dt-bindings: can: flexcan: list supported processors
[linux-2.6-microblaze.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29
30 #include <asm/msr.h>
31 #include <asm/processor.h>
32 #include <asm/cpufeature.h>
33 #include <asm/cpu_device_id.h>
34
35 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
36 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
37 MODULE_LICENSE("GPL");
38
39 enum {
40         UNDEFINED_CAPABLE = 0,
41         SYSTEM_INTEL_MSR_CAPABLE,
42         SYSTEM_AMD_MSR_CAPABLE,
43         SYSTEM_IO_CAPABLE,
44 };
45
46 #define INTEL_MSR_RANGE         (0xffff)
47 #define AMD_MSR_RANGE           (0x7)
48 #define HYGON_MSR_RANGE         (0x7)
49
50 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
51
52 struct acpi_cpufreq_data {
53         unsigned int resume;
54         unsigned int cpu_feature;
55         unsigned int acpi_perf_cpu;
56         cpumask_var_t freqdomain_cpus;
57         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
58         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
59 };
60
61 /* acpi_perf_data is a pointer to percpu data. */
62 static struct acpi_processor_performance __percpu *acpi_perf_data;
63
64 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
65 {
66         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
67 }
68
69 static struct cpufreq_driver acpi_cpufreq_driver;
70
71 static unsigned int acpi_pstate_strict;
72
73 static bool boost_state(unsigned int cpu)
74 {
75         u32 lo, hi;
76         u64 msr;
77
78         switch (boot_cpu_data.x86_vendor) {
79         case X86_VENDOR_INTEL:
80                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
81                 msr = lo | ((u64)hi << 32);
82                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
83         case X86_VENDOR_HYGON:
84         case X86_VENDOR_AMD:
85                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
86                 msr = lo | ((u64)hi << 32);
87                 return !(msr & MSR_K7_HWCR_CPB_DIS);
88         }
89         return false;
90 }
91
92 static int boost_set_msr(bool enable)
93 {
94         u32 msr_addr;
95         u64 msr_mask, val;
96
97         switch (boot_cpu_data.x86_vendor) {
98         case X86_VENDOR_INTEL:
99                 msr_addr = MSR_IA32_MISC_ENABLE;
100                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
101                 break;
102         case X86_VENDOR_HYGON:
103         case X86_VENDOR_AMD:
104                 msr_addr = MSR_K7_HWCR;
105                 msr_mask = MSR_K7_HWCR_CPB_DIS;
106                 break;
107         default:
108                 return -EINVAL;
109         }
110
111         rdmsrl(msr_addr, val);
112
113         if (enable)
114                 val &= ~msr_mask;
115         else
116                 val |= msr_mask;
117
118         wrmsrl(msr_addr, val);
119         return 0;
120 }
121
122 static void boost_set_msr_each(void *p_en)
123 {
124         bool enable = (bool) p_en;
125
126         boost_set_msr(enable);
127 }
128
129 static int set_boost(struct cpufreq_policy *policy, int val)
130 {
131         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
132                          (void *)(long)val, 1);
133         pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
134                  cpumask_pr_args(policy->cpus), val ? "en" : "dis");
135
136         return 0;
137 }
138
139 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
140 {
141         struct acpi_cpufreq_data *data = policy->driver_data;
142
143         if (unlikely(!data))
144                 return -ENODEV;
145
146         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
147 }
148
149 cpufreq_freq_attr_ro(freqdomain_cpus);
150
151 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
152 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
153                          size_t count)
154 {
155         int ret;
156         unsigned int val = 0;
157
158         if (!acpi_cpufreq_driver.set_boost)
159                 return -EINVAL;
160
161         ret = kstrtouint(buf, 10, &val);
162         if (ret || val > 1)
163                 return -EINVAL;
164
165         get_online_cpus();
166         set_boost(policy, val);
167         put_online_cpus();
168
169         return count;
170 }
171
172 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
173 {
174         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
175 }
176
177 cpufreq_freq_attr_rw(cpb);
178 #endif
179
180 static int check_est_cpu(unsigned int cpuid)
181 {
182         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
183
184         return cpu_has(cpu, X86_FEATURE_EST);
185 }
186
187 static int check_amd_hwpstate_cpu(unsigned int cpuid)
188 {
189         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
190
191         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
192 }
193
194 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
195 {
196         struct acpi_cpufreq_data *data = policy->driver_data;
197         struct acpi_processor_performance *perf;
198         int i;
199
200         perf = to_perf_data(data);
201
202         for (i = 0; i < perf->state_count; i++) {
203                 if (value == perf->states[i].status)
204                         return policy->freq_table[i].frequency;
205         }
206         return 0;
207 }
208
209 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
210 {
211         struct acpi_cpufreq_data *data = policy->driver_data;
212         struct cpufreq_frequency_table *pos;
213         struct acpi_processor_performance *perf;
214
215         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
216                 msr &= AMD_MSR_RANGE;
217         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
218                 msr &= HYGON_MSR_RANGE;
219         else
220                 msr &= INTEL_MSR_RANGE;
221
222         perf = to_perf_data(data);
223
224         cpufreq_for_each_entry(pos, policy->freq_table)
225                 if (msr == perf->states[pos->driver_data].status)
226                         return pos->frequency;
227         return policy->freq_table[0].frequency;
228 }
229
230 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
231 {
232         struct acpi_cpufreq_data *data = policy->driver_data;
233
234         switch (data->cpu_feature) {
235         case SYSTEM_INTEL_MSR_CAPABLE:
236         case SYSTEM_AMD_MSR_CAPABLE:
237                 return extract_msr(policy, val);
238         case SYSTEM_IO_CAPABLE:
239                 return extract_io(policy, val);
240         default:
241                 return 0;
242         }
243 }
244
245 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
246 {
247         u32 val, dummy __always_unused;
248
249         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
250         return val;
251 }
252
253 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
254 {
255         u32 lo, hi;
256
257         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
258         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
259         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
260 }
261
262 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
263 {
264         u32 val, dummy __always_unused;
265
266         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
267         return val;
268 }
269
270 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
271 {
272         wrmsr(MSR_AMD_PERF_CTL, val, 0);
273 }
274
275 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
276 {
277         u32 val;
278
279         acpi_os_read_port(reg->address, &val, reg->bit_width);
280         return val;
281 }
282
283 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
284 {
285         acpi_os_write_port(reg->address, val, reg->bit_width);
286 }
287
288 struct drv_cmd {
289         struct acpi_pct_register *reg;
290         u32 val;
291         union {
292                 void (*write)(struct acpi_pct_register *reg, u32 val);
293                 u32 (*read)(struct acpi_pct_register *reg);
294         } func;
295 };
296
297 /* Called via smp_call_function_single(), on the target CPU */
298 static void do_drv_read(void *_cmd)
299 {
300         struct drv_cmd *cmd = _cmd;
301
302         cmd->val = cmd->func.read(cmd->reg);
303 }
304
305 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
306 {
307         struct acpi_processor_performance *perf = to_perf_data(data);
308         struct drv_cmd cmd = {
309                 .reg = &perf->control_register,
310                 .func.read = data->cpu_freq_read,
311         };
312         int err;
313
314         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
315         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
316         return cmd.val;
317 }
318
319 /* Called via smp_call_function_many(), on the target CPUs */
320 static void do_drv_write(void *_cmd)
321 {
322         struct drv_cmd *cmd = _cmd;
323
324         cmd->func.write(cmd->reg, cmd->val);
325 }
326
327 static void drv_write(struct acpi_cpufreq_data *data,
328                       const struct cpumask *mask, u32 val)
329 {
330         struct acpi_processor_performance *perf = to_perf_data(data);
331         struct drv_cmd cmd = {
332                 .reg = &perf->control_register,
333                 .val = val,
334                 .func.write = data->cpu_freq_write,
335         };
336         int this_cpu;
337
338         this_cpu = get_cpu();
339         if (cpumask_test_cpu(this_cpu, mask))
340                 do_drv_write(&cmd);
341
342         smp_call_function_many(mask, do_drv_write, &cmd, 1);
343         put_cpu();
344 }
345
346 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
347 {
348         u32 val;
349
350         if (unlikely(cpumask_empty(mask)))
351                 return 0;
352
353         val = drv_read(data, mask);
354
355         pr_debug("%s = %u\n", __func__, val);
356
357         return val;
358 }
359
360 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
361 {
362         struct acpi_cpufreq_data *data;
363         struct cpufreq_policy *policy;
364         unsigned int freq;
365         unsigned int cached_freq;
366
367         pr_debug("%s (%d)\n", __func__, cpu);
368
369         policy = cpufreq_cpu_get_raw(cpu);
370         if (unlikely(!policy))
371                 return 0;
372
373         data = policy->driver_data;
374         if (unlikely(!data || !policy->freq_table))
375                 return 0;
376
377         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
378         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
379         if (freq != cached_freq) {
380                 /*
381                  * The dreaded BIOS frequency change behind our back.
382                  * Force set the frequency on next target call.
383                  */
384                 data->resume = 1;
385         }
386
387         pr_debug("cur freq = %u\n", freq);
388
389         return freq;
390 }
391
392 static unsigned int check_freqs(struct cpufreq_policy *policy,
393                                 const struct cpumask *mask, unsigned int freq)
394 {
395         struct acpi_cpufreq_data *data = policy->driver_data;
396         unsigned int cur_freq;
397         unsigned int i;
398
399         for (i = 0; i < 100; i++) {
400                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
401                 if (cur_freq == freq)
402                         return 1;
403                 udelay(10);
404         }
405         return 0;
406 }
407
408 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
409                                unsigned int index)
410 {
411         struct acpi_cpufreq_data *data = policy->driver_data;
412         struct acpi_processor_performance *perf;
413         const struct cpumask *mask;
414         unsigned int next_perf_state = 0; /* Index into perf table */
415         int result = 0;
416
417         if (unlikely(!data)) {
418                 return -ENODEV;
419         }
420
421         perf = to_perf_data(data);
422         next_perf_state = policy->freq_table[index].driver_data;
423         if (perf->state == next_perf_state) {
424                 if (unlikely(data->resume)) {
425                         pr_debug("Called after resume, resetting to P%d\n",
426                                 next_perf_state);
427                         data->resume = 0;
428                 } else {
429                         pr_debug("Already at target state (P%d)\n",
430                                 next_perf_state);
431                         return 0;
432                 }
433         }
434
435         /*
436          * The core won't allow CPUs to go away until the governor has been
437          * stopped, so we can rely on the stability of policy->cpus.
438          */
439         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
440                 cpumask_of(policy->cpu) : policy->cpus;
441
442         drv_write(data, mask, perf->states[next_perf_state].control);
443
444         if (acpi_pstate_strict) {
445                 if (!check_freqs(policy, mask,
446                                  policy->freq_table[index].frequency)) {
447                         pr_debug("%s (%d)\n", __func__, policy->cpu);
448                         result = -EAGAIN;
449                 }
450         }
451
452         if (!result)
453                 perf->state = next_perf_state;
454
455         return result;
456 }
457
458 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
459                                              unsigned int target_freq)
460 {
461         struct acpi_cpufreq_data *data = policy->driver_data;
462         struct acpi_processor_performance *perf;
463         struct cpufreq_frequency_table *entry;
464         unsigned int next_perf_state, next_freq, index;
465
466         /*
467          * Find the closest frequency above target_freq.
468          */
469         if (policy->cached_target_freq == target_freq)
470                 index = policy->cached_resolved_idx;
471         else
472                 index = cpufreq_table_find_index_dl(policy, target_freq);
473
474         entry = &policy->freq_table[index];
475         next_freq = entry->frequency;
476         next_perf_state = entry->driver_data;
477
478         perf = to_perf_data(data);
479         if (perf->state == next_perf_state) {
480                 if (unlikely(data->resume))
481                         data->resume = 0;
482                 else
483                         return next_freq;
484         }
485
486         data->cpu_freq_write(&perf->control_register,
487                              perf->states[next_perf_state].control);
488         perf->state = next_perf_state;
489         return next_freq;
490 }
491
492 static unsigned long
493 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
494 {
495         struct acpi_processor_performance *perf;
496
497         perf = to_perf_data(data);
498         if (cpu_khz) {
499                 /* search the closest match to cpu_khz */
500                 unsigned int i;
501                 unsigned long freq;
502                 unsigned long freqn = perf->states[0].core_frequency * 1000;
503
504                 for (i = 0; i < (perf->state_count-1); i++) {
505                         freq = freqn;
506                         freqn = perf->states[i+1].core_frequency * 1000;
507                         if ((2 * cpu_khz) > (freqn + freq)) {
508                                 perf->state = i;
509                                 return freq;
510                         }
511                 }
512                 perf->state = perf->state_count-1;
513                 return freqn;
514         } else {
515                 /* assume CPU is at P0... */
516                 perf->state = 0;
517                 return perf->states[0].core_frequency * 1000;
518         }
519 }
520
521 static void free_acpi_perf_data(void)
522 {
523         unsigned int i;
524
525         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
526         for_each_possible_cpu(i)
527                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
528                                  ->shared_cpu_map);
529         free_percpu(acpi_perf_data);
530 }
531
532 static int cpufreq_boost_online(unsigned int cpu)
533 {
534         /*
535          * On the CPU_UP path we simply keep the boost-disable flag
536          * in sync with the current global state.
537          */
538         return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
539 }
540
541 static int cpufreq_boost_down_prep(unsigned int cpu)
542 {
543         /*
544          * Clear the boost-disable bit on the CPU_DOWN path so that
545          * this cpu cannot block the remaining ones from boosting.
546          */
547         return boost_set_msr(1);
548 }
549
550 /*
551  * acpi_cpufreq_early_init - initialize ACPI P-States library
552  *
553  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
554  * in order to determine correct frequency and voltage pairings. We can
555  * do _PDC and _PSD and find out the processor dependency for the
556  * actual init that will happen later...
557  */
558 static int __init acpi_cpufreq_early_init(void)
559 {
560         unsigned int i;
561         pr_debug("%s\n", __func__);
562
563         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
564         if (!acpi_perf_data) {
565                 pr_debug("Memory allocation error for acpi_perf_data.\n");
566                 return -ENOMEM;
567         }
568         for_each_possible_cpu(i) {
569                 if (!zalloc_cpumask_var_node(
570                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
571                         GFP_KERNEL, cpu_to_node(i))) {
572
573                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
574                         free_acpi_perf_data();
575                         return -ENOMEM;
576                 }
577         }
578
579         /* Do initialization in ACPI core */
580         acpi_processor_preregister_performance(acpi_perf_data);
581         return 0;
582 }
583
584 #ifdef CONFIG_SMP
585 /*
586  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
587  * or do it in BIOS firmware and won't inform about it to OS. If not
588  * detected, this has a side effect of making CPU run at a different speed
589  * than OS intended it to run at. Detect it and handle it cleanly.
590  */
591 static int bios_with_sw_any_bug;
592
593 static int sw_any_bug_found(const struct dmi_system_id *d)
594 {
595         bios_with_sw_any_bug = 1;
596         return 0;
597 }
598
599 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
600         {
601                 .callback = sw_any_bug_found,
602                 .ident = "Supermicro Server X6DLP",
603                 .matches = {
604                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
605                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
606                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
607                 },
608         },
609         { }
610 };
611
612 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
613 {
614         /* Intel Xeon Processor 7100 Series Specification Update
615          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
616          * AL30: A Machine Check Exception (MCE) Occurring during an
617          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
618          * Both Processor Cores to Lock Up. */
619         if (c->x86_vendor == X86_VENDOR_INTEL) {
620                 if ((c->x86 == 15) &&
621                     (c->x86_model == 6) &&
622                     (c->x86_stepping == 8)) {
623                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
624                         return -ENODEV;
625                     }
626                 }
627         return 0;
628 }
629 #endif
630
631 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
632 {
633         unsigned int i;
634         unsigned int valid_states = 0;
635         unsigned int cpu = policy->cpu;
636         struct acpi_cpufreq_data *data;
637         unsigned int result = 0;
638         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
639         struct acpi_processor_performance *perf;
640         struct cpufreq_frequency_table *freq_table;
641 #ifdef CONFIG_SMP
642         static int blacklisted;
643 #endif
644
645         pr_debug("%s\n", __func__);
646
647 #ifdef CONFIG_SMP
648         if (blacklisted)
649                 return blacklisted;
650         blacklisted = acpi_cpufreq_blacklist(c);
651         if (blacklisted)
652                 return blacklisted;
653 #endif
654
655         data = kzalloc(sizeof(*data), GFP_KERNEL);
656         if (!data)
657                 return -ENOMEM;
658
659         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
660                 result = -ENOMEM;
661                 goto err_free;
662         }
663
664         perf = per_cpu_ptr(acpi_perf_data, cpu);
665         data->acpi_perf_cpu = cpu;
666         policy->driver_data = data;
667
668         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
669                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
670
671         result = acpi_processor_register_performance(perf, cpu);
672         if (result)
673                 goto err_free_mask;
674
675         policy->shared_type = perf->shared_type;
676
677         /*
678          * Will let policy->cpus know about dependency only when software
679          * coordination is required.
680          */
681         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
682             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
683                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
684         }
685         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
686
687 #ifdef CONFIG_SMP
688         dmi_check_system(sw_any_bug_dmi_table);
689         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
690                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
691                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
692         }
693
694         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
695                 cpumask_clear(policy->cpus);
696                 cpumask_set_cpu(cpu, policy->cpus);
697                 cpumask_copy(data->freqdomain_cpus,
698                              topology_sibling_cpumask(cpu));
699                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
700                 pr_info_once("overriding BIOS provided _PSD data\n");
701         }
702 #endif
703
704         /* capability check */
705         if (perf->state_count <= 1) {
706                 pr_debug("No P-States\n");
707                 result = -ENODEV;
708                 goto err_unreg;
709         }
710
711         if (perf->control_register.space_id != perf->status_register.space_id) {
712                 result = -ENODEV;
713                 goto err_unreg;
714         }
715
716         switch (perf->control_register.space_id) {
717         case ACPI_ADR_SPACE_SYSTEM_IO:
718                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
719                     boot_cpu_data.x86 == 0xf) {
720                         pr_debug("AMD K8 systems must use native drivers.\n");
721                         result = -ENODEV;
722                         goto err_unreg;
723                 }
724                 pr_debug("SYSTEM IO addr space\n");
725                 data->cpu_feature = SYSTEM_IO_CAPABLE;
726                 data->cpu_freq_read = cpu_freq_read_io;
727                 data->cpu_freq_write = cpu_freq_write_io;
728                 break;
729         case ACPI_ADR_SPACE_FIXED_HARDWARE:
730                 pr_debug("HARDWARE addr space\n");
731                 if (check_est_cpu(cpu)) {
732                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
733                         data->cpu_freq_read = cpu_freq_read_intel;
734                         data->cpu_freq_write = cpu_freq_write_intel;
735                         break;
736                 }
737                 if (check_amd_hwpstate_cpu(cpu)) {
738                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
739                         data->cpu_freq_read = cpu_freq_read_amd;
740                         data->cpu_freq_write = cpu_freq_write_amd;
741                         break;
742                 }
743                 result = -ENODEV;
744                 goto err_unreg;
745         default:
746                 pr_debug("Unknown addr space %d\n",
747                         (u32) (perf->control_register.space_id));
748                 result = -ENODEV;
749                 goto err_unreg;
750         }
751
752         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
753                              GFP_KERNEL);
754         if (!freq_table) {
755                 result = -ENOMEM;
756                 goto err_unreg;
757         }
758
759         /* detect transition latency */
760         policy->cpuinfo.transition_latency = 0;
761         for (i = 0; i < perf->state_count; i++) {
762                 if ((perf->states[i].transition_latency * 1000) >
763                     policy->cpuinfo.transition_latency)
764                         policy->cpuinfo.transition_latency =
765                             perf->states[i].transition_latency * 1000;
766         }
767
768         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
769         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
770             policy->cpuinfo.transition_latency > 20 * 1000) {
771                 policy->cpuinfo.transition_latency = 20 * 1000;
772                 pr_info_once("P-state transition latency capped at 20 uS\n");
773         }
774
775         /* table init */
776         for (i = 0; i < perf->state_count; i++) {
777                 if (i > 0 && perf->states[i].core_frequency >=
778                     freq_table[valid_states-1].frequency / 1000)
779                         continue;
780
781                 freq_table[valid_states].driver_data = i;
782                 freq_table[valid_states].frequency =
783                     perf->states[i].core_frequency * 1000;
784                 valid_states++;
785         }
786         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
787         policy->freq_table = freq_table;
788         perf->state = 0;
789
790         switch (perf->control_register.space_id) {
791         case ACPI_ADR_SPACE_SYSTEM_IO:
792                 /*
793                  * The core will not set policy->cur, because
794                  * cpufreq_driver->get is NULL, so we need to set it here.
795                  * However, we have to guess it, because the current speed is
796                  * unknown and not detectable via IO ports.
797                  */
798                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
799                 break;
800         case ACPI_ADR_SPACE_FIXED_HARDWARE:
801                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
802                 break;
803         default:
804                 break;
805         }
806
807         /* notify BIOS that we exist */
808         acpi_processor_notify_smm(THIS_MODULE);
809
810         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
811         for (i = 0; i < perf->state_count; i++)
812                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
813                         (i == perf->state ? '*' : ' '), i,
814                         (u32) perf->states[i].core_frequency,
815                         (u32) perf->states[i].power,
816                         (u32) perf->states[i].transition_latency);
817
818         /*
819          * the first call to ->target() should result in us actually
820          * writing something to the appropriate registers.
821          */
822         data->resume = 1;
823
824         policy->fast_switch_possible = !acpi_pstate_strict &&
825                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
826
827         return result;
828
829 err_unreg:
830         acpi_processor_unregister_performance(cpu);
831 err_free_mask:
832         free_cpumask_var(data->freqdomain_cpus);
833 err_free:
834         kfree(data);
835         policy->driver_data = NULL;
836
837         return result;
838 }
839
840 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
841 {
842         struct acpi_cpufreq_data *data = policy->driver_data;
843
844         pr_debug("%s\n", __func__);
845
846         policy->fast_switch_possible = false;
847         policy->driver_data = NULL;
848         acpi_processor_unregister_performance(data->acpi_perf_cpu);
849         free_cpumask_var(data->freqdomain_cpus);
850         kfree(policy->freq_table);
851         kfree(data);
852
853         return 0;
854 }
855
856 static void acpi_cpufreq_cpu_ready(struct cpufreq_policy *policy)
857 {
858         struct acpi_processor_performance *perf = per_cpu_ptr(acpi_perf_data,
859                                                               policy->cpu);
860
861         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
862                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
863 }
864
865 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
866 {
867         struct acpi_cpufreq_data *data = policy->driver_data;
868
869         pr_debug("%s\n", __func__);
870
871         data->resume = 1;
872
873         return 0;
874 }
875
876 static struct freq_attr *acpi_cpufreq_attr[] = {
877         &cpufreq_freq_attr_scaling_available_freqs,
878         &freqdomain_cpus,
879 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
880         &cpb,
881 #endif
882         NULL,
883 };
884
885 static struct cpufreq_driver acpi_cpufreq_driver = {
886         .verify         = cpufreq_generic_frequency_table_verify,
887         .target_index   = acpi_cpufreq_target,
888         .fast_switch    = acpi_cpufreq_fast_switch,
889         .bios_limit     = acpi_processor_get_bios_limit,
890         .init           = acpi_cpufreq_cpu_init,
891         .exit           = acpi_cpufreq_cpu_exit,
892         .ready          = acpi_cpufreq_cpu_ready,
893         .resume         = acpi_cpufreq_resume,
894         .name           = "acpi-cpufreq",
895         .attr           = acpi_cpufreq_attr,
896 };
897
898 static enum cpuhp_state acpi_cpufreq_online;
899
900 static void __init acpi_cpufreq_boost_init(void)
901 {
902         int ret;
903
904         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
905                 pr_debug("Boost capabilities not present in the processor\n");
906                 return;
907         }
908
909         acpi_cpufreq_driver.set_boost = set_boost;
910         acpi_cpufreq_driver.boost_enabled = boost_state(0);
911
912         /*
913          * This calls the online callback on all online cpu and forces all
914          * MSRs to the same value.
915          */
916         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
917                                 cpufreq_boost_online, cpufreq_boost_down_prep);
918         if (ret < 0) {
919                 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
920                 return;
921         }
922         acpi_cpufreq_online = ret;
923 }
924
925 static void acpi_cpufreq_boost_exit(void)
926 {
927         if (acpi_cpufreq_online > 0)
928                 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
929 }
930
931 static int __init acpi_cpufreq_init(void)
932 {
933         int ret;
934
935         if (acpi_disabled)
936                 return -ENODEV;
937
938         /* don't keep reloading if cpufreq_driver exists */
939         if (cpufreq_get_current_driver())
940                 return -EEXIST;
941
942         pr_debug("%s\n", __func__);
943
944         ret = acpi_cpufreq_early_init();
945         if (ret)
946                 return ret;
947
948 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
949         /* this is a sysfs file with a strange name and an even stranger
950          * semantic - per CPU instantiation, but system global effect.
951          * Lets enable it only on AMD CPUs for compatibility reasons and
952          * only if configured. This is considered legacy code, which
953          * will probably be removed at some point in the future.
954          */
955         if (!check_amd_hwpstate_cpu(0)) {
956                 struct freq_attr **attr;
957
958                 pr_debug("CPB unsupported, do not expose it\n");
959
960                 for (attr = acpi_cpufreq_attr; *attr; attr++)
961                         if (*attr == &cpb) {
962                                 *attr = NULL;
963                                 break;
964                         }
965         }
966 #endif
967         acpi_cpufreq_boost_init();
968
969         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
970         if (ret) {
971                 free_acpi_perf_data();
972                 acpi_cpufreq_boost_exit();
973         }
974         return ret;
975 }
976
977 static void __exit acpi_cpufreq_exit(void)
978 {
979         pr_debug("%s\n", __func__);
980
981         acpi_cpufreq_boost_exit();
982
983         cpufreq_unregister_driver(&acpi_cpufreq_driver);
984
985         free_acpi_perf_data();
986 }
987
988 module_param(acpi_pstate_strict, uint, 0644);
989 MODULE_PARM_DESC(acpi_pstate_strict,
990         "value 0 or non-zero. non-zero -> strict ACPI checks are "
991         "performed during frequency changes.");
992
993 late_initcall(acpi_cpufreq_init);
994 module_exit(acpi_cpufreq_exit);
995
996 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
997         X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
998         X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
999         {}
1000 };
1001 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1002
1003 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1004         {ACPI_PROCESSOR_OBJECT_HID, },
1005         {ACPI_PROCESSOR_DEVICE_HID, },
1006         {},
1007 };
1008 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1009
1010 MODULE_ALIAS("acpi");