Merge tag 'i2c-for-5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux-2.6-microblaze.git] / drivers / clocksource / exynos_mct.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* linux/arch/arm/mach-exynos4/mct.c
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  *              http://www.samsung.com
6  *
7  * Exynos4 MCT(Multi-Core Timer) support
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/err.h>
13 #include <linux/clk.h>
14 #include <linux/clockchips.h>
15 #include <linux/cpu.h>
16 #include <linux/delay.h>
17 #include <linux/percpu.h>
18 #include <linux/of.h>
19 #include <linux/of_irq.h>
20 #include <linux/of_address.h>
21 #include <linux/clocksource.h>
22 #include <linux/sched_clock.h>
23
24 #define EXYNOS4_MCTREG(x)               (x)
25 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
26 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
27 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
28 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
29 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
30 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
31 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
32 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
33 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
34 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
35 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
36 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
37 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
38
39 #define MCT_L_TCNTB_OFFSET              (0x00)
40 #define MCT_L_ICNTB_OFFSET              (0x08)
41 #define MCT_L_TCON_OFFSET               (0x20)
42 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
43 #define MCT_L_INT_ENB_OFFSET            (0x34)
44 #define MCT_L_WSTAT_OFFSET              (0x40)
45 #define MCT_G_TCON_START                (1 << 8)
46 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
47 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
48 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
49 #define MCT_L_TCON_INT_START            (1 << 1)
50 #define MCT_L_TCON_TIMER_START          (1 << 0)
51
52 #define TICK_BASE_CNT   1
53
54 #ifdef CONFIG_ARM
55 /* Use values higher than ARM arch timer. See 6282edb72bed. */
56 #define MCT_CLKSOURCE_RATING            450
57 #define MCT_CLKEVENTS_RATING            500
58 #else
59 #define MCT_CLKSOURCE_RATING            350
60 #define MCT_CLKEVENTS_RATING            350
61 #endif
62
63 /* There are four Global timers starting with 0 offset */
64 #define MCT_G0_IRQ      0
65 /* Local timers count starts after global timer count */
66 #define MCT_L0_IRQ      4
67 /* Max number of IRQ as per DT binding document */
68 #define MCT_NR_IRQS     20
69
70 enum {
71         MCT_INT_SPI,
72         MCT_INT_PPI
73 };
74
75 static void __iomem *reg_base;
76 static unsigned long clk_rate;
77 static unsigned int mct_int_type;
78 static int mct_irqs[MCT_NR_IRQS];
79
80 struct mct_clock_event_device {
81         struct clock_event_device evt;
82         unsigned long base;
83         /**
84          *  The length of the name must be adjusted if number of
85          *  local timer interrupts grow over two digits
86          */
87         char name[11];
88 };
89
90 static void exynos4_mct_write(unsigned int value, unsigned long offset)
91 {
92         unsigned long stat_addr;
93         u32 mask;
94         u32 i;
95
96         writel_relaxed(value, reg_base + offset);
97
98         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
99                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
100                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
101                 case MCT_L_TCON_OFFSET:
102                         mask = 1 << 3;          /* L_TCON write status */
103                         break;
104                 case MCT_L_ICNTB_OFFSET:
105                         mask = 1 << 1;          /* L_ICNTB write status */
106                         break;
107                 case MCT_L_TCNTB_OFFSET:
108                         mask = 1 << 0;          /* L_TCNTB write status */
109                         break;
110                 default:
111                         return;
112                 }
113         } else {
114                 switch (offset) {
115                 case EXYNOS4_MCT_G_TCON:
116                         stat_addr = EXYNOS4_MCT_G_WSTAT;
117                         mask = 1 << 16;         /* G_TCON write status */
118                         break;
119                 case EXYNOS4_MCT_G_COMP0_L:
120                         stat_addr = EXYNOS4_MCT_G_WSTAT;
121                         mask = 1 << 0;          /* G_COMP0_L write status */
122                         break;
123                 case EXYNOS4_MCT_G_COMP0_U:
124                         stat_addr = EXYNOS4_MCT_G_WSTAT;
125                         mask = 1 << 1;          /* G_COMP0_U write status */
126                         break;
127                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
128                         stat_addr = EXYNOS4_MCT_G_WSTAT;
129                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
130                         break;
131                 case EXYNOS4_MCT_G_CNT_L:
132                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
133                         mask = 1 << 0;          /* G_CNT_L write status */
134                         break;
135                 case EXYNOS4_MCT_G_CNT_U:
136                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
137                         mask = 1 << 1;          /* G_CNT_U write status */
138                         break;
139                 default:
140                         return;
141                 }
142         }
143
144         /* Wait maximum 1 ms until written values are applied */
145         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
146                 if (readl_relaxed(reg_base + stat_addr) & mask) {
147                         writel_relaxed(mask, reg_base + stat_addr);
148                         return;
149                 }
150
151         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
152 }
153
154 /* Clocksource handling */
155 static void exynos4_mct_frc_start(void)
156 {
157         u32 reg;
158
159         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
160         reg |= MCT_G_TCON_START;
161         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
162 }
163
164 /**
165  * exynos4_read_count_64 - Read all 64-bits of the global counter
166  *
167  * This will read all 64-bits of the global counter taking care to make sure
168  * that the upper and lower half match.  Note that reading the MCT can be quite
169  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
170  * only) version when possible.
171  *
172  * Returns the number of cycles in the global counter.
173  */
174 static u64 exynos4_read_count_64(void)
175 {
176         unsigned int lo, hi;
177         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
178
179         do {
180                 hi = hi2;
181                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
182                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
183         } while (hi != hi2);
184
185         return ((u64)hi << 32) | lo;
186 }
187
188 /**
189  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
190  *
191  * This will read just the lower 32-bits of the global counter.  This is marked
192  * as notrace so it can be used by the scheduler clock.
193  *
194  * Returns the number of cycles in the global counter (lower 32 bits).
195  */
196 static u32 notrace exynos4_read_count_32(void)
197 {
198         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
199 }
200
201 static u64 exynos4_frc_read(struct clocksource *cs)
202 {
203         return exynos4_read_count_32();
204 }
205
206 static void exynos4_frc_resume(struct clocksource *cs)
207 {
208         exynos4_mct_frc_start();
209 }
210
211 static struct clocksource mct_frc = {
212         .name           = "mct-frc",
213         .rating         = MCT_CLKSOURCE_RATING,
214         .read           = exynos4_frc_read,
215         .mask           = CLOCKSOURCE_MASK(32),
216         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
217         .resume         = exynos4_frc_resume,
218 };
219
220 static u64 notrace exynos4_read_sched_clock(void)
221 {
222         return exynos4_read_count_32();
223 }
224
225 #if defined(CONFIG_ARM)
226 static struct delay_timer exynos4_delay_timer;
227
228 static cycles_t exynos4_read_current_timer(void)
229 {
230         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231                          "cycles_t needs to move to 32-bit for ARM64 usage");
232         return exynos4_read_count_32();
233 }
234 #endif
235
236 static int __init exynos4_clocksource_init(void)
237 {
238         exynos4_mct_frc_start();
239
240 #if defined(CONFIG_ARM)
241         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
242         exynos4_delay_timer.freq = clk_rate;
243         register_current_timer_delay(&exynos4_delay_timer);
244 #endif
245
246         if (clocksource_register_hz(&mct_frc, clk_rate))
247                 panic("%s: can't register clocksource\n", mct_frc.name);
248
249         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
250
251         return 0;
252 }
253
254 static void exynos4_mct_comp0_stop(void)
255 {
256         unsigned int tcon;
257
258         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
259         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
260
261         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
262         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
263 }
264
265 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
266 {
267         unsigned int tcon;
268         u64 comp_cycle;
269
270         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
271
272         if (periodic) {
273                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
274                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
275         }
276
277         comp_cycle = exynos4_read_count_64() + cycles;
278         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
279         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
280
281         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
282
283         tcon |= MCT_G_TCON_COMP0_ENABLE;
284         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
285 }
286
287 static int exynos4_comp_set_next_event(unsigned long cycles,
288                                        struct clock_event_device *evt)
289 {
290         exynos4_mct_comp0_start(false, cycles);
291
292         return 0;
293 }
294
295 static int mct_set_state_shutdown(struct clock_event_device *evt)
296 {
297         exynos4_mct_comp0_stop();
298         return 0;
299 }
300
301 static int mct_set_state_periodic(struct clock_event_device *evt)
302 {
303         unsigned long cycles_per_jiffy;
304
305         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
306                             >> evt->shift);
307         exynos4_mct_comp0_stop();
308         exynos4_mct_comp0_start(true, cycles_per_jiffy);
309         return 0;
310 }
311
312 static struct clock_event_device mct_comp_device = {
313         .name                   = "mct-comp",
314         .features               = CLOCK_EVT_FEAT_PERIODIC |
315                                   CLOCK_EVT_FEAT_ONESHOT,
316         .rating                 = 250,
317         .set_next_event         = exynos4_comp_set_next_event,
318         .set_state_periodic     = mct_set_state_periodic,
319         .set_state_shutdown     = mct_set_state_shutdown,
320         .set_state_oneshot      = mct_set_state_shutdown,
321         .set_state_oneshot_stopped = mct_set_state_shutdown,
322         .tick_resume            = mct_set_state_shutdown,
323 };
324
325 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
326 {
327         struct clock_event_device *evt = dev_id;
328
329         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
330
331         evt->event_handler(evt);
332
333         return IRQ_HANDLED;
334 }
335
336 static int exynos4_clockevent_init(void)
337 {
338         mct_comp_device.cpumask = cpumask_of(0);
339         clockevents_config_and_register(&mct_comp_device, clk_rate,
340                                         0xf, 0xffffffff);
341         if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr,
342                         IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq",
343                         &mct_comp_device))
344                 pr_err("%s: request_irq() failed\n", "mct_comp_irq");
345
346         return 0;
347 }
348
349 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
350
351 /* Clock event handling */
352 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
353 {
354         unsigned long tmp;
355         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
356         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
357
358         tmp = readl_relaxed(reg_base + offset);
359         if (tmp & mask) {
360                 tmp &= ~mask;
361                 exynos4_mct_write(tmp, offset);
362         }
363 }
364
365 static void exynos4_mct_tick_start(unsigned long cycles,
366                                    struct mct_clock_event_device *mevt)
367 {
368         unsigned long tmp;
369
370         exynos4_mct_tick_stop(mevt);
371
372         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
373
374         /* update interrupt count buffer */
375         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
376
377         /* enable MCT tick interrupt */
378         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
379
380         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
381         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
382                MCT_L_TCON_INTERVAL_MODE;
383         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
384 }
385
386 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
387 {
388         /* Clear the MCT tick interrupt */
389         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
390                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
391 }
392
393 static int exynos4_tick_set_next_event(unsigned long cycles,
394                                        struct clock_event_device *evt)
395 {
396         struct mct_clock_event_device *mevt;
397
398         mevt = container_of(evt, struct mct_clock_event_device, evt);
399         exynos4_mct_tick_start(cycles, mevt);
400         return 0;
401 }
402
403 static int set_state_shutdown(struct clock_event_device *evt)
404 {
405         struct mct_clock_event_device *mevt;
406
407         mevt = container_of(evt, struct mct_clock_event_device, evt);
408         exynos4_mct_tick_stop(mevt);
409         exynos4_mct_tick_clear(mevt);
410         return 0;
411 }
412
413 static int set_state_periodic(struct clock_event_device *evt)
414 {
415         struct mct_clock_event_device *mevt;
416         unsigned long cycles_per_jiffy;
417
418         mevt = container_of(evt, struct mct_clock_event_device, evt);
419         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
420                             >> evt->shift);
421         exynos4_mct_tick_stop(mevt);
422         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
423         return 0;
424 }
425
426 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
427 {
428         struct mct_clock_event_device *mevt = dev_id;
429         struct clock_event_device *evt = &mevt->evt;
430
431         /*
432          * This is for supporting oneshot mode.
433          * Mct would generate interrupt periodically
434          * without explicit stopping.
435          */
436         if (!clockevent_state_periodic(&mevt->evt))
437                 exynos4_mct_tick_stop(mevt);
438
439         exynos4_mct_tick_clear(mevt);
440
441         evt->event_handler(evt);
442
443         return IRQ_HANDLED;
444 }
445
446 static int exynos4_mct_starting_cpu(unsigned int cpu)
447 {
448         struct mct_clock_event_device *mevt =
449                 per_cpu_ptr(&percpu_mct_tick, cpu);
450         struct clock_event_device *evt = &mevt->evt;
451
452         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
453         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
454
455         evt->name = mevt->name;
456         evt->cpumask = cpumask_of(cpu);
457         evt->set_next_event = exynos4_tick_set_next_event;
458         evt->set_state_periodic = set_state_periodic;
459         evt->set_state_shutdown = set_state_shutdown;
460         evt->set_state_oneshot = set_state_shutdown;
461         evt->set_state_oneshot_stopped = set_state_shutdown;
462         evt->tick_resume = set_state_shutdown;
463         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
464                         CLOCK_EVT_FEAT_PERCPU;
465         evt->rating = MCT_CLKEVENTS_RATING;
466
467         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
468
469         if (mct_int_type == MCT_INT_SPI) {
470
471                 if (evt->irq == -1)
472                         return -EIO;
473
474                 irq_force_affinity(evt->irq, cpumask_of(cpu));
475                 enable_irq(evt->irq);
476         } else {
477                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
478         }
479         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
480                                         0xf, 0x7fffffff);
481
482         return 0;
483 }
484
485 static int exynos4_mct_dying_cpu(unsigned int cpu)
486 {
487         struct mct_clock_event_device *mevt =
488                 per_cpu_ptr(&percpu_mct_tick, cpu);
489         struct clock_event_device *evt = &mevt->evt;
490
491         evt->set_state_shutdown(evt);
492         if (mct_int_type == MCT_INT_SPI) {
493                 if (evt->irq != -1)
494                         disable_irq_nosync(evt->irq);
495                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
496         } else {
497                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
498         }
499         return 0;
500 }
501
502 static int __init exynos4_timer_resources(struct device_node *np)
503 {
504         struct clk *mct_clk, *tick_clk;
505
506         reg_base = of_iomap(np, 0);
507         if (!reg_base)
508                 panic("%s: unable to ioremap mct address space\n", __func__);
509
510         tick_clk = of_clk_get_by_name(np, "fin_pll");
511         if (IS_ERR(tick_clk))
512                 panic("%s: unable to determine tick clock rate\n", __func__);
513         clk_rate = clk_get_rate(tick_clk);
514
515         mct_clk = of_clk_get_by_name(np, "mct");
516         if (IS_ERR(mct_clk))
517                 panic("%s: unable to retrieve mct clock instance\n", __func__);
518         clk_prepare_enable(mct_clk);
519
520         return 0;
521 }
522
523 static int __init exynos4_timer_interrupts(struct device_node *np,
524                                            unsigned int int_type)
525 {
526         int nr_irqs, i, err, cpu;
527
528         mct_int_type = int_type;
529
530         /* This driver uses only one global timer interrupt */
531         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
532
533         /*
534          * Find out the number of local irqs specified. The local
535          * timer irqs are specified after the four global timer
536          * irqs are specified.
537          */
538         nr_irqs = of_irq_count(np);
539         if (nr_irqs > ARRAY_SIZE(mct_irqs)) {
540                 pr_err("exynos-mct: too many (%d) interrupts configured in DT\n",
541                         nr_irqs);
542                 nr_irqs = ARRAY_SIZE(mct_irqs);
543         }
544         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
545                 mct_irqs[i] = irq_of_parse_and_map(np, i);
546
547         if (mct_int_type == MCT_INT_PPI) {
548
549                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
550                                          exynos4_mct_tick_isr, "MCT",
551                                          &percpu_mct_tick);
552                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
553                      mct_irqs[MCT_L0_IRQ], err);
554         } else {
555                 for_each_possible_cpu(cpu) {
556                         int mct_irq;
557                         struct mct_clock_event_device *pcpu_mevt =
558                                 per_cpu_ptr(&percpu_mct_tick, cpu);
559
560                         pcpu_mevt->evt.irq = -1;
561                         if (MCT_L0_IRQ + cpu >= ARRAY_SIZE(mct_irqs))
562                                 break;
563                         mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
564
565                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
566                         if (request_irq(mct_irq,
567                                         exynos4_mct_tick_isr,
568                                         IRQF_TIMER | IRQF_NOBALANCING,
569                                         pcpu_mevt->name, pcpu_mevt)) {
570                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
571                                                                         cpu);
572
573                                 continue;
574                         }
575                         pcpu_mevt->evt.irq = mct_irq;
576                 }
577         }
578
579         /* Install hotplug callbacks which configure the timer on this CPU */
580         err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING,
581                                 "clockevents/exynos4/mct_timer:starting",
582                                 exynos4_mct_starting_cpu,
583                                 exynos4_mct_dying_cpu);
584         if (err)
585                 goto out_irq;
586
587         return 0;
588
589 out_irq:
590         if (mct_int_type == MCT_INT_PPI) {
591                 free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
592         } else {
593                 for_each_possible_cpu(cpu) {
594                         struct mct_clock_event_device *pcpu_mevt =
595                                 per_cpu_ptr(&percpu_mct_tick, cpu);
596
597                         if (pcpu_mevt->evt.irq != -1) {
598                                 free_irq(pcpu_mevt->evt.irq, pcpu_mevt);
599                                 pcpu_mevt->evt.irq = -1;
600                         }
601                 }
602         }
603         return err;
604 }
605
606 static int __init mct_init_dt(struct device_node *np, unsigned int int_type)
607 {
608         int ret;
609
610         ret = exynos4_timer_resources(np);
611         if (ret)
612                 return ret;
613
614         ret = exynos4_timer_interrupts(np, int_type);
615         if (ret)
616                 return ret;
617
618         ret = exynos4_clocksource_init();
619         if (ret)
620                 return ret;
621
622         return exynos4_clockevent_init();
623 }
624
625
626 static int __init mct_init_spi(struct device_node *np)
627 {
628         return mct_init_dt(np, MCT_INT_SPI);
629 }
630
631 static int __init mct_init_ppi(struct device_node *np)
632 {
633         return mct_init_dt(np, MCT_INT_PPI);
634 }
635 TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
636 TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);