cpufreq: Reuse cpufreq_driver_resolve_freq() in __cpufreq_driver_target()
[linux-2.6-microblaze.git] / drivers / cpufreq / cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/cpufreq/cpufreq.c
4  *
5  *  Copyright (C) 2001 Russell King
6  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8  *
9  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10  *      Added handling for CPU hotplug
11  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12  *      Fix handling for CPU hotplug -- affected CPUs
13  */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active)                     \
37         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38                 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy)                \
41         for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy)              \
43         for_each_suitable_policy(__policy, false)
44
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor)                           \
48         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49
50 static char default_governor[CPUFREQ_NAME_LEN];
51
52 /*
53  * The "cpufreq driver" - the arch- or hardware-dependent low
54  * level driver of CPUFreq support, and its spinlock. This lock
55  * also protects the cpufreq_cpu_data array.
56  */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
62 bool cpufreq_supports_freq_invariance(void)
63 {
64         return static_branch_likely(&cpufreq_freq_invariance);
65 }
66
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69
70 static inline bool has_target(void)
71 {
72         return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81                               struct cpufreq_governor *new_gov,
82                               unsigned int new_pol);
83
84 /*
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
95 static int cpufreq_disabled(void)
96 {
97         return off;
98 }
99 void disable_cpufreq(void)
100 {
101         off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
105 bool have_governor_per_policy(void)
106 {
107         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 static struct kobject *cpufreq_global_kobject;
112
113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115         if (have_governor_per_policy())
116                 return &policy->kobj;
117         else
118                 return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121
122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124         struct kernel_cpustat kcpustat;
125         u64 cur_wall_time;
126         u64 idle_time;
127         u64 busy_time;
128
129         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130
131         kcpustat_cpu_fetch(&kcpustat, cpu);
132
133         busy_time = kcpustat.cpustat[CPUTIME_USER];
134         busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135         busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136         busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137         busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138         busy_time += kcpustat.cpustat[CPUTIME_NICE];
139
140         idle_time = cur_wall_time - busy_time;
141         if (wall)
142                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143
144         return div_u64(idle_time, NSEC_PER_USEC);
145 }
146
147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150
151         if (idle_time == -1ULL)
152                 return get_cpu_idle_time_jiffy(cpu, wall);
153         else if (!io_busy)
154                 idle_time += get_cpu_iowait_time_us(cpu, wall);
155
156         return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159
160 /*
161  * This is a generic cpufreq init() routine which can be used by cpufreq
162  * drivers of SMP systems. It will do following:
163  * - validate & show freq table passed
164  * - set policies transition latency
165  * - policy->cpus with all possible CPUs
166  */
167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168                 struct cpufreq_frequency_table *table,
169                 unsigned int transition_latency)
170 {
171         policy->freq_table = table;
172         policy->cpuinfo.transition_latency = transition_latency;
173
174         /*
175          * The driver only supports the SMP configuration where all processors
176          * share the clock and voltage and clock.
177          */
178         cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181
182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185
186         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189
190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193
194         if (!policy || IS_ERR(policy->clk)) {
195                 pr_err("%s: No %s associated to cpu: %d\n",
196                        __func__, policy ? "clk" : "policy", cpu);
197                 return 0;
198         }
199
200         return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203
204 /**
205  * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206  * @cpu: CPU to find the policy for.
207  *
208  * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209  * the kobject reference counter of that policy.  Return a valid policy on
210  * success or NULL on failure.
211  *
212  * The policy returned by this function has to be released with the help of
213  * cpufreq_cpu_put() to balance its kobject reference counter properly.
214  */
215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217         struct cpufreq_policy *policy = NULL;
218         unsigned long flags;
219
220         if (WARN_ON(cpu >= nr_cpu_ids))
221                 return NULL;
222
223         /* get the cpufreq driver */
224         read_lock_irqsave(&cpufreq_driver_lock, flags);
225
226         if (cpufreq_driver) {
227                 /* get the CPU */
228                 policy = cpufreq_cpu_get_raw(cpu);
229                 if (policy)
230                         kobject_get(&policy->kobj);
231         }
232
233         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234
235         return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238
239 /**
240  * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241  * @policy: cpufreq policy returned by cpufreq_cpu_get().
242  */
243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245         kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248
249 /**
250  * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251  * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252  */
253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255         if (WARN_ON(!policy))
256                 return;
257
258         lockdep_assert_held(&policy->rwsem);
259
260         up_write(&policy->rwsem);
261
262         cpufreq_cpu_put(policy);
263 }
264
265 /**
266  * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267  * @cpu: CPU to find the policy for.
268  *
269  * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270  * if the policy returned by it is not NULL, acquire its rwsem for writing.
271  * Return the policy if it is active or release it and return NULL otherwise.
272  *
273  * The policy returned by this function has to be released with the help of
274  * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275  * counter properly.
276  */
277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280
281         if (!policy)
282                 return NULL;
283
284         down_write(&policy->rwsem);
285
286         if (policy_is_inactive(policy)) {
287                 cpufreq_cpu_release(policy);
288                 return NULL;
289         }
290
291         return policy;
292 }
293
294 /*********************************************************************
295  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
296  *********************************************************************/
297
298 /**
299  * adjust_jiffies - Adjust the system "loops_per_jiffy".
300  * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301  * @ci: Frequency change information.
302  *
303  * This function alters the system "loops_per_jiffy" for the clock
304  * speed change. Note that loops_per_jiffy cannot be updated on SMP
305  * systems as each CPU might be scaled differently. So, use the arch
306  * per-CPU loops_per_jiffy value wherever possible.
307  */
308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311         static unsigned long l_p_j_ref;
312         static unsigned int l_p_j_ref_freq;
313
314         if (ci->flags & CPUFREQ_CONST_LOOPS)
315                 return;
316
317         if (!l_p_j_ref_freq) {
318                 l_p_j_ref = loops_per_jiffy;
319                 l_p_j_ref_freq = ci->old;
320                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321                          l_p_j_ref, l_p_j_ref_freq);
322         }
323         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325                                                                 ci->new);
326                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327                          loops_per_jiffy, ci->new);
328         }
329 #endif
330 }
331
332 /**
333  * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334  * @policy: cpufreq policy to enable fast frequency switching for.
335  * @freqs: contain details of the frequency update.
336  * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337  *
338  * This function calls the transition notifiers and adjust_jiffies().
339  *
340  * It is called twice on all CPU frequency changes that have external effects.
341  */
342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343                                       struct cpufreq_freqs *freqs,
344                                       unsigned int state)
345 {
346         int cpu;
347
348         BUG_ON(irqs_disabled());
349
350         if (cpufreq_disabled())
351                 return;
352
353         freqs->policy = policy;
354         freqs->flags = cpufreq_driver->flags;
355         pr_debug("notification %u of frequency transition to %u kHz\n",
356                  state, freqs->new);
357
358         switch (state) {
359         case CPUFREQ_PRECHANGE:
360                 /*
361                  * Detect if the driver reported a value as "old frequency"
362                  * which is not equal to what the cpufreq core thinks is
363                  * "old frequency".
364                  */
365                 if (policy->cur && policy->cur != freqs->old) {
366                         pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367                                  freqs->old, policy->cur);
368                         freqs->old = policy->cur;
369                 }
370
371                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372                                          CPUFREQ_PRECHANGE, freqs);
373
374                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375                 break;
376
377         case CPUFREQ_POSTCHANGE:
378                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379                 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380                          cpumask_pr_args(policy->cpus));
381
382                 for_each_cpu(cpu, policy->cpus)
383                         trace_cpu_frequency(freqs->new, cpu);
384
385                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386                                          CPUFREQ_POSTCHANGE, freqs);
387
388                 cpufreq_stats_record_transition(policy, freqs->new);
389                 policy->cur = freqs->new;
390         }
391 }
392
393 /* Do post notifications when there are chances that transition has failed */
394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395                 struct cpufreq_freqs *freqs, int transition_failed)
396 {
397         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398         if (!transition_failed)
399                 return;
400
401         swap(freqs->old, freqs->new);
402         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405
406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407                 struct cpufreq_freqs *freqs)
408 {
409
410         /*
411          * Catch double invocations of _begin() which lead to self-deadlock.
412          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413          * doesn't invoke _begin() on their behalf, and hence the chances of
414          * double invocations are very low. Moreover, there are scenarios
415          * where these checks can emit false-positive warnings in these
416          * drivers; so we avoid that by skipping them altogether.
417          */
418         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419                                 && current == policy->transition_task);
420
421 wait:
422         wait_event(policy->transition_wait, !policy->transition_ongoing);
423
424         spin_lock(&policy->transition_lock);
425
426         if (unlikely(policy->transition_ongoing)) {
427                 spin_unlock(&policy->transition_lock);
428                 goto wait;
429         }
430
431         policy->transition_ongoing = true;
432         policy->transition_task = current;
433
434         spin_unlock(&policy->transition_lock);
435
436         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439
440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441                 struct cpufreq_freqs *freqs, int transition_failed)
442 {
443         if (WARN_ON(!policy->transition_ongoing))
444                 return;
445
446         cpufreq_notify_post_transition(policy, freqs, transition_failed);
447
448         arch_set_freq_scale(policy->related_cpus,
449                             policy->cur,
450                             policy->cpuinfo.max_freq);
451
452         policy->transition_ongoing = false;
453         policy->transition_task = NULL;
454
455         wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458
459 /*
460  * Fast frequency switching status count.  Positive means "enabled", negative
461  * means "disabled" and 0 means "not decided yet".
462  */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465
466 static void cpufreq_list_transition_notifiers(void)
467 {
468         struct notifier_block *nb;
469
470         pr_info("Registered transition notifiers:\n");
471
472         mutex_lock(&cpufreq_transition_notifier_list.mutex);
473
474         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475                 pr_info("%pS\n", nb->notifier_call);
476
477         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479
480 /**
481  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482  * @policy: cpufreq policy to enable fast frequency switching for.
483  *
484  * Try to enable fast frequency switching for @policy.
485  *
486  * The attempt will fail if there is at least one transition notifier registered
487  * at this point, as fast frequency switching is quite fundamentally at odds
488  * with transition notifiers.  Thus if successful, it will make registration of
489  * transition notifiers fail going forward.
490  */
491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493         lockdep_assert_held(&policy->rwsem);
494
495         if (!policy->fast_switch_possible)
496                 return;
497
498         mutex_lock(&cpufreq_fast_switch_lock);
499         if (cpufreq_fast_switch_count >= 0) {
500                 cpufreq_fast_switch_count++;
501                 policy->fast_switch_enabled = true;
502         } else {
503                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
504                         policy->cpu);
505                 cpufreq_list_transition_notifiers();
506         }
507         mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510
511 /**
512  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513  * @policy: cpufreq policy to disable fast frequency switching for.
514  */
515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517         mutex_lock(&cpufreq_fast_switch_lock);
518         if (policy->fast_switch_enabled) {
519                 policy->fast_switch_enabled = false;
520                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521                         cpufreq_fast_switch_count--;
522         }
523         mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526
527 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
528                 unsigned int target_freq, unsigned int relation)
529 {
530         target_freq = clamp_val(target_freq, policy->min, policy->max);
531         policy->cached_target_freq = target_freq;
532
533         if (cpufreq_driver->target_index) {
534                 unsigned int idx;
535
536                 idx = cpufreq_frequency_table_target(policy, target_freq,
537                                                      relation);
538                 policy->cached_resolved_idx = idx;
539                 return policy->freq_table[idx].frequency;
540         }
541
542         if (cpufreq_driver->resolve_freq)
543                 return cpufreq_driver->resolve_freq(policy, target_freq);
544
545         return target_freq;
546 }
547
548 /**
549  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
550  * one.
551  * @policy: associated policy to interrogate
552  * @target_freq: target frequency to resolve.
553  *
554  * The target to driver frequency mapping is cached in the policy.
555  *
556  * Return: Lowest driver-supported frequency greater than or equal to the
557  * given target_freq, subject to policy (min/max) and driver limitations.
558  */
559 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
560                                          unsigned int target_freq)
561 {
562         return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_L);
563 }
564 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
565
566 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
567 {
568         unsigned int latency;
569
570         if (policy->transition_delay_us)
571                 return policy->transition_delay_us;
572
573         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
574         if (latency) {
575                 /*
576                  * For platforms that can change the frequency very fast (< 10
577                  * us), the above formula gives a decent transition delay. But
578                  * for platforms where transition_latency is in milliseconds, it
579                  * ends up giving unrealistic values.
580                  *
581                  * Cap the default transition delay to 10 ms, which seems to be
582                  * a reasonable amount of time after which we should reevaluate
583                  * the frequency.
584                  */
585                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
586         }
587
588         return LATENCY_MULTIPLIER;
589 }
590 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
591
592 /*********************************************************************
593  *                          SYSFS INTERFACE                          *
594  *********************************************************************/
595 static ssize_t show_boost(struct kobject *kobj,
596                           struct kobj_attribute *attr, char *buf)
597 {
598         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
599 }
600
601 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
602                            const char *buf, size_t count)
603 {
604         int ret, enable;
605
606         ret = sscanf(buf, "%d", &enable);
607         if (ret != 1 || enable < 0 || enable > 1)
608                 return -EINVAL;
609
610         if (cpufreq_boost_trigger_state(enable)) {
611                 pr_err("%s: Cannot %s BOOST!\n",
612                        __func__, enable ? "enable" : "disable");
613                 return -EINVAL;
614         }
615
616         pr_debug("%s: cpufreq BOOST %s\n",
617                  __func__, enable ? "enabled" : "disabled");
618
619         return count;
620 }
621 define_one_global_rw(boost);
622
623 static struct cpufreq_governor *find_governor(const char *str_governor)
624 {
625         struct cpufreq_governor *t;
626
627         for_each_governor(t)
628                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
629                         return t;
630
631         return NULL;
632 }
633
634 static struct cpufreq_governor *get_governor(const char *str_governor)
635 {
636         struct cpufreq_governor *t;
637
638         mutex_lock(&cpufreq_governor_mutex);
639         t = find_governor(str_governor);
640         if (!t)
641                 goto unlock;
642
643         if (!try_module_get(t->owner))
644                 t = NULL;
645
646 unlock:
647         mutex_unlock(&cpufreq_governor_mutex);
648
649         return t;
650 }
651
652 static unsigned int cpufreq_parse_policy(char *str_governor)
653 {
654         if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
655                 return CPUFREQ_POLICY_PERFORMANCE;
656
657         if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
658                 return CPUFREQ_POLICY_POWERSAVE;
659
660         return CPUFREQ_POLICY_UNKNOWN;
661 }
662
663 /**
664  * cpufreq_parse_governor - parse a governor string only for has_target()
665  * @str_governor: Governor name.
666  */
667 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
668 {
669         struct cpufreq_governor *t;
670
671         t = get_governor(str_governor);
672         if (t)
673                 return t;
674
675         if (request_module("cpufreq_%s", str_governor))
676                 return NULL;
677
678         return get_governor(str_governor);
679 }
680
681 /*
682  * cpufreq_per_cpu_attr_read() / show_##file_name() -
683  * print out cpufreq information
684  *
685  * Write out information from cpufreq_driver->policy[cpu]; object must be
686  * "unsigned int".
687  */
688
689 #define show_one(file_name, object)                     \
690 static ssize_t show_##file_name                         \
691 (struct cpufreq_policy *policy, char *buf)              \
692 {                                                       \
693         return sprintf(buf, "%u\n", policy->object);    \
694 }
695
696 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
697 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
698 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
699 show_one(scaling_min_freq, min);
700 show_one(scaling_max_freq, max);
701
702 __weak unsigned int arch_freq_get_on_cpu(int cpu)
703 {
704         return 0;
705 }
706
707 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
708 {
709         ssize_t ret;
710         unsigned int freq;
711
712         freq = arch_freq_get_on_cpu(policy->cpu);
713         if (freq)
714                 ret = sprintf(buf, "%u\n", freq);
715         else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
716                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
717         else
718                 ret = sprintf(buf, "%u\n", policy->cur);
719         return ret;
720 }
721
722 /*
723  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
724  */
725 #define store_one(file_name, object)                    \
726 static ssize_t store_##file_name                                        \
727 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
728 {                                                                       \
729         unsigned long val;                                              \
730         int ret;                                                        \
731                                                                         \
732         ret = sscanf(buf, "%lu", &val);                                 \
733         if (ret != 1)                                                   \
734                 return -EINVAL;                                         \
735                                                                         \
736         ret = freq_qos_update_request(policy->object##_freq_req, val);\
737         return ret >= 0 ? count : ret;                                  \
738 }
739
740 store_one(scaling_min_freq, min);
741 store_one(scaling_max_freq, max);
742
743 /*
744  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
745  */
746 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
747                                         char *buf)
748 {
749         unsigned int cur_freq = __cpufreq_get(policy);
750
751         if (cur_freq)
752                 return sprintf(buf, "%u\n", cur_freq);
753
754         return sprintf(buf, "<unknown>\n");
755 }
756
757 /*
758  * show_scaling_governor - show the current policy for the specified CPU
759  */
760 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
761 {
762         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
763                 return sprintf(buf, "powersave\n");
764         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
765                 return sprintf(buf, "performance\n");
766         else if (policy->governor)
767                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
768                                 policy->governor->name);
769         return -EINVAL;
770 }
771
772 /*
773  * store_scaling_governor - store policy for the specified CPU
774  */
775 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
776                                         const char *buf, size_t count)
777 {
778         char str_governor[16];
779         int ret;
780
781         ret = sscanf(buf, "%15s", str_governor);
782         if (ret != 1)
783                 return -EINVAL;
784
785         if (cpufreq_driver->setpolicy) {
786                 unsigned int new_pol;
787
788                 new_pol = cpufreq_parse_policy(str_governor);
789                 if (!new_pol)
790                         return -EINVAL;
791
792                 ret = cpufreq_set_policy(policy, NULL, new_pol);
793         } else {
794                 struct cpufreq_governor *new_gov;
795
796                 new_gov = cpufreq_parse_governor(str_governor);
797                 if (!new_gov)
798                         return -EINVAL;
799
800                 ret = cpufreq_set_policy(policy, new_gov,
801                                          CPUFREQ_POLICY_UNKNOWN);
802
803                 module_put(new_gov->owner);
804         }
805
806         return ret ? ret : count;
807 }
808
809 /*
810  * show_scaling_driver - show the cpufreq driver currently loaded
811  */
812 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
813 {
814         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
815 }
816
817 /*
818  * show_scaling_available_governors - show the available CPUfreq governors
819  */
820 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
821                                                 char *buf)
822 {
823         ssize_t i = 0;
824         struct cpufreq_governor *t;
825
826         if (!has_target()) {
827                 i += sprintf(buf, "performance powersave");
828                 goto out;
829         }
830
831         mutex_lock(&cpufreq_governor_mutex);
832         for_each_governor(t) {
833                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
834                     - (CPUFREQ_NAME_LEN + 2)))
835                         break;
836                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
837         }
838         mutex_unlock(&cpufreq_governor_mutex);
839 out:
840         i += sprintf(&buf[i], "\n");
841         return i;
842 }
843
844 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
845 {
846         ssize_t i = 0;
847         unsigned int cpu;
848
849         for_each_cpu(cpu, mask) {
850                 if (i)
851                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
852                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
853                 if (i >= (PAGE_SIZE - 5))
854                         break;
855         }
856         i += sprintf(&buf[i], "\n");
857         return i;
858 }
859 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
860
861 /*
862  * show_related_cpus - show the CPUs affected by each transition even if
863  * hw coordination is in use
864  */
865 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
866 {
867         return cpufreq_show_cpus(policy->related_cpus, buf);
868 }
869
870 /*
871  * show_affected_cpus - show the CPUs affected by each transition
872  */
873 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
874 {
875         return cpufreq_show_cpus(policy->cpus, buf);
876 }
877
878 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
879                                         const char *buf, size_t count)
880 {
881         unsigned int freq = 0;
882         unsigned int ret;
883
884         if (!policy->governor || !policy->governor->store_setspeed)
885                 return -EINVAL;
886
887         ret = sscanf(buf, "%u", &freq);
888         if (ret != 1)
889                 return -EINVAL;
890
891         policy->governor->store_setspeed(policy, freq);
892
893         return count;
894 }
895
896 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
897 {
898         if (!policy->governor || !policy->governor->show_setspeed)
899                 return sprintf(buf, "<unsupported>\n");
900
901         return policy->governor->show_setspeed(policy, buf);
902 }
903
904 /*
905  * show_bios_limit - show the current cpufreq HW/BIOS limitation
906  */
907 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
908 {
909         unsigned int limit;
910         int ret;
911         ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
912         if (!ret)
913                 return sprintf(buf, "%u\n", limit);
914         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
915 }
916
917 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
918 cpufreq_freq_attr_ro(cpuinfo_min_freq);
919 cpufreq_freq_attr_ro(cpuinfo_max_freq);
920 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
921 cpufreq_freq_attr_ro(scaling_available_governors);
922 cpufreq_freq_attr_ro(scaling_driver);
923 cpufreq_freq_attr_ro(scaling_cur_freq);
924 cpufreq_freq_attr_ro(bios_limit);
925 cpufreq_freq_attr_ro(related_cpus);
926 cpufreq_freq_attr_ro(affected_cpus);
927 cpufreq_freq_attr_rw(scaling_min_freq);
928 cpufreq_freq_attr_rw(scaling_max_freq);
929 cpufreq_freq_attr_rw(scaling_governor);
930 cpufreq_freq_attr_rw(scaling_setspeed);
931
932 static struct attribute *default_attrs[] = {
933         &cpuinfo_min_freq.attr,
934         &cpuinfo_max_freq.attr,
935         &cpuinfo_transition_latency.attr,
936         &scaling_min_freq.attr,
937         &scaling_max_freq.attr,
938         &affected_cpus.attr,
939         &related_cpus.attr,
940         &scaling_governor.attr,
941         &scaling_driver.attr,
942         &scaling_available_governors.attr,
943         &scaling_setspeed.attr,
944         NULL
945 };
946
947 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
948 #define to_attr(a) container_of(a, struct freq_attr, attr)
949
950 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
951 {
952         struct cpufreq_policy *policy = to_policy(kobj);
953         struct freq_attr *fattr = to_attr(attr);
954         ssize_t ret;
955
956         if (!fattr->show)
957                 return -EIO;
958
959         down_read(&policy->rwsem);
960         ret = fattr->show(policy, buf);
961         up_read(&policy->rwsem);
962
963         return ret;
964 }
965
966 static ssize_t store(struct kobject *kobj, struct attribute *attr,
967                      const char *buf, size_t count)
968 {
969         struct cpufreq_policy *policy = to_policy(kobj);
970         struct freq_attr *fattr = to_attr(attr);
971         ssize_t ret = -EINVAL;
972
973         if (!fattr->store)
974                 return -EIO;
975
976         /*
977          * cpus_read_trylock() is used here to work around a circular lock
978          * dependency problem with respect to the cpufreq_register_driver().
979          */
980         if (!cpus_read_trylock())
981                 return -EBUSY;
982
983         if (cpu_online(policy->cpu)) {
984                 down_write(&policy->rwsem);
985                 ret = fattr->store(policy, buf, count);
986                 up_write(&policy->rwsem);
987         }
988
989         cpus_read_unlock();
990
991         return ret;
992 }
993
994 static void cpufreq_sysfs_release(struct kobject *kobj)
995 {
996         struct cpufreq_policy *policy = to_policy(kobj);
997         pr_debug("last reference is dropped\n");
998         complete(&policy->kobj_unregister);
999 }
1000
1001 static const struct sysfs_ops sysfs_ops = {
1002         .show   = show,
1003         .store  = store,
1004 };
1005
1006 static struct kobj_type ktype_cpufreq = {
1007         .sysfs_ops      = &sysfs_ops,
1008         .default_attrs  = default_attrs,
1009         .release        = cpufreq_sysfs_release,
1010 };
1011
1012 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
1013 {
1014         struct device *dev = get_cpu_device(cpu);
1015
1016         if (unlikely(!dev))
1017                 return;
1018
1019         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1020                 return;
1021
1022         dev_dbg(dev, "%s: Adding symlink\n", __func__);
1023         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1024                 dev_err(dev, "cpufreq symlink creation failed\n");
1025 }
1026
1027 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1028                                    struct device *dev)
1029 {
1030         dev_dbg(dev, "%s: Removing symlink\n", __func__);
1031         sysfs_remove_link(&dev->kobj, "cpufreq");
1032 }
1033
1034 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1035 {
1036         struct freq_attr **drv_attr;
1037         int ret = 0;
1038
1039         /* set up files for this cpu device */
1040         drv_attr = cpufreq_driver->attr;
1041         while (drv_attr && *drv_attr) {
1042                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1043                 if (ret)
1044                         return ret;
1045                 drv_attr++;
1046         }
1047         if (cpufreq_driver->get) {
1048                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1049                 if (ret)
1050                         return ret;
1051         }
1052
1053         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1054         if (ret)
1055                 return ret;
1056
1057         if (cpufreq_driver->bios_limit) {
1058                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1059                 if (ret)
1060                         return ret;
1061         }
1062
1063         return 0;
1064 }
1065
1066 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1067 {
1068         struct cpufreq_governor *gov = NULL;
1069         unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1070         int ret;
1071
1072         if (has_target()) {
1073                 /* Update policy governor to the one used before hotplug. */
1074                 gov = get_governor(policy->last_governor);
1075                 if (gov) {
1076                         pr_debug("Restoring governor %s for cpu %d\n",
1077                                  gov->name, policy->cpu);
1078                 } else {
1079                         gov = get_governor(default_governor);
1080                 }
1081
1082                 if (!gov) {
1083                         gov = cpufreq_default_governor();
1084                         __module_get(gov->owner);
1085                 }
1086
1087         } else {
1088
1089                 /* Use the default policy if there is no last_policy. */
1090                 if (policy->last_policy) {
1091                         pol = policy->last_policy;
1092                 } else {
1093                         pol = cpufreq_parse_policy(default_governor);
1094                         /*
1095                          * In case the default governor is neither "performance"
1096                          * nor "powersave", fall back to the initial policy
1097                          * value set by the driver.
1098                          */
1099                         if (pol == CPUFREQ_POLICY_UNKNOWN)
1100                                 pol = policy->policy;
1101                 }
1102                 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1103                     pol != CPUFREQ_POLICY_POWERSAVE)
1104                         return -ENODATA;
1105         }
1106
1107         ret = cpufreq_set_policy(policy, gov, pol);
1108         if (gov)
1109                 module_put(gov->owner);
1110
1111         return ret;
1112 }
1113
1114 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1115 {
1116         int ret = 0;
1117
1118         /* Has this CPU been taken care of already? */
1119         if (cpumask_test_cpu(cpu, policy->cpus))
1120                 return 0;
1121
1122         down_write(&policy->rwsem);
1123         if (has_target())
1124                 cpufreq_stop_governor(policy);
1125
1126         cpumask_set_cpu(cpu, policy->cpus);
1127
1128         if (has_target()) {
1129                 ret = cpufreq_start_governor(policy);
1130                 if (ret)
1131                         pr_err("%s: Failed to start governor\n", __func__);
1132         }
1133         up_write(&policy->rwsem);
1134         return ret;
1135 }
1136
1137 void refresh_frequency_limits(struct cpufreq_policy *policy)
1138 {
1139         if (!policy_is_inactive(policy)) {
1140                 pr_debug("updating policy for CPU %u\n", policy->cpu);
1141
1142                 cpufreq_set_policy(policy, policy->governor, policy->policy);
1143         }
1144 }
1145 EXPORT_SYMBOL(refresh_frequency_limits);
1146
1147 static void handle_update(struct work_struct *work)
1148 {
1149         struct cpufreq_policy *policy =
1150                 container_of(work, struct cpufreq_policy, update);
1151
1152         pr_debug("handle_update for cpu %u called\n", policy->cpu);
1153         down_write(&policy->rwsem);
1154         refresh_frequency_limits(policy);
1155         up_write(&policy->rwsem);
1156 }
1157
1158 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1159                                 void *data)
1160 {
1161         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1162
1163         schedule_work(&policy->update);
1164         return 0;
1165 }
1166
1167 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1168                                 void *data)
1169 {
1170         struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1171
1172         schedule_work(&policy->update);
1173         return 0;
1174 }
1175
1176 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1177 {
1178         struct kobject *kobj;
1179         struct completion *cmp;
1180
1181         down_write(&policy->rwsem);
1182         cpufreq_stats_free_table(policy);
1183         kobj = &policy->kobj;
1184         cmp = &policy->kobj_unregister;
1185         up_write(&policy->rwsem);
1186         kobject_put(kobj);
1187
1188         /*
1189          * We need to make sure that the underlying kobj is
1190          * actually not referenced anymore by anybody before we
1191          * proceed with unloading.
1192          */
1193         pr_debug("waiting for dropping of refcount\n");
1194         wait_for_completion(cmp);
1195         pr_debug("wait complete\n");
1196 }
1197
1198 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1199 {
1200         struct cpufreq_policy *policy;
1201         struct device *dev = get_cpu_device(cpu);
1202         int ret;
1203
1204         if (!dev)
1205                 return NULL;
1206
1207         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1208         if (!policy)
1209                 return NULL;
1210
1211         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1212                 goto err_free_policy;
1213
1214         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1215                 goto err_free_cpumask;
1216
1217         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1218                 goto err_free_rcpumask;
1219
1220         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1221                                    cpufreq_global_kobject, "policy%u", cpu);
1222         if (ret) {
1223                 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1224                 /*
1225                  * The entire policy object will be freed below, but the extra
1226                  * memory allocated for the kobject name needs to be freed by
1227                  * releasing the kobject.
1228                  */
1229                 kobject_put(&policy->kobj);
1230                 goto err_free_real_cpus;
1231         }
1232
1233         freq_constraints_init(&policy->constraints);
1234
1235         policy->nb_min.notifier_call = cpufreq_notifier_min;
1236         policy->nb_max.notifier_call = cpufreq_notifier_max;
1237
1238         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1239                                     &policy->nb_min);
1240         if (ret) {
1241                 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1242                         ret, cpumask_pr_args(policy->cpus));
1243                 goto err_kobj_remove;
1244         }
1245
1246         ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1247                                     &policy->nb_max);
1248         if (ret) {
1249                 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1250                         ret, cpumask_pr_args(policy->cpus));
1251                 goto err_min_qos_notifier;
1252         }
1253
1254         INIT_LIST_HEAD(&policy->policy_list);
1255         init_rwsem(&policy->rwsem);
1256         spin_lock_init(&policy->transition_lock);
1257         init_waitqueue_head(&policy->transition_wait);
1258         init_completion(&policy->kobj_unregister);
1259         INIT_WORK(&policy->update, handle_update);
1260
1261         policy->cpu = cpu;
1262         return policy;
1263
1264 err_min_qos_notifier:
1265         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1266                                  &policy->nb_min);
1267 err_kobj_remove:
1268         cpufreq_policy_put_kobj(policy);
1269 err_free_real_cpus:
1270         free_cpumask_var(policy->real_cpus);
1271 err_free_rcpumask:
1272         free_cpumask_var(policy->related_cpus);
1273 err_free_cpumask:
1274         free_cpumask_var(policy->cpus);
1275 err_free_policy:
1276         kfree(policy);
1277
1278         return NULL;
1279 }
1280
1281 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1282 {
1283         unsigned long flags;
1284         int cpu;
1285
1286         /* Remove policy from list */
1287         write_lock_irqsave(&cpufreq_driver_lock, flags);
1288         list_del(&policy->policy_list);
1289
1290         for_each_cpu(cpu, policy->related_cpus)
1291                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1292         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1293
1294         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1295                                  &policy->nb_max);
1296         freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1297                                  &policy->nb_min);
1298
1299         /* Cancel any pending policy->update work before freeing the policy. */
1300         cancel_work_sync(&policy->update);
1301
1302         if (policy->max_freq_req) {
1303                 /*
1304                  * CPUFREQ_CREATE_POLICY notification is sent only after
1305                  * successfully adding max_freq_req request.
1306                  */
1307                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1308                                              CPUFREQ_REMOVE_POLICY, policy);
1309                 freq_qos_remove_request(policy->max_freq_req);
1310         }
1311
1312         freq_qos_remove_request(policy->min_freq_req);
1313         kfree(policy->min_freq_req);
1314
1315         cpufreq_policy_put_kobj(policy);
1316         free_cpumask_var(policy->real_cpus);
1317         free_cpumask_var(policy->related_cpus);
1318         free_cpumask_var(policy->cpus);
1319         kfree(policy);
1320 }
1321
1322 static int cpufreq_online(unsigned int cpu)
1323 {
1324         struct cpufreq_policy *policy;
1325         bool new_policy;
1326         unsigned long flags;
1327         unsigned int j;
1328         int ret;
1329
1330         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1331
1332         /* Check if this CPU already has a policy to manage it */
1333         policy = per_cpu(cpufreq_cpu_data, cpu);
1334         if (policy) {
1335                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1336                 if (!policy_is_inactive(policy))
1337                         return cpufreq_add_policy_cpu(policy, cpu);
1338
1339                 /* This is the only online CPU for the policy.  Start over. */
1340                 new_policy = false;
1341                 down_write(&policy->rwsem);
1342                 policy->cpu = cpu;
1343                 policy->governor = NULL;
1344                 up_write(&policy->rwsem);
1345         } else {
1346                 new_policy = true;
1347                 policy = cpufreq_policy_alloc(cpu);
1348                 if (!policy)
1349                         return -ENOMEM;
1350         }
1351
1352         if (!new_policy && cpufreq_driver->online) {
1353                 ret = cpufreq_driver->online(policy);
1354                 if (ret) {
1355                         pr_debug("%s: %d: initialization failed\n", __func__,
1356                                  __LINE__);
1357                         goto out_exit_policy;
1358                 }
1359
1360                 /* Recover policy->cpus using related_cpus */
1361                 cpumask_copy(policy->cpus, policy->related_cpus);
1362         } else {
1363                 cpumask_copy(policy->cpus, cpumask_of(cpu));
1364
1365                 /*
1366                  * Call driver. From then on the cpufreq must be able
1367                  * to accept all calls to ->verify and ->setpolicy for this CPU.
1368                  */
1369                 ret = cpufreq_driver->init(policy);
1370                 if (ret) {
1371                         pr_debug("%s: %d: initialization failed\n", __func__,
1372                                  __LINE__);
1373                         goto out_free_policy;
1374                 }
1375
1376                 /*
1377                  * The initialization has succeeded and the policy is online.
1378                  * If there is a problem with its frequency table, take it
1379                  * offline and drop it.
1380                  */
1381                 ret = cpufreq_table_validate_and_sort(policy);
1382                 if (ret)
1383                         goto out_offline_policy;
1384
1385                 /* related_cpus should at least include policy->cpus. */
1386                 cpumask_copy(policy->related_cpus, policy->cpus);
1387         }
1388
1389         down_write(&policy->rwsem);
1390         /*
1391          * affected cpus must always be the one, which are online. We aren't
1392          * managing offline cpus here.
1393          */
1394         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1395
1396         if (new_policy) {
1397                 for_each_cpu(j, policy->related_cpus) {
1398                         per_cpu(cpufreq_cpu_data, j) = policy;
1399                         add_cpu_dev_symlink(policy, j);
1400                 }
1401
1402                 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1403                                                GFP_KERNEL);
1404                 if (!policy->min_freq_req) {
1405                         ret = -ENOMEM;
1406                         goto out_destroy_policy;
1407                 }
1408
1409                 ret = freq_qos_add_request(&policy->constraints,
1410                                            policy->min_freq_req, FREQ_QOS_MIN,
1411                                            policy->min);
1412                 if (ret < 0) {
1413                         /*
1414                          * So we don't call freq_qos_remove_request() for an
1415                          * uninitialized request.
1416                          */
1417                         kfree(policy->min_freq_req);
1418                         policy->min_freq_req = NULL;
1419                         goto out_destroy_policy;
1420                 }
1421
1422                 /*
1423                  * This must be initialized right here to avoid calling
1424                  * freq_qos_remove_request() on uninitialized request in case
1425                  * of errors.
1426                  */
1427                 policy->max_freq_req = policy->min_freq_req + 1;
1428
1429                 ret = freq_qos_add_request(&policy->constraints,
1430                                            policy->max_freq_req, FREQ_QOS_MAX,
1431                                            policy->max);
1432                 if (ret < 0) {
1433                         policy->max_freq_req = NULL;
1434                         goto out_destroy_policy;
1435                 }
1436
1437                 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1438                                 CPUFREQ_CREATE_POLICY, policy);
1439         }
1440
1441         if (cpufreq_driver->get && has_target()) {
1442                 policy->cur = cpufreq_driver->get(policy->cpu);
1443                 if (!policy->cur) {
1444                         ret = -EIO;
1445                         pr_err("%s: ->get() failed\n", __func__);
1446                         goto out_destroy_policy;
1447                 }
1448         }
1449
1450         /*
1451          * Sometimes boot loaders set CPU frequency to a value outside of
1452          * frequency table present with cpufreq core. In such cases CPU might be
1453          * unstable if it has to run on that frequency for long duration of time
1454          * and so its better to set it to a frequency which is specified in
1455          * freq-table. This also makes cpufreq stats inconsistent as
1456          * cpufreq-stats would fail to register because current frequency of CPU
1457          * isn't found in freq-table.
1458          *
1459          * Because we don't want this change to effect boot process badly, we go
1460          * for the next freq which is >= policy->cur ('cur' must be set by now,
1461          * otherwise we will end up setting freq to lowest of the table as 'cur'
1462          * is initialized to zero).
1463          *
1464          * We are passing target-freq as "policy->cur - 1" otherwise
1465          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1466          * equal to target-freq.
1467          */
1468         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1469             && has_target()) {
1470                 unsigned int old_freq = policy->cur;
1471
1472                 /* Are we running at unknown frequency ? */
1473                 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1474                 if (ret == -EINVAL) {
1475                         ret = __cpufreq_driver_target(policy, old_freq - 1,
1476                                                       CPUFREQ_RELATION_L);
1477
1478                         /*
1479                          * Reaching here after boot in a few seconds may not
1480                          * mean that system will remain stable at "unknown"
1481                          * frequency for longer duration. Hence, a BUG_ON().
1482                          */
1483                         BUG_ON(ret);
1484                         pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1485                                 __func__, policy->cpu, old_freq, policy->cur);
1486                 }
1487         }
1488
1489         if (new_policy) {
1490                 ret = cpufreq_add_dev_interface(policy);
1491                 if (ret)
1492                         goto out_destroy_policy;
1493
1494                 cpufreq_stats_create_table(policy);
1495
1496                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1497                 list_add(&policy->policy_list, &cpufreq_policy_list);
1498                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1499         }
1500
1501         ret = cpufreq_init_policy(policy);
1502         if (ret) {
1503                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1504                        __func__, cpu, ret);
1505                 goto out_destroy_policy;
1506         }
1507
1508         up_write(&policy->rwsem);
1509
1510         kobject_uevent(&policy->kobj, KOBJ_ADD);
1511
1512         /* Callback for handling stuff after policy is ready */
1513         if (cpufreq_driver->ready)
1514                 cpufreq_driver->ready(policy);
1515
1516         if (cpufreq_thermal_control_enabled(cpufreq_driver))
1517                 policy->cdev = of_cpufreq_cooling_register(policy);
1518
1519         pr_debug("initialization complete\n");
1520
1521         return 0;
1522
1523 out_destroy_policy:
1524         for_each_cpu(j, policy->real_cpus)
1525                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1526
1527         up_write(&policy->rwsem);
1528
1529 out_offline_policy:
1530         if (cpufreq_driver->offline)
1531                 cpufreq_driver->offline(policy);
1532
1533 out_exit_policy:
1534         if (cpufreq_driver->exit)
1535                 cpufreq_driver->exit(policy);
1536
1537 out_free_policy:
1538         cpufreq_policy_free(policy);
1539         return ret;
1540 }
1541
1542 /**
1543  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1544  * @dev: CPU device.
1545  * @sif: Subsystem interface structure pointer (not used)
1546  */
1547 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1548 {
1549         struct cpufreq_policy *policy;
1550         unsigned cpu = dev->id;
1551         int ret;
1552
1553         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1554
1555         if (cpu_online(cpu)) {
1556                 ret = cpufreq_online(cpu);
1557                 if (ret)
1558                         return ret;
1559         }
1560
1561         /* Create sysfs link on CPU registration */
1562         policy = per_cpu(cpufreq_cpu_data, cpu);
1563         if (policy)
1564                 add_cpu_dev_symlink(policy, cpu);
1565
1566         return 0;
1567 }
1568
1569 static int cpufreq_offline(unsigned int cpu)
1570 {
1571         struct cpufreq_policy *policy;
1572         int ret;
1573
1574         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1575
1576         policy = cpufreq_cpu_get_raw(cpu);
1577         if (!policy) {
1578                 pr_debug("%s: No cpu_data found\n", __func__);
1579                 return 0;
1580         }
1581
1582         down_write(&policy->rwsem);
1583         if (has_target())
1584                 cpufreq_stop_governor(policy);
1585
1586         cpumask_clear_cpu(cpu, policy->cpus);
1587
1588         if (policy_is_inactive(policy)) {
1589                 if (has_target())
1590                         strncpy(policy->last_governor, policy->governor->name,
1591                                 CPUFREQ_NAME_LEN);
1592                 else
1593                         policy->last_policy = policy->policy;
1594         } else if (cpu == policy->cpu) {
1595                 /* Nominate new CPU */
1596                 policy->cpu = cpumask_any(policy->cpus);
1597         }
1598
1599         /* Start governor again for active policy */
1600         if (!policy_is_inactive(policy)) {
1601                 if (has_target()) {
1602                         ret = cpufreq_start_governor(policy);
1603                         if (ret)
1604                                 pr_err("%s: Failed to start governor\n", __func__);
1605                 }
1606
1607                 goto unlock;
1608         }
1609
1610         if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1611                 cpufreq_cooling_unregister(policy->cdev);
1612                 policy->cdev = NULL;
1613         }
1614
1615         if (has_target())
1616                 cpufreq_exit_governor(policy);
1617
1618         /*
1619          * Perform the ->offline() during light-weight tear-down, as
1620          * that allows fast recovery when the CPU comes back.
1621          */
1622         if (cpufreq_driver->offline) {
1623                 cpufreq_driver->offline(policy);
1624         } else if (cpufreq_driver->exit) {
1625                 cpufreq_driver->exit(policy);
1626                 policy->freq_table = NULL;
1627         }
1628
1629 unlock:
1630         up_write(&policy->rwsem);
1631         return 0;
1632 }
1633
1634 /*
1635  * cpufreq_remove_dev - remove a CPU device
1636  *
1637  * Removes the cpufreq interface for a CPU device.
1638  */
1639 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1640 {
1641         unsigned int cpu = dev->id;
1642         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1643
1644         if (!policy)
1645                 return;
1646
1647         if (cpu_online(cpu))
1648                 cpufreq_offline(cpu);
1649
1650         cpumask_clear_cpu(cpu, policy->real_cpus);
1651         remove_cpu_dev_symlink(policy, dev);
1652
1653         if (cpumask_empty(policy->real_cpus)) {
1654                 /* We did light-weight exit earlier, do full tear down now */
1655                 if (cpufreq_driver->offline)
1656                         cpufreq_driver->exit(policy);
1657
1658                 cpufreq_policy_free(policy);
1659         }
1660 }
1661
1662 /**
1663  * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1664  * @policy: Policy managing CPUs.
1665  * @new_freq: New CPU frequency.
1666  *
1667  * Adjust to the current frequency first and clean up later by either calling
1668  * cpufreq_update_policy(), or scheduling handle_update().
1669  */
1670 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1671                                 unsigned int new_freq)
1672 {
1673         struct cpufreq_freqs freqs;
1674
1675         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1676                  policy->cur, new_freq);
1677
1678         freqs.old = policy->cur;
1679         freqs.new = new_freq;
1680
1681         cpufreq_freq_transition_begin(policy, &freqs);
1682         cpufreq_freq_transition_end(policy, &freqs, 0);
1683 }
1684
1685 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1686 {
1687         unsigned int new_freq;
1688
1689         new_freq = cpufreq_driver->get(policy->cpu);
1690         if (!new_freq)
1691                 return 0;
1692
1693         /*
1694          * If fast frequency switching is used with the given policy, the check
1695          * against policy->cur is pointless, so skip it in that case.
1696          */
1697         if (policy->fast_switch_enabled || !has_target())
1698                 return new_freq;
1699
1700         if (policy->cur != new_freq) {
1701                 cpufreq_out_of_sync(policy, new_freq);
1702                 if (update)
1703                         schedule_work(&policy->update);
1704         }
1705
1706         return new_freq;
1707 }
1708
1709 /**
1710  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1711  * @cpu: CPU number
1712  *
1713  * This is the last known freq, without actually getting it from the driver.
1714  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1715  */
1716 unsigned int cpufreq_quick_get(unsigned int cpu)
1717 {
1718         struct cpufreq_policy *policy;
1719         unsigned int ret_freq = 0;
1720         unsigned long flags;
1721
1722         read_lock_irqsave(&cpufreq_driver_lock, flags);
1723
1724         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1725                 ret_freq = cpufreq_driver->get(cpu);
1726                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1727                 return ret_freq;
1728         }
1729
1730         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1731
1732         policy = cpufreq_cpu_get(cpu);
1733         if (policy) {
1734                 ret_freq = policy->cur;
1735                 cpufreq_cpu_put(policy);
1736         }
1737
1738         return ret_freq;
1739 }
1740 EXPORT_SYMBOL(cpufreq_quick_get);
1741
1742 /**
1743  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1744  * @cpu: CPU number
1745  *
1746  * Just return the max possible frequency for a given CPU.
1747  */
1748 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1749 {
1750         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1751         unsigned int ret_freq = 0;
1752
1753         if (policy) {
1754                 ret_freq = policy->max;
1755                 cpufreq_cpu_put(policy);
1756         }
1757
1758         return ret_freq;
1759 }
1760 EXPORT_SYMBOL(cpufreq_quick_get_max);
1761
1762 /**
1763  * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1764  * @cpu: CPU number
1765  *
1766  * The default return value is the max_freq field of cpuinfo.
1767  */
1768 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1769 {
1770         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1771         unsigned int ret_freq = 0;
1772
1773         if (policy) {
1774                 ret_freq = policy->cpuinfo.max_freq;
1775                 cpufreq_cpu_put(policy);
1776         }
1777
1778         return ret_freq;
1779 }
1780 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1781
1782 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1783 {
1784         if (unlikely(policy_is_inactive(policy)))
1785                 return 0;
1786
1787         return cpufreq_verify_current_freq(policy, true);
1788 }
1789
1790 /**
1791  * cpufreq_get - get the current CPU frequency (in kHz)
1792  * @cpu: CPU number
1793  *
1794  * Get the CPU current (static) CPU frequency
1795  */
1796 unsigned int cpufreq_get(unsigned int cpu)
1797 {
1798         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1799         unsigned int ret_freq = 0;
1800
1801         if (policy) {
1802                 down_read(&policy->rwsem);
1803                 if (cpufreq_driver->get)
1804                         ret_freq = __cpufreq_get(policy);
1805                 up_read(&policy->rwsem);
1806
1807                 cpufreq_cpu_put(policy);
1808         }
1809
1810         return ret_freq;
1811 }
1812 EXPORT_SYMBOL(cpufreq_get);
1813
1814 static struct subsys_interface cpufreq_interface = {
1815         .name           = "cpufreq",
1816         .subsys         = &cpu_subsys,
1817         .add_dev        = cpufreq_add_dev,
1818         .remove_dev     = cpufreq_remove_dev,
1819 };
1820
1821 /*
1822  * In case platform wants some specific frequency to be configured
1823  * during suspend..
1824  */
1825 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1826 {
1827         int ret;
1828
1829         if (!policy->suspend_freq) {
1830                 pr_debug("%s: suspend_freq not defined\n", __func__);
1831                 return 0;
1832         }
1833
1834         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1835                         policy->suspend_freq);
1836
1837         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1838                         CPUFREQ_RELATION_H);
1839         if (ret)
1840                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1841                                 __func__, policy->suspend_freq, ret);
1842
1843         return ret;
1844 }
1845 EXPORT_SYMBOL(cpufreq_generic_suspend);
1846
1847 /**
1848  * cpufreq_suspend() - Suspend CPUFreq governors.
1849  *
1850  * Called during system wide Suspend/Hibernate cycles for suspending governors
1851  * as some platforms can't change frequency after this point in suspend cycle.
1852  * Because some of the devices (like: i2c, regulators, etc) they use for
1853  * changing frequency are suspended quickly after this point.
1854  */
1855 void cpufreq_suspend(void)
1856 {
1857         struct cpufreq_policy *policy;
1858
1859         if (!cpufreq_driver)
1860                 return;
1861
1862         if (!has_target() && !cpufreq_driver->suspend)
1863                 goto suspend;
1864
1865         pr_debug("%s: Suspending Governors\n", __func__);
1866
1867         for_each_active_policy(policy) {
1868                 if (has_target()) {
1869                         down_write(&policy->rwsem);
1870                         cpufreq_stop_governor(policy);
1871                         up_write(&policy->rwsem);
1872                 }
1873
1874                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1875                         pr_err("%s: Failed to suspend driver: %s\n", __func__,
1876                                 cpufreq_driver->name);
1877         }
1878
1879 suspend:
1880         cpufreq_suspended = true;
1881 }
1882
1883 /**
1884  * cpufreq_resume() - Resume CPUFreq governors.
1885  *
1886  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1887  * are suspended with cpufreq_suspend().
1888  */
1889 void cpufreq_resume(void)
1890 {
1891         struct cpufreq_policy *policy;
1892         int ret;
1893
1894         if (!cpufreq_driver)
1895                 return;
1896
1897         if (unlikely(!cpufreq_suspended))
1898                 return;
1899
1900         cpufreq_suspended = false;
1901
1902         if (!has_target() && !cpufreq_driver->resume)
1903                 return;
1904
1905         pr_debug("%s: Resuming Governors\n", __func__);
1906
1907         for_each_active_policy(policy) {
1908                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1909                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1910                                 policy);
1911                 } else if (has_target()) {
1912                         down_write(&policy->rwsem);
1913                         ret = cpufreq_start_governor(policy);
1914                         up_write(&policy->rwsem);
1915
1916                         if (ret)
1917                                 pr_err("%s: Failed to start governor for policy: %p\n",
1918                                        __func__, policy);
1919                 }
1920         }
1921 }
1922
1923 /**
1924  * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1925  * @flags: Flags to test against the current cpufreq driver's flags.
1926  *
1927  * Assumes that the driver is there, so callers must ensure that this is the
1928  * case.
1929  */
1930 bool cpufreq_driver_test_flags(u16 flags)
1931 {
1932         return !!(cpufreq_driver->flags & flags);
1933 }
1934
1935 /**
1936  * cpufreq_get_current_driver - Return the current driver's name.
1937  *
1938  * Return the name string of the currently registered cpufreq driver or NULL if
1939  * none.
1940  */
1941 const char *cpufreq_get_current_driver(void)
1942 {
1943         if (cpufreq_driver)
1944                 return cpufreq_driver->name;
1945
1946         return NULL;
1947 }
1948 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1949
1950 /**
1951  * cpufreq_get_driver_data - Return current driver data.
1952  *
1953  * Return the private data of the currently registered cpufreq driver, or NULL
1954  * if no cpufreq driver has been registered.
1955  */
1956 void *cpufreq_get_driver_data(void)
1957 {
1958         if (cpufreq_driver)
1959                 return cpufreq_driver->driver_data;
1960
1961         return NULL;
1962 }
1963 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1964
1965 /*********************************************************************
1966  *                     NOTIFIER LISTS INTERFACE                      *
1967  *********************************************************************/
1968
1969 /**
1970  * cpufreq_register_notifier - Register a notifier with cpufreq.
1971  * @nb: notifier function to register.
1972  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1973  *
1974  * Add a notifier to one of two lists: either a list of notifiers that run on
1975  * clock rate changes (once before and once after every transition), or a list
1976  * of notifiers that ron on cpufreq policy changes.
1977  *
1978  * This function may sleep and it has the same return values as
1979  * blocking_notifier_chain_register().
1980  */
1981 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1982 {
1983         int ret;
1984
1985         if (cpufreq_disabled())
1986                 return -EINVAL;
1987
1988         switch (list) {
1989         case CPUFREQ_TRANSITION_NOTIFIER:
1990                 mutex_lock(&cpufreq_fast_switch_lock);
1991
1992                 if (cpufreq_fast_switch_count > 0) {
1993                         mutex_unlock(&cpufreq_fast_switch_lock);
1994                         return -EBUSY;
1995                 }
1996                 ret = srcu_notifier_chain_register(
1997                                 &cpufreq_transition_notifier_list, nb);
1998                 if (!ret)
1999                         cpufreq_fast_switch_count--;
2000
2001                 mutex_unlock(&cpufreq_fast_switch_lock);
2002                 break;
2003         case CPUFREQ_POLICY_NOTIFIER:
2004                 ret = blocking_notifier_chain_register(
2005                                 &cpufreq_policy_notifier_list, nb);
2006                 break;
2007         default:
2008                 ret = -EINVAL;
2009         }
2010
2011         return ret;
2012 }
2013 EXPORT_SYMBOL(cpufreq_register_notifier);
2014
2015 /**
2016  * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2017  * @nb: notifier block to be unregistered.
2018  * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2019  *
2020  * Remove a notifier from one of the cpufreq notifier lists.
2021  *
2022  * This function may sleep and it has the same return values as
2023  * blocking_notifier_chain_unregister().
2024  */
2025 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2026 {
2027         int ret;
2028
2029         if (cpufreq_disabled())
2030                 return -EINVAL;
2031
2032         switch (list) {
2033         case CPUFREQ_TRANSITION_NOTIFIER:
2034                 mutex_lock(&cpufreq_fast_switch_lock);
2035
2036                 ret = srcu_notifier_chain_unregister(
2037                                 &cpufreq_transition_notifier_list, nb);
2038                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2039                         cpufreq_fast_switch_count++;
2040
2041                 mutex_unlock(&cpufreq_fast_switch_lock);
2042                 break;
2043         case CPUFREQ_POLICY_NOTIFIER:
2044                 ret = blocking_notifier_chain_unregister(
2045                                 &cpufreq_policy_notifier_list, nb);
2046                 break;
2047         default:
2048                 ret = -EINVAL;
2049         }
2050
2051         return ret;
2052 }
2053 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2054
2055
2056 /*********************************************************************
2057  *                              GOVERNORS                            *
2058  *********************************************************************/
2059
2060 /**
2061  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2062  * @policy: cpufreq policy to switch the frequency for.
2063  * @target_freq: New frequency to set (may be approximate).
2064  *
2065  * Carry out a fast frequency switch without sleeping.
2066  *
2067  * The driver's ->fast_switch() callback invoked by this function must be
2068  * suitable for being called from within RCU-sched read-side critical sections
2069  * and it is expected to select the minimum available frequency greater than or
2070  * equal to @target_freq (CPUFREQ_RELATION_L).
2071  *
2072  * This function must not be called if policy->fast_switch_enabled is unset.
2073  *
2074  * Governors calling this function must guarantee that it will never be invoked
2075  * twice in parallel for the same policy and that it will never be called in
2076  * parallel with either ->target() or ->target_index() for the same policy.
2077  *
2078  * Returns the actual frequency set for the CPU.
2079  *
2080  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2081  * error condition, the hardware configuration must be preserved.
2082  */
2083 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2084                                         unsigned int target_freq)
2085 {
2086         unsigned int freq;
2087         int cpu;
2088
2089         target_freq = clamp_val(target_freq, policy->min, policy->max);
2090         freq = cpufreq_driver->fast_switch(policy, target_freq);
2091
2092         if (!freq)
2093                 return 0;
2094
2095         policy->cur = freq;
2096         arch_set_freq_scale(policy->related_cpus, freq,
2097                             policy->cpuinfo.max_freq);
2098         cpufreq_stats_record_transition(policy, freq);
2099
2100         if (trace_cpu_frequency_enabled()) {
2101                 for_each_cpu(cpu, policy->cpus)
2102                         trace_cpu_frequency(freq, cpu);
2103         }
2104
2105         return freq;
2106 }
2107 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2108
2109 /**
2110  * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2111  * @cpu: Target CPU.
2112  * @min_perf: Minimum (required) performance level (units of @capacity).
2113  * @target_perf: Target (desired) performance level (units of @capacity).
2114  * @capacity: Capacity of the target CPU.
2115  *
2116  * Carry out a fast performance level switch of @cpu without sleeping.
2117  *
2118  * The driver's ->adjust_perf() callback invoked by this function must be
2119  * suitable for being called from within RCU-sched read-side critical sections
2120  * and it is expected to select a suitable performance level equal to or above
2121  * @min_perf and preferably equal to or below @target_perf.
2122  *
2123  * This function must not be called if policy->fast_switch_enabled is unset.
2124  *
2125  * Governors calling this function must guarantee that it will never be invoked
2126  * twice in parallel for the same CPU and that it will never be called in
2127  * parallel with either ->target() or ->target_index() or ->fast_switch() for
2128  * the same CPU.
2129  */
2130 void cpufreq_driver_adjust_perf(unsigned int cpu,
2131                                  unsigned long min_perf,
2132                                  unsigned long target_perf,
2133                                  unsigned long capacity)
2134 {
2135         cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2136 }
2137
2138 /**
2139  * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2140  *
2141  * Return 'true' if the ->adjust_perf callback is present for the
2142  * current driver or 'false' otherwise.
2143  */
2144 bool cpufreq_driver_has_adjust_perf(void)
2145 {
2146         return !!cpufreq_driver->adjust_perf;
2147 }
2148
2149 /* Must set freqs->new to intermediate frequency */
2150 static int __target_intermediate(struct cpufreq_policy *policy,
2151                                  struct cpufreq_freqs *freqs, int index)
2152 {
2153         int ret;
2154
2155         freqs->new = cpufreq_driver->get_intermediate(policy, index);
2156
2157         /* We don't need to switch to intermediate freq */
2158         if (!freqs->new)
2159                 return 0;
2160
2161         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2162                  __func__, policy->cpu, freqs->old, freqs->new);
2163
2164         cpufreq_freq_transition_begin(policy, freqs);
2165         ret = cpufreq_driver->target_intermediate(policy, index);
2166         cpufreq_freq_transition_end(policy, freqs, ret);
2167
2168         if (ret)
2169                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2170                        __func__, ret);
2171
2172         return ret;
2173 }
2174
2175 static int __target_index(struct cpufreq_policy *policy, int index)
2176 {
2177         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2178         unsigned int restore_freq, intermediate_freq = 0;
2179         unsigned int newfreq = policy->freq_table[index].frequency;
2180         int retval = -EINVAL;
2181         bool notify;
2182
2183         if (newfreq == policy->cur)
2184                 return 0;
2185
2186         /* Save last value to restore later on errors */
2187         restore_freq = policy->cur;
2188
2189         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2190         if (notify) {
2191                 /* Handle switching to intermediate frequency */
2192                 if (cpufreq_driver->get_intermediate) {
2193                         retval = __target_intermediate(policy, &freqs, index);
2194                         if (retval)
2195                                 return retval;
2196
2197                         intermediate_freq = freqs.new;
2198                         /* Set old freq to intermediate */
2199                         if (intermediate_freq)
2200                                 freqs.old = freqs.new;
2201                 }
2202
2203                 freqs.new = newfreq;
2204                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2205                          __func__, policy->cpu, freqs.old, freqs.new);
2206
2207                 cpufreq_freq_transition_begin(policy, &freqs);
2208         }
2209
2210         retval = cpufreq_driver->target_index(policy, index);
2211         if (retval)
2212                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2213                        retval);
2214
2215         if (notify) {
2216                 cpufreq_freq_transition_end(policy, &freqs, retval);
2217
2218                 /*
2219                  * Failed after setting to intermediate freq? Driver should have
2220                  * reverted back to initial frequency and so should we. Check
2221                  * here for intermediate_freq instead of get_intermediate, in
2222                  * case we haven't switched to intermediate freq at all.
2223                  */
2224                 if (unlikely(retval && intermediate_freq)) {
2225                         freqs.old = intermediate_freq;
2226                         freqs.new = restore_freq;
2227                         cpufreq_freq_transition_begin(policy, &freqs);
2228                         cpufreq_freq_transition_end(policy, &freqs, 0);
2229                 }
2230         }
2231
2232         return retval;
2233 }
2234
2235 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2236                             unsigned int target_freq,
2237                             unsigned int relation)
2238 {
2239         unsigned int old_target_freq = target_freq;
2240
2241         if (cpufreq_disabled())
2242                 return -ENODEV;
2243
2244         target_freq = __resolve_freq(policy, target_freq, relation);
2245
2246         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2247                  policy->cpu, target_freq, relation, old_target_freq);
2248
2249         /*
2250          * This might look like a redundant call as we are checking it again
2251          * after finding index. But it is left intentionally for cases where
2252          * exactly same freq is called again and so we can save on few function
2253          * calls.
2254          */
2255         if (target_freq == policy->cur &&
2256             !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2257                 return 0;
2258
2259         if (cpufreq_driver->target)
2260                 return cpufreq_driver->target(policy, target_freq, relation);
2261
2262         if (!cpufreq_driver->target_index)
2263                 return -EINVAL;
2264
2265         return __target_index(policy, policy->cached_resolved_idx);
2266 }
2267 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2268
2269 int cpufreq_driver_target(struct cpufreq_policy *policy,
2270                           unsigned int target_freq,
2271                           unsigned int relation)
2272 {
2273         int ret;
2274
2275         down_write(&policy->rwsem);
2276
2277         ret = __cpufreq_driver_target(policy, target_freq, relation);
2278
2279         up_write(&policy->rwsem);
2280
2281         return ret;
2282 }
2283 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2284
2285 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2286 {
2287         return NULL;
2288 }
2289
2290 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2291 {
2292         int ret;
2293
2294         /* Don't start any governor operations if we are entering suspend */
2295         if (cpufreq_suspended)
2296                 return 0;
2297         /*
2298          * Governor might not be initiated here if ACPI _PPC changed
2299          * notification happened, so check it.
2300          */
2301         if (!policy->governor)
2302                 return -EINVAL;
2303
2304         /* Platform doesn't want dynamic frequency switching ? */
2305         if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2306             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2307                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2308
2309                 if (gov) {
2310                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2311                                 policy->governor->name, gov->name);
2312                         policy->governor = gov;
2313                 } else {
2314                         return -EINVAL;
2315                 }
2316         }
2317
2318         if (!try_module_get(policy->governor->owner))
2319                 return -EINVAL;
2320
2321         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2322
2323         if (policy->governor->init) {
2324                 ret = policy->governor->init(policy);
2325                 if (ret) {
2326                         module_put(policy->governor->owner);
2327                         return ret;
2328                 }
2329         }
2330
2331         policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2332
2333         return 0;
2334 }
2335
2336 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2337 {
2338         if (cpufreq_suspended || !policy->governor)
2339                 return;
2340
2341         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2342
2343         if (policy->governor->exit)
2344                 policy->governor->exit(policy);
2345
2346         module_put(policy->governor->owner);
2347 }
2348
2349 int cpufreq_start_governor(struct cpufreq_policy *policy)
2350 {
2351         int ret;
2352
2353         if (cpufreq_suspended)
2354                 return 0;
2355
2356         if (!policy->governor)
2357                 return -EINVAL;
2358
2359         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2360
2361         if (cpufreq_driver->get)
2362                 cpufreq_verify_current_freq(policy, false);
2363
2364         if (policy->governor->start) {
2365                 ret = policy->governor->start(policy);
2366                 if (ret)
2367                         return ret;
2368         }
2369
2370         if (policy->governor->limits)
2371                 policy->governor->limits(policy);
2372
2373         return 0;
2374 }
2375
2376 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2377 {
2378         if (cpufreq_suspended || !policy->governor)
2379                 return;
2380
2381         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2382
2383         if (policy->governor->stop)
2384                 policy->governor->stop(policy);
2385 }
2386
2387 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2388 {
2389         if (cpufreq_suspended || !policy->governor)
2390                 return;
2391
2392         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2393
2394         if (policy->governor->limits)
2395                 policy->governor->limits(policy);
2396 }
2397
2398 int cpufreq_register_governor(struct cpufreq_governor *governor)
2399 {
2400         int err;
2401
2402         if (!governor)
2403                 return -EINVAL;
2404
2405         if (cpufreq_disabled())
2406                 return -ENODEV;
2407
2408         mutex_lock(&cpufreq_governor_mutex);
2409
2410         err = -EBUSY;
2411         if (!find_governor(governor->name)) {
2412                 err = 0;
2413                 list_add(&governor->governor_list, &cpufreq_governor_list);
2414         }
2415
2416         mutex_unlock(&cpufreq_governor_mutex);
2417         return err;
2418 }
2419 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2420
2421 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2422 {
2423         struct cpufreq_policy *policy;
2424         unsigned long flags;
2425
2426         if (!governor)
2427                 return;
2428
2429         if (cpufreq_disabled())
2430                 return;
2431
2432         /* clear last_governor for all inactive policies */
2433         read_lock_irqsave(&cpufreq_driver_lock, flags);
2434         for_each_inactive_policy(policy) {
2435                 if (!strcmp(policy->last_governor, governor->name)) {
2436                         policy->governor = NULL;
2437                         strcpy(policy->last_governor, "\0");
2438                 }
2439         }
2440         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441
2442         mutex_lock(&cpufreq_governor_mutex);
2443         list_del(&governor->governor_list);
2444         mutex_unlock(&cpufreq_governor_mutex);
2445 }
2446 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2447
2448
2449 /*********************************************************************
2450  *                          POLICY INTERFACE                         *
2451  *********************************************************************/
2452
2453 /**
2454  * cpufreq_get_policy - get the current cpufreq_policy
2455  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2456  *      is written
2457  * @cpu: CPU to find the policy for
2458  *
2459  * Reads the current cpufreq policy.
2460  */
2461 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2462 {
2463         struct cpufreq_policy *cpu_policy;
2464         if (!policy)
2465                 return -EINVAL;
2466
2467         cpu_policy = cpufreq_cpu_get(cpu);
2468         if (!cpu_policy)
2469                 return -EINVAL;
2470
2471         memcpy(policy, cpu_policy, sizeof(*policy));
2472
2473         cpufreq_cpu_put(cpu_policy);
2474         return 0;
2475 }
2476 EXPORT_SYMBOL(cpufreq_get_policy);
2477
2478 /**
2479  * cpufreq_set_policy - Modify cpufreq policy parameters.
2480  * @policy: Policy object to modify.
2481  * @new_gov: Policy governor pointer.
2482  * @new_pol: Policy value (for drivers with built-in governors).
2483  *
2484  * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2485  * limits to be set for the policy, update @policy with the verified limits
2486  * values and either invoke the driver's ->setpolicy() callback (if present) or
2487  * carry out a governor update for @policy.  That is, run the current governor's
2488  * ->limits() callback (if @new_gov points to the same object as the one in
2489  * @policy) or replace the governor for @policy with @new_gov.
2490  *
2491  * The cpuinfo part of @policy is not updated by this function.
2492  */
2493 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2494                               struct cpufreq_governor *new_gov,
2495                               unsigned int new_pol)
2496 {
2497         struct cpufreq_policy_data new_data;
2498         struct cpufreq_governor *old_gov;
2499         int ret;
2500
2501         memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2502         new_data.freq_table = policy->freq_table;
2503         new_data.cpu = policy->cpu;
2504         /*
2505          * PM QoS framework collects all the requests from users and provide us
2506          * the final aggregated value here.
2507          */
2508         new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2509         new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2510
2511         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2512                  new_data.cpu, new_data.min, new_data.max);
2513
2514         /*
2515          * Verify that the CPU speed can be set within these limits and make sure
2516          * that min <= max.
2517          */
2518         ret = cpufreq_driver->verify(&new_data);
2519         if (ret)
2520                 return ret;
2521
2522         policy->min = new_data.min;
2523         policy->max = new_data.max;
2524         trace_cpu_frequency_limits(policy);
2525
2526         policy->cached_target_freq = UINT_MAX;
2527
2528         pr_debug("new min and max freqs are %u - %u kHz\n",
2529                  policy->min, policy->max);
2530
2531         if (cpufreq_driver->setpolicy) {
2532                 policy->policy = new_pol;
2533                 pr_debug("setting range\n");
2534                 return cpufreq_driver->setpolicy(policy);
2535         }
2536
2537         if (new_gov == policy->governor) {
2538                 pr_debug("governor limits update\n");
2539                 cpufreq_governor_limits(policy);
2540                 return 0;
2541         }
2542
2543         pr_debug("governor switch\n");
2544
2545         /* save old, working values */
2546         old_gov = policy->governor;
2547         /* end old governor */
2548         if (old_gov) {
2549                 cpufreq_stop_governor(policy);
2550                 cpufreq_exit_governor(policy);
2551         }
2552
2553         /* start new governor */
2554         policy->governor = new_gov;
2555         ret = cpufreq_init_governor(policy);
2556         if (!ret) {
2557                 ret = cpufreq_start_governor(policy);
2558                 if (!ret) {
2559                         pr_debug("governor change\n");
2560                         sched_cpufreq_governor_change(policy, old_gov);
2561                         return 0;
2562                 }
2563                 cpufreq_exit_governor(policy);
2564         }
2565
2566         /* new governor failed, so re-start old one */
2567         pr_debug("starting governor %s failed\n", policy->governor->name);
2568         if (old_gov) {
2569                 policy->governor = old_gov;
2570                 if (cpufreq_init_governor(policy))
2571                         policy->governor = NULL;
2572                 else
2573                         cpufreq_start_governor(policy);
2574         }
2575
2576         return ret;
2577 }
2578
2579 /**
2580  * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2581  * @cpu: CPU to re-evaluate the policy for.
2582  *
2583  * Update the current frequency for the cpufreq policy of @cpu and use
2584  * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2585  * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2586  * for the policy in question, among other things.
2587  */
2588 void cpufreq_update_policy(unsigned int cpu)
2589 {
2590         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2591
2592         if (!policy)
2593                 return;
2594
2595         /*
2596          * BIOS might change freq behind our back
2597          * -> ask driver for current freq and notify governors about a change
2598          */
2599         if (cpufreq_driver->get && has_target() &&
2600             (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2601                 goto unlock;
2602
2603         refresh_frequency_limits(policy);
2604
2605 unlock:
2606         cpufreq_cpu_release(policy);
2607 }
2608 EXPORT_SYMBOL(cpufreq_update_policy);
2609
2610 /**
2611  * cpufreq_update_limits - Update policy limits for a given CPU.
2612  * @cpu: CPU to update the policy limits for.
2613  *
2614  * Invoke the driver's ->update_limits callback if present or call
2615  * cpufreq_update_policy() for @cpu.
2616  */
2617 void cpufreq_update_limits(unsigned int cpu)
2618 {
2619         if (cpufreq_driver->update_limits)
2620                 cpufreq_driver->update_limits(cpu);
2621         else
2622                 cpufreq_update_policy(cpu);
2623 }
2624 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2625
2626 /*********************************************************************
2627  *               BOOST                                               *
2628  *********************************************************************/
2629 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2630 {
2631         int ret;
2632
2633         if (!policy->freq_table)
2634                 return -ENXIO;
2635
2636         ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2637         if (ret) {
2638                 pr_err("%s: Policy frequency update failed\n", __func__);
2639                 return ret;
2640         }
2641
2642         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2643         if (ret < 0)
2644                 return ret;
2645
2646         return 0;
2647 }
2648
2649 int cpufreq_boost_trigger_state(int state)
2650 {
2651         struct cpufreq_policy *policy;
2652         unsigned long flags;
2653         int ret = 0;
2654
2655         if (cpufreq_driver->boost_enabled == state)
2656                 return 0;
2657
2658         write_lock_irqsave(&cpufreq_driver_lock, flags);
2659         cpufreq_driver->boost_enabled = state;
2660         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2661
2662         get_online_cpus();
2663         for_each_active_policy(policy) {
2664                 ret = cpufreq_driver->set_boost(policy, state);
2665                 if (ret)
2666                         goto err_reset_state;
2667         }
2668         put_online_cpus();
2669
2670         return 0;
2671
2672 err_reset_state:
2673         put_online_cpus();
2674
2675         write_lock_irqsave(&cpufreq_driver_lock, flags);
2676         cpufreq_driver->boost_enabled = !state;
2677         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2678
2679         pr_err("%s: Cannot %s BOOST\n",
2680                __func__, state ? "enable" : "disable");
2681
2682         return ret;
2683 }
2684
2685 static bool cpufreq_boost_supported(void)
2686 {
2687         return cpufreq_driver->set_boost;
2688 }
2689
2690 static int create_boost_sysfs_file(void)
2691 {
2692         int ret;
2693
2694         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2695         if (ret)
2696                 pr_err("%s: cannot register global BOOST sysfs file\n",
2697                        __func__);
2698
2699         return ret;
2700 }
2701
2702 static void remove_boost_sysfs_file(void)
2703 {
2704         if (cpufreq_boost_supported())
2705                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2706 }
2707
2708 int cpufreq_enable_boost_support(void)
2709 {
2710         if (!cpufreq_driver)
2711                 return -EINVAL;
2712
2713         if (cpufreq_boost_supported())
2714                 return 0;
2715
2716         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2717
2718         /* This will get removed on driver unregister */
2719         return create_boost_sysfs_file();
2720 }
2721 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2722
2723 int cpufreq_boost_enabled(void)
2724 {
2725         return cpufreq_driver->boost_enabled;
2726 }
2727 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2728
2729 /*********************************************************************
2730  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2731  *********************************************************************/
2732 static enum cpuhp_state hp_online;
2733
2734 static int cpuhp_cpufreq_online(unsigned int cpu)
2735 {
2736         cpufreq_online(cpu);
2737
2738         return 0;
2739 }
2740
2741 static int cpuhp_cpufreq_offline(unsigned int cpu)
2742 {
2743         cpufreq_offline(cpu);
2744
2745         return 0;
2746 }
2747
2748 /**
2749  * cpufreq_register_driver - register a CPU Frequency driver
2750  * @driver_data: A struct cpufreq_driver containing the values#
2751  * submitted by the CPU Frequency driver.
2752  *
2753  * Registers a CPU Frequency driver to this core code. This code
2754  * returns zero on success, -EEXIST when another driver got here first
2755  * (and isn't unregistered in the meantime).
2756  *
2757  */
2758 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2759 {
2760         unsigned long flags;
2761         int ret;
2762
2763         if (cpufreq_disabled())
2764                 return -ENODEV;
2765
2766         /*
2767          * The cpufreq core depends heavily on the availability of device
2768          * structure, make sure they are available before proceeding further.
2769          */
2770         if (!get_cpu_device(0))
2771                 return -EPROBE_DEFER;
2772
2773         if (!driver_data || !driver_data->verify || !driver_data->init ||
2774             !(driver_data->setpolicy || driver_data->target_index ||
2775                     driver_data->target) ||
2776              (driver_data->setpolicy && (driver_data->target_index ||
2777                     driver_data->target)) ||
2778              (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2779              (!driver_data->online != !driver_data->offline))
2780                 return -EINVAL;
2781
2782         pr_debug("trying to register driver %s\n", driver_data->name);
2783
2784         /* Protect against concurrent CPU online/offline. */
2785         cpus_read_lock();
2786
2787         write_lock_irqsave(&cpufreq_driver_lock, flags);
2788         if (cpufreq_driver) {
2789                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2790                 ret = -EEXIST;
2791                 goto out;
2792         }
2793         cpufreq_driver = driver_data;
2794         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2795
2796         /*
2797          * Mark support for the scheduler's frequency invariance engine for
2798          * drivers that implement target(), target_index() or fast_switch().
2799          */
2800         if (!cpufreq_driver->setpolicy) {
2801                 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2802                 pr_debug("supports frequency invariance");
2803         }
2804
2805         if (driver_data->setpolicy)
2806                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2807
2808         if (cpufreq_boost_supported()) {
2809                 ret = create_boost_sysfs_file();
2810                 if (ret)
2811                         goto err_null_driver;
2812         }
2813
2814         ret = subsys_interface_register(&cpufreq_interface);
2815         if (ret)
2816                 goto err_boost_unreg;
2817
2818         if (unlikely(list_empty(&cpufreq_policy_list))) {
2819                 /* if all ->init() calls failed, unregister */
2820                 ret = -ENODEV;
2821                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2822                          driver_data->name);
2823                 goto err_if_unreg;
2824         }
2825
2826         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2827                                                    "cpufreq:online",
2828                                                    cpuhp_cpufreq_online,
2829                                                    cpuhp_cpufreq_offline);
2830         if (ret < 0)
2831                 goto err_if_unreg;
2832         hp_online = ret;
2833         ret = 0;
2834
2835         pr_debug("driver %s up and running\n", driver_data->name);
2836         goto out;
2837
2838 err_if_unreg:
2839         subsys_interface_unregister(&cpufreq_interface);
2840 err_boost_unreg:
2841         remove_boost_sysfs_file();
2842 err_null_driver:
2843         write_lock_irqsave(&cpufreq_driver_lock, flags);
2844         cpufreq_driver = NULL;
2845         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2846 out:
2847         cpus_read_unlock();
2848         return ret;
2849 }
2850 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2851
2852 /*
2853  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2854  *
2855  * Unregister the current CPUFreq driver. Only call this if you have
2856  * the right to do so, i.e. if you have succeeded in initialising before!
2857  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2858  * currently not initialised.
2859  */
2860 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2861 {
2862         unsigned long flags;
2863
2864         if (!cpufreq_driver || (driver != cpufreq_driver))
2865                 return -EINVAL;
2866
2867         pr_debug("unregistering driver %s\n", driver->name);
2868
2869         /* Protect against concurrent cpu hotplug */
2870         cpus_read_lock();
2871         subsys_interface_unregister(&cpufreq_interface);
2872         remove_boost_sysfs_file();
2873         static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2874         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2875
2876         write_lock_irqsave(&cpufreq_driver_lock, flags);
2877
2878         cpufreq_driver = NULL;
2879
2880         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2881         cpus_read_unlock();
2882
2883         return 0;
2884 }
2885 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2886
2887 static int __init cpufreq_core_init(void)
2888 {
2889         struct cpufreq_governor *gov = cpufreq_default_governor();
2890
2891         if (cpufreq_disabled())
2892                 return -ENODEV;
2893
2894         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2895         BUG_ON(!cpufreq_global_kobject);
2896
2897         if (!strlen(default_governor))
2898                 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2899
2900         return 0;
2901 }
2902 module_param(off, int, 0444);
2903 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2904 core_initcall(cpufreq_core_init);