Merge tag 'for-linus-5.12b-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 #ifdef CONFIG_SUPERH
29 #include <asm/platform_early.h>
30 #endif
31
32 struct sh_cmt_device;
33
34 /*
35  * The CMT comes in 5 different identified flavours, depending not only on the
36  * SoC but also on the particular instance. The following table lists the main
37  * characteristics of those flavours.
38  *
39  *                      16B     32B     32B-F   48B     R-Car Gen2
40  * -----------------------------------------------------------------------------
41  * Channels             2       1/4     1       6       2/8
42  * Control Width        16      16      16      16      32
43  * Counter Width        16      32      32      32/48   32/48
44  * Shared Start/Stop    Y       Y       Y       Y       N
45  *
46  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47  * located in the channel registers block. All other versions have a shared
48  * start/stop register located in the global space.
49  *
50  * Channels are indexed from 0 to N-1 in the documentation. The channel index
51  * infers the start/stop bit position in the control register and the channel
52  * registers block address. Some CMT instances have a subset of channels
53  * available, in which case the index in the documentation doesn't match the
54  * "real" index as implemented in hardware. This is for instance the case with
55  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56  * in the documentation but using start/stop bit 5 and having its registers
57  * block at 0x60.
58  *
59  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61  */
62
63 enum sh_cmt_model {
64         SH_CMT_16BIT,
65         SH_CMT_32BIT,
66         SH_CMT_48BIT,
67         SH_CMT0_RCAR_GEN2,
68         SH_CMT1_RCAR_GEN2,
69 };
70
71 struct sh_cmt_info {
72         enum sh_cmt_model model;
73
74         unsigned int channels_mask;
75
76         unsigned long width; /* 16 or 32 bit version of hardware block */
77         u32 overflow_bit;
78         u32 clear_bits;
79
80         /* callbacks for CMSTR and CMCSR access */
81         u32 (*read_control)(void __iomem *base, unsigned long offs);
82         void (*write_control)(void __iomem *base, unsigned long offs,
83                               u32 value);
84
85         /* callbacks for CMCNT and CMCOR access */
86         u32 (*read_count)(void __iomem *base, unsigned long offs);
87         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88 };
89
90 struct sh_cmt_channel {
91         struct sh_cmt_device *cmt;
92
93         unsigned int index;     /* Index in the documentation */
94         unsigned int hwidx;     /* Real hardware index */
95
96         void __iomem *iostart;
97         void __iomem *ioctrl;
98
99         unsigned int timer_bit;
100         unsigned long flags;
101         u32 match_value;
102         u32 next_match_value;
103         u32 max_match_value;
104         raw_spinlock_t lock;
105         struct clock_event_device ced;
106         struct clocksource cs;
107         u64 total_cycles;
108         bool cs_enabled;
109 };
110
111 struct sh_cmt_device {
112         struct platform_device *pdev;
113
114         const struct sh_cmt_info *info;
115
116         void __iomem *mapbase;
117         struct clk *clk;
118         unsigned long rate;
119
120         raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122         struct sh_cmt_channel *channels;
123         unsigned int num_channels;
124         unsigned int hw_channels;
125
126         bool has_clockevent;
127         bool has_clocksource;
128 };
129
130 #define SH_CMT16_CMCSR_CMF              (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
137
138 #define SH_CMT32_CMCSR_CMF              (1 << 15)
139 #define SH_CMT32_CMCSR_OVF              (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
141 #define SH_CMT32_CMCSR_STTF             (1 << 12)
142 #define SH_CMT32_CMCSR_STPF             (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
144 #define SH_CMT32_CMCSR_CMS              (1 << 9)
145 #define SH_CMT32_CMCSR_CMM              (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
157
158 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159 {
160         return ioread16(base + (offs << 1));
161 }
162
163 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164 {
165         return ioread32(base + (offs << 2));
166 }
167
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169 {
170         iowrite16(value, base + (offs << 1));
171 }
172
173 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174 {
175         iowrite32(value, base + (offs << 2));
176 }
177
178 static const struct sh_cmt_info sh_cmt_info[] = {
179         [SH_CMT_16BIT] = {
180                 .model = SH_CMT_16BIT,
181                 .width = 16,
182                 .overflow_bit = SH_CMT16_CMCSR_CMF,
183                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184                 .read_control = sh_cmt_read16,
185                 .write_control = sh_cmt_write16,
186                 .read_count = sh_cmt_read16,
187                 .write_count = sh_cmt_write16,
188         },
189         [SH_CMT_32BIT] = {
190                 .model = SH_CMT_32BIT,
191                 .width = 32,
192                 .overflow_bit = SH_CMT32_CMCSR_CMF,
193                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194                 .read_control = sh_cmt_read16,
195                 .write_control = sh_cmt_write16,
196                 .read_count = sh_cmt_read32,
197                 .write_count = sh_cmt_write32,
198         },
199         [SH_CMT_48BIT] = {
200                 .model = SH_CMT_48BIT,
201                 .channels_mask = 0x3f,
202                 .width = 32,
203                 .overflow_bit = SH_CMT32_CMCSR_CMF,
204                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205                 .read_control = sh_cmt_read32,
206                 .write_control = sh_cmt_write32,
207                 .read_count = sh_cmt_read32,
208                 .write_count = sh_cmt_write32,
209         },
210         [SH_CMT0_RCAR_GEN2] = {
211                 .model = SH_CMT0_RCAR_GEN2,
212                 .channels_mask = 0x60,
213                 .width = 32,
214                 .overflow_bit = SH_CMT32_CMCSR_CMF,
215                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216                 .read_control = sh_cmt_read32,
217                 .write_control = sh_cmt_write32,
218                 .read_count = sh_cmt_read32,
219                 .write_count = sh_cmt_write32,
220         },
221         [SH_CMT1_RCAR_GEN2] = {
222                 .model = SH_CMT1_RCAR_GEN2,
223                 .channels_mask = 0xff,
224                 .width = 32,
225                 .overflow_bit = SH_CMT32_CMCSR_CMF,
226                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227                 .read_control = sh_cmt_read32,
228                 .write_control = sh_cmt_write32,
229                 .read_count = sh_cmt_read32,
230                 .write_count = sh_cmt_write32,
231         },
232 };
233
234 #define CMCSR 0 /* channel register */
235 #define CMCNT 1 /* channel register */
236 #define CMCOR 2 /* channel register */
237
238 #define CMCLKE  0x1000  /* CLK Enable Register (R-Car Gen2) */
239
240 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
241 {
242         if (ch->iostart)
243                 return ch->cmt->info->read_control(ch->iostart, 0);
244         else
245                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
246 }
247
248 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
249 {
250         if (ch->iostart)
251                 ch->cmt->info->write_control(ch->iostart, 0, value);
252         else
253                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 }
255
256 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257 {
258         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 }
260
261 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
262 {
263         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
264 }
265
266 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
267 {
268         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
269 }
270
271 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
272 {
273         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
274 }
275
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
277 {
278         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
279 }
280
281 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
282 {
283         u32 v1, v2, v3;
284         u32 o1, o2;
285
286         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
287
288         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
289         do {
290                 o2 = o1;
291                 v1 = sh_cmt_read_cmcnt(ch);
292                 v2 = sh_cmt_read_cmcnt(ch);
293                 v3 = sh_cmt_read_cmcnt(ch);
294                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
295         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
296                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
297
298         *has_wrapped = o1;
299         return v2;
300 }
301
302 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
303 {
304         unsigned long flags;
305         u32 value;
306
307         /* start stop register shared by multiple timer channels */
308         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
309         value = sh_cmt_read_cmstr(ch);
310
311         if (start)
312                 value |= 1 << ch->timer_bit;
313         else
314                 value &= ~(1 << ch->timer_bit);
315
316         sh_cmt_write_cmstr(ch, value);
317         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
318 }
319
320 static int sh_cmt_enable(struct sh_cmt_channel *ch)
321 {
322         int k, ret;
323
324         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
325
326         /* enable clock */
327         ret = clk_enable(ch->cmt->clk);
328         if (ret) {
329                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
330                         ch->index);
331                 goto err0;
332         }
333
334         /* make sure channel is disabled */
335         sh_cmt_start_stop_ch(ch, 0);
336
337         /* configure channel, periodic mode and maximum timeout */
338         if (ch->cmt->info->width == 16) {
339                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
340                                    SH_CMT16_CMCSR_CKS512);
341         } else {
342                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
343                                    SH_CMT32_CMCSR_CMTOUT_IE |
344                                    SH_CMT32_CMCSR_CMR_IRQ |
345                                    SH_CMT32_CMCSR_CKS_RCLK8);
346         }
347
348         sh_cmt_write_cmcor(ch, 0xffffffff);
349         sh_cmt_write_cmcnt(ch, 0);
350
351         /*
352          * According to the sh73a0 user's manual, as CMCNT can be operated
353          * only by the RCLK (Pseudo 32 kHz), there's one restriction on
354          * modifying CMCNT register; two RCLK cycles are necessary before
355          * this register is either read or any modification of the value
356          * it holds is reflected in the LSI's actual operation.
357          *
358          * While at it, we're supposed to clear out the CMCNT as of this
359          * moment, so make sure it's processed properly here.  This will
360          * take RCLKx2 at maximum.
361          */
362         for (k = 0; k < 100; k++) {
363                 if (!sh_cmt_read_cmcnt(ch))
364                         break;
365                 udelay(1);
366         }
367
368         if (sh_cmt_read_cmcnt(ch)) {
369                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
370                         ch->index);
371                 ret = -ETIMEDOUT;
372                 goto err1;
373         }
374
375         /* enable channel */
376         sh_cmt_start_stop_ch(ch, 1);
377         return 0;
378  err1:
379         /* stop clock */
380         clk_disable(ch->cmt->clk);
381
382  err0:
383         return ret;
384 }
385
386 static void sh_cmt_disable(struct sh_cmt_channel *ch)
387 {
388         /* disable channel */
389         sh_cmt_start_stop_ch(ch, 0);
390
391         /* disable interrupts in CMT block */
392         sh_cmt_write_cmcsr(ch, 0);
393
394         /* stop clock */
395         clk_disable(ch->cmt->clk);
396
397         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
398 }
399
400 /* private flags */
401 #define FLAG_CLOCKEVENT (1 << 0)
402 #define FLAG_CLOCKSOURCE (1 << 1)
403 #define FLAG_REPROGRAM (1 << 2)
404 #define FLAG_SKIPEVENT (1 << 3)
405 #define FLAG_IRQCONTEXT (1 << 4)
406
407 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408                                               int absolute)
409 {
410         u32 value = ch->next_match_value;
411         u32 new_match;
412         u32 delay = 0;
413         u32 now = 0;
414         u32 has_wrapped;
415
416         now = sh_cmt_get_counter(ch, &has_wrapped);
417         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419         if (has_wrapped) {
420                 /* we're competing with the interrupt handler.
421                  *  -> let the interrupt handler reprogram the timer.
422                  *  -> interrupt number two handles the event.
423                  */
424                 ch->flags |= FLAG_SKIPEVENT;
425                 return;
426         }
427
428         if (absolute)
429                 now = 0;
430
431         do {
432                 /* reprogram the timer hardware,
433                  * but don't save the new match value yet.
434                  */
435                 new_match = now + value + delay;
436                 if (new_match > ch->max_match_value)
437                         new_match = ch->max_match_value;
438
439                 sh_cmt_write_cmcor(ch, new_match);
440
441                 now = sh_cmt_get_counter(ch, &has_wrapped);
442                 if (has_wrapped && (new_match > ch->match_value)) {
443                         /* we are changing to a greater match value,
444                          * so this wrap must be caused by the counter
445                          * matching the old value.
446                          * -> first interrupt reprograms the timer.
447                          * -> interrupt number two handles the event.
448                          */
449                         ch->flags |= FLAG_SKIPEVENT;
450                         break;
451                 }
452
453                 if (has_wrapped) {
454                         /* we are changing to a smaller match value,
455                          * so the wrap must be caused by the counter
456                          * matching the new value.
457                          * -> save programmed match value.
458                          * -> let isr handle the event.
459                          */
460                         ch->match_value = new_match;
461                         break;
462                 }
463
464                 /* be safe: verify hardware settings */
465                 if (now < new_match) {
466                         /* timer value is below match value, all good.
467                          * this makes sure we won't miss any match events.
468                          * -> save programmed match value.
469                          * -> let isr handle the event.
470                          */
471                         ch->match_value = new_match;
472                         break;
473                 }
474
475                 /* the counter has reached a value greater
476                  * than our new match value. and since the
477                  * has_wrapped flag isn't set we must have
478                  * programmed a too close event.
479                  * -> increase delay and retry.
480                  */
481                 if (delay)
482                         delay <<= 1;
483                 else
484                         delay = 1;
485
486                 if (!delay)
487                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488                                  ch->index);
489
490         } while (delay);
491 }
492
493 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494 {
495         if (delta > ch->max_match_value)
496                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497                          ch->index);
498
499         ch->next_match_value = delta;
500         sh_cmt_clock_event_program_verify(ch, 0);
501 }
502
503 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504 {
505         unsigned long flags;
506
507         raw_spin_lock_irqsave(&ch->lock, flags);
508         __sh_cmt_set_next(ch, delta);
509         raw_spin_unlock_irqrestore(&ch->lock, flags);
510 }
511
512 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513 {
514         struct sh_cmt_channel *ch = dev_id;
515
516         /* clear flags */
517         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518                            ch->cmt->info->clear_bits);
519
520         /* update clock source counter to begin with if enabled
521          * the wrap flag should be cleared by the timer specific
522          * isr before we end up here.
523          */
524         if (ch->flags & FLAG_CLOCKSOURCE)
525                 ch->total_cycles += ch->match_value + 1;
526
527         if (!(ch->flags & FLAG_REPROGRAM))
528                 ch->next_match_value = ch->max_match_value;
529
530         ch->flags |= FLAG_IRQCONTEXT;
531
532         if (ch->flags & FLAG_CLOCKEVENT) {
533                 if (!(ch->flags & FLAG_SKIPEVENT)) {
534                         if (clockevent_state_oneshot(&ch->ced)) {
535                                 ch->next_match_value = ch->max_match_value;
536                                 ch->flags |= FLAG_REPROGRAM;
537                         }
538
539                         ch->ced.event_handler(&ch->ced);
540                 }
541         }
542
543         ch->flags &= ~FLAG_SKIPEVENT;
544
545         if (ch->flags & FLAG_REPROGRAM) {
546                 ch->flags &= ~FLAG_REPROGRAM;
547                 sh_cmt_clock_event_program_verify(ch, 1);
548
549                 if (ch->flags & FLAG_CLOCKEVENT)
550                         if ((clockevent_state_shutdown(&ch->ced))
551                             || (ch->match_value == ch->next_match_value))
552                                 ch->flags &= ~FLAG_REPROGRAM;
553         }
554
555         ch->flags &= ~FLAG_IRQCONTEXT;
556
557         return IRQ_HANDLED;
558 }
559
560 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561 {
562         int ret = 0;
563         unsigned long flags;
564
565         if (flag & FLAG_CLOCKSOURCE)
566                 pm_runtime_get_sync(&ch->cmt->pdev->dev);
567
568         raw_spin_lock_irqsave(&ch->lock, flags);
569
570         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
571                 if (flag & FLAG_CLOCKEVENT)
572                         pm_runtime_get_sync(&ch->cmt->pdev->dev);
573                 ret = sh_cmt_enable(ch);
574         }
575
576         if (ret)
577                 goto out;
578         ch->flags |= flag;
579
580         /* setup timeout if no clockevent */
581         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
582                 __sh_cmt_set_next(ch, ch->max_match_value);
583  out:
584         raw_spin_unlock_irqrestore(&ch->lock, flags);
585
586         return ret;
587 }
588
589 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
590 {
591         unsigned long flags;
592         unsigned long f;
593
594         raw_spin_lock_irqsave(&ch->lock, flags);
595
596         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
597         ch->flags &= ~flag;
598
599         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
600                 sh_cmt_disable(ch);
601                 if (flag & FLAG_CLOCKEVENT)
602                         pm_runtime_put(&ch->cmt->pdev->dev);
603         }
604
605         /* adjust the timeout to maximum if only clocksource left */
606         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
607                 __sh_cmt_set_next(ch, ch->max_match_value);
608
609         raw_spin_unlock_irqrestore(&ch->lock, flags);
610
611         if (flag & FLAG_CLOCKSOURCE)
612                 pm_runtime_put(&ch->cmt->pdev->dev);
613 }
614
615 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
616 {
617         return container_of(cs, struct sh_cmt_channel, cs);
618 }
619
620 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
621 {
622         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
623         unsigned long flags;
624         u32 has_wrapped;
625         u64 value;
626         u32 raw;
627
628         raw_spin_lock_irqsave(&ch->lock, flags);
629         value = ch->total_cycles;
630         raw = sh_cmt_get_counter(ch, &has_wrapped);
631
632         if (unlikely(has_wrapped))
633                 raw += ch->match_value + 1;
634         raw_spin_unlock_irqrestore(&ch->lock, flags);
635
636         return value + raw;
637 }
638
639 static int sh_cmt_clocksource_enable(struct clocksource *cs)
640 {
641         int ret;
642         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
643
644         WARN_ON(ch->cs_enabled);
645
646         ch->total_cycles = 0;
647
648         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
649         if (!ret)
650                 ch->cs_enabled = true;
651
652         return ret;
653 }
654
655 static void sh_cmt_clocksource_disable(struct clocksource *cs)
656 {
657         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
658
659         WARN_ON(!ch->cs_enabled);
660
661         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
662         ch->cs_enabled = false;
663 }
664
665 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
666 {
667         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
668
669         if (!ch->cs_enabled)
670                 return;
671
672         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
673         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
674 }
675
676 static void sh_cmt_clocksource_resume(struct clocksource *cs)
677 {
678         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
679
680         if (!ch->cs_enabled)
681                 return;
682
683         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
684         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
685 }
686
687 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
688                                        const char *name)
689 {
690         struct clocksource *cs = &ch->cs;
691
692         cs->name = name;
693         cs->rating = 125;
694         cs->read = sh_cmt_clocksource_read;
695         cs->enable = sh_cmt_clocksource_enable;
696         cs->disable = sh_cmt_clocksource_disable;
697         cs->suspend = sh_cmt_clocksource_suspend;
698         cs->resume = sh_cmt_clocksource_resume;
699         cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
700         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
701
702         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
703                  ch->index);
704
705         clocksource_register_hz(cs, ch->cmt->rate);
706         return 0;
707 }
708
709 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
710 {
711         return container_of(ced, struct sh_cmt_channel, ced);
712 }
713
714 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
715 {
716         sh_cmt_start(ch, FLAG_CLOCKEVENT);
717
718         if (periodic)
719                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
720         else
721                 sh_cmt_set_next(ch, ch->max_match_value);
722 }
723
724 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
725 {
726         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
727
728         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
729         return 0;
730 }
731
732 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
733                                         int periodic)
734 {
735         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
736
737         /* deal with old setting first */
738         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
739                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
740
741         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
742                  ch->index, periodic ? "periodic" : "oneshot");
743         sh_cmt_clock_event_start(ch, periodic);
744         return 0;
745 }
746
747 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
748 {
749         return sh_cmt_clock_event_set_state(ced, 0);
750 }
751
752 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
753 {
754         return sh_cmt_clock_event_set_state(ced, 1);
755 }
756
757 static int sh_cmt_clock_event_next(unsigned long delta,
758                                    struct clock_event_device *ced)
759 {
760         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
761
762         BUG_ON(!clockevent_state_oneshot(ced));
763         if (likely(ch->flags & FLAG_IRQCONTEXT))
764                 ch->next_match_value = delta - 1;
765         else
766                 sh_cmt_set_next(ch, delta - 1);
767
768         return 0;
769 }
770
771 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
772 {
773         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774
775         dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
776         clk_unprepare(ch->cmt->clk);
777 }
778
779 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
780 {
781         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
782
783         clk_prepare(ch->cmt->clk);
784         dev_pm_genpd_resume(&ch->cmt->pdev->dev);
785 }
786
787 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
788                                       const char *name)
789 {
790         struct clock_event_device *ced = &ch->ced;
791         int irq;
792         int ret;
793
794         irq = platform_get_irq(ch->cmt->pdev, ch->index);
795         if (irq < 0)
796                 return irq;
797
798         ret = request_irq(irq, sh_cmt_interrupt,
799                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
800                           dev_name(&ch->cmt->pdev->dev), ch);
801         if (ret) {
802                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
803                         ch->index, irq);
804                 return ret;
805         }
806
807         ced->name = name;
808         ced->features = CLOCK_EVT_FEAT_PERIODIC;
809         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
810         ced->rating = 125;
811         ced->cpumask = cpu_possible_mask;
812         ced->set_next_event = sh_cmt_clock_event_next;
813         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
814         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
815         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
816         ced->suspend = sh_cmt_clock_event_suspend;
817         ced->resume = sh_cmt_clock_event_resume;
818
819         /* TODO: calculate good shift from rate and counter bit width */
820         ced->shift = 32;
821         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
822         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
823         ced->max_delta_ticks = ch->max_match_value;
824         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
825         ced->min_delta_ticks = 0x1f;
826
827         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
828                  ch->index);
829         clockevents_register_device(ced);
830
831         return 0;
832 }
833
834 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
835                            bool clockevent, bool clocksource)
836 {
837         int ret;
838
839         if (clockevent) {
840                 ch->cmt->has_clockevent = true;
841                 ret = sh_cmt_register_clockevent(ch, name);
842                 if (ret < 0)
843                         return ret;
844         }
845
846         if (clocksource) {
847                 ch->cmt->has_clocksource = true;
848                 sh_cmt_register_clocksource(ch, name);
849         }
850
851         return 0;
852 }
853
854 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
855                                 unsigned int hwidx, bool clockevent,
856                                 bool clocksource, struct sh_cmt_device *cmt)
857 {
858         u32 value;
859         int ret;
860
861         /* Skip unused channels. */
862         if (!clockevent && !clocksource)
863                 return 0;
864
865         ch->cmt = cmt;
866         ch->index = index;
867         ch->hwidx = hwidx;
868         ch->timer_bit = hwidx;
869
870         /*
871          * Compute the address of the channel control register block. For the
872          * timers with a per-channel start/stop register, compute its address
873          * as well.
874          */
875         switch (cmt->info->model) {
876         case SH_CMT_16BIT:
877                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
878                 break;
879         case SH_CMT_32BIT:
880         case SH_CMT_48BIT:
881                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
882                 break;
883         case SH_CMT0_RCAR_GEN2:
884         case SH_CMT1_RCAR_GEN2:
885                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
886                 ch->ioctrl = ch->iostart + 0x10;
887                 ch->timer_bit = 0;
888
889                 /* Enable the clock supply to the channel */
890                 value = ioread32(cmt->mapbase + CMCLKE);
891                 value |= BIT(hwidx);
892                 iowrite32(value, cmt->mapbase + CMCLKE);
893                 break;
894         }
895
896         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
897                 ch->max_match_value = ~0;
898         else
899                 ch->max_match_value = (1 << cmt->info->width) - 1;
900
901         ch->match_value = ch->max_match_value;
902         raw_spin_lock_init(&ch->lock);
903
904         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
905                               clockevent, clocksource);
906         if (ret) {
907                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
908                         ch->index);
909                 return ret;
910         }
911         ch->cs_enabled = false;
912
913         return 0;
914 }
915
916 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
917 {
918         struct resource *mem;
919
920         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
921         if (!mem) {
922                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
923                 return -ENXIO;
924         }
925
926         cmt->mapbase = ioremap(mem->start, resource_size(mem));
927         if (cmt->mapbase == NULL) {
928                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
929                 return -ENXIO;
930         }
931
932         return 0;
933 }
934
935 static const struct platform_device_id sh_cmt_id_table[] = {
936         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
937         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
938         { }
939 };
940 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
941
942 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
943         {
944                 /* deprecated, preserved for backward compatibility */
945                 .compatible = "renesas,cmt-48",
946                 .data = &sh_cmt_info[SH_CMT_48BIT]
947         },
948         {
949                 /* deprecated, preserved for backward compatibility */
950                 .compatible = "renesas,cmt-48-gen2",
951                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
952         },
953         {
954                 .compatible = "renesas,r8a7740-cmt1",
955                 .data = &sh_cmt_info[SH_CMT_48BIT]
956         },
957         {
958                 .compatible = "renesas,sh73a0-cmt1",
959                 .data = &sh_cmt_info[SH_CMT_48BIT]
960         },
961         {
962                 .compatible = "renesas,rcar-gen2-cmt0",
963                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
964         },
965         {
966                 .compatible = "renesas,rcar-gen2-cmt1",
967                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
968         },
969         {
970                 .compatible = "renesas,rcar-gen3-cmt0",
971                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
972         },
973         {
974                 .compatible = "renesas,rcar-gen3-cmt1",
975                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
976         },
977         { }
978 };
979 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
980
981 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
982 {
983         unsigned int mask;
984         unsigned int i;
985         int ret;
986
987         cmt->pdev = pdev;
988         raw_spin_lock_init(&cmt->lock);
989
990         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
991                 cmt->info = of_device_get_match_data(&pdev->dev);
992                 cmt->hw_channels = cmt->info->channels_mask;
993         } else if (pdev->dev.platform_data) {
994                 struct sh_timer_config *cfg = pdev->dev.platform_data;
995                 const struct platform_device_id *id = pdev->id_entry;
996
997                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
998                 cmt->hw_channels = cfg->channels_mask;
999         } else {
1000                 dev_err(&cmt->pdev->dev, "missing platform data\n");
1001                 return -ENXIO;
1002         }
1003
1004         /* Get hold of clock. */
1005         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1006         if (IS_ERR(cmt->clk)) {
1007                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1008                 return PTR_ERR(cmt->clk);
1009         }
1010
1011         ret = clk_prepare(cmt->clk);
1012         if (ret < 0)
1013                 goto err_clk_put;
1014
1015         /* Determine clock rate. */
1016         ret = clk_enable(cmt->clk);
1017         if (ret < 0)
1018                 goto err_clk_unprepare;
1019
1020         if (cmt->info->width == 16)
1021                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1022         else
1023                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1024
1025         /* Map the memory resource(s). */
1026         ret = sh_cmt_map_memory(cmt);
1027         if (ret < 0)
1028                 goto err_clk_disable;
1029
1030         /* Allocate and setup the channels. */
1031         cmt->num_channels = hweight8(cmt->hw_channels);
1032         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1033                                 GFP_KERNEL);
1034         if (cmt->channels == NULL) {
1035                 ret = -ENOMEM;
1036                 goto err_unmap;
1037         }
1038
1039         /*
1040          * Use the first channel as a clock event device and the second channel
1041          * as a clock source. If only one channel is available use it for both.
1042          */
1043         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1044                 unsigned int hwidx = ffs(mask) - 1;
1045                 bool clocksource = i == 1 || cmt->num_channels == 1;
1046                 bool clockevent = i == 0;
1047
1048                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1049                                            clockevent, clocksource, cmt);
1050                 if (ret < 0)
1051                         goto err_unmap;
1052
1053                 mask &= ~(1 << hwidx);
1054         }
1055
1056         clk_disable(cmt->clk);
1057
1058         platform_set_drvdata(pdev, cmt);
1059
1060         return 0;
1061
1062 err_unmap:
1063         kfree(cmt->channels);
1064         iounmap(cmt->mapbase);
1065 err_clk_disable:
1066         clk_disable(cmt->clk);
1067 err_clk_unprepare:
1068         clk_unprepare(cmt->clk);
1069 err_clk_put:
1070         clk_put(cmt->clk);
1071         return ret;
1072 }
1073
1074 static int sh_cmt_probe(struct platform_device *pdev)
1075 {
1076         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1077         int ret;
1078
1079         if (!is_sh_early_platform_device(pdev)) {
1080                 pm_runtime_set_active(&pdev->dev);
1081                 pm_runtime_enable(&pdev->dev);
1082         }
1083
1084         if (cmt) {
1085                 dev_info(&pdev->dev, "kept as earlytimer\n");
1086                 goto out;
1087         }
1088
1089         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1090         if (cmt == NULL)
1091                 return -ENOMEM;
1092
1093         ret = sh_cmt_setup(cmt, pdev);
1094         if (ret) {
1095                 kfree(cmt);
1096                 pm_runtime_idle(&pdev->dev);
1097                 return ret;
1098         }
1099         if (is_sh_early_platform_device(pdev))
1100                 return 0;
1101
1102  out:
1103         if (cmt->has_clockevent || cmt->has_clocksource)
1104                 pm_runtime_irq_safe(&pdev->dev);
1105         else
1106                 pm_runtime_idle(&pdev->dev);
1107
1108         return 0;
1109 }
1110
1111 static int sh_cmt_remove(struct platform_device *pdev)
1112 {
1113         return -EBUSY; /* cannot unregister clockevent and clocksource */
1114 }
1115
1116 static struct platform_driver sh_cmt_device_driver = {
1117         .probe          = sh_cmt_probe,
1118         .remove         = sh_cmt_remove,
1119         .driver         = {
1120                 .name   = "sh_cmt",
1121                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1122         },
1123         .id_table       = sh_cmt_id_table,
1124 };
1125
1126 static int __init sh_cmt_init(void)
1127 {
1128         return platform_driver_register(&sh_cmt_device_driver);
1129 }
1130
1131 static void __exit sh_cmt_exit(void)
1132 {
1133         platform_driver_unregister(&sh_cmt_device_driver);
1134 }
1135
1136 #ifdef CONFIG_SUPERH
1137 sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1138 #endif
1139
1140 subsys_initcall(sh_cmt_init);
1141 module_exit(sh_cmt_exit);
1142
1143 MODULE_AUTHOR("Magnus Damm");
1144 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1145 MODULE_LICENSE("GPL v2");