Merge tag 'pci-v5.10-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offest in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED  0x14
31
32 /*
33  * These structs contain information parsed from per CPU
34  * ACPI _CPC structures.
35  * e.g. For each CPU the highest, lowest supported
36  * performance capabilities, desired performance level
37  * requested etc.
38  */
39 static struct cppc_cpudata **all_cpu_data;
40 static bool boost_supported;
41
42 struct cppc_workaround_oem_info {
43         char oem_id[ACPI_OEM_ID_SIZE + 1];
44         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45         u32 oem_revision;
46 };
47
48 static struct cppc_workaround_oem_info wa_info[] = {
49         {
50                 .oem_id         = "HISI  ",
51                 .oem_table_id   = "HIP07   ",
52                 .oem_revision   = 0,
53         }, {
54                 .oem_id         = "HISI  ",
55                 .oem_table_id   = "HIP08   ",
56                 .oem_revision   = 0,
57         }
58 };
59
60 /* Callback function used to retrieve the max frequency from DMI */
61 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
62 {
63         const u8 *dmi_data = (const u8 *)dm;
64         u16 *mhz = (u16 *)private;
65
66         if (dm->type == DMI_ENTRY_PROCESSOR &&
67             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
68                 u16 val = (u16)get_unaligned((const u16 *)
69                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
70                 *mhz = val > *mhz ? val : *mhz;
71         }
72 }
73
74 /* Look up the max frequency in DMI */
75 static u64 cppc_get_dmi_max_khz(void)
76 {
77         u16 mhz = 0;
78
79         dmi_walk(cppc_find_dmi_mhz, &mhz);
80
81         /*
82          * Real stupid fallback value, just in case there is no
83          * actual value set.
84          */
85         mhz = mhz ? mhz : 1;
86
87         return (1000 * mhz);
88 }
89
90 /*
91  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
92  * use them to convert perf to freq and vice versa
93  *
94  * If the perf/freq point lies between Nominal and Lowest, we can treat
95  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
96  * and extrapolate the rest
97  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
98  */
99 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
100                                         unsigned int perf)
101 {
102         static u64 max_khz;
103         struct cppc_perf_caps *caps = &cpu->perf_caps;
104         u64 mul, div;
105
106         if (caps->lowest_freq && caps->nominal_freq) {
107                 if (perf >= caps->nominal_perf) {
108                         mul = caps->nominal_freq;
109                         div = caps->nominal_perf;
110                 } else {
111                         mul = caps->nominal_freq - caps->lowest_freq;
112                         div = caps->nominal_perf - caps->lowest_perf;
113                 }
114         } else {
115                 if (!max_khz)
116                         max_khz = cppc_get_dmi_max_khz();
117                 mul = max_khz;
118                 div = caps->highest_perf;
119         }
120         return (u64)perf * mul / div;
121 }
122
123 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
124                                         unsigned int freq)
125 {
126         static u64 max_khz;
127         struct cppc_perf_caps *caps = &cpu->perf_caps;
128         u64  mul, div;
129
130         if (caps->lowest_freq && caps->nominal_freq) {
131                 if (freq >= caps->nominal_freq) {
132                         mul = caps->nominal_perf;
133                         div = caps->nominal_freq;
134                 } else {
135                         mul = caps->lowest_perf;
136                         div = caps->lowest_freq;
137                 }
138         } else {
139                 if (!max_khz)
140                         max_khz = cppc_get_dmi_max_khz();
141                 mul = caps->highest_perf;
142                 div = max_khz;
143         }
144
145         return (u64)freq * mul / div;
146 }
147
148 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
149                 unsigned int target_freq,
150                 unsigned int relation)
151 {
152         struct cppc_cpudata *cpu;
153         struct cpufreq_freqs freqs;
154         u32 desired_perf;
155         int ret = 0;
156
157         cpu = all_cpu_data[policy->cpu];
158
159         desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
160         /* Return if it is exactly the same perf */
161         if (desired_perf == cpu->perf_ctrls.desired_perf)
162                 return ret;
163
164         cpu->perf_ctrls.desired_perf = desired_perf;
165         freqs.old = policy->cur;
166         freqs.new = target_freq;
167
168         cpufreq_freq_transition_begin(policy, &freqs);
169         ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
170         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
171
172         if (ret)
173                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
174                                 cpu->cpu, ret);
175
176         return ret;
177 }
178
179 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
180 {
181         cpufreq_verify_within_cpu_limits(policy);
182         return 0;
183 }
184
185 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
186 {
187         int cpu_num = policy->cpu;
188         struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
189         int ret;
190
191         cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
192
193         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
194         if (ret)
195                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
196                                 cpu->perf_caps.lowest_perf, cpu_num, ret);
197 }
198
199 /*
200  * The PCC subspace describes the rate at which platform can accept commands
201  * on the shared PCC channel (including READs which do not count towards freq
202  * trasition requests), so ideally we need to use the PCC values as a fallback
203  * if we don't have a platform specific transition_delay_us
204  */
205 #ifdef CONFIG_ARM64
206 #include <asm/cputype.h>
207
208 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
209 {
210         unsigned long implementor = read_cpuid_implementor();
211         unsigned long part_num = read_cpuid_part_number();
212         unsigned int delay_us = 0;
213
214         switch (implementor) {
215         case ARM_CPU_IMP_QCOM:
216                 switch (part_num) {
217                 case QCOM_CPU_PART_FALKOR_V1:
218                 case QCOM_CPU_PART_FALKOR:
219                         delay_us = 10000;
220                         break;
221                 default:
222                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
223                         break;
224                 }
225                 break;
226         default:
227                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
228                 break;
229         }
230
231         return delay_us;
232 }
233
234 #else
235
236 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
237 {
238         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
239 }
240 #endif
241
242 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
243 {
244         struct cppc_cpudata *cpu;
245         unsigned int cpu_num = policy->cpu;
246         int ret = 0;
247
248         cpu = all_cpu_data[policy->cpu];
249
250         cpu->cpu = cpu_num;
251         ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
252
253         if (ret) {
254                 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
255                                 cpu_num, ret);
256                 return ret;
257         }
258
259         /* Convert the lowest and nominal freq from MHz to KHz */
260         cpu->perf_caps.lowest_freq *= 1000;
261         cpu->perf_caps.nominal_freq *= 1000;
262
263         /*
264          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
265          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
266          */
267         policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
268         policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
269
270         /*
271          * Set cpuinfo.min_freq to Lowest to make the full range of performance
272          * available if userspace wants to use any perf between lowest & lowest
273          * nonlinear perf
274          */
275         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
276         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
277
278         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
279         policy->shared_type = cpu->shared_type;
280
281         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
282                 int i;
283
284                 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
285
286                 for_each_cpu(i, policy->cpus) {
287                         if (unlikely(i == policy->cpu))
288                                 continue;
289
290                         memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
291                                sizeof(cpu->perf_caps));
292                 }
293         } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
294                 /* Support only SW_ANY for now. */
295                 pr_debug("Unsupported CPU co-ord type\n");
296                 return -EFAULT;
297         }
298
299         cpu->cur_policy = policy;
300
301         /*
302          * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
303          * is supported.
304          */
305         if (cpu->perf_caps.highest_perf > cpu->perf_caps.nominal_perf)
306                 boost_supported = true;
307
308         /* Set policy->cur to max now. The governors will adjust later. */
309         policy->cur = cppc_cpufreq_perf_to_khz(cpu,
310                                         cpu->perf_caps.highest_perf);
311         cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
312
313         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
314         if (ret)
315                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
316                                 cpu->perf_caps.highest_perf, cpu_num, ret);
317
318         return ret;
319 }
320
321 static inline u64 get_delta(u64 t1, u64 t0)
322 {
323         if (t1 > t0 || t0 > ~(u32)0)
324                 return t1 - t0;
325
326         return (u32)t1 - (u32)t0;
327 }
328
329 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
330                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
331                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
332 {
333         u64 delta_reference, delta_delivered;
334         u64 reference_perf, delivered_perf;
335
336         reference_perf = fb_ctrs_t0.reference_perf;
337
338         delta_reference = get_delta(fb_ctrs_t1.reference,
339                                     fb_ctrs_t0.reference);
340         delta_delivered = get_delta(fb_ctrs_t1.delivered,
341                                     fb_ctrs_t0.delivered);
342
343         /* Check to avoid divide-by zero */
344         if (delta_reference || delta_delivered)
345                 delivered_perf = (reference_perf * delta_delivered) /
346                                         delta_reference;
347         else
348                 delivered_perf = cpu->perf_ctrls.desired_perf;
349
350         return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
351 }
352
353 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
354 {
355         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
356         struct cppc_cpudata *cpu = all_cpu_data[cpunum];
357         int ret;
358
359         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
360         if (ret)
361                 return ret;
362
363         udelay(2); /* 2usec delay between sampling */
364
365         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
366         if (ret)
367                 return ret;
368
369         return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
370 }
371
372 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
373 {
374         struct cppc_cpudata *cpudata;
375         int ret;
376
377         if (!boost_supported) {
378                 pr_err("BOOST not supported by CPU or firmware\n");
379                 return -EINVAL;
380         }
381
382         cpudata = all_cpu_data[policy->cpu];
383         if (state)
384                 policy->max = cppc_cpufreq_perf_to_khz(cpudata,
385                                         cpudata->perf_caps.highest_perf);
386         else
387                 policy->max = cppc_cpufreq_perf_to_khz(cpudata,
388                                         cpudata->perf_caps.nominal_perf);
389         policy->cpuinfo.max_freq = policy->max;
390
391         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
392         if (ret < 0)
393                 return ret;
394
395         return 0;
396 }
397
398 static struct cpufreq_driver cppc_cpufreq_driver = {
399         .flags = CPUFREQ_CONST_LOOPS,
400         .verify = cppc_verify_policy,
401         .target = cppc_cpufreq_set_target,
402         .get = cppc_cpufreq_get_rate,
403         .init = cppc_cpufreq_cpu_init,
404         .stop_cpu = cppc_cpufreq_stop_cpu,
405         .set_boost = cppc_cpufreq_set_boost,
406         .name = "cppc_cpufreq",
407 };
408
409 /*
410  * HISI platform does not support delivered performance counter and
411  * reference performance counter. It can calculate the performance using the
412  * platform specific mechanism. We reuse the desired performance register to
413  * store the real performance calculated by the platform.
414  */
415 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
416 {
417         struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
418         u64 desired_perf;
419         int ret;
420
421         ret = cppc_get_desired_perf(cpunum, &desired_perf);
422         if (ret < 0)
423                 return -EIO;
424
425         return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
426 }
427
428 static void cppc_check_hisi_workaround(void)
429 {
430         struct acpi_table_header *tbl;
431         acpi_status status = AE_OK;
432         int i;
433
434         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
435         if (ACPI_FAILURE(status) || !tbl)
436                 return;
437
438         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
439                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
440                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
441                     wa_info[i].oem_revision == tbl->oem_revision) {
442                         /* Overwrite the get() callback */
443                         cppc_cpufreq_driver.get = hisi_cppc_cpufreq_get_rate;
444                         break;
445                 }
446         }
447
448         acpi_put_table(tbl);
449 }
450
451 static int __init cppc_cpufreq_init(void)
452 {
453         int i, ret = 0;
454         struct cppc_cpudata *cpu;
455
456         if (acpi_disabled)
457                 return -ENODEV;
458
459         all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
460                                GFP_KERNEL);
461         if (!all_cpu_data)
462                 return -ENOMEM;
463
464         for_each_possible_cpu(i) {
465                 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
466                 if (!all_cpu_data[i])
467                         goto out;
468
469                 cpu = all_cpu_data[i];
470                 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
471                         goto out;
472         }
473
474         ret = acpi_get_psd_map(all_cpu_data);
475         if (ret) {
476                 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
477                 goto out;
478         }
479
480         cppc_check_hisi_workaround();
481
482         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
483         if (ret)
484                 goto out;
485
486         return ret;
487
488 out:
489         for_each_possible_cpu(i) {
490                 cpu = all_cpu_data[i];
491                 if (!cpu)
492                         break;
493                 free_cpumask_var(cpu->shared_cpu_map);
494                 kfree(cpu);
495         }
496
497         kfree(all_cpu_data);
498         return -ENODEV;
499 }
500
501 static void __exit cppc_cpufreq_exit(void)
502 {
503         struct cppc_cpudata *cpu;
504         int i;
505
506         cpufreq_unregister_driver(&cppc_cpufreq_driver);
507
508         for_each_possible_cpu(i) {
509                 cpu = all_cpu_data[i];
510                 free_cpumask_var(cpu->shared_cpu_map);
511                 kfree(cpu);
512         }
513
514         kfree(all_cpu_data);
515 }
516
517 module_exit(cppc_cpufreq_exit);
518 MODULE_AUTHOR("Ashwin Chaugule");
519 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
520 MODULE_LICENSE("GPL");
521
522 late_initcall(cppc_cpufreq_init);
523
524 static const struct acpi_device_id cppc_acpi_ids[] __used = {
525         {ACPI_PROCESSOR_DEVICE_HID, },
526         {}
527 };
528
529 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);