clocksource/drivers/timer-atmel-tcb: Fill tcb_config
[linux-2.6-microblaze.git] / drivers / clocksource / timer-atmel-tcb.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/init.h>
3 #include <linux/clocksource.h>
4 #include <linux/clockchips.h>
5 #include <linux/interrupt.h>
6 #include <linux/irq.h>
7
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/ioport.h>
12 #include <linux/io.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/sched_clock.h>
16 #include <linux/syscore_ops.h>
17 #include <soc/at91/atmel_tcb.h>
18
19
20 /*
21  * We're configured to use a specific TC block, one that's not hooked
22  * up to external hardware, to provide a time solution:
23  *
24  *   - Two channels combine to create a free-running 32 bit counter
25  *     with a base rate of 5+ MHz, packaged as a clocksource (with
26  *     resolution better than 200 nsec).
27  *   - Some chips support 32 bit counter. A single channel is used for
28  *     this 32 bit free-running counter. the second channel is not used.
29  *
30  *   - The third channel may be used to provide a 16-bit clockevent
31  *     source, used in either periodic or oneshot mode.  This runs
32  *     at 32 KiHZ, and can handle delays of up to two seconds.
33  *
34  * REVISIT behavior during system suspend states... we should disable
35  * all clocks and save the power.  Easily done for clockevent devices,
36  * but clocksources won't necessarily get the needed notifications.
37  * For deeper system sleep states, this will be mandatory...
38  */
39
40 static void __iomem *tcaddr;
41 static struct
42 {
43         u32 cmr;
44         u32 imr;
45         u32 rc;
46         bool clken;
47 } tcb_cache[3];
48 static u32 bmr_cache;
49
50 static u64 tc_get_cycles(struct clocksource *cs)
51 {
52         unsigned long   flags;
53         u32             lower, upper;
54
55         raw_local_irq_save(flags);
56         do {
57                 upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV));
58                 lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
59         } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)));
60
61         raw_local_irq_restore(flags);
62         return (upper << 16) | lower;
63 }
64
65 static u64 tc_get_cycles32(struct clocksource *cs)
66 {
67         return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV));
68 }
69
70 static void tc_clksrc_suspend(struct clocksource *cs)
71 {
72         int i;
73
74         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
75                 tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR));
76                 tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR));
77                 tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC));
78                 tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) &
79                                         ATMEL_TC_CLKSTA);
80         }
81
82         bmr_cache = readl(tcaddr + ATMEL_TC_BMR);
83 }
84
85 static void tc_clksrc_resume(struct clocksource *cs)
86 {
87         int i;
88
89         for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) {
90                 /* Restore registers for the channel, RA and RB are not used  */
91                 writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR));
92                 writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC));
93                 writel(0, tcaddr + ATMEL_TC_REG(i, RA));
94                 writel(0, tcaddr + ATMEL_TC_REG(i, RB));
95                 /* Disable all the interrupts */
96                 writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR));
97                 /* Reenable interrupts that were enabled before suspending */
98                 writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER));
99                 /* Start the clock if it was used */
100                 if (tcb_cache[i].clken)
101                         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR));
102         }
103
104         /* Dual channel, chain channels */
105         writel(bmr_cache, tcaddr + ATMEL_TC_BMR);
106         /* Finally, trigger all the channels*/
107         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
108 }
109
110 static struct clocksource clksrc = {
111         .rating         = 200,
112         .read           = tc_get_cycles,
113         .mask           = CLOCKSOURCE_MASK(32),
114         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
115         .suspend        = tc_clksrc_suspend,
116         .resume         = tc_clksrc_resume,
117 };
118
119 static u64 notrace tc_sched_clock_read(void)
120 {
121         return tc_get_cycles(&clksrc);
122 }
123
124 static u64 notrace tc_sched_clock_read32(void)
125 {
126         return tc_get_cycles32(&clksrc);
127 }
128
129 static struct delay_timer tc_delay_timer;
130
131 static unsigned long tc_delay_timer_read(void)
132 {
133         return tc_get_cycles(&clksrc);
134 }
135
136 static unsigned long notrace tc_delay_timer_read32(void)
137 {
138         return tc_get_cycles32(&clksrc);
139 }
140
141 #ifdef CONFIG_GENERIC_CLOCKEVENTS
142
143 struct tc_clkevt_device {
144         struct clock_event_device       clkevt;
145         struct clk                      *clk;
146         void __iomem                    *regs;
147 };
148
149 static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt)
150 {
151         return container_of(clkevt, struct tc_clkevt_device, clkevt);
152 }
153
154 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
155  * because using one of the divided clocks would usually mean the
156  * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
157  *
158  * A divided clock could be good for high resolution timers, since
159  * 30.5 usec resolution can seem "low".
160  */
161 static u32 timer_clock;
162
163 static int tc_shutdown(struct clock_event_device *d)
164 {
165         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
166         void __iomem            *regs = tcd->regs;
167
168         writel(0xff, regs + ATMEL_TC_REG(2, IDR));
169         writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR));
170         if (!clockevent_state_detached(d))
171                 clk_disable(tcd->clk);
172
173         return 0;
174 }
175
176 static int tc_set_oneshot(struct clock_event_device *d)
177 {
178         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
179         void __iomem            *regs = tcd->regs;
180
181         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
182                 tc_shutdown(d);
183
184         clk_enable(tcd->clk);
185
186         /* slow clock, count up to RC, then irq and stop */
187         writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE |
188                      ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR));
189         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
190
191         /* set_next_event() configures and starts the timer */
192         return 0;
193 }
194
195 static int tc_set_periodic(struct clock_event_device *d)
196 {
197         struct tc_clkevt_device *tcd = to_tc_clkevt(d);
198         void __iomem            *regs = tcd->regs;
199
200         if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
201                 tc_shutdown(d);
202
203         /* By not making the gentime core emulate periodic mode on top
204          * of oneshot, we get lower overhead and improved accuracy.
205          */
206         clk_enable(tcd->clk);
207
208         /* slow clock, count up to RC, then irq and restart */
209         writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO,
210                      regs + ATMEL_TC_REG(2, CMR));
211         writel((32768 + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC));
212
213         /* Enable clock and interrupts on RC compare */
214         writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER));
215
216         /* go go gadget! */
217         writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs +
218                      ATMEL_TC_REG(2, CCR));
219         return 0;
220 }
221
222 static int tc_next_event(unsigned long delta, struct clock_event_device *d)
223 {
224         writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC));
225
226         /* go go gadget! */
227         writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG,
228                         tcaddr + ATMEL_TC_REG(2, CCR));
229         return 0;
230 }
231
232 static struct tc_clkevt_device clkevt = {
233         .clkevt = {
234                 .features               = CLOCK_EVT_FEAT_PERIODIC |
235                                           CLOCK_EVT_FEAT_ONESHOT,
236                 /* Should be lower than at91rm9200's system timer */
237                 .rating                 = 125,
238                 .set_next_event         = tc_next_event,
239                 .set_state_shutdown     = tc_shutdown,
240                 .set_state_periodic     = tc_set_periodic,
241                 .set_state_oneshot      = tc_set_oneshot,
242         },
243 };
244
245 static irqreturn_t ch2_irq(int irq, void *handle)
246 {
247         struct tc_clkevt_device *dev = handle;
248         unsigned int            sr;
249
250         sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR));
251         if (sr & ATMEL_TC_CPCS) {
252                 dev->clkevt.event_handler(&dev->clkevt);
253                 return IRQ_HANDLED;
254         }
255
256         return IRQ_NONE;
257 }
258
259 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
260 {
261         int ret;
262         struct clk *t2_clk = tc->clk[2];
263         int irq = tc->irq[2];
264
265         ret = clk_prepare_enable(tc->slow_clk);
266         if (ret)
267                 return ret;
268
269         /* try to enable t2 clk to avoid future errors in mode change */
270         ret = clk_prepare_enable(t2_clk);
271         if (ret) {
272                 clk_disable_unprepare(tc->slow_clk);
273                 return ret;
274         }
275
276         clk_disable(t2_clk);
277
278         clkevt.regs = tc->regs;
279         clkevt.clk = t2_clk;
280
281         timer_clock = clk32k_divisor_idx;
282
283         clkevt.clkevt.cpumask = cpumask_of(0);
284
285         ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt);
286         if (ret) {
287                 clk_unprepare(t2_clk);
288                 clk_disable_unprepare(tc->slow_clk);
289                 return ret;
290         }
291
292         clockevents_config_and_register(&clkevt.clkevt, 32768, 1, 0xffff);
293
294         return ret;
295 }
296
297 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
298
299 static int __init setup_clkevents(struct atmel_tc *tc, int clk32k_divisor_idx)
300 {
301         /* NOTHING */
302         return 0;
303 }
304
305 #endif
306
307 static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx)
308 {
309         /* channel 0:  waveform mode, input mclk/8, clock TIOA0 on overflow */
310         writel(mck_divisor_idx                  /* likely divide-by-8 */
311                         | ATMEL_TC_WAVE
312                         | ATMEL_TC_WAVESEL_UP           /* free-run */
313                         | ATMEL_TC_ACPA_SET             /* TIOA0 rises at 0 */
314                         | ATMEL_TC_ACPC_CLEAR,          /* (duty cycle 50%) */
315                         tcaddr + ATMEL_TC_REG(0, CMR));
316         writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA));
317         writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC));
318         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
319         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
320
321         /* channel 1:  waveform mode, input TIOA0 */
322         writel(ATMEL_TC_XC1                     /* input: TIOA0 */
323                         | ATMEL_TC_WAVE
324                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
325                         tcaddr + ATMEL_TC_REG(1, CMR));
326         writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR));    /* no irqs */
327         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR));
328
329         /* chain channel 0 to channel 1*/
330         writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR);
331         /* then reset all the timers */
332         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
333 }
334
335 static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx)
336 {
337         /* channel 0:  waveform mode, input mclk/8 */
338         writel(mck_divisor_idx                  /* likely divide-by-8 */
339                         | ATMEL_TC_WAVE
340                         | ATMEL_TC_WAVESEL_UP,          /* free-run */
341                         tcaddr + ATMEL_TC_REG(0, CMR));
342         writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR));    /* no irqs */
343         writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR));
344
345         /* then reset all the timers */
346         writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR);
347 }
348
349 static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 };
350
351 static struct atmel_tcb_config tcb_rm9200_config = {
352         .counter_width = 16,
353 };
354
355 static struct atmel_tcb_config tcb_sam9x5_config = {
356         .counter_width = 32,
357 };
358
359 static const struct of_device_id atmel_tcb_of_match[] = {
360         { .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, },
361         { .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, },
362         { /* sentinel */ }
363 };
364
365 static int __init tcb_clksrc_init(struct device_node *node)
366 {
367         struct atmel_tc tc;
368         struct clk *t0_clk;
369         const struct of_device_id *match;
370         u64 (*tc_sched_clock)(void);
371         u32 rate, divided_rate = 0;
372         int best_divisor_idx = -1;
373         int bits;
374         int i;
375         int ret;
376
377         /* Protect against multiple calls */
378         if (tcaddr)
379                 return 0;
380
381         tc.regs = of_iomap(node->parent, 0);
382         if (!tc.regs)
383                 return -ENXIO;
384
385         t0_clk = of_clk_get_by_name(node->parent, "t0_clk");
386         if (IS_ERR(t0_clk))
387                 return PTR_ERR(t0_clk);
388
389         tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
390         if (IS_ERR(tc.slow_clk))
391                 return PTR_ERR(tc.slow_clk);
392
393         tc.clk[0] = t0_clk;
394         tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk");
395         if (IS_ERR(tc.clk[1]))
396                 tc.clk[1] = t0_clk;
397         tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk");
398         if (IS_ERR(tc.clk[2]))
399                 tc.clk[2] = t0_clk;
400
401         tc.irq[2] = of_irq_get(node->parent, 2);
402         if (tc.irq[2] <= 0) {
403                 tc.irq[2] = of_irq_get(node->parent, 0);
404                 if (tc.irq[2] <= 0)
405                         return -EINVAL;
406         }
407
408         match = of_match_node(atmel_tcb_of_match, node->parent);
409         if (!match)
410                 return -ENODEV;
411
412         tc.tcb_config = match->data;
413         bits = tc.tcb_config->counter_width;
414
415         for (i = 0; i < ARRAY_SIZE(tc.irq); i++)
416                 writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR));
417
418         ret = clk_prepare_enable(t0_clk);
419         if (ret) {
420                 pr_debug("can't enable T0 clk\n");
421                 return ret;
422         }
423
424         /* How fast will we be counting?  Pick something over 5 MHz.  */
425         rate = (u32) clk_get_rate(t0_clk);
426         for (i = 0; i < ARRAY_SIZE(atmel_tcb_divisors); i++) {
427                 unsigned divisor = atmel_tcb_divisors[i];
428                 unsigned tmp;
429
430                 tmp = rate / divisor;
431                 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
432                 if (best_divisor_idx > 0) {
433                         if (tmp < 5 * 1000 * 1000)
434                                 continue;
435                 }
436                 divided_rate = tmp;
437                 best_divisor_idx = i;
438         }
439
440         clksrc.name = kbasename(node->parent->full_name);
441         clkevt.clkevt.name = kbasename(node->parent->full_name);
442         pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000,
443                         ((divided_rate % 1000000) + 500) / 1000);
444
445         tcaddr = tc.regs;
446
447         if (bits == 32) {
448                 /* use apropriate function to read 32 bit counter */
449                 clksrc.read = tc_get_cycles32;
450                 /* setup ony channel 0 */
451                 tcb_setup_single_chan(&tc, best_divisor_idx);
452                 tc_sched_clock = tc_sched_clock_read32;
453                 tc_delay_timer.read_current_timer = tc_delay_timer_read32;
454         } else {
455                 /* we have three clocks no matter what the
456                  * underlying platform supports.
457                  */
458                 ret = clk_prepare_enable(tc.clk[1]);
459                 if (ret) {
460                         pr_debug("can't enable T1 clk\n");
461                         goto err_disable_t0;
462                 }
463                 /* setup both channel 0 & 1 */
464                 tcb_setup_dual_chan(&tc, best_divisor_idx);
465                 tc_sched_clock = tc_sched_clock_read;
466                 tc_delay_timer.read_current_timer = tc_delay_timer_read;
467         }
468
469         /* and away we go! */
470         ret = clocksource_register_hz(&clksrc, divided_rate);
471         if (ret)
472                 goto err_disable_t1;
473
474         /* channel 2:  periodic and oneshot timer support */
475         ret = setup_clkevents(&tc, ATMEL_TC_TIMER_CLOCK5);
476         if (ret)
477                 goto err_unregister_clksrc;
478
479         sched_clock_register(tc_sched_clock, 32, divided_rate);
480
481         tc_delay_timer.freq = divided_rate;
482         register_current_timer_delay(&tc_delay_timer);
483
484         return 0;
485
486 err_unregister_clksrc:
487         clocksource_unregister(&clksrc);
488
489 err_disable_t1:
490         if (bits != 32)
491                 clk_disable_unprepare(tc.clk[1]);
492
493 err_disable_t0:
494         clk_disable_unprepare(t0_clk);
495
496         tcaddr = NULL;
497
498         return ret;
499 }
500 TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);