585
586 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
587                            const char *buf, size_t count)
588 {
589         int ret, enable;
590
591         ret = sscanf(buf, "%d", &enable);
592         if (ret != 1 || enable < 0 || enable > 1)
593                 return -EINVAL;
594
595         if (cpufreq_boost_trigger_state(enable)) {
596                 pr_err("%s: Cannot %s BOOST!\n",
597                        __func__, enable ? "enable" : "disable");
598                 return -EINVAL;
599         }
600
601         pr_debug("%s: cpufreq BOOST %s\n",
602                  __func__, enable ? "enabled" : "disabled");
603
604         return count;
605 }
606 define_one_global_rw(boost);
607
608 static struct cpufreq_governor *find_governor(const char *str_governor)
609 {
610         struct cpufreq_governor *t;
611
612         for_each_governor(t)
613                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
614                         return t;
615
616         return NULL;
617 }
618
619 static int cpufreq_parse_policy(char *str_governor,
620                                 struct cpufreq_policy *policy)
621 {
622         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
623                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
624                 return 0;
625         }
626         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN)) {
627                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
628                 return 0;
629         }
630         return -EINVAL;
631 }
632
633 /**
634  * cpufreq_parse_governor - parse a governor string only for !setpolicy
635  */
636 static int cpufreq_parse_governor(char *str_governor,
637                                   struct cpufreq_policy *policy)
638 {
639         struct cpufreq_governor *t;
640
641         mutex_lock(&cpufreq_governor_mutex);
642
643         t = find_governor(str_governor);
644         if (!t) {
645                 int ret;
646
647                 mutex_unlock(&cpufreq_governor_mutex);
648
649                 ret = request_module("cpufreq_%s", str_governor);
650                 if (ret)
651                         return -EINVAL;
652
653                 mutex_lock(&cpufreq_governor_mutex);
654
655                 t = find_governor(str_governor);
656         }
657         if (t && !try_module_get(t->owner))
658                 t = NULL;
659
660         mutex_unlock(&cpufreq_governor_mutex);
661
662         if (t) {
663                 policy->governor = t;
664                 return 0;
665         }
666
667         return -EINVAL;
668 }
669
670 /**
671  * cpufreq_per_cpu_attr_read() / show_##file_name() -
672  * print out cpufreq information
673  *
674  * Write out information from cpufreq_driver->policy[cpu]; object must be
675  * "unsigned int".
676  */
677
678 #define show_one(file_name, object)                     \
679 static ssize_t show_##file_name                         \
680 (struct cpufreq_policy *policy, char *buf)              \
681 {                                                       \
682         return sprintf(buf, "%u\n", policy->object);    \
683 }
684
685 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
686 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
687 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
688 show_one(scaling_min_freq, min);
689 show_one(scaling_max_freq, max);
690
691 __weak unsigned int arch_freq_get_on_cpu(int cpu)
692 {
693         return 0;
694 }
695
696 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
697 {
698         ssize_t ret;
699         unsigned int freq;
700
701         freq = arch_freq_get_on_cpu(policy->cpu);
702         if (freq)
703                 ret = sprintf(buf, "%u\n", freq);
704         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
705                         cpufreq_driver->get)
706                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
707         else
708                 ret = sprintf(buf, "%u\n", policy->cur);
709         return ret;
710 }
711
712 /**
713  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
714  */
715 #define store_one(file_name, object)                    \
716 static ssize_t store_##file_name                                        \
717 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
718 {                                                                       \
719         int ret, temp;                                                  \
720         struct cpufreq_policy new_policy;                               \
721                                                                         \
722         memcpy(&new_policy, policy, sizeof(*policy));                   \
723         new_policy.min = policy->user_policy.min;                       \
724         new_policy.max = policy->user_policy.max;                       \
725                                                                         \
726         ret = sscanf(buf, "%u", &new_policy.object);                    \
727         if (ret != 1)                                                   \
728                 return -EINVAL;                                         \
729                                                                         \
730         temp = new_policy.object;                                       \
731         ret = cpufreq_set_policy(policy, &new_policy);          \
732         if (!ret)                                                       \
733                 policy->user_policy.object = temp;                      \
734                                                                         \
735         return ret ? ret : count;                                       \
736 }
737
738 store_one(scaling_min_freq, min);
739 store_one(scaling_max_freq, max);
740
741 /**
742  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
743  */
744 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
745                                         char *buf)
746 {
747         unsigned int cur_freq = __cpufreq_get(policy);
748
749         if (cur_freq)
750                 return sprintf(buf, "%u\n", cur_freq);
751
752         return sprintf(buf, "<unknown>\n");
753 }
754
755 /**
756  * show_scaling_governor - show the current policy for the specified CPU
757  */
758 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
759 {
760         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
761                 return sprintf(buf, "powersave\n");
762         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
763                 return sprintf(buf, "performance\n");
764         else if (policy->governor)
765                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
766                                 policy->governor->name);
767         return -EINVAL;
768 }
769
770 /**
771  * store_scaling_governor - store policy for the specified CPU
772  */
773 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
774                                         const char *buf, size_t count)
775 {
776         int ret;
777         char    str_governor[16];
778         struct cpufreq_policy new_policy;
779
780         memcpy(&new_policy, policy, sizeof(*policy));
781
782         ret = sscanf(buf, "%15s", str_governor);
783         if (ret != 1)
784                 return -EINVAL;
785
786         if (cpufreq_driver->setpolicy) {
787                 if (cpufreq_parse_policy(str_governor, &new_policy))
788                         return -EINVAL;
789         } else {
790                 if (cpufreq_parse_governor(str_governor, &new_policy))
791                         return -EINVAL;
792         }
793
794         ret = cpufreq_set_policy(policy, &new_policy);
795
796         if (new_policy.governor)
797                 module_put(new_policy.governor->owner);
798
799         return ret ? ret : count;
800 }
801
802 /**
803  * show_scaling_driver - show the cpufreq driver currently loaded
804  */
805 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
806 {
807         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
808 }
809
810 /**
811  * show_scaling_available_governors - show the available CPUfreq governors
812  */
813 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
814                                                 char *buf)
815 {
816         ssize_t i = 0;
817         struct cpufreq_governor *t;
818
819         if (!has_target()) {
820                 i += sprintf(buf, "performance powersave");
821                 goto out;
822         }
823
824         for_each_governor(t) {
825                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
826                     - (CPUFREQ_NAME_LEN + 2)))
827                         goto out;
828                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
829         }
830 out:
831         i += sprintf(&buf[i], "\n");
832         return i;
833 }
834
835 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
836 {
837         ssize_t i = 0;
838         unsigned int cpu;
839
840         for_each_cpu(cpu, mask) {
841                 if (i)
842                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
843                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
844                 if (i >= (PAGE_SIZE - 5))
845                         break;
846         }
847         i += sprintf(&buf[i], "\n");
848         return i;
849 }
850 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
851
852 /**
853  * show_related_cpus - show the CPUs affected by each transition even if
854  * hw coordination is in use
855  */
856 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
857 {
858         return cpufreq_show_cpus(policy->related_cpus, buf);
859 }
860
861 /**
862  * show_affected_cpus - show the CPUs affected by each transition
863  */
864 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
865 {
866         return cpufreq_show_cpus(policy->cpus, buf);
867 }
868
869 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
870                                         const char *buf, size_t count)
871 {
872         unsigned int freq = 0;
873         unsigned int ret;
874
875         if (!policy->governor || !policy->governor->store_setspeed)
876                 return -EINVAL;
877
878         ret = sscanf(buf, "%u", &freq);
879         if (ret != 1)
880                 return -EINVAL;
881
882         policy->governor->store_setspeed(policy, freq);
883
884         return count;
885 }
886
887 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
888 {
889         if (!policy->governor || !policy->governor->show_setspeed)
890                 return sprintf(buf, "<unsupported>\n");
891
892         return policy->governor->show_setspeed(policy, buf);
893 }
894
895 /**
896  * show_bios_limit - show the current cpufreq HW/BIOS limitation
897  */
898 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
899 {
900         unsigned int limit;
901         int ret;
902         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
903         if (!ret)
904                 return sprintf(buf, "%u\n", limit);
905         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
906 }
907
908 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
909 cpufreq_freq_attr_ro(cpuinfo_min_freq);
910 cpufreq_freq_attr_ro(cpuinfo_max_freq);
911 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
912 cpufreq_freq_attr_ro(scaling_available_governors);
913 cpufreq_freq_attr_ro(scaling_driver);
914 cpufreq_freq_attr_ro(scaling_cur_freq);
915 cpufreq_freq_attr_ro(bios_limit);
916 cpufreq_freq_attr_ro(related_cpus);
917 cpufreq_freq_attr_ro(affected_cpus);
918 cpufreq_freq_attr_rw(scaling_min_freq);
919 cpufreq_freq_attr_rw(scaling_max_freq);
920 cpufreq_freq_attr_rw(scaling_governor);
921 cpufreq_freq_attr_rw(scaling_setspeed);
922
923 static struct attribute *default_attrs[] = {
924         &cpuinfo_min_freq.attr,
925         &cpuinfo_max_freq.attr,
926         &cpuinfo_transition_latency.attr,
927         &scaling_min_freq.attr,
928         &scaling_max_freq.attr,
929         &affected_cpus.attr,
930         &related_cpus.attr,
931         &scaling_governor.attr,
932         &scaling_driver.attr,
933         &scaling_available_governors.attr,
934         &scaling_setspeed.attr,
935         NULL
936 };
937
938 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
939 #define to_attr(a) container_of(a, struct freq_attr, attr)
940
941 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
942 {
943         struct cpufreq_policy *policy = to_policy(kobj);
944         struct freq_attr *fattr = to_attr(attr);
945         ssize_t ret;
946
947         down_read(&policy->rwsem);
948         ret = fattr->show(policy, buf);
949         up_read(&policy->rwsem);
950
951         return ret;
952 }
953
954 static ssize_t store(struct kobject *kobj, struct attribute *attr,
955                      const char *buf, size_t count)
956 {
957         struct cpufreq_policy *policy = to_policy(kobj);
958         struct freq_attr *fattr = to_attr(attr);
959         ssize_t ret = -EINVAL;
960
961         /*
962          * cpus_read_trylock() is used here to work around a circular lock
963          * dependency problem with respect to the cpufreq_register_driver().
964          */
965         if (!cpus_read_trylock())
966                 return -EBUSY;
967
968         if (cpu_online(policy->cpu)) {
969                 down_write(&policy->rwsem);
970                 ret = fattr->store(policy, buf, count);
971                 up_write(&policy->rwsem);
972         }
973
974         cpus_read_unlock();
975
976         return ret;
977 }
978
979 static void cpufreq_sysfs_release(struct kobject *kobj)
980 {
981         struct cpufreq_policy *policy = to_policy(kobj);
982         pr_debug("last reference is dropped\n");
983         complete(&policy->kobj_unregister);
984 }
985
986 static const struct sysfs_ops sysfs_ops = {
987         .show   = show,
988         .store  = store,
989 };
990
991 static struct kobj_type ktype_cpufreq = {
992         .sysfs_ops      = &sysfs_ops,
993         .default_attrs  = default_attrs,
994         .release        = cpufreq_sysfs_release,
995 };
996
997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
998 {
999         struct device *dev = get_cpu_device(cpu);
1000
1001         if (!dev)
1002                 return;
1003
1004         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005                 return;
1006
1007         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009                 dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013                                    struct device *dev)
1014 {
1015         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016         sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021         struct freq_attr **drv_attr;
1022         int ret = 0;
1023
1024         /* set up files for this cpu device */
1025         drv_attr = cpufreq_driver->attr;
1026         while (drv_attr && *drv_attr) {
1027                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028                 if (ret)
1029                         return ret;
1030                 drv_attr++;
1031         }
1032         if (cpufreq_driver->get) {
1033                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034                 if (ret)
1035                         return ret;
1036         }
1037
1038         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039         if (ret)
1040                 return ret;
1041
1042         if (cpufreq_driver->bios_limit) {
1043                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044                 if (ret)
1045                         return ret;
1046         }
1047
1048         return 0;
1049 }
1050
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053         return NULL;
1054 }
1055
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058         struct cpufreq_governor *gov = NULL, *def_gov = NULL;
1059         struct cpufreq_policy new_policy;
1060
1061         memcpy(&new_policy, policy, sizeof(*policy));
1062
1063         def_gov = cpufreq_default_governor();
1064
1065         if (has_target()) {
1066                 /*
1067                  * Update governor of new_policy to the governor used before
1068                  * hotplug
1069                  */
1070                 gov = find_governor(policy->last_governor);
1071                 if (gov) {
1072                         pr_debug("Restoring governor %s for cpu %d\n",
1073                                 policy->governor->name, policy->cpu);
1074                 } else {
1075                         if (!def_gov)
1076                                 return -ENODATA;
1077                         gov = def_gov;
1078                 }
1079                 new_policy.governor = gov;
1080         } else {
1081                 /* Use the default policy if there is no last_policy. */
1082                 if (policy->last_policy) {
1083                         new_policy.policy = policy->last_policy;
1084                 } else {
1085                         if (!def_gov)
1086                                 return -ENODATA;
1087                         cpufreq_parse_policy(def_gov->name, &new_policy);
1088                 }
1089         }
1090
1091         return cpufreq_set_policy(policy, &new_policy);
1092 }
1093
1094 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1095 {
1096         int ret = 0;
1097
1098         /* Has this CPU been taken care of already? */
1099         if (cpumask_test_cpu(cpu, policy->cpus))
1100                 return 0;
1101
1102         down_write(&policy->rwsem);
1103         if (has_target())
1104                 cpufreq_stop_governor(policy);
1105
1106         cpumask_set_cpu(cpu, policy->cpus);
1107
1108         if (has_target()) {
1109                 ret = cpufreq_start_governor(policy);
1110                 if (ret)
1111                         pr_err("%s: Failed to start governor\n", __func__);
1112         }
1113         up_write(&policy->rwsem);
1114         return ret;
1115 }
1116
1117 static void handle_update(struct work_struct *work)
1118 {
1119         struct cpufreq_policy *policy =
1120                 container_of(work, struct cpufreq_policy, update);
1121         unsigned int cpu = policy->cpu;
1122         pr_debug("handle_update for cpu %u called\n", cpu);
1123         cpufreq_update_policy(cpu);
1124 }
1125
1126 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1127 {
1128         struct cpufreq_policy *policy;
1129         int ret;
1130
1131         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1132         if (!policy)
1133                 return NULL;
1134
1135         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1136                 goto err_free_policy;
1137
1138         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1139                 goto err_free_cpumask;
1140
1141         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1142                 goto err_free_rcpumask;
1143
1144         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1145                                    cpufreq_global_kobject, "policy%u", cpu);
1146         if (ret) {
1147                 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1148                 /*
1149                  * The entire policy object will be freed below, but the extra
1150                  * memory allocated for the kobject name needs to be freed by
1151                  * releasing the kobject.
1152                  */
1153                 kobject_put(&policy->kobj);
1154                 goto err_free_real_cpus;
1155         }
1156
1157         INIT_LIST_HEAD(&policy->policy_list);
1158         init_rwsem(&policy->rwsem);
1159         spin_lock_init(&policy->transition_lock);
1160         init_waitqueue_head(&policy->transition_wait);
1161         init_completion(&policy->kobj_unregister);
1162         INIT_WORK(&policy->update, handle_update);
1163
1164         policy->cpu = cpu;
1165         return policy;
1166
1167 err_free_real_cpus:
1168         free_cpumask_var(policy->real_cpus);
1169 err_free_rcpumask:
1170         free_cpumask_var(policy->related_cpus);
1171 err_free_cpumask:
1172         free_cpumask_var(policy->cpus);
1173 err_free_policy:
1174         kfree(policy);
1175
1176         return NULL;
1177 }
1178
1179 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1180 {
1181         struct kobject *kobj;
1182         struct completion *cmp;
1183
1184         down_write(&policy->rwsem);
1185         cpufreq_stats_free_table(policy);
1186         kobj = &policy->kobj;
1187         cmp = &policy->kobj_unregister;
1188         up_write(&policy->rwsem);
1189         kobject_put(kobj);
1190
1191         /*
1192          * We need to make sure that the underlying kobj is
1193          * actually not referenced anymore by anybody before we
1194          * proceed with unloading.
1195          */
1196         pr_debug("waiting for dropping of refcount\n");
1197         wait_for_completion(cmp);
1198         pr_debug("wait complete\n");
1199 }
1200
1201 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1202 {
1203         unsigned long flags;
1204         int cpu;
1205
1206         /* Remove policy from list */
1207         write_lock_irqsave(&cpufreq_driver_lock, flags);
1208         list_del(&policy->policy_list);
1209
1210         for_each_cpu(cpu, policy->related_cpus)
1211                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1212         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1213
1214         cpufreq_policy_put_kobj(policy);
1215         free_cpumask_var(policy->real_cpus);
1216         free_cpumask_var(policy->related_cpus);
1217         free_cpumask_var(policy->cpus);
1218         kfree(policy);
1219 }
1220
1221 static int cpufreq_online(unsigned int cpu)
1222 {
1223         struct cpufreq_policy *policy;
1224         bool new_policy;
1225         unsigned long flags;
1226         unsigned int j;
1227         int ret;
1228
1229         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1230
1231         /* Check if this CPU already has a policy to manage it */
1232         policy = per_cpu(cpufreq_cpu_data, cpu);
1233         if (policy) {
1234                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1235                 if (!policy_is_inactive(policy))
1236                         return cpufreq_add_policy_cpu(policy, cpu);
1237
1238                 /* This is the only online CPU for the policy.  Start over. */
1239                 new_policy = false;
1240                 down_write(&policy->rwsem);
1241                 policy->cpu = cpu;
1242                 policy->governor = NULL;
1243                 up_write(&policy->rwsem);
1244         } else {
1245                 new_policy = true;
1246                 policy = cpufreq_policy_alloc(cpu);
1247                 if (!policy)
1248                         return -ENOMEM;
1249         }
1250
1251         if (!new_policy && cpufreq_driver->online) {
1252                 ret = cpufreq_driver->online(policy);
1253                 if (ret) {
1254                         pr_debug("%s: %d: initialization failed\n", __func__,
1255                                  __LINE__);
1256                         goto out_exit_policy;
1257                 }
1258
1259                 /* Recover policy->cpus using related_cpus */
1260                 cpumask_copy(policy->cpus, policy->related_cpus);
1261         } else {
1262                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1263
1264                 /*
1265                  * Call driver. From then on the cpufreq must be able
1266                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1267                  */
1268                 ret = cpufreq_driver->init(policy);
1269                 if (ret) {
1270                         pr_debug("%s: %d: initialization failed\n", __func__,
1271                                  __LINE__);
1272                         goto out_free_policy;
1273                 }
1274
1275                 ret = cpufreq_table_validate_and_sort(policy);
1276                 if (ret)
1277                         goto out_exit_policy;
1278
1279                 /* related_cpus should at least include policy->cpus. */
1280                 cpumask_copy(policy->related_cpus, policy->cpus);
1281         }
1282
1283         down_write(&policy->rwsem);
1284         /*
1285          * affected cpus must always be the one, which are online. We aren't
1286          * managing offline cpus here.
1287          */
1288         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1289
1290         if (new_policy) {
1291                 policy->user_policy.min = policy->min;
1292                 policy->user_policy.max = policy->max;
1293
1294                 for_each_cpu(j, policy->related_cpus) {
1295                         per_cpu(cpufreq_cpu_data, j) = policy;
1296                         add_cpu_dev_symlink(policy, j);
1297                 }
1298         } else {
1299                 policy->min = policy->user_policy.min;
1300                 policy->max = policy->user_policy.max;
1301         }
1302
1303         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1304                 policy->cur = cpufreq_driver->get(policy->cpu);
1305                 if (!policy->cur) {
1306                         pr_err("%s: ->get() failed\n", __func__);
1307                         goto out_destroy_policy;
1308                 }
1309         }
1310
1311         /*
1312          * Sometimes boot loaders set CPU frequency to a value outside of
1313          * frequency table present with cpufreq core. In such cases CPU might be
1314          * unstable if it has to run on that frequency for long duration of time
1315          * and so its better to set it to a frequency which is specified in
1316          * freq-table. This also makes cpufreq stats inconsistent as
1317          * cpufreq-stats would fail to register because current frequency of CPU
1318          * isn't found in freq-table.
1319          *
1320          * Because we don't want this change to effect boot process badly, we go
1321          * for the next freq which is >= policy->cur ('cur' must be set by now,
1322          * otherwise we will end up setting freq to lowest of the table as 'cur'
1323          * is initialized to zero).
1324          *
1325          * We are passing target-freq as "policy->cur - 1" otherwise
1326          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1327          * equal to target-freq.
1328          */
1329         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1330             && has_target()) {
1331                 /* Are we running at unknown frequency ? */
1332                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1333                 if (ret == -EINVAL) {
1334                         /* Warn user and fix it */
1335                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1336                                 __func__, policy->cpu, policy->cur);
1337                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1338                                 CPUFREQ_RELATION_L);
1339
1340                         /*
1341                          * Reaching here after boot in a few seconds may not
1342                          * mean that system will remain stable at "unknown"
1343                          * frequency for longer duration. Hence, a BUG_ON().
1344                          */
1345                         BUG_ON(ret);
1346                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1347                                 __func__, policy->cpu, policy->cur);
1348                 }
1349         }
1350
1351         if (new_policy) {
1352                 ret = cpufreq_add_dev_interface(policy);
1353                 if (ret)
1354                         goto out_destroy_policy;
1355
1356                 cpufreq_stats_create_table(policy);
1357
1358                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1359                 list_add(&policy->policy_list, &cpufreq_policy_list);
1360                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1361         }
1362
1363         ret = cpufreq_init_policy(policy);
1364         if (ret) {
1365                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1366                        __func__, cpu, ret);
1367                 goto out_destroy_policy;
1368         }
1369
1370         up_write(&policy->rwsem);
1371
1372         kobject_uevent(&policy->kobj, KOBJ_ADD);
1373
1374         /* Callback for handling stuff after policy is ready */
1375         if (cpufreq_driver->ready)
1376                 cpufreq_driver->ready(policy);
1377
1378         if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1379             cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV)
1380                 policy->cdev = of_cpufreq_cooling_register(policy);
1381
1382         pr_debug("initialization complete\n");
1383
1384         return 0;
1385
1386 out_destroy_policy:
1387         for_each_cpu(j, policy->real_cpus)
1388                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1389
1390         up_write(&policy->rwsem);
1391
1392 out_exit_policy:
1393         if (cpufreq_driver->exit)
1394                 cpufreq_driver->exit(policy);
1395
1396 out_free_policy:
1397         cpufreq_policy_free(policy);
1398         return ret;
1399 }
1400
1401 /**
1402  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1403  * @dev: CPU device.
1404  * @sif: Subsystem interface structure pointer (not used)
1405  */
1406 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1407 {
1408         struct cpufreq_policy *policy;
1409         unsigned cpu = dev->id;
1410         int ret;
1411
1412         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1413
1414         if (cpu_online(cpu)) {
1415                 ret = cpufreq_online(cpu);
1416                 if (ret)
1417                         return ret;
1418         }
1419
1420         /* Create sysfs link on CPU registration */
1421         policy = per_cpu(cpufreq_cpu_data, cpu);
1422         if (policy)
1423                 add_cpu_dev_symlink(policy, cpu);
1424
1425         return 0;
1426 }
1427
1428 static int cpufreq_offline(unsigned int cpu)
1429 {
1430         struct cpufreq_policy *policy;
1431         int ret;
1432
1433         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1434
1435         policy = cpufreq_cpu_get_raw(cpu);
1436         if (!policy) {
1437                 pr_debug("%s: No cpu_data found\n", __func__);
1438                 return 0;
1439         }
1440
1441         down_write(&policy->rwsem);
1442         if (has_target())
1443                 cpufreq_stop_governor(policy);
1444
1445         cpumask_clear_cpu(cpu, policy->cpus);
1446
1447         if (policy_is_inactive(policy)) {
1448                 if (has_target())
1449                         strncpy(policy->last_governor, policy->governor->name,
1450                                 CPUFREQ_NAME_LEN);
1451                 else
1452                         policy->last_policy = policy->policy;
1453         } else if (cpu == policy->cpu) {
1454                 /* Nominate new CPU */
1455                 policy->cpu = cpumask_any(policy->cpus);
1456         }
1457
1458         /* Start governor again for active policy */
1459         if (!policy_is_inactive(policy)) {
1460                 if (has_target()) {
1461                         ret = cpufreq_start_governor(policy);
1462                         if (ret)
1463                                 pr_err("%s: Failed to start governor\n", __func__);
1464                 }
1465
1466                 goto unlock;
1467         }
1468
1469         if (IS_ENABLED(CONFIG_CPU_THERMAL) &&
1470             cpufreq_driver->flags & CPUFREQ_IS_COOLING_DEV) {
1471                 cpufreq_cooling_unregister(policy->cdev);
1472                 policy->cdev = NULL;
1473         }
1474
1475         if (cpufreq_driver->stop_cpu)
1476                 cpufreq_driver->stop_cpu(policy);
1477
1478         if (has_target())
1479                 cpufreq_exit_governor(policy);
1480
1481         /*
1482          * Perform the ->offline() during light-weight tear-down, as
1483          * that allows fast recovery when the CPU comes back.
1484          */
1485         if (cpufreq_driver->offline) {
1486                 cpufreq_driver->offline(policy);
1487         } else if (cpufreq_driver->exit) {
1488                 cpufreq_driver->exit(policy);
1489                 policy->freq_table = NULL;
1490         }
1491
1492 unlock:
1493         up_write(&policy->rwsem);
1494         return 0;
1495 }
1496
1497 /**
1498  * cpufreq_remove_dev - remove a CPU device
1499  *
1500  * Removes the cpufreq interface for a CPU device.
1501  */
1502 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1503 {
1504         unsigned int cpu = dev->id;
1505         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1506
1507         if (!policy)
1508                 return;
1509
1510         if (cpu_online(cpu))
1511                 cpufreq_offline(cpu);
1512
1513         cpumask_clear_cpu(cpu, policy->real_cpus);
1514         remove_cpu_dev_symlink(policy, dev);
1515
1516         if (cpumask_empty(policy->real_cpus)) {
1517                 /* We did light-weight exit earlier, do full tear down now */
1518                 if (cpufreq_driver->offline)
1519                         cpufreq_driver->exit(policy);
1520
1521                 cpufreq_policy_free(policy);
1522         }
1523 }
1524
1525 /**
1526  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1527  *      in deep trouble.
1528  *      @policy: policy managing CPUs
1529  *      @new_freq: CPU frequency the CPU actually runs at
1530  *
1531  *      We adjust to current frequency first, and need to clean up later.
1532  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1533  */
1534 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1535                                 unsigned int new_freq)
1536 {
1537         struct cpufreq_freqs freqs;
1538
1539         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1540                  policy->cur, new_freq);
1541
1542         freqs.old = policy->cur;
1543         freqs.new = new_freq;
1544
1545         cpufreq_freq_transition_begin(policy, &freqs);
1546         cpufreq_freq_transition_end(policy, &freqs, 0);
1547 }
1548
1549 /**
1550  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1551  * @cpu: CPU number
1552  *
1553  * This is the last known freq, without actually getting it from the driver.
1554  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1555  */
1556 unsigned int cpufreq_quick_get(unsigned int cpu)
1557 {
1558         struct cpufreq_policy *policy;
1559         unsigned int ret_freq = 0;
1560         unsigned long flags;
1561
1562         read_lock_irqsave(&cpufreq_driver_lock, flags);
1563
1564         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1565                 ret_freq = cpufreq_driver->get(cpu);
1566                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1567                 return ret_freq;
1568         }
1569
1570         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1571
1572         policy = cpufreq_cpu_get(cpu);
1573         if (policy) {
1574                 ret_freq = policy->cur;
1575                 cpufreq_cpu_put(policy);
1576         }
1577
1578         return ret_freq;
1579 }
1580 EXPORT_SYMBOL(cpufreq_quick_get);
1581
1582 /**
1583  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1584  * @cpu: CPU number
1585  *
1586  * Just return the max possible frequency for a given CPU.
1587  */
1588 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1589 {
1590         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1591         unsigned int ret_freq = 0;
1592
1593         if (policy) {
1594                 ret_freq = policy->max;
1595                 cpufreq_cpu_put(policy);
1596         }
1597
1598         return ret_freq;
1599 }
1600 EXPORT_SYMBOL(cpufreq_quick_get_max);
1601
1602 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1603 {
1604         unsigned int ret_freq = 0;
1605
1606         if (unlikely(policy_is_inactive(policy)))
1607                 return ret_freq;
1608
1609         ret_freq = cpufreq_driver->get(policy->cpu);
1610
1611         /*
1612          * If fast frequency switching is used with the given policy, the check
1613          * against policy->cur is pointless, so skip it in that case too.
1614          */
1615         if (policy->fast_switch_enabled)
1616                 return ret_freq;
1617
1618         if (ret_freq && policy->cur &&
1619                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1620                 /* verify no discrepancy between actual and
1621                                         saved value exists */
1622                 if (unlikely(ret_freq != policy->cur)) {
1623                         cpufreq_out_of_sync(policy, ret_freq);
1624                         schedule_work(&policy->update);
1625                 }
1626         }
1627
1628         return ret_freq;
1629 }
1630
1631 /**
1632  * cpufreq_get - get the current CPU frequency (in kHz)
1633  * @cpu: CPU number
1634  *
1635  * Get the CPU current (static) CPU frequency
1636  */
1637 unsigned int cpufreq_get(unsigned int cpu)
1638 {
1639         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1640         unsigned int ret_freq = 0;
1641
1642         if (policy) {
1643                 down_read(&policy->rwsem);
1644                 if (cpufreq_driver->get)
1645                         ret_freq = __cpufreq_get(policy);
1646                 up_read(&policy->rwsem);
1647
1648                 cpufreq_cpu_put(policy);
1649         }
1650
1651         return ret_freq;
1652 }
1653 EXPORT_SYMBOL(cpufreq_get);
1654
1655 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1656 {
1657         unsigned int new_freq;
1658
1659         new_freq = cpufreq_driver->get(policy->cpu);
1660         if (!new_freq)
1661                 return 0;
1662
1663         if (!policy->cur) {
1664                 pr_debug("cpufreq: Driver did not initialize current freq\n");
1665                 policy->cur = new_freq;
1666         } else if (policy->cur != new_freq && has_target()) {
1667                 cpufreq_out_of_sync(policy, new_freq);
1668         }
1669
1670         return new_freq;
1671 }
1672
1673 static struct subsys_interface cpufreq_interface = {
1674         .name           = "cpufreq",
1675         .subsys         = &cpu_subsys,
1676         .add_dev        = cpufreq_add_dev,
1677         .remove_dev     = cpufreq_remove_dev,
1678 };
1679
1680 /*
1681  * In case platform wants some specific frequency to be configured
1682  * during suspend..
1683  */
1684 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1685 {
1686         int ret;
1687
1688         if (!policy->suspend_freq) {
1689                 pr_debug("%s: suspend_freq not defined\n", __func__);
1690                 return 0;
1691         }
1692
1693         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1694                         policy->suspend_freq);
1695
1696         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1697                         CPUFREQ_RELATION_H);
1698         if (ret)
1699                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1700                                 __func__, policy->suspend_freq, ret);
1701
1702         return ret;
1703 }
1704 EXPORT_SYMBOL(cpufreq_generic_suspend);
1705
1706 /**
1707  * cpufreq_suspend() - Suspend CPUFreq governors
1708  *
1709  * Called during system wide Suspend/Hibernate cycles for suspending governors
1710  * as some platforms can't change frequency after this point in suspend cycle.
1711  * Because some of the devices (like: i2c, regulators, etc) they use for
1712  * changing frequency are suspended quickly after this point.
1713  */
1714 void cpufreq_suspend(void)
1715 {
1716         struct cpufreq_policy *policy;
1717
1718         if (!cpufreq_driver)
1719                 return;
1720
1721         if (!has_target() && !cpufreq_driver->suspend)
1722                 goto suspend;
1723
1724         pr_debug("%s: Suspending Governors\n", __func__);
1725
1726         for_each_active_policy(policy) {
1727                 if (has_target()) {
1728                         down_write(&policy->rwsem);
1729                         cpufreq_stop_governor(policy);
1730                         up_write(&policy->rwsem);
1731                 }
1732
1733                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1734                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1735                                 policy);
1736         }
1737
1738 suspend:
1739         cpufreq_suspended = true;
1740 }
1741
1742 /**
1743  * cpufreq_resume() - Resume CPUFreq governors
1744  *
1745  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1746  * are suspended with cpufreq_suspend().
1747  */
1748 void cpufreq_resume(void)
1749 {
1750         struct cpufreq_policy *policy;
1751         int ret;
1752
1753         if (!cpufreq_driver)
1754                 return;
1755
1756         if (unlikely(!cpufreq_suspended))
1757                 return;
1758
1759         cpufreq_suspended = false;
1760
1761         if (!has_target() && !cpufreq_driver->resume)
1762                 return;
1763
1764         pr_debug("%s: Resuming Governors\n", __func__);
1765
1766         for_each_active_policy(policy) {
1767                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1768                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1769                                 policy);
1770                 } else if (has_target()) {
1771                         down_write(&policy->rwsem);
1772                         ret = cpufreq_start_governor(policy);
1773                         up_write(&policy->rwsem);
1774
1775                         if (ret)
1776                                 pr_err("%s: Failed to start governor for policy: %p\n",
1777                                        __func__, policy);
1778                 }
1779         }
1780 }
1781
1782 /**
1783  *      cpufreq_get_current_driver - return current driver's name
1784  *
1785  *      Return the name string of the currently loaded cpufreq driver
1786  *      or NULL, if none.
1787  */
1788 const char *cpufreq_get_current_driver(void)
1789 {
1790         if (cpufreq_driver)
1791                 return cpufreq_driver->name;
1792
1793         return NULL;
1794 }
1795 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1796
1797 /**
1798  *      cpufreq_get_driver_data - return current driver data
1799  *
1800  *      Return the private data of the currently loaded cpufreq
1801  *      driver, or NULL if no cpufreq driver is loaded.
1802  */
1803 void *cpufreq_get_driver_data(void)
1804 {
1805         if (cpufreq_driver)
1806                 return cpufreq_driver->driver_data;
1807
1808         return NULL;
1809 }
1810 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1811
1812 /*********************************************************************
1813  *                     NOTIFIER LISTS INTERFACE                      *
1814  *********************************************************************/
1815
1816 /**
1817  *      cpufreq_register_notifier - register a driver with cpufreq
1818  *      @nb: notifier function to register
1819  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1820  *
1821  *      Add a driver to one of two lists: either a list of drivers that
1822  *      are notified about clock rate changes (once before and once after
1823  *      the transition), or a list of drivers that are notified about
1824  *      changes in cpufreq policy.
1825  *
1826  *      This function may sleep, and has the same return conditions as
1827  *      blocking_notifier_chain_register.
1828  */
1829 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1830 {
1831         int ret;
1832
1833         if (cpufreq_disabled())
1834                 return -EINVAL;
1835
1836         switch (list) {
1837         case CPUFREQ_TRANSITION_NOTIFIER:
1838                 mutex_lock(&cpufreq_fast_switch_lock);
1839
1840                 if (cpufreq_fast_switch_count > 0) {
1841                         mutex_unlock(&cpufreq_fast_switch_lock);
1842                         return -EBUSY;
1843                 }
1844                 ret = srcu_notifier_chain_register(
1845                                 &cpufreq_transition_notifier_list, nb);
1846                 if (!ret)
1847                         cpufreq_fast_switch_count--;
1848
1849                 mutex_unlock(&cpufreq_fast_switch_lock);
1850                 break;
1851         case CPUFREQ_POLICY_NOTIFIER:
1852                 ret = blocking_notifier_chain_register(
1853                                 &cpufreq_policy_notifier_list, nb);
1854                 break;
1855         default:
1856                 ret = -EINVAL;
1857         }
1858
1859         return ret;
1860 }
1861 EXPORT_SYMBOL(cpufreq_register_notifier);
1862
1863 /**
1864  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1865  *      @nb: notifier block to be unregistered
1866  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1867  *
1868  *      Remove a driver from the CPU frequency notifier list.
1869  *
1870  *      This function may sleep, and has the same return conditions as
1871  *      blocking_notifier_chain_unregister.
1872  */
1873 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1874 {
1875         int ret;
1876
1877         if (cpufreq_disabled())
1878                 return -EINVAL;
1879
1880         switch (list) {
1881         case CPUFREQ_TRANSITION_NOTIFIER:
1882                 mutex_lock(&cpufreq_fast_switch_lock);
1883
1884                 ret = srcu_notifier_chain_unregister(
1885                                 &cpufreq_transition_notifier_list, nb);
1886                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1887                         cpufreq_fast_switch_count++;
1888
1889                 mutex_unlock(&cpufreq_fast_switch_lock);
1890                 break;
1891         case CPUFREQ_POLICY_NOTIFIER:
1892                 ret = blocking_notifier_chain_unregister(
1893                                 &cpufreq_policy_notifier_list, nb);
1894                 break;
1895         default:
1896                 ret = -EINVAL;
1897         }
1898
1899         return ret;
1900 }
1901 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1902
1903
1904 /*********************************************************************
1905  *                              GOVERNORS                            *
1906  *********************************************************************/
1907
1908 /**
1909  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1910  * @policy: cpufreq policy to switch the frequency for.
1911  * @target_freq: New frequency to set (may be approximate).
1912  *
1913  * Carry out a fast frequency switch without sleeping.
1914  *
1915  * The driver's ->fast_switch() callback invoked by this function must be
1916  * suitable for being called from within RCU-sched read-side critical sections
1917  * and it is expected to select the minimum available frequency greater than or
1918  * equal to @target_freq (CPUFREQ_RELATION_L).
1919  *
1920  * This function must not be called if policy->fast_switch_enabled is unset.
1921  *
1922  * Governors calling this function must guarantee that it will never be invoked
1923  * twice in parallel for the same policy and that it will never be called in
1924  * parallel with either ->target() or ->target_index() for the same policy.
1925  *
1926  * Returns the actual frequency set for the CPU.
1927  *
1928  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1929  * error condition, the hardware configuration must be preserved.
1930  */
1931 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1932                                         unsigned int target_freq)
1933 {
1934         target_freq = clamp_val(target_freq, policy->min, policy->max);
1935
1936         return cpufreq_driver->fast_switch(policy, target_freq);
1937 }
1938 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1939
1940 /* Must set freqs->new to intermediate frequency */
1941 static int __target_intermediate(struct cpufreq_policy *policy,
1942                                  struct cpufreq_freqs *freqs, int index)
1943 {
1944         int ret;
1945
1946         freqs->new = cpufreq_driver->get_intermediate(policy, index);
1947
1948         /* We don't need to switch to intermediate freq */
1949         if (!freqs->new)
1950                 return 0;
1951
1952         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1953                  __func__, policy->cpu, freqs->old, freqs->new);
1954
1955         cpufreq_freq_transition_begin(policy, freqs);
1956         ret = cpufreq_driver->target_intermediate(policy, index);
1957         cpufreq_freq_transition_end(policy, freqs, ret);
1958
1959         if (ret)
1960                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1961                        __func__, ret);
1962
1963         return ret;
1964 }
1965
1966 static int __target_index(struct cpufreq_policy *policy, int index)
1967 {
1968         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1969         unsigned int intermediate_freq = 0;
1970         unsigned int newfreq = policy->freq_table[index].frequency;
1971         int retval = -EINVAL;
1972         bool notify;
1973
1974         if (newfreq == policy->cur)
1975                 return 0;
1976
1977         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1978         if (notify) {
1979                 /* Handle switching to intermediate frequency */
1980                 if (cpufreq_driver->get_intermediate) {
1981                         retval = __target_intermediate(policy, &freqs, index);
1982                         if (retval)
1983                                 return retval;
1984
1985                         intermediate_freq = freqs.new;
1986                         /* Set old freq to intermediate */
1987                         if (intermediate_freq)
1988                                 freqs.old = freqs.new;
1989                 }
1990
1991                 freqs.new = newfreq;
1992                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1993                          __func__, policy->cpu, freqs.old, freqs.new);
1994
1995                 cpufreq_freq_transition_begin(policy, &freqs);
1996         }
1997
1998         retval = cpufreq_driver->target_index(policy, index);
1999         if (retval)
2000                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2001                        retval);
2002
2003         if (notify) {
2004                 cpufreq_freq_transition_end(policy, &freqs, retval);
2005
2006                 /*
2007                  * Failed after setting to intermediate freq? Driver should have
2008                  * reverted back to initial frequency and so should we. Check
2009                  * here for intermediate_freq instead of get_intermediate, in
2010                  * case we haven't switched to intermediate freq at all.
2011                  */
2012                 if (unlikely(retval && intermediate_freq)) {
2013                         freqs.old = intermediate_freq;
2014                         freqs.new = policy->restore_freq;
2015                         cpufreq_freq_transition_begin(policy, &freqs);
2016                         cpufreq_freq_transition_end(policy, &freqs, 0);
2017                 }
2018         }
2019
2020         return retval;
2021 }
2022
2023 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2024                             unsigned int target_freq,
2025                             unsigned int relation)
2026 {
2027         unsigned int old_target_freq = target_freq;
2028         int index;
2029
2030         if (cpufreq_disabled())
2031                 return -ENODEV;
2032
2033         /* Make sure that target_freq is within supported range */
2034         target_freq = clamp_val(target_freq, policy->min, policy->max);
2035
2036         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2037                  policy->cpu, target_freq, relation, old_target_freq);
2038
2039         /*
2040          * This might look like a redundant call as we are checking it again
2041          * after finding index. But it is left intentionally for cases where
2042          * exactly same freq is called again and so we can save on few function
2043          * calls.
2044          */
2045         if (target_freq == policy->cur)
2046                 return 0;
2047
2048         /* Save last value to restore later on errors */
2049         policy->restore_freq = policy->cur;
2050
2051         if (cpufreq_driver->target)
2052                 return cpufreq_driver->target(policy, target_freq, relation);
2053
2054         if (!cpufreq_driver->target_index)
2055                 return -EINVAL;
2056
2057         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2058
2059         return __target_index(policy, index);
2060 }
2061 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2062
2063 int cpufreq_driver_target(struct cpufreq_policy *policy,
2064                           unsigned int target_freq,
2065                           unsigned int relation)
2066 {
2067         int ret = -EINVAL;
2068
2069         down_write(&policy->rwsem);
2070
2071         ret = __cpufreq_driver_target(policy, target_freq, relation);
2072
2073         up_write(&policy->rwsem);
2074
2075         return ret;
2076 }
2077 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2078
2079 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2080 {
2081         return NULL;
2082 }
2083
2084 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2085 {
2086         int ret;
2087
2088         /* Don't start any governor operations if we are entering suspend */
2089         if (cpufreq_suspended)
2090                 return 0;
2091         /*
2092          * Governor might not be initiated here if ACPI _PPC changed
2093          * notification happened, so check it.
2094          */
2095         if (!policy->governor)
2096                 return -EINVAL;
2097
2098         /* Platform doesn't want dynamic frequency switching ? */
2099         if (policy->governor->dynamic_switching &&
2100             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2101                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2102
2103                 if (gov) {
2104                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2105                                 policy->governor->name, gov->name);
2106                         policy->governor = gov;
2107                 } else {
2108                         return -EINVAL;
2109                 }
2110         }
2111
2112         if (!try_module_get(policy->governor->owner))
2113                 return -EINVAL;
2114
2115         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2116
2117         if (policy->governor->init) {
2118                 ret = policy->governor->init(policy);
2119                 if (ret) {
2120                         module_put(policy->governor->owner);
2121                         return ret;
2122                 }
2123         }
2124
2125         return 0;
2126 }
2127
2128 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2129 {
2130         if (cpufreq_suspended || !policy->governor)
2131                 return;
2132
2133         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2134
2135         if (policy->governor->exit)
2136                 policy->governor->exit(policy);
2137
2138         module_put(policy->governor->owner);
2139 }
2140
2141 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2142 {
2143         int ret;
2144
2145         if (cpufreq_suspended)
2146                 return 0;
2147
2148         if (!policy->governor)
2149                 return -EINVAL;
2150
2151         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2152
2153         if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2154                 cpufreq_update_current_freq(policy);
2155
2156         if (policy->governor->start) {
2157                 ret = policy->governor->start(policy);
2158                 if (ret)
2159                         return ret;
2160         }
2161
2162         if (policy->governor->limits)
2163                 policy->governor->limits(policy);
2164
2165         return 0;
2166 }
2167
2168 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2169 {
2170         if (cpufreq_suspended || !policy->governor)
2171                 return;
2172
2173         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2174
2175         if (policy->governor->stop)
2176                 policy->governor->stop(policy);
2177 }
2178
2179 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2180 {
2181         if (cpufreq_suspended || !policy->governor)
2182                 return;
2183
2184         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2185
2186         if (policy->governor->limits)
2187                 policy->governor->limits(policy);
2188 }
2189
2190 int cpufreq_register_governor(struct cpufreq_governor *governor)
2191 {
2192         int err;
2193
2194         if (!governor)
2195                 return -EINVAL;
2196
2197         if (cpufreq_disabled())
2198                 return -ENODEV;
2199
2200         mutex_lock(&cpufreq_governor_mutex);
2201
2202         err = -EBUSY;
2203         if (!find_governor(governor->name)) {
2204                 err = 0;
2205                 list_add(&governor->governor_list, &cpufreq_governor_list);
2206         }
2207
2208         mutex_unlock(&cpufreq_governor_mutex);
2209         return err;
2210 }
2211 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2212
2213 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2214 {
2215         struct cpufreq_policy *policy;
2216         unsigned long flags;
2217
2218         if (!governor)
2219                 return;
2220
2221         if (cpufreq_disabled())
2222                 return;
2223
2224         /* clear last_governor for all inactive policies */
2225         read_lock_irqsave(&cpufreq_driver_lock, flags);
2226         for_each_inactive_policy(policy) {
2227                 if (!strcmp(policy->last_governor, governor->name)) {
2228                         policy->governor = NULL;
2229                         strcpy(policy->last_governor, "\0");
2230                 }
2231         }
2232         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2233
2234         mutex_lock(&cpufreq_governor_mutex);
2235         list_del(&governor->governor_list);
2236         mutex_unlock(&cpufreq_governor_mutex);
2237 }
2238 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2239
2240
2241 /*********************************************************************
2242  *                          POLICY INTERFACE                         *
2243  *********************************************************************/
2244
2245 /**
2246  * cpufreq_get_policy - get the current cpufreq_policy
2247  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2248  *      is written
2249  *
2250  * Reads the current cpufreq policy.
2251  */
2252 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2253 {
2254         struct cpufreq_policy *cpu_policy;
2255         if (!policy)
2256                 return -EINVAL;
2257
2258         cpu_policy = cpufreq_cpu_get(cpu);
2259         if (!cpu_policy)
2260                 return -EINVAL;
2261
2262         memcpy(policy, cpu_policy, sizeof(*policy));
2263
2264         cpufreq_cpu_put(cpu_policy);
2265         return 0;
2266 }
2267 EXPORT_SYMBOL(cpufreq_get_policy);
2268
2269 /**
2270  * cpufreq_set_policy - Modify cpufreq policy parameters.
2271  * @policy: Policy object to modify.
2272  * @new_policy: New policy data.
2273  *
2274  * Pass @new_policy to the cpufreq driver's ->verify() callback, run the
2275  * installed policy notifiers for it with the CPUFREQ_ADJUST value, pass it to
2276  * the driver's ->verify() callback again and run the notifiers for it again
2277  * with the CPUFREQ_NOTIFY value.  Next, copy the min and max parameters
2278  * of @new_policy to @policy and either invoke the driver's ->setpolicy()
2279  * callback (if present) or carry out a governor update for @policy.  That is,
2280  * run the current governor's ->limits() callback (if the governor field in
2281  * @new_policy points to the same object as the one in @policy) or replace the
2282  * governor for @policy with the new one stored in @new_policy.
2283  *
2284  * The cpuinfo part of @policy is not updated by this function.
2285  */
2286 int cpufreq_set_policy(struct cpufreq_policy *policy,
2287                        struct cpufreq_policy *new_policy)
2288 {
2289         struct cpufreq_governor *old_gov;
2290         int ret;
2291
2292         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2293                  new_policy->cpu, new_policy->min, new_policy->max);
2294
2295         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2296
2297         /*
2298         * This check works well when we store new min/max freq attributes,
2299         * because new_policy is a copy of policy with one field updated.
2300         */
2301         if (new_policy->min > new_policy->max)
2302                 return -EINVAL;
2303
2304         /* verify the cpu speed can be set within this limit */
2305         ret = cpufreq_driver->verify(new_policy);
2306         if (ret)
2307                 return ret;
2308
2309         /* adjust if necessary - all reasons */
2310         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2311                         CPUFREQ_ADJUST, new_policy);
2312
2313         /*
2314          * verify the cpu speed can be set within this limit, which might be
2315          * different to the first one
2316          */
2317         ret = cpufreq_driver->verify(new_policy);
2318         if (ret)
2319                 return ret;
2320
2321         /* notification of the new policy */
2322         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2323                         CPUFREQ_NOTIFY, new_policy);
2324
2325         policy->min = new_policy->min;
2326         policy->max = new_policy->max;
2327         trace_cpu_frequency_limits(policy);
2328
2329         policy->cached_target_freq = UINT_MAX;
2330
2331         pr_debug("new min and max freqs are %u - %u kHz\n",
2332                  policy->min, policy->max);
2333
2334         if (cpufreq_driver->setpolicy) {
2335                 policy->policy = new_policy->policy;
2336                 pr_debug("setting range\n");
2337                 return cpufreq_driver->setpolicy(policy);
2338         }
2339
2340         if (new_policy->governor == policy->governor) {
2341                 pr_debug("governor limits update\n");
2342                 cpufreq_governor_limits(policy);
2343                 return 0;
2344         }
2345
2346         pr_debug("governor switch\n");
2347
2348         /* save old, working values */
2349         old_gov = policy->governor;
2350         /* end old governor */
2351         if (old_gov) {
2352                 cpufreq_stop_governor(policy);
2353                 cpufreq_exit_governor(policy);
2354         }
2355
2356         /* start new governor */
2357         policy->governor = new_policy->governor;
2358         ret = cpufreq_init_governor(policy);
2359         if (!ret) {
2360                 ret = cpufreq_start_governor(policy);
2361                 if (!ret) {
2362                         pr_debug("governor change\n");
2363                         sched_cpufreq_governor_change(policy, old_gov);
2364                         return 0;
2365                 }
2366                 cpufreq_exit_governor(policy);
2367         }
2368
2369         /* new governor failed, so re-start old one */
2370         pr_debug("starting governor %s failed\n", policy->governor->name);
2371         if (old_gov) {
2372                 policy->governor = old_gov;
2373                 if (cpufreq_init_governor(policy))
2374                         policy->governor = NULL;
2375                 else
2376                         cpufreq_start_governor(policy);
2377         }
2378
2379         return ret;
2380 }
2381
2382 /**
2383  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2384  * @cpu: CPU to re-evaluate the policy for.
2385  *
2386  * Update the current frequency for the cpufreq policy of @cpu and use
2387  * cpufreq_set_policy() to re-apply the min and max limits saved in the
2388  * user_policy sub-structure of that policy, which triggers the evaluation
2389  * of policy notifiers and the cpufreq driver's ->verify() callback for the
2390  * policy in question, among other things.
2391  */
2392 void cpufreq_update_policy(unsigned int cpu)
2393 {
2394         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2395         struct cpufreq_policy new_policy;
2396
2397         if (!policy)
2398                 return;
2399
2400         /*
2401          * BIOS might change freq behind our back
2402          * -> ask driver for current freq and notify governors about a change
2403          */
2404         if (cpufreq_driver->get && !cpufreq_driver->setpolicy &&
2405             (cpufreq_suspended || WARN_ON(!cpufreq_update_current_freq(policy))))
2406                 goto unlock;
2407
2408         pr_debug("updating policy for CPU %u\n", cpu);
2409         memcpy(&new_policy, policy, sizeof(*policy));
2410         new_policy.min = policy->user_policy.min;
2411         new_policy.max = policy->user_policy.max;
2412
2413         cpufreq_set_policy(policy, &new_policy);
2414
2415 unlock:
2416         cpufreq_cpu_release(policy);
2417 }
2418 EXPORT_SYMBOL(cpufreq_update_policy);
2419
2420 /**
2421  * cpufreq_update_limits - Update policy limits for a given CPU.
2422  * @cpu: CPU to update the policy limits for.
2423  *
2424  * Invoke the driver's ->update_limits callback if present or call
2425  * cpufreq_update_policy() for @cpu.
2426  */
2427 void cpufreq_update_limits(unsigned int cpu)
2428 {
2429         if (cpufreq_driver->update_limits)
2430                 cpufreq_driver->update_limits(cpu);
2431         else
2432                 cpufreq_update_policy(cpu);
2433 }
2434 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2435
2436 /*********************************************************************
2437  *               BOOST                                               *
2438  *********************************************************************/
2439 static int cpufreq_boost_set_sw(int state)
2440 {
2441         struct cpufreq_policy *policy;
2442         int ret = -EINVAL;
2443
2444         for_each_active_policy(policy) {
2445                 if (!policy->freq_table)
2446                         continue;
2447
2448                 ret = cpufreq_frequency_table_cpuinfo(policy,
2449                                                       policy->freq_table);
2450                 if (ret) {
2451                         pr_err("%s: Policy frequency update failed\n",
2452                                __func__);
2453                         break;
2454                 }
2455
2456                 down_write(&policy->rwsem);
2457                 policy->user_policy.max = policy->max;
2458                 cpufreq_governor_limits(policy);
2459                 up_write(&policy->rwsem);
2460         }
2461
2462         return ret;
2463 }
2464
2465 int cpufreq_boost_trigger_state(int state)
2466 {
2467         unsigned long flags;
2468         int ret = 0;
2469
2470         if (cpufreq_driver->boost_enabled == state)
2471                 return 0;
2472
2473         write_lock_irqsave(&cpufreq_driver_lock, flags);
2474         cpufreq_driver->boost_enabled = state;
2475         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2476
2477         ret = cpufreq_driver->set_boost(state);
2478         if (ret) {
2479                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2480                 cpufreq_driver->boost_enabled = !state;
2481                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2482
2483                 pr_err("%s: Cannot %s BOOST\n",
2484                        __func__, state ? "enable" : "disable");
2485         }
2486
2487         return ret;
2488 }
2489
2490 static bool cpufreq_boost_supported(void)
2491 {
2492         return cpufreq_driver->set_boost;
2493 }
2494
2495 static int create_boost_sysfs_file(void)
2496 {
2497         int ret;
2498
2499         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2500         if (ret)
2501                 pr_err("%s: cannot register global BOOST sysfs file\n",
2502                        __func__);
2503
2504         return ret;
2505 }
2506
2507 static void remove_boost_sysfs_file(void)
2508 {
2509         if (cpufreq_boost_supported())
2510                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2511 }
2512
2513 int cpufreq_enable_boost_support(void)
2514 {
2515         if (!cpufreq_driver)
2516                 return -EINVAL;
2517
2518         if (cpufreq_boost_supported())
2519                 return 0;
2520
2521         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2522
2523         /* This will get removed on driver unregister */
2524         return create_boost_sysfs_file();
2525 }
2526 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2527
2528 int cpufreq_boost_enabled(void)
2529 {
2530         return cpufreq_driver->boost_enabled;
2531 }
2532 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2533
2534 /*********************************************************************
2535  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2536  *********************************************************************/
2537 static enum cpuhp_state hp_online;
2538
2539 static int cpuhp_cpufreq_online(unsigned int cpu)
2540 {
2541         cpufreq_online(cpu);
2542
2543         return 0;
2544 }
2545
2546 static int cpuhp_cpufreq_offline(unsigned int cpu)
2547 {
2548         cpufreq_offline(cpu);
2549
2550         return 0;
2551 }
2552
2553 /**
2554  * cpufreq_register_driver - register a CPU Frequency driver
2555  * @driver_data: A struct cpufreq_driver containing the values#
2556  * submitted by the CPU Frequency driver.
2557  *
2558  * Registers a CPU Frequency driver to this core code. This code
2559  * returns zero on success, -EEXIST when another driver got here first
2560  * (and isn't unregistered in the meantime).
2561  *
2562  */
2563 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2564 {
2565         unsigned long flags;
2566         int ret;
2567
2568         if (cpufreq_disabled())
2569                 return -ENODEV;
2570
2571         if (!driver_data || !driver_data->verify || !driver_data->init ||
2572             !(driver_data->setpolicy || driver_data->target_index ||
2573                     driver_data->target) ||
2574              (driver_data->setpolicy && (driver_data->target_index ||
2575                     driver_data->target)) ||
2576              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2577              (!driver_data->online != !driver_data->offline))
2578                 return -EINVAL;
2579
2580         pr_debug("trying to register driver %s\n", driver_data->name);
2581
2582         /* Protect against concurrent CPU online/offline. */
2583         cpus_read_lock();
2584
2585         write_lock_irqsave(&cpufreq_driver_lock, flags);
2586         if (cpufreq_driver) {
2587                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2588                 ret = -EEXIST;
2589                 goto out;
2590         }
2591         cpufreq_driver = driver_data;
2592         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2593
2594         if (driver_data->setpolicy)
2595                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2596
2597         if (cpufreq_boost_supported()) {
2598                 ret = create_boost_sysfs_file();
2599                 if (ret)
2600                         goto err_null_driver;
2601         }
2602
2603         ret = subsys_interface_register(&cpufreq_interface);
2604         if (ret)
2605                 goto err_boost_unreg;
2606
2607         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2608             list_empty(&cpufreq_policy_list)) {
2609                 /* if all ->init() calls failed, unregister */
2610                 ret = -ENODEV;
2611                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2612                          driver_data->name);
2613                 goto err_if_unreg;
2614         }
2615
2616         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2617                                                    "cpufreq:online",
2618                                                    cpuhp_cpufreq_online,
2619                                                    cpuhp_cpufreq_offline);
2620         if (ret < 0)
2621                 goto err_if_unreg;
2622         hp_online = ret;
2623         ret = 0;
2624
2625         pr_debug("driver %s up and running\n", driver_data->name);
2626         goto out;
2627
2628 err_if_unreg:
2629         subsys_interface_unregister(&cpufreq_interface);
2630 err_boost_unreg:
2631         remove_boost_sysfs_file();
2632 err_null_driver:
2633         write_lock_irqsave(&cpufreq_driver_lock, flags);
2634         cpufreq_driver = NULL;
2635         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2636 out:
2637         cpus_read_unlock();
2638         return ret;
2639 }
2640 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2641
2642 /**
2643  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2644  *
2645  * Unregister the current CPUFreq driver. Only call this if you have
2646  * the right to do so, i.e. if you have succeeded in initialising before!
2647  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2648  * currently not initialised.
2649  */
2650 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2651 {
2652         unsigned long flags;
2653
2654         if (!cpufreq_driver || (driver != cpufreq_driver))
2655                 return -EINVAL;
2656
2657         pr_debug("unregistering driver %s\n", driver->name);
2658
2659         /* Protect against concurrent cpu hotplug */
2660         cpus_read_lock();
2661         subsys_interface_unregister(&cpufreq_interface);
2662         remove_boost_sysfs_file();
2663         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2664
2665         write_lock_irqsave(&cpufreq_driver_lock, flags);
2666
2667         cpufreq_driver = NULL;
2668
2669         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2670         cpus_read_unlock();
2671
2672         return 0;
2673 }
2674 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2675
2676 /*
2677  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2678  * or mutexes when secondary CPUs are halted.
2679  */
2680 static struct syscore_ops cpufreq_syscore_ops = {
2681         .shutdown = cpufreq_suspend,
2682 };
2683
2684 struct kobject *cpufreq_global_kobject;
2685 EXPORT_SYMBOL(cpufreq_global_kobject);
2686
2687 static int __init cpufreq_core_init(void)
2688 {
2689         if (cpufreq_disabled())
2690                 return -ENODEV;
2691
2692         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2693         BUG_ON(!cpufreq_global_kobject);
2694
2695         register_syscore_ops(&cpufreq_syscore_ops);
2696
2697         return 0;
2698 }
2699 module_param(off, int, 0444);
2700 core_initcall(cpufreq_core_init);