Merge tag '5.20-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[linux-2.6-microblaze.git] / drivers / cpufreq / acpi-cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * acpi-cpufreq.c - ACPI Processor P-States Driver
4  *
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
8  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/smp.h>
17 #include <linux/sched.h>
18 #include <linux/cpufreq.h>
19 #include <linux/compiler.h>
20 #include <linux/dmi.h>
21 #include <linux/slab.h>
22
23 #include <linux/acpi.h>
24 #include <linux/io.h>
25 #include <linux/delay.h>
26 #include <linux/uaccess.h>
27
28 #include <acpi/processor.h>
29 #include <acpi/cppc_acpi.h>
30
31 #include <asm/msr.h>
32 #include <asm/processor.h>
33 #include <asm/cpufeature.h>
34 #include <asm/cpu_device_id.h>
35
36 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
37 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
38 MODULE_LICENSE("GPL");
39
40 enum {
41         UNDEFINED_CAPABLE = 0,
42         SYSTEM_INTEL_MSR_CAPABLE,
43         SYSTEM_AMD_MSR_CAPABLE,
44         SYSTEM_IO_CAPABLE,
45 };
46
47 #define INTEL_MSR_RANGE         (0xffff)
48 #define AMD_MSR_RANGE           (0x7)
49 #define HYGON_MSR_RANGE         (0x7)
50
51 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
52
53 struct acpi_cpufreq_data {
54         unsigned int resume;
55         unsigned int cpu_feature;
56         unsigned int acpi_perf_cpu;
57         cpumask_var_t freqdomain_cpus;
58         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
59         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
60 };
61
62 /* acpi_perf_data is a pointer to percpu data. */
63 static struct acpi_processor_performance __percpu *acpi_perf_data;
64
65 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
66 {
67         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
68 }
69
70 static struct cpufreq_driver acpi_cpufreq_driver;
71
72 static unsigned int acpi_pstate_strict;
73
74 static bool boost_state(unsigned int cpu)
75 {
76         u32 lo, hi;
77         u64 msr;
78
79         switch (boot_cpu_data.x86_vendor) {
80         case X86_VENDOR_INTEL:
81         case X86_VENDOR_CENTAUR:
82         case X86_VENDOR_ZHAOXIN:
83                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
84                 msr = lo | ((u64)hi << 32);
85                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
86         case X86_VENDOR_HYGON:
87         case X86_VENDOR_AMD:
88                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
89                 msr = lo | ((u64)hi << 32);
90                 return !(msr & MSR_K7_HWCR_CPB_DIS);
91         }
92         return false;
93 }
94
95 static int boost_set_msr(bool enable)
96 {
97         u32 msr_addr;
98         u64 msr_mask, val;
99
100         switch (boot_cpu_data.x86_vendor) {
101         case X86_VENDOR_INTEL:
102         case X86_VENDOR_CENTAUR:
103         case X86_VENDOR_ZHAOXIN:
104                 msr_addr = MSR_IA32_MISC_ENABLE;
105                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
106                 break;
107         case X86_VENDOR_HYGON:
108         case X86_VENDOR_AMD:
109                 msr_addr = MSR_K7_HWCR;
110                 msr_mask = MSR_K7_HWCR_CPB_DIS;
111                 break;
112         default:
113                 return -EINVAL;
114         }
115
116         rdmsrl(msr_addr, val);
117
118         if (enable)
119                 val &= ~msr_mask;
120         else
121                 val |= msr_mask;
122
123         wrmsrl(msr_addr, val);
124         return 0;
125 }
126
127 static void boost_set_msr_each(void *p_en)
128 {
129         bool enable = (bool) p_en;
130
131         boost_set_msr(enable);
132 }
133
134 static int set_boost(struct cpufreq_policy *policy, int val)
135 {
136         on_each_cpu_mask(policy->cpus, boost_set_msr_each,
137                          (void *)(long)val, 1);
138         pr_debug("CPU %*pbl: Core Boosting %sabled.\n",
139                  cpumask_pr_args(policy->cpus), val ? "en" : "dis");
140
141         return 0;
142 }
143
144 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
145 {
146         struct acpi_cpufreq_data *data = policy->driver_data;
147
148         if (unlikely(!data))
149                 return -ENODEV;
150
151         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
152 }
153
154 cpufreq_freq_attr_ro(freqdomain_cpus);
155
156 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
157 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
158                          size_t count)
159 {
160         int ret;
161         unsigned int val = 0;
162
163         if (!acpi_cpufreq_driver.set_boost)
164                 return -EINVAL;
165
166         ret = kstrtouint(buf, 10, &val);
167         if (ret || val > 1)
168                 return -EINVAL;
169
170         cpus_read_lock();
171         set_boost(policy, val);
172         cpus_read_unlock();
173
174         return count;
175 }
176
177 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
178 {
179         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
180 }
181
182 cpufreq_freq_attr_rw(cpb);
183 #endif
184
185 static int check_est_cpu(unsigned int cpuid)
186 {
187         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
188
189         return cpu_has(cpu, X86_FEATURE_EST);
190 }
191
192 static int check_amd_hwpstate_cpu(unsigned int cpuid)
193 {
194         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
195
196         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
197 }
198
199 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
200 {
201         struct acpi_cpufreq_data *data = policy->driver_data;
202         struct acpi_processor_performance *perf;
203         int i;
204
205         perf = to_perf_data(data);
206
207         for (i = 0; i < perf->state_count; i++) {
208                 if (value == perf->states[i].status)
209                         return policy->freq_table[i].frequency;
210         }
211         return 0;
212 }
213
214 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
215 {
216         struct acpi_cpufreq_data *data = policy->driver_data;
217         struct cpufreq_frequency_table *pos;
218         struct acpi_processor_performance *perf;
219
220         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
221                 msr &= AMD_MSR_RANGE;
222         else if (boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
223                 msr &= HYGON_MSR_RANGE;
224         else
225                 msr &= INTEL_MSR_RANGE;
226
227         perf = to_perf_data(data);
228
229         cpufreq_for_each_entry(pos, policy->freq_table)
230                 if (msr == perf->states[pos->driver_data].status)
231                         return pos->frequency;
232         return policy->freq_table[0].frequency;
233 }
234
235 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
236 {
237         struct acpi_cpufreq_data *data = policy->driver_data;
238
239         switch (data->cpu_feature) {
240         case SYSTEM_INTEL_MSR_CAPABLE:
241         case SYSTEM_AMD_MSR_CAPABLE:
242                 return extract_msr(policy, val);
243         case SYSTEM_IO_CAPABLE:
244                 return extract_io(policy, val);
245         default:
246                 return 0;
247         }
248 }
249
250 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
251 {
252         u32 val, dummy __always_unused;
253
254         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
255         return val;
256 }
257
258 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
259 {
260         u32 lo, hi;
261
262         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
263         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
264         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
265 }
266
267 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
268 {
269         u32 val, dummy __always_unused;
270
271         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
272         return val;
273 }
274
275 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
276 {
277         wrmsr(MSR_AMD_PERF_CTL, val, 0);
278 }
279
280 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
281 {
282         u32 val;
283
284         acpi_os_read_port(reg->address, &val, reg->bit_width);
285         return val;
286 }
287
288 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
289 {
290         acpi_os_write_port(reg->address, val, reg->bit_width);
291 }
292
293 struct drv_cmd {
294         struct acpi_pct_register *reg;
295         u32 val;
296         union {
297                 void (*write)(struct acpi_pct_register *reg, u32 val);
298                 u32 (*read)(struct acpi_pct_register *reg);
299         } func;
300 };
301
302 /* Called via smp_call_function_single(), on the target CPU */
303 static void do_drv_read(void *_cmd)
304 {
305         struct drv_cmd *cmd = _cmd;
306
307         cmd->val = cmd->func.read(cmd->reg);
308 }
309
310 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
311 {
312         struct acpi_processor_performance *perf = to_perf_data(data);
313         struct drv_cmd cmd = {
314                 .reg = &perf->control_register,
315                 .func.read = data->cpu_freq_read,
316         };
317         int err;
318
319         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
320         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
321         return cmd.val;
322 }
323
324 /* Called via smp_call_function_many(), on the target CPUs */
325 static void do_drv_write(void *_cmd)
326 {
327         struct drv_cmd *cmd = _cmd;
328
329         cmd->func.write(cmd->reg, cmd->val);
330 }
331
332 static void drv_write(struct acpi_cpufreq_data *data,
333                       const struct cpumask *mask, u32 val)
334 {
335         struct acpi_processor_performance *perf = to_perf_data(data);
336         struct drv_cmd cmd = {
337                 .reg = &perf->control_register,
338                 .val = val,
339                 .func.write = data->cpu_freq_write,
340         };
341         int this_cpu;
342
343         this_cpu = get_cpu();
344         if (cpumask_test_cpu(this_cpu, mask))
345                 do_drv_write(&cmd);
346
347         smp_call_function_many(mask, do_drv_write, &cmd, 1);
348         put_cpu();
349 }
350
351 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
352 {
353         u32 val;
354
355         if (unlikely(cpumask_empty(mask)))
356                 return 0;
357
358         val = drv_read(data, mask);
359
360         pr_debug("%s = %u\n", __func__, val);
361
362         return val;
363 }
364
365 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
366 {
367         struct acpi_cpufreq_data *data;
368         struct cpufreq_policy *policy;
369         unsigned int freq;
370         unsigned int cached_freq;
371
372         pr_debug("%s (%d)\n", __func__, cpu);
373
374         policy = cpufreq_cpu_get_raw(cpu);
375         if (unlikely(!policy))
376                 return 0;
377
378         data = policy->driver_data;
379         if (unlikely(!data || !policy->freq_table))
380                 return 0;
381
382         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
383         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
384         if (freq != cached_freq) {
385                 /*
386                  * The dreaded BIOS frequency change behind our back.
387                  * Force set the frequency on next target call.
388                  */
389                 data->resume = 1;
390         }
391
392         pr_debug("cur freq = %u\n", freq);
393
394         return freq;
395 }
396
397 static unsigned int check_freqs(struct cpufreq_policy *policy,
398                                 const struct cpumask *mask, unsigned int freq)
399 {
400         struct acpi_cpufreq_data *data = policy->driver_data;
401         unsigned int cur_freq;
402         unsigned int i;
403
404         for (i = 0; i < 100; i++) {
405                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
406                 if (cur_freq == freq)
407                         return 1;
408                 udelay(10);
409         }
410         return 0;
411 }
412
413 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
414                                unsigned int index)
415 {
416         struct acpi_cpufreq_data *data = policy->driver_data;
417         struct acpi_processor_performance *perf;
418         const struct cpumask *mask;
419         unsigned int next_perf_state = 0; /* Index into perf table */
420         int result = 0;
421
422         if (unlikely(!data)) {
423                 return -ENODEV;
424         }
425
426         perf = to_perf_data(data);
427         next_perf_state = policy->freq_table[index].driver_data;
428         if (perf->state == next_perf_state) {
429                 if (unlikely(data->resume)) {
430                         pr_debug("Called after resume, resetting to P%d\n",
431                                 next_perf_state);
432                         data->resume = 0;
433                 } else {
434                         pr_debug("Already at target state (P%d)\n",
435                                 next_perf_state);
436                         return 0;
437                 }
438         }
439
440         /*
441          * The core won't allow CPUs to go away until the governor has been
442          * stopped, so we can rely on the stability of policy->cpus.
443          */
444         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
445                 cpumask_of(policy->cpu) : policy->cpus;
446
447         drv_write(data, mask, perf->states[next_perf_state].control);
448
449         if (acpi_pstate_strict) {
450                 if (!check_freqs(policy, mask,
451                                  policy->freq_table[index].frequency)) {
452                         pr_debug("%s (%d)\n", __func__, policy->cpu);
453                         result = -EAGAIN;
454                 }
455         }
456
457         if (!result)
458                 perf->state = next_perf_state;
459
460         return result;
461 }
462
463 static unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
464                                              unsigned int target_freq)
465 {
466         struct acpi_cpufreq_data *data = policy->driver_data;
467         struct acpi_processor_performance *perf;
468         struct cpufreq_frequency_table *entry;
469         unsigned int next_perf_state, next_freq, index;
470
471         /*
472          * Find the closest frequency above target_freq.
473          */
474         if (policy->cached_target_freq == target_freq)
475                 index = policy->cached_resolved_idx;
476         else
477                 index = cpufreq_table_find_index_dl(policy, target_freq,
478                                                     false);
479
480         entry = &policy->freq_table[index];
481         next_freq = entry->frequency;
482         next_perf_state = entry->driver_data;
483
484         perf = to_perf_data(data);
485         if (perf->state == next_perf_state) {
486                 if (unlikely(data->resume))
487                         data->resume = 0;
488                 else
489                         return next_freq;
490         }
491
492         data->cpu_freq_write(&perf->control_register,
493                              perf->states[next_perf_state].control);
494         perf->state = next_perf_state;
495         return next_freq;
496 }
497
498 static unsigned long
499 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
500 {
501         struct acpi_processor_performance *perf;
502
503         perf = to_perf_data(data);
504         if (cpu_khz) {
505                 /* search the closest match to cpu_khz */
506                 unsigned int i;
507                 unsigned long freq;
508                 unsigned long freqn = perf->states[0].core_frequency * 1000;
509
510                 for (i = 0; i < (perf->state_count-1); i++) {
511                         freq = freqn;
512                         freqn = perf->states[i+1].core_frequency * 1000;
513                         if ((2 * cpu_khz) > (freqn + freq)) {
514                                 perf->state = i;
515                                 return freq;
516                         }
517                 }
518                 perf->state = perf->state_count-1;
519                 return freqn;
520         } else {
521                 /* assume CPU is at P0... */
522                 perf->state = 0;
523                 return perf->states[0].core_frequency * 1000;
524         }
525 }
526
527 static void free_acpi_perf_data(void)
528 {
529         unsigned int i;
530
531         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
532         for_each_possible_cpu(i)
533                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
534                                  ->shared_cpu_map);
535         free_percpu(acpi_perf_data);
536 }
537
538 static int cpufreq_boost_online(unsigned int cpu)
539 {
540         /*
541          * On the CPU_UP path we simply keep the boost-disable flag
542          * in sync with the current global state.
543          */
544         return boost_set_msr(acpi_cpufreq_driver.boost_enabled);
545 }
546
547 static int cpufreq_boost_down_prep(unsigned int cpu)
548 {
549         /*
550          * Clear the boost-disable bit on the CPU_DOWN path so that
551          * this cpu cannot block the remaining ones from boosting.
552          */
553         return boost_set_msr(1);
554 }
555
556 /*
557  * acpi_cpufreq_early_init - initialize ACPI P-States library
558  *
559  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
560  * in order to determine correct frequency and voltage pairings. We can
561  * do _PDC and _PSD and find out the processor dependency for the
562  * actual init that will happen later...
563  */
564 static int __init acpi_cpufreq_early_init(void)
565 {
566         unsigned int i;
567         pr_debug("%s\n", __func__);
568
569         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
570         if (!acpi_perf_data) {
571                 pr_debug("Memory allocation error for acpi_perf_data.\n");
572                 return -ENOMEM;
573         }
574         for_each_possible_cpu(i) {
575                 if (!zalloc_cpumask_var_node(
576                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
577                         GFP_KERNEL, cpu_to_node(i))) {
578
579                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
580                         free_acpi_perf_data();
581                         return -ENOMEM;
582                 }
583         }
584
585         /* Do initialization in ACPI core */
586         acpi_processor_preregister_performance(acpi_perf_data);
587         return 0;
588 }
589
590 #ifdef CONFIG_SMP
591 /*
592  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
593  * or do it in BIOS firmware and won't inform about it to OS. If not
594  * detected, this has a side effect of making CPU run at a different speed
595  * than OS intended it to run at. Detect it and handle it cleanly.
596  */
597 static int bios_with_sw_any_bug;
598
599 static int sw_any_bug_found(const struct dmi_system_id *d)
600 {
601         bios_with_sw_any_bug = 1;
602         return 0;
603 }
604
605 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
606         {
607                 .callback = sw_any_bug_found,
608                 .ident = "Supermicro Server X6DLP",
609                 .matches = {
610                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
611                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
612                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
613                 },
614         },
615         { }
616 };
617
618 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
619 {
620         /* Intel Xeon Processor 7100 Series Specification Update
621          * https://www.intel.com/Assets/PDF/specupdate/314554.pdf
622          * AL30: A Machine Check Exception (MCE) Occurring during an
623          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
624          * Both Processor Cores to Lock Up. */
625         if (c->x86_vendor == X86_VENDOR_INTEL) {
626                 if ((c->x86 == 15) &&
627                     (c->x86_model == 6) &&
628                     (c->x86_stepping == 8)) {
629                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
630                         return -ENODEV;
631                     }
632                 }
633         return 0;
634 }
635 #endif
636
637 #ifdef CONFIG_ACPI_CPPC_LIB
638 static u64 get_max_boost_ratio(unsigned int cpu)
639 {
640         struct cppc_perf_caps perf_caps;
641         u64 highest_perf, nominal_perf;
642         int ret;
643
644         if (acpi_pstate_strict)
645                 return 0;
646
647         ret = cppc_get_perf_caps(cpu, &perf_caps);
648         if (ret) {
649                 pr_debug("CPU%d: Unable to get performance capabilities (%d)\n",
650                          cpu, ret);
651                 return 0;
652         }
653
654         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
655                 highest_perf = amd_get_highest_perf();
656         else
657                 highest_perf = perf_caps.highest_perf;
658
659         nominal_perf = perf_caps.nominal_perf;
660
661         if (!highest_perf || !nominal_perf) {
662                 pr_debug("CPU%d: highest or nominal performance missing\n", cpu);
663                 return 0;
664         }
665
666         if (highest_perf < nominal_perf) {
667                 pr_debug("CPU%d: nominal performance above highest\n", cpu);
668                 return 0;
669         }
670
671         return div_u64(highest_perf << SCHED_CAPACITY_SHIFT, nominal_perf);
672 }
673 #else
674 static inline u64 get_max_boost_ratio(unsigned int cpu) { return 0; }
675 #endif
676
677 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
678 {
679         struct cpufreq_frequency_table *freq_table;
680         struct acpi_processor_performance *perf;
681         struct acpi_cpufreq_data *data;
682         unsigned int cpu = policy->cpu;
683         struct cpuinfo_x86 *c = &cpu_data(cpu);
684         unsigned int valid_states = 0;
685         unsigned int result = 0;
686         u64 max_boost_ratio;
687         unsigned int i;
688 #ifdef CONFIG_SMP
689         static int blacklisted;
690 #endif
691
692         pr_debug("%s\n", __func__);
693
694 #ifdef CONFIG_SMP
695         if (blacklisted)
696                 return blacklisted;
697         blacklisted = acpi_cpufreq_blacklist(c);
698         if (blacklisted)
699                 return blacklisted;
700 #endif
701
702         data = kzalloc(sizeof(*data), GFP_KERNEL);
703         if (!data)
704                 return -ENOMEM;
705
706         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
707                 result = -ENOMEM;
708                 goto err_free;
709         }
710
711         perf = per_cpu_ptr(acpi_perf_data, cpu);
712         data->acpi_perf_cpu = cpu;
713         policy->driver_data = data;
714
715         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
716                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
717
718         result = acpi_processor_register_performance(perf, cpu);
719         if (result)
720                 goto err_free_mask;
721
722         policy->shared_type = perf->shared_type;
723
724         /*
725          * Will let policy->cpus know about dependency only when software
726          * coordination is required.
727          */
728         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
729             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
730                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
731         }
732         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
733
734 #ifdef CONFIG_SMP
735         dmi_check_system(sw_any_bug_dmi_table);
736         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
737                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
738                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
739         }
740
741         if (check_amd_hwpstate_cpu(cpu) && boot_cpu_data.x86 < 0x19 &&
742             !acpi_pstate_strict) {
743                 cpumask_clear(policy->cpus);
744                 cpumask_set_cpu(cpu, policy->cpus);
745                 cpumask_copy(data->freqdomain_cpus,
746                              topology_sibling_cpumask(cpu));
747                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
748                 pr_info_once("overriding BIOS provided _PSD data\n");
749         }
750 #endif
751
752         /* capability check */
753         if (perf->state_count <= 1) {
754                 pr_debug("No P-States\n");
755                 result = -ENODEV;
756                 goto err_unreg;
757         }
758
759         if (perf->control_register.space_id != perf->status_register.space_id) {
760                 result = -ENODEV;
761                 goto err_unreg;
762         }
763
764         switch (perf->control_register.space_id) {
765         case ACPI_ADR_SPACE_SYSTEM_IO:
766                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
767                     boot_cpu_data.x86 == 0xf) {
768                         pr_debug("AMD K8 systems must use native drivers.\n");
769                         result = -ENODEV;
770                         goto err_unreg;
771                 }
772                 pr_debug("SYSTEM IO addr space\n");
773                 data->cpu_feature = SYSTEM_IO_CAPABLE;
774                 data->cpu_freq_read = cpu_freq_read_io;
775                 data->cpu_freq_write = cpu_freq_write_io;
776                 break;
777         case ACPI_ADR_SPACE_FIXED_HARDWARE:
778                 pr_debug("HARDWARE addr space\n");
779                 if (check_est_cpu(cpu)) {
780                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
781                         data->cpu_freq_read = cpu_freq_read_intel;
782                         data->cpu_freq_write = cpu_freq_write_intel;
783                         break;
784                 }
785                 if (check_amd_hwpstate_cpu(cpu)) {
786                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
787                         data->cpu_freq_read = cpu_freq_read_amd;
788                         data->cpu_freq_write = cpu_freq_write_amd;
789                         break;
790                 }
791                 result = -ENODEV;
792                 goto err_unreg;
793         default:
794                 pr_debug("Unknown addr space %d\n",
795                         (u32) (perf->control_register.space_id));
796                 result = -ENODEV;
797                 goto err_unreg;
798         }
799
800         freq_table = kcalloc(perf->state_count + 1, sizeof(*freq_table),
801                              GFP_KERNEL);
802         if (!freq_table) {
803                 result = -ENOMEM;
804                 goto err_unreg;
805         }
806
807         /* detect transition latency */
808         policy->cpuinfo.transition_latency = 0;
809         for (i = 0; i < perf->state_count; i++) {
810                 if ((perf->states[i].transition_latency * 1000) >
811                     policy->cpuinfo.transition_latency)
812                         policy->cpuinfo.transition_latency =
813                             perf->states[i].transition_latency * 1000;
814         }
815
816         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
817         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
818             policy->cpuinfo.transition_latency > 20 * 1000) {
819                 policy->cpuinfo.transition_latency = 20 * 1000;
820                 pr_info_once("P-state transition latency capped at 20 uS\n");
821         }
822
823         /* table init */
824         for (i = 0; i < perf->state_count; i++) {
825                 if (i > 0 && perf->states[i].core_frequency >=
826                     freq_table[valid_states-1].frequency / 1000)
827                         continue;
828
829                 freq_table[valid_states].driver_data = i;
830                 freq_table[valid_states].frequency =
831                     perf->states[i].core_frequency * 1000;
832                 valid_states++;
833         }
834         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
835
836         max_boost_ratio = get_max_boost_ratio(cpu);
837         if (max_boost_ratio) {
838                 unsigned int freq = freq_table[0].frequency;
839
840                 /*
841                  * Because the loop above sorts the freq_table entries in the
842                  * descending order, freq is the maximum frequency in the table.
843                  * Assume that it corresponds to the CPPC nominal frequency and
844                  * use it to set cpuinfo.max_freq.
845                  */
846                 policy->cpuinfo.max_freq = freq * max_boost_ratio >> SCHED_CAPACITY_SHIFT;
847         } else {
848                 /*
849                  * If the maximum "boost" frequency is unknown, ask the arch
850                  * scale-invariance code to use the "nominal" performance for
851                  * CPU utilization scaling so as to prevent the schedutil
852                  * governor from selecting inadequate CPU frequencies.
853                  */
854                 arch_set_max_freq_ratio(true);
855         }
856
857         policy->freq_table = freq_table;
858         perf->state = 0;
859
860         switch (perf->control_register.space_id) {
861         case ACPI_ADR_SPACE_SYSTEM_IO:
862                 /*
863                  * The core will not set policy->cur, because
864                  * cpufreq_driver->get is NULL, so we need to set it here.
865                  * However, we have to guess it, because the current speed is
866                  * unknown and not detectable via IO ports.
867                  */
868                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
869                 break;
870         case ACPI_ADR_SPACE_FIXED_HARDWARE:
871                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
872                 break;
873         default:
874                 break;
875         }
876
877         /* notify BIOS that we exist */
878         acpi_processor_notify_smm(THIS_MODULE);
879
880         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
881         for (i = 0; i < perf->state_count; i++)
882                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
883                         (i == perf->state ? '*' : ' '), i,
884                         (u32) perf->states[i].core_frequency,
885                         (u32) perf->states[i].power,
886                         (u32) perf->states[i].transition_latency);
887
888         /*
889          * the first call to ->target() should result in us actually
890          * writing something to the appropriate registers.
891          */
892         data->resume = 1;
893
894         policy->fast_switch_possible = !acpi_pstate_strict &&
895                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
896
897         if (perf->states[0].core_frequency * 1000 != freq_table[0].frequency)
898                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
899
900         return result;
901
902 err_unreg:
903         acpi_processor_unregister_performance(cpu);
904 err_free_mask:
905         free_cpumask_var(data->freqdomain_cpus);
906 err_free:
907         kfree(data);
908         policy->driver_data = NULL;
909
910         return result;
911 }
912
913 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
914 {
915         struct acpi_cpufreq_data *data = policy->driver_data;
916
917         pr_debug("%s\n", __func__);
918
919         policy->fast_switch_possible = false;
920         policy->driver_data = NULL;
921         acpi_processor_unregister_performance(data->acpi_perf_cpu);
922         free_cpumask_var(data->freqdomain_cpus);
923         kfree(policy->freq_table);
924         kfree(data);
925
926         return 0;
927 }
928
929 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
930 {
931         struct acpi_cpufreq_data *data = policy->driver_data;
932
933         pr_debug("%s\n", __func__);
934
935         data->resume = 1;
936
937         return 0;
938 }
939
940 static struct freq_attr *acpi_cpufreq_attr[] = {
941         &cpufreq_freq_attr_scaling_available_freqs,
942         &freqdomain_cpus,
943 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
944         &cpb,
945 #endif
946         NULL,
947 };
948
949 static struct cpufreq_driver acpi_cpufreq_driver = {
950         .verify         = cpufreq_generic_frequency_table_verify,
951         .target_index   = acpi_cpufreq_target,
952         .fast_switch    = acpi_cpufreq_fast_switch,
953         .bios_limit     = acpi_processor_get_bios_limit,
954         .init           = acpi_cpufreq_cpu_init,
955         .exit           = acpi_cpufreq_cpu_exit,
956         .resume         = acpi_cpufreq_resume,
957         .name           = "acpi-cpufreq",
958         .attr           = acpi_cpufreq_attr,
959 };
960
961 static enum cpuhp_state acpi_cpufreq_online;
962
963 static void __init acpi_cpufreq_boost_init(void)
964 {
965         int ret;
966
967         if (!(boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA))) {
968                 pr_debug("Boost capabilities not present in the processor\n");
969                 return;
970         }
971
972         acpi_cpufreq_driver.set_boost = set_boost;
973         acpi_cpufreq_driver.boost_enabled = boost_state(0);
974
975         /*
976          * This calls the online callback on all online cpu and forces all
977          * MSRs to the same value.
978          */
979         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "cpufreq/acpi:online",
980                                 cpufreq_boost_online, cpufreq_boost_down_prep);
981         if (ret < 0) {
982                 pr_err("acpi_cpufreq: failed to register hotplug callbacks\n");
983                 return;
984         }
985         acpi_cpufreq_online = ret;
986 }
987
988 static void acpi_cpufreq_boost_exit(void)
989 {
990         if (acpi_cpufreq_online > 0)
991                 cpuhp_remove_state_nocalls(acpi_cpufreq_online);
992 }
993
994 static int __init acpi_cpufreq_init(void)
995 {
996         int ret;
997
998         if (acpi_disabled)
999                 return -ENODEV;
1000
1001         /* don't keep reloading if cpufreq_driver exists */
1002         if (cpufreq_get_current_driver())
1003                 return -EEXIST;
1004
1005         pr_debug("%s\n", __func__);
1006
1007         ret = acpi_cpufreq_early_init();
1008         if (ret)
1009                 return ret;
1010
1011 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
1012         /* this is a sysfs file with a strange name and an even stranger
1013          * semantic - per CPU instantiation, but system global effect.
1014          * Lets enable it only on AMD CPUs for compatibility reasons and
1015          * only if configured. This is considered legacy code, which
1016          * will probably be removed at some point in the future.
1017          */
1018         if (!check_amd_hwpstate_cpu(0)) {
1019                 struct freq_attr **attr;
1020
1021                 pr_debug("CPB unsupported, do not expose it\n");
1022
1023                 for (attr = acpi_cpufreq_attr; *attr; attr++)
1024                         if (*attr == &cpb) {
1025                                 *attr = NULL;
1026                                 break;
1027                         }
1028         }
1029 #endif
1030         acpi_cpufreq_boost_init();
1031
1032         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
1033         if (ret) {
1034                 free_acpi_perf_data();
1035                 acpi_cpufreq_boost_exit();
1036         }
1037         return ret;
1038 }
1039
1040 static void __exit acpi_cpufreq_exit(void)
1041 {
1042         pr_debug("%s\n", __func__);
1043
1044         acpi_cpufreq_boost_exit();
1045
1046         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1047
1048         free_acpi_perf_data();
1049 }
1050
1051 module_param(acpi_pstate_strict, uint, 0644);
1052 MODULE_PARM_DESC(acpi_pstate_strict,
1053         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1054         "performed during frequency changes.");
1055
1056 late_initcall(acpi_cpufreq_init);
1057 module_exit(acpi_cpufreq_exit);
1058
1059 static const struct x86_cpu_id __maybe_unused acpi_cpufreq_ids[] = {
1060         X86_MATCH_FEATURE(X86_FEATURE_ACPI, NULL),
1061         X86_MATCH_FEATURE(X86_FEATURE_HW_PSTATE, NULL),
1062         {}
1063 };
1064 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1065
1066 static const struct acpi_device_id __maybe_unused processor_device_ids[] = {
1067         {ACPI_PROCESSOR_OBJECT_HID, },
1068         {ACPI_PROCESSOR_DEVICE_HID, },
1069         {},
1070 };
1071 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1072
1073 MODULE_ALIAS("acpi");