Merge tag 'mt76-for-kvalo-2020-06-07' of https://github.com/nbd168/wireless
[linux-2.6-microblaze.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offest in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED  0x14
31
32 /*
33  * These structs contain information parsed from per CPU
34  * ACPI _CPC structures.
35  * e.g. For each CPU the highest, lowest supported
36  * performance capabilities, desired performance level
37  * requested etc.
38  */
39 static struct cppc_cpudata **all_cpu_data;
40 static bool boost_supported;
41
42 struct cppc_workaround_oem_info {
43         char oem_id[ACPI_OEM_ID_SIZE + 1];
44         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45         u32 oem_revision;
46 };
47
48 static bool apply_hisi_workaround;
49
50 static struct cppc_workaround_oem_info wa_info[] = {
51         {
52                 .oem_id         = "HISI  ",
53                 .oem_table_id   = "HIP07   ",
54                 .oem_revision   = 0,
55         }, {
56                 .oem_id         = "HISI  ",
57                 .oem_table_id   = "HIP08   ",
58                 .oem_revision   = 0,
59         }
60 };
61
62 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
63                                         unsigned int perf);
64
65 /*
66  * HISI platform does not support delivered performance counter and
67  * reference performance counter. It can calculate the performance using the
68  * platform specific mechanism. We reuse the desired performance register to
69  * store the real performance calculated by the platform.
70  */
71 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
72 {
73         struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
74         u64 desired_perf;
75         int ret;
76
77         ret = cppc_get_desired_perf(cpunum, &desired_perf);
78         if (ret < 0)
79                 return -EIO;
80
81         return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
82 }
83
84 static void cppc_check_hisi_workaround(void)
85 {
86         struct acpi_table_header *tbl;
87         acpi_status status = AE_OK;
88         int i;
89
90         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
91         if (ACPI_FAILURE(status) || !tbl)
92                 return;
93
94         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
95                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
96                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
97                     wa_info[i].oem_revision == tbl->oem_revision) {
98                         apply_hisi_workaround = true;
99                         break;
100                 }
101         }
102
103         acpi_put_table(tbl);
104 }
105
106 /* Callback function used to retrieve the max frequency from DMI */
107 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
108 {
109         const u8 *dmi_data = (const u8 *)dm;
110         u16 *mhz = (u16 *)private;
111
112         if (dm->type == DMI_ENTRY_PROCESSOR &&
113             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
114                 u16 val = (u16)get_unaligned((const u16 *)
115                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
116                 *mhz = val > *mhz ? val : *mhz;
117         }
118 }
119
120 /* Look up the max frequency in DMI */
121 static u64 cppc_get_dmi_max_khz(void)
122 {
123         u16 mhz = 0;
124
125         dmi_walk(cppc_find_dmi_mhz, &mhz);
126
127         /*
128          * Real stupid fallback value, just in case there is no
129          * actual value set.
130          */
131         mhz = mhz ? mhz : 1;
132
133         return (1000 * mhz);
134 }
135
136 /*
137  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
138  * use them to convert perf to freq and vice versa
139  *
140  * If the perf/freq point lies between Nominal and Lowest, we can treat
141  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
142  * and extrapolate the rest
143  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
144  */
145 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
146                                         unsigned int perf)
147 {
148         static u64 max_khz;
149         struct cppc_perf_caps *caps = &cpu->perf_caps;
150         u64 mul, div;
151
152         if (caps->lowest_freq && caps->nominal_freq) {
153                 if (perf >= caps->nominal_perf) {
154                         mul = caps->nominal_freq;
155                         div = caps->nominal_perf;
156                 } else {
157                         mul = caps->nominal_freq - caps->lowest_freq;
158                         div = caps->nominal_perf - caps->lowest_perf;
159                 }
160         } else {
161                 if (!max_khz)
162                         max_khz = cppc_get_dmi_max_khz();
163                 mul = max_khz;
164                 div = cpu->perf_caps.highest_perf;
165         }
166         return (u64)perf * mul / div;
167 }
168
169 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
170                                         unsigned int freq)
171 {
172         static u64 max_khz;
173         struct cppc_perf_caps *caps = &cpu->perf_caps;
174         u64  mul, div;
175
176         if (caps->lowest_freq && caps->nominal_freq) {
177                 if (freq >= caps->nominal_freq) {
178                         mul = caps->nominal_perf;
179                         div = caps->nominal_freq;
180                 } else {
181                         mul = caps->lowest_perf;
182                         div = caps->lowest_freq;
183                 }
184         } else {
185                 if (!max_khz)
186                         max_khz = cppc_get_dmi_max_khz();
187                 mul = cpu->perf_caps.highest_perf;
188                 div = max_khz;
189         }
190
191         return (u64)freq * mul / div;
192 }
193
194 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
195                 unsigned int target_freq,
196                 unsigned int relation)
197 {
198         struct cppc_cpudata *cpu;
199         struct cpufreq_freqs freqs;
200         u32 desired_perf;
201         int ret = 0;
202
203         cpu = all_cpu_data[policy->cpu];
204
205         desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
206         /* Return if it is exactly the same perf */
207         if (desired_perf == cpu->perf_ctrls.desired_perf)
208                 return ret;
209
210         cpu->perf_ctrls.desired_perf = desired_perf;
211         freqs.old = policy->cur;
212         freqs.new = target_freq;
213
214         cpufreq_freq_transition_begin(policy, &freqs);
215         ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
216         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
217
218         if (ret)
219                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
220                                 cpu->cpu, ret);
221
222         return ret;
223 }
224
225 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
226 {
227         cpufreq_verify_within_cpu_limits(policy);
228         return 0;
229 }
230
231 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
232 {
233         int cpu_num = policy->cpu;
234         struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
235         int ret;
236
237         cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
238
239         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
240         if (ret)
241                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
242                                 cpu->perf_caps.lowest_perf, cpu_num, ret);
243 }
244
245 /*
246  * The PCC subspace describes the rate at which platform can accept commands
247  * on the shared PCC channel (including READs which do not count towards freq
248  * trasition requests), so ideally we need to use the PCC values as a fallback
249  * if we don't have a platform specific transition_delay_us
250  */
251 #ifdef CONFIG_ARM64
252 #include <asm/cputype.h>
253
254 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
255 {
256         unsigned long implementor = read_cpuid_implementor();
257         unsigned long part_num = read_cpuid_part_number();
258         unsigned int delay_us = 0;
259
260         switch (implementor) {
261         case ARM_CPU_IMP_QCOM:
262                 switch (part_num) {
263                 case QCOM_CPU_PART_FALKOR_V1:
264                 case QCOM_CPU_PART_FALKOR:
265                         delay_us = 10000;
266                         break;
267                 default:
268                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
269                         break;
270                 }
271                 break;
272         default:
273                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
274                 break;
275         }
276
277         return delay_us;
278 }
279
280 #else
281
282 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
283 {
284         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
285 }
286 #endif
287
288 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
289 {
290         struct cppc_cpudata *cpu;
291         unsigned int cpu_num = policy->cpu;
292         int ret = 0;
293
294         cpu = all_cpu_data[policy->cpu];
295
296         cpu->cpu = cpu_num;
297         ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
298
299         if (ret) {
300                 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
301                                 cpu_num, ret);
302                 return ret;
303         }
304
305         /* Convert the lowest and nominal freq from MHz to KHz */
306         cpu->perf_caps.lowest_freq *= 1000;
307         cpu->perf_caps.nominal_freq *= 1000;
308
309         /*
310          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
311          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
312          */
313         policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
314         policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
315
316         /*
317          * Set cpuinfo.min_freq to Lowest to make the full range of performance
318          * available if userspace wants to use any perf between lowest & lowest
319          * nonlinear perf
320          */
321         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
322         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
323
324         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
325         policy->shared_type = cpu->shared_type;
326
327         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
328                 int i;
329
330                 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
331
332                 for_each_cpu(i, policy->cpus) {
333                         if (unlikely(i == policy->cpu))
334                                 continue;
335
336                         memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
337                                sizeof(cpu->perf_caps));
338                 }
339         } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
340                 /* Support only SW_ANY for now. */
341                 pr_debug("Unsupported CPU co-ord type\n");
342                 return -EFAULT;
343         }
344
345         cpu->cur_policy = policy;
346
347         /*
348          * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
349          * is supported.
350          */
351         if (cpu->perf_caps.highest_perf > cpu->perf_caps.nominal_perf)
352                 boost_supported = true;
353
354         /* Set policy->cur to max now. The governors will adjust later. */
355         policy->cur = cppc_cpufreq_perf_to_khz(cpu,
356                                         cpu->perf_caps.highest_perf);
357         cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
358
359         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
360         if (ret)
361                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
362                                 cpu->perf_caps.highest_perf, cpu_num, ret);
363
364         return ret;
365 }
366
367 static inline u64 get_delta(u64 t1, u64 t0)
368 {
369         if (t1 > t0 || t0 > ~(u32)0)
370                 return t1 - t0;
371
372         return (u32)t1 - (u32)t0;
373 }
374
375 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
376                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
377                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
378 {
379         u64 delta_reference, delta_delivered;
380         u64 reference_perf, delivered_perf;
381
382         reference_perf = fb_ctrs_t0.reference_perf;
383
384         delta_reference = get_delta(fb_ctrs_t1.reference,
385                                     fb_ctrs_t0.reference);
386         delta_delivered = get_delta(fb_ctrs_t1.delivered,
387                                     fb_ctrs_t0.delivered);
388
389         /* Check to avoid divide-by zero */
390         if (delta_reference || delta_delivered)
391                 delivered_perf = (reference_perf * delta_delivered) /
392                                         delta_reference;
393         else
394                 delivered_perf = cpu->perf_ctrls.desired_perf;
395
396         return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
397 }
398
399 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
400 {
401         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
402         struct cppc_cpudata *cpu = all_cpu_data[cpunum];
403         int ret;
404
405         if (apply_hisi_workaround)
406                 return hisi_cppc_cpufreq_get_rate(cpunum);
407
408         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
409         if (ret)
410                 return ret;
411
412         udelay(2); /* 2usec delay between sampling */
413
414         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
415         if (ret)
416                 return ret;
417
418         return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
419 }
420
421 static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
422 {
423         struct cppc_cpudata *cpudata;
424         int ret;
425
426         if (!boost_supported) {
427                 pr_err("BOOST not supported by CPU or firmware\n");
428                 return -EINVAL;
429         }
430
431         cpudata = all_cpu_data[policy->cpu];
432         if (state)
433                 policy->max = cppc_cpufreq_perf_to_khz(cpudata,
434                                         cpudata->perf_caps.highest_perf);
435         else
436                 policy->max = cppc_cpufreq_perf_to_khz(cpudata,
437                                         cpudata->perf_caps.nominal_perf);
438         policy->cpuinfo.max_freq = policy->max;
439
440         ret = freq_qos_update_request(policy->max_freq_req, policy->max);
441         if (ret < 0)
442                 return ret;
443
444         return 0;
445 }
446
447 static struct cpufreq_driver cppc_cpufreq_driver = {
448         .flags = CPUFREQ_CONST_LOOPS,
449         .verify = cppc_verify_policy,
450         .target = cppc_cpufreq_set_target,
451         .get = cppc_cpufreq_get_rate,
452         .init = cppc_cpufreq_cpu_init,
453         .stop_cpu = cppc_cpufreq_stop_cpu,
454         .set_boost = cppc_cpufreq_set_boost,
455         .name = "cppc_cpufreq",
456 };
457
458 static int __init cppc_cpufreq_init(void)
459 {
460         int i, ret = 0;
461         struct cppc_cpudata *cpu;
462
463         if (acpi_disabled)
464                 return -ENODEV;
465
466         all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
467                                GFP_KERNEL);
468         if (!all_cpu_data)
469                 return -ENOMEM;
470
471         for_each_possible_cpu(i) {
472                 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
473                 if (!all_cpu_data[i])
474                         goto out;
475
476                 cpu = all_cpu_data[i];
477                 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
478                         goto out;
479         }
480
481         ret = acpi_get_psd_map(all_cpu_data);
482         if (ret) {
483                 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
484                 goto out;
485         }
486
487         cppc_check_hisi_workaround();
488
489         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
490         if (ret)
491                 goto out;
492
493         return ret;
494
495 out:
496         for_each_possible_cpu(i) {
497                 cpu = all_cpu_data[i];
498                 if (!cpu)
499                         break;
500                 free_cpumask_var(cpu->shared_cpu_map);
501                 kfree(cpu);
502         }
503
504         kfree(all_cpu_data);
505         return -ENODEV;
506 }
507
508 static void __exit cppc_cpufreq_exit(void)
509 {
510         struct cppc_cpudata *cpu;
511         int i;
512
513         cpufreq_unregister_driver(&cppc_cpufreq_driver);
514
515         for_each_possible_cpu(i) {
516                 cpu = all_cpu_data[i];
517                 free_cpumask_var(cpu->shared_cpu_map);
518                 kfree(cpu);
519         }
520
521         kfree(all_cpu_data);
522 }
523
524 module_exit(cppc_cpufreq_exit);
525 MODULE_AUTHOR("Ashwin Chaugule");
526 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
527 MODULE_LICENSE("GPL");
528
529 late_initcall(cppc_cpufreq_init);
530
531 static const struct acpi_device_id cppc_acpi_ids[] __used = {
532         {ACPI_PROCESSOR_DEVICE_HID, },
533         {}
534 };
535
536 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);