mm: memmap_init: iterate over memblock regions rather that check each PFN
[linux-2.6-microblaze.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 #define for_each_policy(__policy)                       \
46         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
47
48 /* Iterate over governors */
49 static LIST_HEAD(cpufreq_governor_list);
50 #define for_each_governor(__governor)                           \
51         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
52
53 /**
54  * The "cpufreq driver" - the arch- or hardware-dependent low
55  * level driver of CPUFreq support, and its spinlock. This lock
56  * also protects the cpufreq_cpu_data array.
57  */
58 static struct cpufreq_driver *cpufreq_driver;
59 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
60 static DEFINE_RWLOCK(cpufreq_driver_lock);
61
62 /* Flag to suspend/resume CPUFreq governors */
63 static bool cpufreq_suspended;
64
65 static inline bool has_target(void)
66 {
67         return cpufreq_driver->target_index || cpufreq_driver->target;
68 }
69
70 /* internal prototypes */
71 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
72 static int cpufreq_init_governor(struct cpufreq_policy *policy);
73 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
74 static int cpufreq_start_governor(struct cpufreq_policy *policy);
75 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
76 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
77 static int cpufreq_set_policy(struct cpufreq_policy *policy,
78                               struct cpufreq_governor *new_gov,
79                               unsigned int new_pol);
80
81 /**
82  * Two notifier lists: the "policy" list is involved in the
83  * validation process for a new CPU frequency policy; the
84  * "transition" list for kernel code that needs to handle
85  * changes to devices when the CPU clock speed changes.
86  * The mutex locks both lists.
87  */
88 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
89 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
90
91 static int off __read_mostly;
92 static int cpufreq_disabled(void)
93 {
94         return off;
95 }
96 void disable_cpufreq(void)
97 {
98         off = 1;
99 }
100 static DEFINE_MUTEX(cpufreq_governor_mutex);
101
102 bool have_governor_per_policy(void)
103 {
104         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
105 }
106 EXPORT_SYMBOL_GPL(have_governor_per_policy);
107
108 static struct kobject *cpufreq_global_kobject;
109
110 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
111 {
112         if (have_governor_per_policy())
113                 return &policy->kobj;
114         else
115                 return cpufreq_global_kobject;
116 }
117 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
118
119 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
120 {
121         struct kernel_cpustat kcpustat;
122         u64 cur_wall_time;
123         u64 idle_time;
124         u64 busy_time;
125
126         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
127
128         kcpustat_cpu_fetch(&kcpustat, cpu);
129
130         busy_time = kcpustat.cpustat[CPUTIME_USER];
131         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
132         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
133         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
134         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
135         busy_time += kcpustat.cpustat[CPUTIME_NICE];
136
137         idle_time = cur_wall_time - busy_time;
138         if (wall)
139                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
140
141         return div_u64(idle_time, NSEC_PER_USEC);
142 }
143
144 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
145 {
146         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
147
148         if (idle_time == -1ULL)
149                 return get_cpu_idle_time_jiffy(cpu, wall);
150         else if (!io_busy)
151                 idle_time += get_cpu_iowait_time_us(cpu, wall);
152
153         return idle_time;
154 }
155 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
156
157 __weak void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
158                 unsigned long max_freq)
159 {
160 }
161 EXPORT_SYMBOL_GPL(arch_set_freq_scale);
162
163 /*
164  * This is a generic cpufreq init() routine which can be used by cpufreq
165  * drivers of SMP systems. It will do following:
166  * - validate & show freq table passed
167  * - set policies transition latency
168  * - policy->cpus with all possible CPUs
169  */
170 void cpufreq_generic_init(struct cpufreq_policy *policy,
171                 struct cpufreq_frequency_table *table,
172                 unsigned int transition_latency)
173 {
174         policy->freq_table = table;
175         policy->cpuinfo.transition_latency = transition_latency;
176
177         /*
178          * The driver only supports the SMP configuration where all processors
179          * share the clock and voltage and clock.
180          */
181         cpumask_setall(policy->cpus);
182 }
183 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
184
185 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
186 {
187         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
188
189         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
190 }
191 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
192
193 unsigned int cpufreq_generic_get(unsigned int cpu)
194 {
195         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
196
197         if (!policy || IS_ERR(policy->clk)) {
198                 pr_err("%s: No %s associated to cpu: %d\n",
199                        __func__, policy ? "clk" : "policy", cpu);
200                 return 0;
201         }
202
203         return clk_get_rate(policy->clk) / 1000;
204 }
205 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
206
207 /**
208  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
209  * @cpu: CPU to find the policy for.
210  *
211  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
212  * the kobject reference counter of that policy.  Return a valid policy on
213  * success or NULL on failure.
214  *
215  * The policy returned by this function has to be released with the help of
216  * cpufreq_cpu_put() to balance its kobject reference counter properly.
217  */
218 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
219 {
220         struct cpufreq_policy *policy = NULL;
221         unsigned long flags;
222
223         if (WARN_ON(cpu >= nr_cpu_ids))
224                 return NULL;
225
226         /* get the cpufreq driver */
227         read_lock_irqsave(&cpufreq_driver_lock, flags);
228
229         if (cpufreq_driver) {
230                 /* get the CPU */
231                 policy = cpufreq_cpu_get_raw(cpu);
232                 if (policy)
233                         kobject_get(&policy->kobj);
234         }
235
236         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
237
238         return policy;
239 }
240 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
241
242 /**
243  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
244  * @policy: cpufreq policy returned by cpufreq_cpu_get().
245  */
246 void cpufreq_cpu_put(struct cpufreq_policy *policy)
247 {
248         kobject_put(&policy->kobj);
249 }
250 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
251
252 /**
253  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
254  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
255  */
256 void cpufreq_cpu_release(struct cpufreq_policy *policy)
257 {
258         if (WARN_ON(!policy))
259                 return;
260
261         lockdep_assert_held(&policy->rwsem);
262
263         up_write(&policy->rwsem);
264
265         cpufreq_cpu_put(policy);
266 }
267
268 /**
269  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
270  * @cpu: CPU to find the policy for.
271  *
272  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
273  * if the policy returned by it is not NULL, acquire its rwsem for writing.
274  * Return the policy if it is active or release it and return NULL otherwise.
275  *
276  * The policy returned by this function has to be released with the help of
277  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
278  * counter properly.
279  */
280 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
281 {
282         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
283
284         if (!policy)
285                 return NULL;
286
287         down_write(&policy->rwsem);
288
289         if (policy_is_inactive(policy)) {
290                 cpufreq_cpu_release(policy);
291                 return NULL;
292         }
293
294         return policy;
295 }
296
297 /*********************************************************************
298  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
299  *********************************************************************/
300
301 /**
302  * adjust_jiffies - adjust the system "loops_per_jiffy"
303  *
304  * This function alters the system "loops_per_jiffy" for the clock
305  * speed change. Note that loops_per_jiffy cannot be updated on SMP
306  * systems as each CPU might be scaled differently. So, use the arch
307  * per-CPU loops_per_jiffy value wherever possible.
308  */
309 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
310 {
311 #ifndef CONFIG_SMP
312         static unsigned long l_p_j_ref;
313         static unsigned int l_p_j_ref_freq;
314
315         if (ci->flags & CPUFREQ_CONST_LOOPS)
316                 return;
317
318         if (!l_p_j_ref_freq) {
319                 l_p_j_ref = loops_per_jiffy;
320                 l_p_j_ref_freq = ci->old;
321                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
322                          l_p_j_ref, l_p_j_ref_freq);
323         }
324         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
325                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
326                                                                 ci->new);
327                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
328                          loops_per_jiffy, ci->new);
329         }
330 #endif
331 }
332
333 /**
334  * cpufreq_notify_transition - Notify frequency transition and adjust_jiffies.
335  * @policy: cpufreq policy to enable fast frequency switching for.
336  * @freqs: contain details of the frequency update.
337  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
338  *
339  * This function calls the transition notifiers and the "adjust_jiffies"
340  * function. It is called twice on all CPU frequency changes that have
341  * external effects.
342  */
343 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
344                                       struct cpufreq_freqs *freqs,
345                                       unsigned int state)
346 {
347         int cpu;
348
349         BUG_ON(irqs_disabled());
350
351         if (cpufreq_disabled())
352                 return;
353
354         freqs->policy = policy;
355         freqs->flags = cpufreq_driver->flags;
356         pr_debug("notification %u of frequency transition to %u kHz\n",
357                  state, freqs->new);
358
359         switch (state) {
360         case CPUFREQ_PRECHANGE:
361                 /*
362                  * Detect if the driver reported a value as "old frequency"
363                  * which is not equal to what the cpufreq core thinks is
364                  * "old frequency".
365                  */
366                 if (policy->cur && policy->cur != freqs->old) {
367                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
368                                  freqs->old, policy->cur);
369                         freqs->old = policy->cur;
370                 }
371
372                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
373                                          CPUFREQ_PRECHANGE, freqs);
374
375                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
376                 break;
377
378         case CPUFREQ_POSTCHANGE:
379                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
380                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
381                          cpumask_pr_args(policy->cpus));
382
383                 for_each_cpu(cpu, policy->cpus)
384                         trace_cpu_frequency(freqs->new, cpu);
385
386                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
387                                          CPUFREQ_POSTCHANGE, freqs);
388
389                 cpufreq_stats_record_transition(policy, freqs->new);
390                 policy->cur = freqs->new;
391         }
392 }
393
394 /* Do post notifications when there are chances that transition has failed */
395 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
396                 struct cpufreq_freqs *freqs, int transition_failed)
397 {
398         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
399         if (!transition_failed)
400                 return;
401
402         swap(freqs->old, freqs->new);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
404         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
405 }
406
407 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
408                 struct cpufreq_freqs *freqs)
409 {
410
411         /*
412          * Catch double invocations of _begin() which lead to self-deadlock.
413          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
414          * doesn't invoke _begin() on their behalf, and hence the chances of
415          * double invocations are very low. Moreover, there are scenarios
416          * where these checks can emit false-positive warnings in these
417          * drivers; so we avoid that by skipping them altogether.
418          */
419         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
420                                 && current == policy->transition_task);
421
422 wait:
423         wait_event(policy->transition_wait, !policy->transition_ongoing);
424
425         spin_lock(&policy->transition_lock);
426
427         if (unlikely(policy->transition_ongoing)) {
428                 spin_unlock(&policy->transition_lock);
429                 goto wait;
430         }
431
432         policy->transition_ongoing = true;
433         policy->transition_task = current;
434
435         spin_unlock(&policy->transition_lock);
436
437         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
438 }
439 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
440
441 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
442                 struct cpufreq_freqs *freqs, int transition_failed)
443 {
444         if (WARN_ON(!policy->transition_ongoing))
445                 return;
446
447         cpufreq_notify_post_transition(policy, freqs, transition_failed);
448
449         policy->transition_ongoing = false;
450         policy->transition_task = NULL;
451
452         wake_up(&policy->transition_wait);
453 }
454 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
455
456 /*
457  * Fast frequency switching status count.  Positive means "enabled", negative
458  * means "disabled" and 0 means "not decided yet".
459  */
460 static int cpufreq_fast_switch_count;
461 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
462
463 static void cpufreq_list_transition_notifiers(void)
464 {
465         struct notifier_block *nb;
466
467         pr_info("Registered transition notifiers:\n");
468
469         mutex_lock(&cpufreq_transition_notifier_list.mutex);
470
471         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
472                 pr_info("%pS\n", nb->notifier_call);
473
474         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
475 }
476
477 /**
478  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
479  * @policy: cpufreq policy to enable fast frequency switching for.
480  *
481  * Try to enable fast frequency switching for @policy.
482  *
483  * The attempt will fail if there is at least one transition notifier registered
484  * at this point, as fast frequency switching is quite fundamentally at odds
485  * with transition notifiers.  Thus if successful, it will make registration of
486  * transition notifiers fail going forward.
487  */
488 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
489 {
490         lockdep_assert_held(&policy->rwsem);
491
492         if (!policy->fast_switch_possible)
493                 return;
494
495         mutex_lock(&cpufreq_fast_switch_lock);
496         if (cpufreq_fast_switch_count >= 0) {
497                 cpufreq_fast_switch_count++;
498                 policy->fast_switch_enabled = true;
499         } else {
500                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
501                         policy->cpu);
502                 cpufreq_list_transition_notifiers();
503         }
504         mutex_unlock(&cpufreq_fast_switch_lock);
505 }
506 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
507
508 /**
509  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
510  * @policy: cpufreq policy to disable fast frequency switching for.
511  */
512 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
513 {
514         mutex_lock(&cpufreq_fast_switch_lock);
515         if (policy->fast_switch_enabled) {
516                 policy->fast_switch_enabled = false;
517                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
518                         cpufreq_fast_switch_count--;
519         }
520         mutex_unlock(&cpufreq_fast_switch_lock);
521 }
522 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
523
524 /**
525  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
526  * one.
527  * @target_freq: target frequency to resolve.
528  *
529  * The target to driver frequency mapping is cached in the policy.
530  *
531  * Return: Lowest driver-supported frequency greater than or equal to the
532  * given target_freq, subject to policy (min/max) and driver limitations.
533  */
534 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
535                                          unsigned int target_freq)
536 {
537         target_freq = clamp_val(target_freq, policy->min, policy->max);
538         policy->cached_target_freq = target_freq;
539
540         if (cpufreq_driver->target_index) {
541                 int idx;
542
543                 idx = cpufreq_frequency_table_target(policy, target_freq,
544                                                      CPUFREQ_RELATION_L);
545                 policy->cached_resolved_idx = idx;
546                 return policy->freq_table[idx].frequency;
547         }
548
549         if (cpufreq_driver->resolve_freq)
550                 return cpufreq_driver->resolve_freq(policy, target_freq);
551
552         return target_freq;
553 }
554 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
555
556 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
557 {
558         unsigned int latency;
559
560         if (policy->transition_delay_us)
561                 return policy->transition_delay_us;
562
563         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
564         if (latency) {
565                 /*
566                  * For platforms that can change the frequency very fast (< 10
567                  * us), the above formula gives a decent transition delay. But
568                  * for platforms where transition_latency is in milliseconds, it
569                  * ends up giving unrealistic values.
570                  *
571                  * Cap the default transition delay to 10 ms, which seems to be
572                  * a reasonable amount of time after which we should reevaluate
573                  * the frequency.
574                  */
575                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
576         }
577
578         return LATENCY_MULTIPLIER;
579 }
580 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
581
582 /*********************************************************************
583  *                          SYSFS INTERFACE                          *
584  *********************************************************************/
585 static ssize_t show_boost(struct kobject *kobj,
586                           struct kobj_attribute *attr, char *buf)
587 {
588         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
589 }
590
591 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
592                            const char *buf, size_t count)
593 {
594         int ret, enable;
595
596         ret = sscanf(buf, "%d", &enable);
597         if (ret != 1 || enable < 0 || enable > 1)
598                 return -EINVAL;
599
600         if (cpufreq_boost_trigger_state(enable)) {
601                 pr_err("%s: Cannot %s BOOST!\n",
602                        __func__, enable ? "enable" : "disable");
603                 return -EINVAL;
604         }
605
606         pr_debug("%s: cpufreq BOOST %s\n",
607                  __func__, enable ? "enabled" : "disabled");
608
609         return count;
610 }
611 define_one_global_rw(boost);
612
613 static struct cpufreq_governor *find_governor(const char *str_governor)
614 {
615         struct cpufreq_governor *t;
616
617         for_each_governor(t)
618                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
619                         return t;
620
621         return NULL;
622 }
623
624 static unsigned int cpufreq_parse_policy(char *str_governor)
625 {
626         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
627                 return CPUFREQ_POLICY_PERFORMANCE;
628
629         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
630                 return CPUFREQ_POLICY_POWERSAVE;
631
632         return CPUFREQ_POLICY_UNKNOWN;
633 }
634
635 /**
636  * cpufreq_parse_governor - parse a governor string only for has_target()
637  * @str_governor: Governor name.
638  */
639 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
640 {
641         struct cpufreq_governor *t;
642
643         mutex_lock(&cpufreq_governor_mutex);
644
645         t = find_governor(str_governor);
646         if (!t) {
647                 int ret;
648
649                 mutex_unlock(&cpufreq_governor_mutex);
650
651                 ret = request_module("cpufreq_%s", str_governor);
652                 if (ret)
653                         return NULL;
654
655                 mutex_lock(&cpufreq_governor_mutex);
656
657                 t = find_governor(str_governor);
658         }
659         if (t && !try_module_get(t->owner))
660                 t = NULL;
661
662         mutex_unlock(&cpufreq_governor_mutex);
663
664         return t;
665 }
666
667 /**
668  * cpufreq_per_cpu_attr_read() / show_##file_name() -
669  * print out cpufreq information
670  *
671  * Write out information from cpufreq_driver->policy[cpu]; object must be
672  * "unsigned int".
673  */
674
675 #define show_one(file_name, object)                     \
676 static ssize_t show_##file_name                         \
677 (struct cpufreq_policy *policy, char *buf)              \
678 {                                                       \
679         return sprintf(buf, "%u\n", policy->object);    \
680 }
681
682 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
683 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
684 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
685 show_one(scaling_min_freq, min);
686 show_one(scaling_max_freq, max);
687
688 __weak unsigned int arch_freq_get_on_cpu(int cpu)
689 {
690         return 0;
691 }
692
693 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
694 {
695         ssize_t ret;
696         unsigned int freq;
697
698         freq = arch_freq_get_on_cpu(policy->cpu);
699         if (freq)
700                 ret = sprintf(buf, "%u\n", freq);
701         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
702                         cpufreq_driver->get)
703                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
704         else
705                 ret = sprintf(buf, "%u\n", policy->cur);
706         return ret;
707 }
708
709 /**
710  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
711  */
712 #define store_one(file_name, object)                    \
713 static ssize_t store_##file_name                                        \
714 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
715 {                                                                       \
716         unsigned long val;                                              \
717         int ret;                                                        \
718                                                                         \
719         ret = sscanf(buf, "%lu", &val);                                 \
720         if (ret != 1)                                                   \
721                 return -EINVAL;                                         \
722                                                                         \
723         ret = freq_qos_update_request(policy->object##_freq_req, val);\
724         return ret >= 0 ? count : ret;                                  \
725 }
726
727 store_one(scaling_min_freq, min);
728 store_one(scaling_max_freq, max);
729
730 /**
731  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
732  */
733 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
734                                         char *buf)
735 {
736         unsigned int cur_freq = __cpufreq_get(policy);
737
738         if (cur_freq)
739                 return sprintf(buf, "%u\n", cur_freq);
740
741         return sprintf(buf, "<unknown>\n");
742 }
743
744 /**
745  * show_scaling_governor - show the current policy for the specified CPU
746  */
747 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
748 {
749         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
750                 return sprintf(buf, "powersave\n");
751         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
752                 return sprintf(buf, "performance\n");
753         else if (policy->governor)
754                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
755                                 policy->governor->name);
756         return -EINVAL;
757 }
758
759 /**
760  * store_scaling_governor - store policy for the specified CPU
761  */
762 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
763                                         const char *buf, size_t count)
764 {
765         char str_governor[16];
766         int ret;
767
768         ret = sscanf(buf, "%15s", str_governor);
769         if (ret != 1)
770                 return -EINVAL;
771
772         if (cpufreq_driver->setpolicy) {
773                 unsigned int new_pol;
774
775                 new_pol = cpufreq_parse_policy(str_governor);
776                 if (!new_pol)
777                         return -EINVAL;
778
779                 ret = cpufreq_set_policy(policy, NULL, new_pol);
780         } else {
781                 struct cpufreq_governor *new_gov;
782
783                 new_gov = cpufreq_parse_governor(str_governor);
784                 if (!new_gov)
785                         return -EINVAL;
786
787                 ret = cpufreq_set_policy(policy, new_gov,
788                                          CPUFREQ_POLICY_UNKNOWN);
789
790                 module_put(new_gov->owner);
791         }
792
793         return ret ? ret : count;
794 }
795
796 /**
797  * show_scaling_driver - show the cpufreq driver currently loaded
798  */
799 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
800 {
801         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
802 }
803
804 /**
805  * show_scaling_available_governors - show the available CPUfreq governors
806  */
807 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
808                                                 char *buf)
809 {
810         ssize_t i = 0;
811         struct cpufreq_governor *t;
812
813         if (!has_target()) {
814                 i += sprintf(buf, "performance powersave");
815                 goto out;
816         }
817
818         for_each_governor(t) {
819                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
820                     - (CPUFREQ_NAME_LEN + 2)))
821                         goto out;
822                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
823         }
824 out:
825         i += sprintf(&buf[i], "\n");
826         return i;
827 }
828
829 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
830 {
831         ssize_t i = 0;
832         unsigned int cpu;
833
834         for_each_cpu(cpu, mask) {
835                 if (i)
836                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
837                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
838                 if (i >= (PAGE_SIZE - 5))
839                         break;
840         }
841         i += sprintf(&buf[i], "\n");
842         return i;
843 }
844 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
845
846 /**
847  * show_related_cpus - show the CPUs affected by each transition even if
848  * hw coordination is in use
849  */
850 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
851 {
852         return cpufreq_show_cpus(policy->related_cpus, buf);
853 }
854
855 /**
856  * show_affected_cpus - show the CPUs affected by each transition
857  */
858 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
859 {
860         return cpufreq_show_cpus(policy->cpus, buf);
861 }
862
863 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
864                                         const char *buf, size_t count)
865 {
866         unsigned int freq = 0;
867         unsigned int ret;
868
869         if (!policy->governor || !policy->governor->store_setspeed)
870                 return -EINVAL;
871
872         ret = sscanf(buf, "%u", &freq);
873         if (ret != 1)
874                 return -EINVAL;
875
876         policy->governor->store_setspeed(policy, freq);
877
878         return count;
879 }
880
881 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
882 {
883         if (!policy->governor || !policy->governor->show_setspeed)
884                 return sprintf(buf, "<unsupported>\n");
885
886         return policy->governor->show_setspeed(policy, buf);
887 }
888
889 /**
890  * show_bios_limit - show the current cpufreq HW/BIOS limitation
891  */
892 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
893 {
894         unsigned int limit;
895         int ret;
896         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
897         if (!ret)
898                 return sprintf(buf, "%u\n", limit);
899         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
900 }
901
902 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
903 cpufreq_freq_attr_ro(cpuinfo_min_freq);
904 cpufreq_freq_attr_ro(cpuinfo_max_freq);
905 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
906 cpufreq_freq_attr_ro(scaling_available_governors);
907 cpufreq_freq_attr_ro(scaling_driver);
908 cpufreq_freq_attr_ro(scaling_cur_freq);
909 cpufreq_freq_attr_ro(bios_limit);
910 cpufreq_freq_attr_ro(related_cpus);
911 cpufreq_freq_attr_ro(affected_cpus);
912 cpufreq_freq_attr_rw(scaling_min_freq);
913 cpufreq_freq_attr_rw(scaling_max_freq);
914 cpufreq_freq_attr_rw(scaling_governor);
915 cpufreq_freq_attr_rw(scaling_setspeed);
916
917 static struct attribute *default_attrs[] = {
918         &cpuinfo_min_freq.attr,
919         &cpuinfo_max_freq.attr,
920         &cpuinfo_transition_latency.attr,
921         &scaling_min_freq.attr,
922         &scaling_max_freq.attr,
923         &affected_cpus.attr,
924         &related_cpus.attr,
925         &scaling_governor.attr,
926         &scaling_driver.attr,
927         &scaling_available_governors.attr,
928         &scaling_setspeed.attr,
929         NULL
930 };
931
932 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
933 #define to_attr(a) container_of(a, struct freq_attr, attr)
934
935 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
936 {
937         struct cpufreq_policy *policy = to_policy(kobj);
938         struct freq_attr *fattr = to_attr(attr);
939         ssize_t ret;
940
941         if (!fattr->show)
942                 return -EIO;
943
944         down_read(&policy->rwsem);
945         ret = fattr->show(policy, buf);
946         up_read(&policy->rwsem);
947
948         return ret;
949 }
950
951 static ssize_t store(struct kobject *kobj, struct attribute *attr,
952                      const char *buf, size_t count)
953 {
954         struct cpufreq_policy *policy = to_policy(kobj);
955         struct freq_attr *fattr = to_attr(attr);
956         ssize_t ret = -EINVAL;
957
958         if (!fattr->store)
959                 return -EIO;
960
961         /*
962          * cpus_read_trylock() is used here to work around a circular lock
963          * dependency problem with respect to the cpufreq_register_driver().
964          */
965         if (!cpus_read_trylock())
966                 return -EBUSY;
967
968         if (cpu_online(policy->cpu)) {
969                 down_write(&policy->rwsem);
970                 ret = fattr->store(policy, buf, count);
971                 up_write(&policy->rwsem);
972         }
973
974         cpus_read_unlock();
975
976         return ret;
977 }
978
979 static void cpufreq_sysfs_release(struct kobject *kobj)
980 {
981         struct cpufreq_policy *policy = to_policy(kobj);
982         pr_debug("last reference is dropped\n");
983         complete(&policy->kobj_unregister);
984 }
985
986 static const struct sysfs_ops sysfs_ops = {
987         .show   = show,
988         .store  = store,
989 };
990
991 static struct kobj_type ktype_cpufreq = {
992         .sysfs_ops      = &sysfs_ops,
993         .default_attrs  = default_attrs,
994         .release        = cpufreq_sysfs_release,
995 };
996
997 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
998 {
999         struct device *dev = get_cpu_device(cpu);
1000
1001         if (unlikely(!dev))
1002                 return;
1003
1004         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1005                 return;
1006
1007         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1008         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1009                 dev_err(dev, "cpufreq symlink creation failed\n");
1010 }
1011
1012 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1013                                    struct device *dev)
1014 {
1015         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1016         sysfs_remove_link(&dev->kobj, "cpufreq");
1017 }
1018
1019 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1020 {
1021         struct freq_attr **drv_attr;
1022         int ret = 0;
1023
1024         /* set up files for this cpu device */
1025         drv_attr = cpufreq_driver->attr;
1026         while (drv_attr && *drv_attr) {
1027                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1028                 if (ret)
1029                         return ret;
1030                 drv_attr++;
1031         }
1032         if (cpufreq_driver->get) {
1033                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1034                 if (ret)
1035                         return ret;
1036         }
1037
1038         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1039         if (ret)
1040                 return ret;
1041
1042         if (cpufreq_driver->bios_limit) {
1043                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1044                 if (ret)
1045                         return ret;
1046         }
1047
1048         return 0;
1049 }
1050
1051 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1052 {
1053         return NULL;
1054 }
1055
1056 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1057 {
1058         struct cpufreq_governor *def_gov = cpufreq_default_governor();
1059         struct cpufreq_governor *gov = NULL;
1060         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1061
1062         if (has_target()) {
1063                 /* Update policy governor to the one used before hotplug. */
1064                 gov = find_governor(policy->last_governor);
1065                 if (gov) {
1066                         pr_debug("Restoring governor %s for cpu %d\n",
1067                                  policy->governor->name, policy->cpu);
1068                 } else if (def_gov) {
1069                         gov = def_gov;
1070                 } else {
1071                         return -ENODATA;
1072                 }
1073         } else {
1074                 /* Use the default policy if there is no last_policy. */
1075                 if (policy->last_policy) {
1076                         pol = policy->last_policy;
1077                 } else if (def_gov) {
1078                         pol = cpufreq_parse_policy(def_gov->name);
1079                         /*
1080                          * In case the default governor is neiter "performance"
1081                          * nor "powersave", fall back to the initial policy
1082                          * value set by the driver.
1083                          */
1084                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1085                                 pol = policy->policy;
1086                 }
1087                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1088                     pol != CPUFREQ_POLICY_POWERSAVE)
1089                         return -ENODATA;
1090         }
1091
1092         return cpufreq_set_policy(policy, gov, pol);
1093 }
1094
1095 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1096 {
1097         int ret = 0;
1098
1099         /* Has this CPU been taken care of already? */
1100         if (cpumask_test_cpu(cpu, policy->cpus))
1101                 return 0;
1102
1103         down_write(&policy->rwsem);
1104         if (has_target())
1105                 cpufreq_stop_governor(policy);
1106
1107         cpumask_set_cpu(cpu, policy->cpus);
1108
1109         if (has_target()) {
1110                 ret = cpufreq_start_governor(policy);
1111                 if (ret)
1112                         pr_err("%s: Failed to start governor\n", __func__);
1113         }
1114         up_write(&policy->rwsem);
1115         return ret;
1116 }
1117
1118 void refresh_frequency_limits(struct cpufreq_policy *policy)
1119 {
1120         if (!policy_is_inactive(policy)) {
1121                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1122
1123                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1124         }
1125 }
1126 EXPORT_SYMBOL(refresh_frequency_limits);
1127
1128 static void handle_update(struct work_struct *work)
1129 {
1130         struct cpufreq_policy *policy =
1131                 container_of(work, struct cpufreq_policy, update);
1132
1133         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1134         down_write(&policy->rwsem);
1135         refresh_frequency_limits(policy);
1136         up_write(&policy->rwsem);
1137 }
1138
1139 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1140                                 void *data)
1141 {
1142         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1143
1144         schedule_work(&policy->update);
1145         return 0;
1146 }
1147
1148 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1149                                 void *data)
1150 {
1151         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1152
1153         schedule_work(&policy->update);
1154         return 0;
1155 }
1156
1157 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1158 {
1159         struct kobject *kobj;
1160         struct completion *cmp;
1161
1162         down_write(&policy->rwsem);
1163         cpufreq_stats_free_table(policy);
1164         kobj = &policy->kobj;
1165         cmp = &policy->kobj_unregister;
1166         up_write(&policy->rwsem);
1167         kobject_put(kobj);
1168
1169         /*
1170          * We need to make sure that the underlying kobj is
1171          * actually not referenced anymore by anybody before we
1172          * proceed with unloading.
1173          */
1174         pr_debug("waiting for dropping of refcount\n");
1175         wait_for_completion(cmp);
1176         pr_debug("wait complete\n");
1177 }
1178
1179 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1180 {
1181         struct cpufreq_policy *policy;
1182         struct device *dev = get_cpu_device(cpu);
1183         int ret;
1184
1185         if (!dev)
1186                 return NULL;
1187
1188         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1189         if (!policy)
1190                 return NULL;
1191
1192         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1193                 goto err_free_policy;
1194
1195         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1196                 goto err_free_cpumask;
1197
1198         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1199                 goto err_free_rcpumask;
1200
1201         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1202                                    cpufreq_global_kobject, "policy%u", cpu);
1203         if (ret) {
1204                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1205                 /*
1206                  * The entire policy object will be freed below, but the extra
1207                  * memory allocated for the kobject name needs to be freed by
1208                  * releasing the kobject.
1209                  */
1210                 kobject_put(&policy->kobj);
1211                 goto err_free_real_cpus;
1212         }
1213
1214         freq_constraints_init(&policy->constraints);
1215
1216         policy->nb_min.notifier_call = cpufreq_notifier_min;
1217         policy->nb_max.notifier_call = cpufreq_notifier_max;
1218
1219         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1220                                     &policy->nb_min);
1221         if (ret) {
1222                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1223                         ret, cpumask_pr_args(policy->cpus));
1224                 goto err_kobj_remove;
1225         }
1226
1227         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1228                                     &policy->nb_max);
1229         if (ret) {
1230                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1231                         ret, cpumask_pr_args(policy->cpus));
1232                 goto err_min_qos_notifier;
1233         }
1234
1235         INIT_LIST_HEAD(&policy->policy_list);
1236         init_rwsem(&policy->rwsem);
1237         spin_lock_init(&policy->transition_lock);
1238         init_waitqueue_head(&policy->transition_wait);
1239         init_completion(&policy->kobj_unregister);
1240         INIT_WORK(&policy->update, handle_update);
1241
1242         policy->cpu = cpu;
1243         return policy;
1244
1245 err_min_qos_notifier:
1246         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1247                                  &policy->nb_min);
1248 err_kobj_remove:
1249         cpufreq_policy_put_kobj(policy);
1250 err_free_real_cpus:
1251         free_cpumask_var(policy->real_cpus);
1252 err_free_rcpumask:
1253         free_cpumask_var(policy->related_cpus);
1254 err_free_cpumask:
1255         free_cpumask_var(policy->cpus);
1256 err_free_policy:
1257         kfree(policy);
1258
1259         return NULL;
1260 }
1261
1262 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1263 {
1264         unsigned long flags;
1265         int cpu;
1266
1267         /* Remove policy from list */
1268         write_lock_irqsave(&cpufreq_driver_lock, flags);
1269         list_del(&policy->policy_list);
1270
1271         for_each_cpu(cpu, policy->related_cpus)
1272                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1273         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1274
1275         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1276                                  &policy->nb_max);
1277         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1278                                  &policy->nb_min);
1279
1280         /* Cancel any pending policy->update work before freeing the policy. */
1281         cancel_work_sync(&policy->update);
1282
1283         if (policy->max_freq_req) {
1284                 /*
1285                  * CPUFREQ_CREATE_POLICY notification is sent only after
1286                  * successfully adding max_freq_req request.
1287                  */
1288                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1289                                              CPUFREQ_REMOVE_POLICY, policy);
1290                 freq_qos_remove_request(policy->max_freq_req);
1291         }
1292
1293         freq_qos_remove_request(policy->min_freq_req);
1294         kfree(policy->min_freq_req);
1295
1296         cpufreq_policy_put_kobj(policy);
1297         free_cpumask_var(policy->real_cpus);
1298         free_cpumask_var(policy->related_cpus);
1299         free_cpumask_var(policy->cpus);
1300         kfree(policy);
1301 }
1302
1303 static int cpufreq_online(unsigned int cpu)
1304 {
1305         struct cpufreq_policy *policy;
1306         bool new_policy;
1307         unsigned long flags;
1308         unsigned int j;
1309         int ret;
1310
1311         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1312
1313         /* Check if this CPU already has a policy to manage it */
1314         policy = per_cpu(cpufreq_cpu_data, cpu);
1315         if (policy) {
1316                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1317                 if (!policy_is_inactive(policy))
1318                         return cpufreq_add_policy_cpu(policy, cpu);
1319
1320                 /* This is the only online CPU for the policy.  Start over. */
1321                 new_policy = false;
1322                 down_write(&policy->rwsem);
1323                 policy->cpu = cpu;
1324                 policy->governor = NULL;
1325                 up_write(&policy->rwsem);
1326         } else {
1327                 new_policy = true;
1328                 policy = cpufreq_policy_alloc(cpu);
1329                 if (!policy)
1330                         return -ENOMEM;
1331         }
1332
1333         if (!new_policy && cpufreq_driver->online) {
1334                 ret = cpufreq_driver->online(policy);
1335                 if (ret) {
1336                         pr_debug("%s: %d: initialization failed\n", __func__,
1337                                  __LINE__);
1338                         goto out_exit_policy;
1339                 }
1340
1341                 /* Recover policy->cpus using related_cpus */
1342                 cpumask_copy(policy->cpus, policy->related_cpus);
1343         } else {
1344                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1345
1346                 /*
1347                  * Call driver. From then on the cpufreq must be able
1348                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1349                  */
1350                 ret = cpufreq_driver->init(policy);
1351                 if (ret) {
1352                         pr_debug("%s: %d: initialization failed\n", __func__,
1353                                  __LINE__);
1354                         goto out_free_policy;
1355                 }
1356
1357                 ret = cpufreq_table_validate_and_sort(policy);
1358                 if (ret)
1359                         goto out_exit_policy;
1360
1361                 /* related_cpus should at least include policy->cpus. */
1362                 cpumask_copy(policy->related_cpus, policy->cpus);
1363         }
1364
1365         down_write(&policy->rwsem);
1366         /*
1367          * affected cpus must always be the one, which are online. We aren't
1368          * managing offline cpus here.
1369          */
1370         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1371
1372         if (new_policy) {
1373                 for_each_cpu(j, policy->related_cpus) {
1374                         per_cpu(cpufreq_cpu_data, j) = policy;
1375                         add_cpu_dev_symlink(policy, j);
1376                 }
1377
1378                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1379                                                GFP_KERNEL);
1380                 if (!policy->min_freq_req)
1381                         goto out_destroy_policy;
1382
1383                 ret = freq_qos_add_request(&policy->constraints,
1384                                            policy->min_freq_req, FREQ_QOS_MIN,
1385                                            policy->min);
1386                 if (ret < 0) {
1387                         /*
1388                          * So we don't call freq_qos_remove_request() for an
1389                          * uninitialized request.
1390                          */
1391                         kfree(policy->min_freq_req);
1392                         policy->min_freq_req = NULL;
1393                         goto out_destroy_policy;
1394                 }
1395
1396                 /*
1397                  * This must be initialized right here to avoid calling
1398                  * freq_qos_remove_request() on uninitialized request in case
1399                  * of errors.
1400                  */
1401                 policy->max_freq_req = policy->min_freq_req + 1;
1402
1403                 ret = freq_qos_add_request(&policy->constraints,
1404                                            policy->max_freq_req, FREQ_QOS_MAX,
1405                                            policy->max);
1406                 if (ret < 0) {
1407                         policy->max_freq_req = NULL;
1408                         goto out_destroy_policy;
1409                 }
1410
1411                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1412                                 CPUFREQ_CREATE_POLICY, policy);
1413         }
1414
1415         if (cpufreq_driver->get && has_target()) {
1416                 policy->cur = cpufreq_driver->get(policy->cpu);
1417                 if (!policy->cur) {
1418                         pr_err("%s: ->get() failed\n", __func__);
1419                         goto out_destroy_policy;
1420                 }
1421         }
1422
1423         /*
1424          * Sometimes boot loaders set CPU frequency to a value outside of
1425          * frequency table present with cpufreq core. In such cases CPU might be
1426          * unstable if it has to run on that frequency for long duration of time
1427          * and so its better to set it to a frequency which is specified in
1428          * freq-table. This also makes cpufreq stats inconsistent as
1429          * cpufreq-stats would fail to register because current frequency of CPU
1430          * isn't found in freq-table.
1431          *
1432          * Because we don't want this change to effect boot process badly, we go
1433          * for the next freq which is >= policy->cur ('cur' must be set by now,
1434          * otherwise we will end up setting freq to lowest of the table as 'cur'
1435          * is initialized to zero).
1436          *
1437          * We are passing target-freq as "policy->cur - 1" otherwise
1438          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1439          * equal to target-freq.
1440          */
1441         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1442             && has_target()) {
1443                 /* Are we running at unknown frequency ? */
1444                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1445                 if (ret == -EINVAL) {
1446                         /* Warn user and fix it */
1447                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1448                                 __func__, policy->cpu, policy->cur);
1449                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1450                                 CPUFREQ_RELATION_L);
1451
1452                         /*
1453                          * Reaching here after boot in a few seconds may not
1454                          * mean that system will remain stable at "unknown"
1455                          * frequency for longer duration. Hence, a BUG_ON().
1456                          */
1457                         BUG_ON(ret);
1458                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1459                                 __func__, policy->cpu, policy->cur);
1460                 }
1461         }
1462
1463         if (new_policy) {
1464                 ret = cpufreq_add_dev_interface(policy);
1465                 if (ret)
1466                         goto out_destroy_policy;
1467
1468                 cpufreq_stats_create_table(policy);
1469
1470                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1471                 list_add(&policy->policy_list, &cpufreq_policy_list);
1472                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1473         }
1474
1475         ret = cpufreq_init_policy(policy);
1476         if (ret) {
1477                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1478                        __func__, cpu, ret);
1479                 goto out_destroy_policy;
1480         }
1481
1482         up_write(&policy->rwsem);
1483
1484         kobject_uevent(&policy->kobj, KOBJ_ADD);
1485
1486         /* Callback for handling stuff after policy is ready */
1487         if (cpufreq_driver->ready)
1488                 cpufreq_driver->ready(policy);
1489
1490         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1491                 policy->cdev = of_cpufreq_cooling_register(policy);
1492
1493         pr_debug("initialization complete\n");
1494
1495         return 0;
1496
1497 out_destroy_policy:
1498         for_each_cpu(j, policy->real_cpus)
1499                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1500
1501         up_write(&policy->rwsem);
1502
1503 out_exit_policy:
1504         if (cpufreq_driver->exit)
1505                 cpufreq_driver->exit(policy);
1506
1507 out_free_policy:
1508         cpufreq_policy_free(policy);
1509         return ret;
1510 }
1511
1512 /**
1513  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1514  * @dev: CPU device.
1515  * @sif: Subsystem interface structure pointer (not used)
1516  */
1517 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1518 {
1519         struct cpufreq_policy *policy;
1520         unsigned cpu = dev->id;
1521         int ret;
1522
1523         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1524
1525         if (cpu_online(cpu)) {
1526                 ret = cpufreq_online(cpu);
1527                 if (ret)
1528                         return ret;
1529         }
1530
1531         /* Create sysfs link on CPU registration */
1532         policy = per_cpu(cpufreq_cpu_data, cpu);
1533         if (policy)
1534                 add_cpu_dev_symlink(policy, cpu);
1535
1536         return 0;
1537 }
1538
1539 static int cpufreq_offline(unsigned int cpu)
1540 {
1541         struct cpufreq_policy *policy;
1542         int ret;
1543
1544         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1545
1546         policy = cpufreq_cpu_get_raw(cpu);
1547         if (!policy) {
1548                 pr_debug("%s: No cpu_data found\n", __func__);
1549                 return 0;
1550         }
1551
1552         down_write(&policy->rwsem);
1553         if (has_target())
1554                 cpufreq_stop_governor(policy);
1555
1556         cpumask_clear_cpu(cpu, policy->cpus);
1557
1558         if (policy_is_inactive(policy)) {
1559                 if (has_target())
1560                         strncpy(policy->last_governor, policy->governor->name,
1561                                 CPUFREQ_NAME_LEN);
1562                 else
1563                         policy->last_policy = policy->policy;
1564         } else if (cpu == policy->cpu) {
1565                 /* Nominate new CPU */
1566                 policy->cpu = cpumask_any(policy->cpus);
1567         }
1568
1569         /* Start governor again for active policy */
1570         if (!policy_is_inactive(policy)) {
1571                 if (has_target()) {
1572                         ret = cpufreq_start_governor(policy);
1573                         if (ret)
1574                                 pr_err("%s: Failed to start governor\n", __func__);
1575                 }
1576
1577                 goto unlock;
1578         }
1579
1580         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1581                 cpufreq_cooling_unregister(policy->cdev);
1582                 policy->cdev = NULL;
1583         }
1584
1585         if (cpufreq_driver->stop_cpu)
1586                 cpufreq_driver->stop_cpu(policy);
1587
1588         if (has_target())
1589                 cpufreq_exit_governor(policy);
1590
1591         /*
1592          * Perform the ->offline() during light-weight tear-down, as
1593          * that allows fast recovery when the CPU comes back.
1594          */
1595         if (cpufreq_driver->offline) {
1596                 cpufreq_driver->offline(policy);
1597         } else if (cpufreq_driver->exit) {
1598                 cpufreq_driver->exit(policy);
1599                 policy->freq_table = NULL;
1600         }
1601
1602 unlock:
1603         up_write(&policy->rwsem);
1604         return 0;
1605 }
1606
1607 /**
1608  * cpufreq_remove_dev - remove a CPU device
1609  *
1610  * Removes the cpufreq interface for a CPU device.
1611  */
1612 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1613 {
1614         unsigned int cpu = dev->id;
1615         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1616
1617         if (!policy)
1618                 return;
1619
1620         if (cpu_online(cpu))
1621                 cpufreq_offline(cpu);
1622
1623         cpumask_clear_cpu(cpu, policy->real_cpus);
1624         remove_cpu_dev_symlink(policy, dev);
1625
1626         if (cpumask_empty(policy->real_cpus)) {
1627                 /* We did light-weight exit earlier, do full tear down now */
1628                 if (cpufreq_driver->offline)
1629                         cpufreq_driver->exit(policy);
1630
1631                 cpufreq_policy_free(policy);
1632         }
1633 }
1634
1635 /**
1636  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1637  *      in deep trouble.
1638  *      @policy: policy managing CPUs
1639  *      @new_freq: CPU frequency the CPU actually runs at
1640  *
1641  *      We adjust to current frequency first, and need to clean up later.
1642  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1643  */
1644 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1645                                 unsigned int new_freq)
1646 {
1647         struct cpufreq_freqs freqs;
1648
1649         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1650                  policy->cur, new_freq);
1651
1652         freqs.old = policy->cur;
1653         freqs.new = new_freq;
1654
1655         cpufreq_freq_transition_begin(policy, &freqs);
1656         cpufreq_freq_transition_end(policy, &freqs, 0);
1657 }
1658
1659 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1660 {
1661         unsigned int new_freq;
1662
1663         new_freq = cpufreq_driver->get(policy->cpu);
1664         if (!new_freq)
1665                 return 0;
1666
1667         /*
1668          * If fast frequency switching is used with the given policy, the check
1669          * against policy->cur is pointless, so skip it in that case.
1670          */
1671         if (policy->fast_switch_enabled || !has_target())
1672                 return new_freq;
1673
1674         if (policy->cur != new_freq) {
1675                 cpufreq_out_of_sync(policy, new_freq);
1676                 if (update)
1677                         schedule_work(&policy->update);
1678         }
1679
1680         return new_freq;
1681 }
1682
1683 /**
1684  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1685  * @cpu: CPU number
1686  *
1687  * This is the last known freq, without actually getting it from the driver.
1688  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1689  */
1690 unsigned int cpufreq_quick_get(unsigned int cpu)
1691 {
1692         struct cpufreq_policy *policy;
1693         unsigned int ret_freq = 0;
1694         unsigned long flags;
1695
1696         read_lock_irqsave(&cpufreq_driver_lock, flags);
1697
1698         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1699                 ret_freq = cpufreq_driver->get(cpu);
1700                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1701                 return ret_freq;
1702         }
1703
1704         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1705
1706         policy = cpufreq_cpu_get(cpu);
1707         if (policy) {
1708                 ret_freq = policy->cur;
1709                 cpufreq_cpu_put(policy);
1710         }
1711
1712         return ret_freq;
1713 }
1714 EXPORT_SYMBOL(cpufreq_quick_get);
1715
1716 /**
1717  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1718  * @cpu: CPU number
1719  *
1720  * Just return the max possible frequency for a given CPU.
1721  */
1722 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1723 {
1724         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1725         unsigned int ret_freq = 0;
1726
1727         if (policy) {
1728                 ret_freq = policy->max;
1729                 cpufreq_cpu_put(policy);
1730         }
1731
1732         return ret_freq;
1733 }
1734 EXPORT_SYMBOL(cpufreq_quick_get_max);
1735
1736 /**
1737  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1738  * @cpu: CPU number
1739  *
1740  * The default return value is the max_freq field of cpuinfo.
1741  */
1742 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1743 {
1744         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1745         unsigned int ret_freq = 0;
1746
1747         if (policy) {
1748                 ret_freq = policy->cpuinfo.max_freq;
1749                 cpufreq_cpu_put(policy);
1750         }
1751
1752         return ret_freq;
1753 }
1754 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1755
1756 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1757 {
1758         if (unlikely(policy_is_inactive(policy)))
1759                 return 0;
1760
1761         return cpufreq_verify_current_freq(policy, true);
1762 }
1763
1764 /**
1765  * cpufreq_get - get the current CPU frequency (in kHz)
1766  * @cpu: CPU number
1767  *
1768  * Get the CPU current (static) CPU frequency
1769  */
1770 unsigned int cpufreq_get(unsigned int cpu)
1771 {
1772         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1773         unsigned int ret_freq = 0;
1774
1775         if (policy) {
1776                 down_read(&policy->rwsem);
1777                 if (cpufreq_driver->get)
1778                         ret_freq = __cpufreq_get(policy);
1779                 up_read(&policy->rwsem);
1780
1781                 cpufreq_cpu_put(policy);
1782         }
1783
1784         return ret_freq;
1785 }
1786 EXPORT_SYMBOL(cpufreq_get);
1787
1788 static struct subsys_interface cpufreq_interface = {
1789         .name           = "cpufreq",
1790         .subsys         = &cpu_subsys,
1791         .add_dev        = cpufreq_add_dev,
1792         .remove_dev     = cpufreq_remove_dev,
1793 };
1794
1795 /*
1796  * In case platform wants some specific frequency to be configured
1797  * during suspend..
1798  */
1799 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1800 {
1801         int ret;
1802
1803         if (!policy->suspend_freq) {
1804                 pr_debug("%s: suspend_freq not defined\n", __func__);
1805                 return 0;
1806         }
1807
1808         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1809                         policy->suspend_freq);
1810
1811         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1812                         CPUFREQ_RELATION_H);
1813         if (ret)
1814                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1815                                 __func__, policy->suspend_freq, ret);
1816
1817         return ret;
1818 }
1819 EXPORT_SYMBOL(cpufreq_generic_suspend);
1820
1821 /**
1822  * cpufreq_suspend() - Suspend CPUFreq governors
1823  *
1824  * Called during system wide Suspend/Hibernate cycles for suspending governors
1825  * as some platforms can't change frequency after this point in suspend cycle.
1826  * Because some of the devices (like: i2c, regulators, etc) they use for
1827  * changing frequency are suspended quickly after this point.
1828  */
1829 void cpufreq_suspend(void)
1830 {
1831         struct cpufreq_policy *policy;
1832
1833         if (!cpufreq_driver)
1834                 return;
1835
1836         if (!has_target() && !cpufreq_driver->suspend)
1837                 goto suspend;
1838
1839         pr_debug("%s: Suspending Governors\n", __func__);
1840
1841         for_each_active_policy(policy) {
1842                 if (has_target()) {
1843                         down_write(&policy->rwsem);
1844                         cpufreq_stop_governor(policy);
1845                         up_write(&policy->rwsem);
1846                 }
1847
1848                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1849                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1850                                 cpufreq_driver->name);
1851         }
1852
1853 suspend:
1854         cpufreq_suspended = true;
1855 }
1856
1857 /**
1858  * cpufreq_resume() - Resume CPUFreq governors
1859  *
1860  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1861  * are suspended with cpufreq_suspend().
1862  */
1863 void cpufreq_resume(void)
1864 {
1865         struct cpufreq_policy *policy;
1866         int ret;
1867
1868         if (!cpufreq_driver)
1869                 return;
1870
1871         if (unlikely(!cpufreq_suspended))
1872                 return;
1873
1874         cpufreq_suspended = false;
1875
1876         if (!has_target() && !cpufreq_driver->resume)
1877                 return;
1878
1879         pr_debug("%s: Resuming Governors\n", __func__);
1880
1881         for_each_active_policy(policy) {
1882                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1883                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1884                                 policy);
1885                 } else if (has_target()) {
1886                         down_write(&policy->rwsem);
1887                         ret = cpufreq_start_governor(policy);
1888                         up_write(&policy->rwsem);
1889
1890                         if (ret)
1891                                 pr_err("%s: Failed to start governor for policy: %p\n",
1892                                        __func__, policy);
1893                 }
1894         }
1895 }
1896
1897 /**
1898  *      cpufreq_get_current_driver - return current driver's name
1899  *
1900  *      Return the name string of the currently loaded cpufreq driver
1901  *      or NULL, if none.
1902  */
1903 const char *cpufreq_get_current_driver(void)
1904 {
1905         if (cpufreq_driver)
1906                 return cpufreq_driver->name;
1907
1908         return NULL;
1909 }
1910 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1911
1912 /**
1913  *      cpufreq_get_driver_data - return current driver data
1914  *
1915  *      Return the private data of the currently loaded cpufreq
1916  *      driver, or NULL if no cpufreq driver is loaded.
1917  */
1918 void *cpufreq_get_driver_data(void)
1919 {
1920         if (cpufreq_driver)
1921                 return cpufreq_driver->driver_data;
1922
1923         return NULL;
1924 }
1925 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1926
1927 /*********************************************************************
1928  *                     NOTIFIER LISTS INTERFACE                      *
1929  *********************************************************************/
1930
1931 /**
1932  *      cpufreq_register_notifier - register a driver with cpufreq
1933  *      @nb: notifier function to register
1934  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1935  *
1936  *      Add a driver to one of two lists: either a list of drivers that
1937  *      are notified about clock rate changes (once before and once after
1938  *      the transition), or a list of drivers that are notified about
1939  *      changes in cpufreq policy.
1940  *
1941  *      This function may sleep, and has the same return conditions as
1942  *      blocking_notifier_chain_register.
1943  */
1944 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1945 {
1946         int ret;
1947
1948         if (cpufreq_disabled())
1949                 return -EINVAL;
1950
1951         switch (list) {
1952         case CPUFREQ_TRANSITION_NOTIFIER:
1953                 mutex_lock(&cpufreq_fast_switch_lock);
1954
1955                 if (cpufreq_fast_switch_count > 0) {
1956                         mutex_unlock(&cpufreq_fast_switch_lock);
1957                         return -EBUSY;
1958                 }
1959                 ret = srcu_notifier_chain_register(
1960                                 &cpufreq_transition_notifier_list, nb);
1961                 if (!ret)
1962                         cpufreq_fast_switch_count--;
1963
1964                 mutex_unlock(&cpufreq_fast_switch_lock);
1965                 break;
1966         case CPUFREQ_POLICY_NOTIFIER:
1967                 ret = blocking_notifier_chain_register(
1968                                 &cpufreq_policy_notifier_list, nb);
1969                 break;
1970         default:
1971                 ret = -EINVAL;
1972         }
1973
1974         return ret;
1975 }
1976 EXPORT_SYMBOL(cpufreq_register_notifier);
1977
1978 /**
1979  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1980  *      @nb: notifier block to be unregistered
1981  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1982  *
1983  *      Remove a driver from the CPU frequency notifier list.
1984  *
1985  *      This function may sleep, and has the same return conditions as
1986  *      blocking_notifier_chain_unregister.
1987  */
1988 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1989 {
1990         int ret;
1991
1992         if (cpufreq_disabled())
1993                 return -EINVAL;
1994
1995         switch (list) {
1996         case CPUFREQ_TRANSITION_NOTIFIER:
1997                 mutex_lock(&cpufreq_fast_switch_lock);
1998
1999                 ret = srcu_notifier_chain_unregister(
2000                                 &cpufreq_transition_notifier_list, nb);
2001                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2002                         cpufreq_fast_switch_count++;
2003
2004                 mutex_unlock(&cpufreq_fast_switch_lock);
2005                 break;
2006         case CPUFREQ_POLICY_NOTIFIER:
2007                 ret = blocking_notifier_chain_unregister(
2008                                 &cpufreq_policy_notifier_list, nb);
2009                 break;
2010         default:
2011                 ret = -EINVAL;
2012         }
2013
2014         return ret;
2015 }
2016 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2017
2018
2019 /*********************************************************************
2020  *                              GOVERNORS                            *
2021  *********************************************************************/
2022
2023 /**
2024  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2025  * @policy: cpufreq policy to switch the frequency for.
2026  * @target_freq: New frequency to set (may be approximate).
2027  *
2028  * Carry out a fast frequency switch without sleeping.
2029  *
2030  * The driver's ->fast_switch() callback invoked by this function must be
2031  * suitable for being called from within RCU-sched read-side critical sections
2032  * and it is expected to select the minimum available frequency greater than or
2033  * equal to @target_freq (CPUFREQ_RELATION_L).
2034  *
2035  * This function must not be called if policy->fast_switch_enabled is unset.
2036  *
2037  * Governors calling this function must guarantee that it will never be invoked
2038  * twice in parallel for the same policy and that it will never be called in
2039  * parallel with either ->target() or ->target_index() for the same policy.
2040  *
2041  * Returns the actual frequency set for the CPU.
2042  *
2043  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2044  * error condition, the hardware configuration must be preserved.
2045  */
2046 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2047                                         unsigned int target_freq)
2048 {
2049         target_freq = clamp_val(target_freq, policy->min, policy->max);
2050
2051         return cpufreq_driver->fast_switch(policy, target_freq);
2052 }
2053 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2054
2055 /* Must set freqs->new to intermediate frequency */
2056 static int __target_intermediate(struct cpufreq_policy *policy,
2057                                  struct cpufreq_freqs *freqs, int index)
2058 {
2059         int ret;
2060
2061         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2062
2063         /* We don't need to switch to intermediate freq */
2064         if (!freqs->new)
2065                 return 0;
2066
2067         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2068                  __func__, policy->cpu, freqs->old, freqs->new);
2069
2070         cpufreq_freq_transition_begin(policy, freqs);
2071         ret = cpufreq_driver->target_intermediate(policy, index);
2072         cpufreq_freq_transition_end(policy, freqs, ret);
2073
2074         if (ret)
2075                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2076                        __func__, ret);
2077
2078         return ret;
2079 }
2080
2081 static int __target_index(struct cpufreq_policy *policy, int index)
2082 {
2083         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2084         unsigned int intermediate_freq = 0;
2085         unsigned int newfreq = policy->freq_table[index].frequency;
2086         int retval = -EINVAL;
2087         bool notify;
2088
2089         if (newfreq == policy->cur)
2090                 return 0;
2091
2092         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2093         if (notify) {
2094                 /* Handle switching to intermediate frequency */
2095                 if (cpufreq_driver->get_intermediate) {
2096                         retval = __target_intermediate(policy, &freqs, index);
2097                         if (retval)
2098                                 return retval;
2099
2100                         intermediate_freq = freqs.new;
2101                         /* Set old freq to intermediate */
2102                         if (intermediate_freq)
2103                                 freqs.old = freqs.new;
2104                 }
2105
2106                 freqs.new = newfreq;
2107                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2108                          __func__, policy->cpu, freqs.old, freqs.new);
2109
2110                 cpufreq_freq_transition_begin(policy, &freqs);
2111         }
2112
2113         retval = cpufreq_driver->target_index(policy, index);
2114         if (retval)
2115                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2116                        retval);
2117
2118         if (notify) {
2119                 cpufreq_freq_transition_end(policy, &freqs, retval);
2120
2121                 /*
2122                  * Failed after setting to intermediate freq? Driver should have
2123                  * reverted back to initial frequency and so should we. Check
2124                  * here for intermediate_freq instead of get_intermediate, in
2125                  * case we haven't switched to intermediate freq at all.
2126                  */
2127                 if (unlikely(retval && intermediate_freq)) {
2128                         freqs.old = intermediate_freq;
2129                         freqs.new = policy->restore_freq;
2130                         cpufreq_freq_transition_begin(policy, &freqs);
2131                         cpufreq_freq_transition_end(policy, &freqs, 0);
2132                 }
2133         }
2134
2135         return retval;
2136 }
2137
2138 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2139                             unsigned int target_freq,
2140                             unsigned int relation)
2141 {
2142         unsigned int old_target_freq = target_freq;
2143         int index;
2144
2145         if (cpufreq_disabled())
2146                 return -ENODEV;
2147
2148         /* Make sure that target_freq is within supported range */
2149         target_freq = clamp_val(target_freq, policy->min, policy->max);
2150
2151         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2152                  policy->cpu, target_freq, relation, old_target_freq);
2153
2154         /*
2155          * This might look like a redundant call as we are checking it again
2156          * after finding index. But it is left intentionally for cases where
2157          * exactly same freq is called again and so we can save on few function
2158          * calls.
2159          */
2160         if (target_freq == policy->cur)
2161                 return 0;
2162
2163         /* Save last value to restore later on errors */
2164         policy->restore_freq = policy->cur;
2165
2166         if (cpufreq_driver->target)
2167                 return cpufreq_driver->target(policy, target_freq, relation);
2168
2169         if (!cpufreq_driver->target_index)
2170                 return -EINVAL;
2171
2172         index = cpufreq_frequency_table_target(policy, target_freq, relation);
2173
2174         return __target_index(policy, index);
2175 }
2176 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2177
2178 int cpufreq_driver_target(struct cpufreq_policy *policy,
2179                           unsigned int target_freq,
2180                           unsigned int relation)
2181 {
2182         int ret;
2183
2184         down_write(&policy->rwsem);
2185
2186         ret = __cpufreq_driver_target(policy, target_freq, relation);
2187
2188         up_write(&policy->rwsem);
2189
2190         return ret;
2191 }
2192 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2193
2194 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2195 {
2196         return NULL;
2197 }
2198
2199 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2200 {
2201         int ret;
2202
2203         /* Don't start any governor operations if we are entering suspend */
2204         if (cpufreq_suspended)
2205                 return 0;
2206         /*
2207          * Governor might not be initiated here if ACPI _PPC changed
2208          * notification happened, so check it.
2209          */
2210         if (!policy->governor)
2211                 return -EINVAL;
2212
2213         /* Platform doesn't want dynamic frequency switching ? */
2214         if (policy->governor->dynamic_switching &&
2215             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2216                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2217
2218                 if (gov) {
2219                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2220                                 policy->governor->name, gov->name);
2221                         policy->governor = gov;
2222                 } else {
2223                         return -EINVAL;
2224                 }
2225         }
2226
2227         if (!try_module_get(policy->governor->owner))
2228                 return -EINVAL;
2229
2230         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2231
2232         if (policy->governor->init) {
2233                 ret = policy->governor->init(policy);
2234                 if (ret) {
2235                         module_put(policy->governor->owner);
2236                         return ret;
2237                 }
2238         }
2239
2240         return 0;
2241 }
2242
2243 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2244 {
2245         if (cpufreq_suspended || !policy->governor)
2246                 return;
2247
2248         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2249
2250         if (policy->governor->exit)
2251                 policy->governor->exit(policy);
2252
2253         module_put(policy->governor->owner);
2254 }
2255
2256 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2257 {
2258         int ret;
2259
2260         if (cpufreq_suspended)
2261                 return 0;
2262
2263         if (!policy->governor)
2264                 return -EINVAL;
2265
2266         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2267
2268         if (cpufreq_driver->get)
2269                 cpufreq_verify_current_freq(policy, false);
2270
2271         if (policy->governor->start) {
2272                 ret = policy->governor->start(policy);
2273                 if (ret)
2274                         return ret;
2275         }
2276
2277         if (policy->governor->limits)
2278                 policy->governor->limits(policy);
2279
2280         return 0;
2281 }
2282
2283 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2284 {
2285         if (cpufreq_suspended || !policy->governor)
2286                 return;
2287
2288         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2289
2290         if (policy->governor->stop)
2291                 policy->governor->stop(policy);
2292 }
2293
2294 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2295 {
2296         if (cpufreq_suspended || !policy->governor)
2297                 return;
2298
2299         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2300
2301         if (policy->governor->limits)
2302                 policy->governor->limits(policy);
2303 }
2304
2305 int cpufreq_register_governor(struct cpufreq_governor *governor)
2306 {
2307         int err;
2308
2309         if (!governor)
2310                 return -EINVAL;
2311
2312         if (cpufreq_disabled())
2313                 return -ENODEV;
2314
2315         mutex_lock(&cpufreq_governor_mutex);
2316
2317         err = -EBUSY;
2318         if (!find_governor(governor->name)) {
2319                 err = 0;
2320                 list_add(&governor->governor_list, &cpufreq_governor_list);
2321         }
2322
2323         mutex_unlock(&cpufreq_governor_mutex);
2324         return err;
2325 }
2326 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2327
2328 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2329 {
2330         struct cpufreq_policy *policy;
2331         unsigned long flags;
2332
2333         if (!governor)
2334                 return;
2335
2336         if (cpufreq_disabled())
2337                 return;
2338
2339         /* clear last_governor for all inactive policies */
2340         read_lock_irqsave(&cpufreq_driver_lock, flags);
2341         for_each_inactive_policy(policy) {
2342                 if (!strcmp(policy->last_governor, governor->name)) {
2343                         policy->governor = NULL;
2344                         strcpy(policy->last_governor, "\0");
2345                 }
2346         }
2347         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2348
2349         mutex_lock(&cpufreq_governor_mutex);
2350         list_del(&governor->governor_list);
2351         mutex_unlock(&cpufreq_governor_mutex);
2352 }
2353 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2354
2355
2356 /*********************************************************************
2357  *                          POLICY INTERFACE                         *
2358  *********************************************************************/
2359
2360 /**
2361  * cpufreq_get_policy - get the current cpufreq_policy
2362  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2363  *      is written
2364  *
2365  * Reads the current cpufreq policy.
2366  */
2367 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2368 {
2369         struct cpufreq_policy *cpu_policy;
2370         if (!policy)
2371                 return -EINVAL;
2372
2373         cpu_policy = cpufreq_cpu_get(cpu);
2374         if (!cpu_policy)
2375                 return -EINVAL;
2376
2377         memcpy(policy, cpu_policy, sizeof(*policy));
2378
2379         cpufreq_cpu_put(cpu_policy);
2380         return 0;
2381 }
2382 EXPORT_SYMBOL(cpufreq_get_policy);
2383
2384 /**
2385  * cpufreq_set_policy - Modify cpufreq policy parameters.
2386  * @policy: Policy object to modify.
2387  * @new_gov: Policy governor pointer.
2388  * @new_pol: Policy value (for drivers with built-in governors).
2389  *
2390  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2391  * limits to be set for the policy, update @policy with the verified limits
2392  * values and either invoke the driver's ->setpolicy() callback (if present) or
2393  * carry out a governor update for @policy.  That is, run the current governor's
2394  * ->limits() callback (if @new_gov points to the same object as the one in
2395  * @policy) or replace the governor for @policy with @new_gov.
2396  *
2397  * The cpuinfo part of @policy is not updated by this function.
2398  */
2399 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2400                               struct cpufreq_governor *new_gov,
2401                               unsigned int new_pol)
2402 {
2403         struct cpufreq_policy_data new_data;
2404         struct cpufreq_governor *old_gov;
2405         int ret;
2406
2407         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2408         new_data.freq_table = policy->freq_table;
2409         new_data.cpu = policy->cpu;
2410         /*
2411          * PM QoS framework collects all the requests from users and provide us
2412          * the final aggregated value here.
2413          */
2414         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2415         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2416
2417         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2418                  new_data.cpu, new_data.min, new_data.max);
2419
2420         /*
2421          * Verify that the CPU speed can be set within these limits and make sure
2422          * that min <= max.
2423          */
2424         ret = cpufreq_driver->verify(&new_data);
2425         if (ret)
2426                 return ret;
2427
2428         policy->min = new_data.min;
2429         policy->max = new_data.max;
2430         trace_cpu_frequency_limits(policy);
2431
2432         policy->cached_target_freq = UINT_MAX;
2433
2434         pr_debug("new min and max freqs are %u - %u kHz\n",
2435                  policy->min, policy->max);
2436
2437         if (cpufreq_driver->setpolicy) {
2438                 policy->policy = new_pol;
2439                 pr_debug("setting range\n");
2440                 return cpufreq_driver->setpolicy(policy);
2441         }
2442
2443         if (new_gov == policy->governor) {
2444                 pr_debug("governor limits update\n");
2445                 cpufreq_governor_limits(policy);
2446                 return 0;
2447         }
2448
2449         pr_debug("governor switch\n");
2450
2451         /* save old, working values */
2452         old_gov = policy->governor;
2453         /* end old governor */
2454         if (old_gov) {
2455                 cpufreq_stop_governor(policy);
2456                 cpufreq_exit_governor(policy);
2457         }
2458
2459         /* start new governor */
2460         policy->governor = new_gov;
2461         ret = cpufreq_init_governor(policy);
2462         if (!ret) {
2463                 ret = cpufreq_start_governor(policy);
2464                 if (!ret) {
2465                         pr_debug("governor change\n");
2466                         sched_cpufreq_governor_change(policy, old_gov);
2467                         return 0;
2468                 }
2469                 cpufreq_exit_governor(policy);
2470         }
2471
2472         /* new governor failed, so re-start old one */
2473         pr_debug("starting governor %s failed\n", policy->governor->name);
2474         if (old_gov) {
2475                 policy->governor = old_gov;
2476                 if (cpufreq_init_governor(policy))
2477                         policy->governor = NULL;
2478                 else
2479                         cpufreq_start_governor(policy);
2480         }
2481
2482         return ret;
2483 }
2484
2485 /**
2486  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2487  * @cpu: CPU to re-evaluate the policy for.
2488  *
2489  * Update the current frequency for the cpufreq policy of @cpu and use
2490  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2491  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2492  * for the policy in question, among other things.
2493  */
2494 void cpufreq_update_policy(unsigned int cpu)
2495 {
2496         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2497
2498         if (!policy)
2499                 return;
2500
2501         /*
2502          * BIOS might change freq behind our back
2503          * -> ask driver for current freq and notify governors about a change
2504          */
2505         if (cpufreq_driver->get && has_target() &&
2506             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2507                 goto unlock;
2508
2509         refresh_frequency_limits(policy);
2510
2511 unlock:
2512         cpufreq_cpu_release(policy);
2513 }
2514 EXPORT_SYMBOL(cpufreq_update_policy);
2515
2516 /**
2517  * cpufreq_update_limits - Update policy limits for a given CPU.
2518  * @cpu: CPU to update the policy limits for.
2519  *
2520  * Invoke the driver's ->update_limits callback if present or call
2521  * cpufreq_update_policy() for @cpu.
2522  */
2523 void cpufreq_update_limits(unsigned int cpu)
2524 {
2525         if (cpufreq_driver->update_limits)
2526                 cpufreq_driver->update_limits(cpu);
2527         else
2528                 cpufreq_update_policy(cpu);
2529 }
2530 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2531
2532 /*********************************************************************
2533  *               BOOST                                               *
2534  *********************************************************************/
2535 static int cpufreq_boost_set_sw(int state)
2536 {
2537         struct cpufreq_policy *policy;
2538
2539         for_each_active_policy(policy) {
2540                 int ret;
2541
2542                 if (!policy->freq_table)
2543                         return -ENXIO;
2544
2545                 ret = cpufreq_frequency_table_cpuinfo(policy,
2546                                                       policy->freq_table);
2547                 if (ret) {
2548                         pr_err("%s: Policy frequency update failed\n",
2549                                __func__);
2550                         return ret;
2551                 }
2552
2553                 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2554                 if (ret < 0)
2555                         return ret;
2556         }
2557
2558         return 0;
2559 }
2560
2561 int cpufreq_boost_trigger_state(int state)
2562 {
2563         unsigned long flags;
2564         int ret = 0;
2565
2566         if (cpufreq_driver->boost_enabled == state)
2567                 return 0;
2568
2569         write_lock_irqsave(&cpufreq_driver_lock, flags);
2570         cpufreq_driver->boost_enabled = state;
2571         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2572
2573         ret = cpufreq_driver->set_boost(state);
2574         if (ret) {
2575                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2576                 cpufreq_driver->boost_enabled = !state;
2577                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2578
2579                 pr_err("%s: Cannot %s BOOST\n",
2580                        __func__, state ? "enable" : "disable");
2581         }
2582
2583         return ret;
2584 }
2585
2586 static bool cpufreq_boost_supported(void)
2587 {
2588         return cpufreq_driver->set_boost;
2589 }
2590
2591 static int create_boost_sysfs_file(void)
2592 {
2593         int ret;
2594
2595         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2596         if (ret)
2597                 pr_err("%s: cannot register global BOOST sysfs file\n",
2598                        __func__);
2599
2600         return ret;
2601 }
2602
2603 static void remove_boost_sysfs_file(void)
2604 {
2605         if (cpufreq_boost_supported())
2606                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2607 }
2608
2609 int cpufreq_enable_boost_support(void)
2610 {
2611         if (!cpufreq_driver)
2612                 return -EINVAL;
2613
2614         if (cpufreq_boost_supported())
2615                 return 0;
2616
2617         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2618
2619         /* This will get removed on driver unregister */
2620         return create_boost_sysfs_file();
2621 }
2622 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2623
2624 int cpufreq_boost_enabled(void)
2625 {
2626         return cpufreq_driver->boost_enabled;
2627 }
2628 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2629
2630 /*********************************************************************
2631  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2632  *********************************************************************/
2633 static enum cpuhp_state hp_online;
2634
2635 static int cpuhp_cpufreq_online(unsigned int cpu)
2636 {
2637         cpufreq_online(cpu);
2638
2639         return 0;
2640 }
2641
2642 static int cpuhp_cpufreq_offline(unsigned int cpu)
2643 {
2644         cpufreq_offline(cpu);
2645
2646         return 0;
2647 }
2648
2649 /**
2650  * cpufreq_register_driver - register a CPU Frequency driver
2651  * @driver_data: A struct cpufreq_driver containing the values#
2652  * submitted by the CPU Frequency driver.
2653  *
2654  * Registers a CPU Frequency driver to this core code. This code
2655  * returns zero on success, -EEXIST when another driver got here first
2656  * (and isn't unregistered in the meantime).
2657  *
2658  */
2659 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2660 {
2661         unsigned long flags;
2662         int ret;
2663
2664         if (cpufreq_disabled())
2665                 return -ENODEV;
2666
2667         /*
2668          * The cpufreq core depends heavily on the availability of device
2669          * structure, make sure they are available before proceeding further.
2670          */
2671         if (!get_cpu_device(0))
2672                 return -EPROBE_DEFER;
2673
2674         if (!driver_data || !driver_data->verify || !driver_data->init ||
2675             !(driver_data->setpolicy || driver_data->target_index ||
2676                     driver_data->target) ||
2677              (driver_data->setpolicy && (driver_data->target_index ||
2678                     driver_data->target)) ||
2679              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2680              (!driver_data->online != !driver_data->offline))
2681                 return -EINVAL;
2682
2683         pr_debug("trying to register driver %s\n", driver_data->name);
2684
2685         /* Protect against concurrent CPU online/offline. */
2686         cpus_read_lock();
2687
2688         write_lock_irqsave(&cpufreq_driver_lock, flags);
2689         if (cpufreq_driver) {
2690                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2691                 ret = -EEXIST;
2692                 goto out;
2693         }
2694         cpufreq_driver = driver_data;
2695         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2696
2697         if (driver_data->setpolicy)
2698                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2699
2700         if (cpufreq_boost_supported()) {
2701                 ret = create_boost_sysfs_file();
2702                 if (ret)
2703                         goto err_null_driver;
2704         }
2705
2706         ret = subsys_interface_register(&cpufreq_interface);
2707         if (ret)
2708                 goto err_boost_unreg;
2709
2710         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2711             list_empty(&cpufreq_policy_list)) {
2712                 /* if all ->init() calls failed, unregister */
2713                 ret = -ENODEV;
2714                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2715                          driver_data->name);
2716                 goto err_if_unreg;
2717         }
2718
2719         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2720                                                    "cpufreq:online",
2721                                                    cpuhp_cpufreq_online,
2722                                                    cpuhp_cpufreq_offline);
2723         if (ret < 0)
2724                 goto err_if_unreg;
2725         hp_online = ret;
2726         ret = 0;
2727
2728         pr_debug("driver %s up and running\n", driver_data->name);
2729         goto out;
2730
2731 err_if_unreg:
2732         subsys_interface_unregister(&cpufreq_interface);
2733 err_boost_unreg:
2734         remove_boost_sysfs_file();
2735 err_null_driver:
2736         write_lock_irqsave(&cpufreq_driver_lock, flags);
2737         cpufreq_driver = NULL;
2738         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2739 out:
2740         cpus_read_unlock();
2741         return ret;
2742 }
2743 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2744
2745 /**
2746  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2747  *
2748  * Unregister the current CPUFreq driver. Only call this if you have
2749  * the right to do so, i.e. if you have succeeded in initialising before!
2750  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2751  * currently not initialised.
2752  */
2753 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2754 {
2755         unsigned long flags;
2756
2757         if (!cpufreq_driver || (driver != cpufreq_driver))
2758                 return -EINVAL;
2759
2760         pr_debug("unregistering driver %s\n", driver->name);
2761
2762         /* Protect against concurrent cpu hotplug */
2763         cpus_read_lock();
2764         subsys_interface_unregister(&cpufreq_interface);
2765         remove_boost_sysfs_file();
2766         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2767
2768         write_lock_irqsave(&cpufreq_driver_lock, flags);
2769
2770         cpufreq_driver = NULL;
2771
2772         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2773         cpus_read_unlock();
2774
2775         return 0;
2776 }
2777 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2778
2779 static int __init cpufreq_core_init(void)
2780 {
2781         if (cpufreq_disabled())
2782                 return -ENODEV;
2783
2784         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2785         BUG_ON(!cpufreq_global_kobject);
2786
2787         return 0;
2788 }
2789 module_param(off, int, 0444);
2790 core_initcall(cpufreq_core_init);