Merge branch 'x86-cleanups-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / clocksource / timer-cadence-ttc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains driver for the Cadence Triple Timer Counter Rev 06
4  *
5  *  Copyright (C) 2011-2013 Xilinx
6  *
7  * based on arch/mips/kernel/time.c timer driver
8  */
9
10 #include <linux/clk.h>
11 #include <linux/interrupt.h>
12 #include <linux/clockchips.h>
13 #include <linux/clocksource.h>
14 #include <linux/of_address.h>
15 #include <linux/of_irq.h>
16 #include <linux/slab.h>
17 #include <linux/sched_clock.h>
18
19 /*
20  * This driver configures the 2 16/32-bit count-up timers as follows:
21  *
22  * T1: Timer 1, clocksource for generic timekeeping
23  * T2: Timer 2, clockevent source for hrtimers
24  * T3: Timer 3, <unused>
25  *
26  * The input frequency to the timer module for emulation is 2.5MHz which is
27  * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32,
28  * the timers are clocked at 78.125KHz (12.8 us resolution).
29
30  * The input frequency to the timer module in silicon is configurable and
31  * obtained from device tree. The pre-scaler of 32 is used.
32  */
33
34 /*
35  * Timer Register Offset Definitions of Timer 1, Increment base address by 4
36  * and use same offsets for Timer 2
37  */
38 #define TTC_CLK_CNTRL_OFFSET            0x00 /* Clock Control Reg, RW */
39 #define TTC_CNT_CNTRL_OFFSET            0x0C /* Counter Control Reg, RW */
40 #define TTC_COUNT_VAL_OFFSET            0x18 /* Counter Value Reg, RO */
41 #define TTC_INTR_VAL_OFFSET             0x24 /* Interval Count Reg, RW */
42 #define TTC_ISR_OFFSET          0x54 /* Interrupt Status Reg, RO */
43 #define TTC_IER_OFFSET          0x60 /* Interrupt Enable Reg, RW */
44
45 #define TTC_CNT_CNTRL_DISABLE_MASK      0x1
46
47 #define TTC_CLK_CNTRL_CSRC_MASK         (1 << 5)        /* clock source */
48 #define TTC_CLK_CNTRL_PSV_MASK          0x1e
49 #define TTC_CLK_CNTRL_PSV_SHIFT         1
50
51 /*
52  * Setup the timers to use pre-scaling, using a fixed value for now that will
53  * work across most input frequency, but it may need to be more dynamic
54  */
55 #define PRESCALE_EXPONENT       11      /* 2 ^ PRESCALE_EXPONENT = PRESCALE */
56 #define PRESCALE                2048    /* The exponent must match this */
57 #define CLK_CNTRL_PRESCALE      ((PRESCALE_EXPONENT - 1) << 1)
58 #define CLK_CNTRL_PRESCALE_EN   1
59 #define CNT_CNTRL_RESET         (1 << 4)
60
61 #define MAX_F_ERR 50
62
63 /**
64  * struct ttc_timer - This definition defines local timer structure
65  *
66  * @base_addr:  Base address of timer
67  * @freq:       Timer input clock frequency
68  * @clk:        Associated clock source
69  * @clk_rate_change_nb  Notifier block for clock rate changes
70  */
71 struct ttc_timer {
72         void __iomem *base_addr;
73         unsigned long freq;
74         struct clk *clk;
75         struct notifier_block clk_rate_change_nb;
76 };
77
78 #define to_ttc_timer(x) \
79                 container_of(x, struct ttc_timer, clk_rate_change_nb)
80
81 struct ttc_timer_clocksource {
82         u32                     scale_clk_ctrl_reg_old;
83         u32                     scale_clk_ctrl_reg_new;
84         struct ttc_timer        ttc;
85         struct clocksource      cs;
86 };
87
88 #define to_ttc_timer_clksrc(x) \
89                 container_of(x, struct ttc_timer_clocksource, cs)
90
91 struct ttc_timer_clockevent {
92         struct ttc_timer                ttc;
93         struct clock_event_device       ce;
94 };
95
96 #define to_ttc_timer_clkevent(x) \
97                 container_of(x, struct ttc_timer_clockevent, ce)
98
99 static void __iomem *ttc_sched_clock_val_reg;
100
101 /**
102  * ttc_set_interval - Set the timer interval value
103  *
104  * @timer:      Pointer to the timer instance
105  * @cycles:     Timer interval ticks
106  **/
107 static void ttc_set_interval(struct ttc_timer *timer,
108                                         unsigned long cycles)
109 {
110         u32 ctrl_reg;
111
112         /* Disable the counter, set the counter value  and re-enable counter */
113         ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
114         ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
115         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
116
117         writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET);
118
119         /*
120          * Reset the counter (0x10) so that it starts from 0, one-shot
121          * mode makes this needed for timing to be right.
122          */
123         ctrl_reg |= CNT_CNTRL_RESET;
124         ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
125         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
126 }
127
128 /**
129  * ttc_clock_event_interrupt - Clock event timer interrupt handler
130  *
131  * @irq:        IRQ number of the Timer
132  * @dev_id:     void pointer to the ttc_timer instance
133  *
134  * returns: Always IRQ_HANDLED - success
135  **/
136 static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id)
137 {
138         struct ttc_timer_clockevent *ttce = dev_id;
139         struct ttc_timer *timer = &ttce->ttc;
140
141         /* Acknowledge the interrupt and call event handler */
142         readl_relaxed(timer->base_addr + TTC_ISR_OFFSET);
143
144         ttce->ce.event_handler(&ttce->ce);
145
146         return IRQ_HANDLED;
147 }
148
149 /**
150  * __ttc_clocksource_read - Reads the timer counter register
151  *
152  * returns: Current timer counter register value
153  **/
154 static u64 __ttc_clocksource_read(struct clocksource *cs)
155 {
156         struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc;
157
158         return (u64)readl_relaxed(timer->base_addr +
159                                 TTC_COUNT_VAL_OFFSET);
160 }
161
162 static u64 notrace ttc_sched_clock_read(void)
163 {
164         return readl_relaxed(ttc_sched_clock_val_reg);
165 }
166
167 /**
168  * ttc_set_next_event - Sets the time interval for next event
169  *
170  * @cycles:     Timer interval ticks
171  * @evt:        Address of clock event instance
172  *
173  * returns: Always 0 - success
174  **/
175 static int ttc_set_next_event(unsigned long cycles,
176                                         struct clock_event_device *evt)
177 {
178         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
179         struct ttc_timer *timer = &ttce->ttc;
180
181         ttc_set_interval(timer, cycles);
182         return 0;
183 }
184
185 /**
186  * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer
187  *
188  * @evt:        Address of clock event instance
189  **/
190 static int ttc_shutdown(struct clock_event_device *evt)
191 {
192         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
193         struct ttc_timer *timer = &ttce->ttc;
194         u32 ctrl_reg;
195
196         ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
197         ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK;
198         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
199         return 0;
200 }
201
202 static int ttc_set_periodic(struct clock_event_device *evt)
203 {
204         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
205         struct ttc_timer *timer = &ttce->ttc;
206
207         ttc_set_interval(timer,
208                          DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ));
209         return 0;
210 }
211
212 static int ttc_resume(struct clock_event_device *evt)
213 {
214         struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt);
215         struct ttc_timer *timer = &ttce->ttc;
216         u32 ctrl_reg;
217
218         ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET);
219         ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK;
220         writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET);
221         return 0;
222 }
223
224 static int ttc_rate_change_clocksource_cb(struct notifier_block *nb,
225                 unsigned long event, void *data)
226 {
227         struct clk_notifier_data *ndata = data;
228         struct ttc_timer *ttc = to_ttc_timer(nb);
229         struct ttc_timer_clocksource *ttccs = container_of(ttc,
230                         struct ttc_timer_clocksource, ttc);
231
232         switch (event) {
233         case PRE_RATE_CHANGE:
234         {
235                 u32 psv;
236                 unsigned long factor, rate_low, rate_high;
237
238                 if (ndata->new_rate > ndata->old_rate) {
239                         factor = DIV_ROUND_CLOSEST(ndata->new_rate,
240                                         ndata->old_rate);
241                         rate_low = ndata->old_rate;
242                         rate_high = ndata->new_rate;
243                 } else {
244                         factor = DIV_ROUND_CLOSEST(ndata->old_rate,
245                                         ndata->new_rate);
246                         rate_low = ndata->new_rate;
247                         rate_high = ndata->old_rate;
248                 }
249
250                 if (!is_power_of_2(factor))
251                                 return NOTIFY_BAD;
252
253                 if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR)
254                         return NOTIFY_BAD;
255
256                 factor = __ilog2_u32(factor);
257
258                 /*
259                  * store timer clock ctrl register so we can restore it in case
260                  * of an abort.
261                  */
262                 ttccs->scale_clk_ctrl_reg_old =
263                         readl_relaxed(ttccs->ttc.base_addr +
264                         TTC_CLK_CNTRL_OFFSET);
265
266                 psv = (ttccs->scale_clk_ctrl_reg_old &
267                                 TTC_CLK_CNTRL_PSV_MASK) >>
268                                 TTC_CLK_CNTRL_PSV_SHIFT;
269                 if (ndata->new_rate < ndata->old_rate)
270                         psv -= factor;
271                 else
272                         psv += factor;
273
274                 /* prescaler within legal range? */
275                 if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT))
276                         return NOTIFY_BAD;
277
278                 ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old &
279                         ~TTC_CLK_CNTRL_PSV_MASK;
280                 ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT;
281
282
283                 /* scale down: adjust divider in post-change notification */
284                 if (ndata->new_rate < ndata->old_rate)
285                         return NOTIFY_DONE;
286
287                 /* scale up: adjust divider now - before frequency change */
288                 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
289                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
290                 break;
291         }
292         case POST_RATE_CHANGE:
293                 /* scale up: pre-change notification did the adjustment */
294                 if (ndata->new_rate > ndata->old_rate)
295                         return NOTIFY_OK;
296
297                 /* scale down: adjust divider now - after frequency change */
298                 writel_relaxed(ttccs->scale_clk_ctrl_reg_new,
299                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
300                 break;
301
302         case ABORT_RATE_CHANGE:
303                 /* we have to undo the adjustment in case we scale up */
304                 if (ndata->new_rate < ndata->old_rate)
305                         return NOTIFY_OK;
306
307                 /* restore original register value */
308                 writel_relaxed(ttccs->scale_clk_ctrl_reg_old,
309                                ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
310                 /* fall through */
311         default:
312                 return NOTIFY_DONE;
313         }
314
315         return NOTIFY_DONE;
316 }
317
318 static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base,
319                                          u32 timer_width)
320 {
321         struct ttc_timer_clocksource *ttccs;
322         int err;
323
324         ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL);
325         if (!ttccs)
326                 return -ENOMEM;
327
328         ttccs->ttc.clk = clk;
329
330         err = clk_prepare_enable(ttccs->ttc.clk);
331         if (err) {
332                 kfree(ttccs);
333                 return err;
334         }
335
336         ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk);
337
338         ttccs->ttc.clk_rate_change_nb.notifier_call =
339                 ttc_rate_change_clocksource_cb;
340         ttccs->ttc.clk_rate_change_nb.next = NULL;
341
342         err = clk_notifier_register(ttccs->ttc.clk,
343                                     &ttccs->ttc.clk_rate_change_nb);
344         if (err)
345                 pr_warn("Unable to register clock notifier.\n");
346
347         ttccs->ttc.base_addr = base;
348         ttccs->cs.name = "ttc_clocksource";
349         ttccs->cs.rating = 200;
350         ttccs->cs.read = __ttc_clocksource_read;
351         ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width);
352         ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS;
353
354         /*
355          * Setup the clock source counter to be an incrementing counter
356          * with no interrupt and it rolls over at 0xFFFF. Pre-scale
357          * it by 32 also. Let it start running now.
358          */
359         writel_relaxed(0x0,  ttccs->ttc.base_addr + TTC_IER_OFFSET);
360         writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
361                      ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
362         writel_relaxed(CNT_CNTRL_RESET,
363                      ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
364
365         err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE);
366         if (err) {
367                 kfree(ttccs);
368                 return err;
369         }
370
371         ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET;
372         sched_clock_register(ttc_sched_clock_read, timer_width,
373                              ttccs->ttc.freq / PRESCALE);
374
375         return 0;
376 }
377
378 static int ttc_rate_change_clockevent_cb(struct notifier_block *nb,
379                 unsigned long event, void *data)
380 {
381         struct clk_notifier_data *ndata = data;
382         struct ttc_timer *ttc = to_ttc_timer(nb);
383         struct ttc_timer_clockevent *ttcce = container_of(ttc,
384                         struct ttc_timer_clockevent, ttc);
385
386         switch (event) {
387         case POST_RATE_CHANGE:
388                 /* update cached frequency */
389                 ttc->freq = ndata->new_rate;
390
391                 clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE);
392
393                 /* fall through */
394         case PRE_RATE_CHANGE:
395         case ABORT_RATE_CHANGE:
396         default:
397                 return NOTIFY_DONE;
398         }
399 }
400
401 static int __init ttc_setup_clockevent(struct clk *clk,
402                                        void __iomem *base, u32 irq)
403 {
404         struct ttc_timer_clockevent *ttcce;
405         int err;
406
407         ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL);
408         if (!ttcce)
409                 return -ENOMEM;
410
411         ttcce->ttc.clk = clk;
412
413         err = clk_prepare_enable(ttcce->ttc.clk);
414         if (err) {
415                 kfree(ttcce);
416                 return err;
417         }
418
419         ttcce->ttc.clk_rate_change_nb.notifier_call =
420                 ttc_rate_change_clockevent_cb;
421         ttcce->ttc.clk_rate_change_nb.next = NULL;
422
423         err = clk_notifier_register(ttcce->ttc.clk,
424                                     &ttcce->ttc.clk_rate_change_nb);
425         if (err) {
426                 pr_warn("Unable to register clock notifier.\n");
427                 return err;
428         }
429
430         ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk);
431
432         ttcce->ttc.base_addr = base;
433         ttcce->ce.name = "ttc_clockevent";
434         ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
435         ttcce->ce.set_next_event = ttc_set_next_event;
436         ttcce->ce.set_state_shutdown = ttc_shutdown;
437         ttcce->ce.set_state_periodic = ttc_set_periodic;
438         ttcce->ce.set_state_oneshot = ttc_shutdown;
439         ttcce->ce.tick_resume = ttc_resume;
440         ttcce->ce.rating = 200;
441         ttcce->ce.irq = irq;
442         ttcce->ce.cpumask = cpu_possible_mask;
443
444         /*
445          * Setup the clock event timer to be an interval timer which
446          * is prescaled by 32 using the interval interrupt. Leave it
447          * disabled for now.
448          */
449         writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET);
450         writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN,
451                      ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET);
452         writel_relaxed(0x1,  ttcce->ttc.base_addr + TTC_IER_OFFSET);
453
454         err = request_irq(irq, ttc_clock_event_interrupt,
455                           IRQF_TIMER, ttcce->ce.name, ttcce);
456         if (err) {
457                 kfree(ttcce);
458                 return err;
459         }
460
461         clockevents_config_and_register(&ttcce->ce,
462                         ttcce->ttc.freq / PRESCALE, 1, 0xfffe);
463
464         return 0;
465 }
466
467 /**
468  * ttc_timer_init - Initialize the timer
469  *
470  * Initializes the timer hardware and register the clock source and clock event
471  * timers with Linux kernal timer framework
472  */
473 static int __init ttc_timer_init(struct device_node *timer)
474 {
475         unsigned int irq;
476         void __iomem *timer_baseaddr;
477         struct clk *clk_cs, *clk_ce;
478         static int initialized;
479         int clksel, ret;
480         u32 timer_width = 16;
481
482         if (initialized)
483                 return 0;
484
485         initialized = 1;
486
487         /*
488          * Get the 1st Triple Timer Counter (TTC) block from the device tree
489          * and use it. Note that the event timer uses the interrupt and it's the
490          * 2nd TTC hence the irq_of_parse_and_map(,1)
491          */
492         timer_baseaddr = of_iomap(timer, 0);
493         if (!timer_baseaddr) {
494                 pr_err("ERROR: invalid timer base address\n");
495                 return -ENXIO;
496         }
497
498         irq = irq_of_parse_and_map(timer, 1);
499         if (irq <= 0) {
500                 pr_err("ERROR: invalid interrupt number\n");
501                 return -EINVAL;
502         }
503
504         of_property_read_u32(timer, "timer-width", &timer_width);
505
506         clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET);
507         clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
508         clk_cs = of_clk_get(timer, clksel);
509         if (IS_ERR(clk_cs)) {
510                 pr_err("ERROR: timer input clock not found\n");
511                 return PTR_ERR(clk_cs);
512         }
513
514         clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET);
515         clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK);
516         clk_ce = of_clk_get(timer, clksel);
517         if (IS_ERR(clk_ce)) {
518                 pr_err("ERROR: timer input clock not found\n");
519                 return PTR_ERR(clk_ce);
520         }
521
522         ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width);
523         if (ret)
524                 return ret;
525
526         ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq);
527         if (ret)
528                 return ret;
529
530         pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq);
531
532         return 0;
533 }
534
535 TIMER_OF_DECLARE(ttc, "cdns,ttc", ttc_timer_init);