Merge branches 'fixes' and 'misc' into for-linus
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTVCT_LO       0x00
48 #define CNTPCT_LO       0x08
49 #define CNTFRQ          0x10
50 #define CNTP_CVAL_LO    0x20
51 #define CNTP_CTL        0x2c
52 #define CNTV_CVAL_LO    0x30
53 #define CNTV_CTL        0x3c
54
55 /*
56  * The minimum amount of time a generic counter is guaranteed to not roll over
57  * (40 years)
58  */
59 #define MIN_ROLLOVER_SECS       (40ULL * 365 * 24 * 3600)
60
61 static unsigned arch_timers_present __initdata;
62
63 struct arch_timer {
64         void __iomem *base;
65         struct clock_event_device evt;
66 };
67
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
77         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78         [ARCH_TIMER_VIRT_PPI]           = "virt",
79         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
80         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
81 };
82
83 static struct clock_event_device __percpu *arch_timer_evt;
84
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97
98 static int __init early_evtstrm_cfg(char *buf)
99 {
100         return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103
104 /*
105  * Makes an educated guess at a valid counter width based on the Generic Timer
106  * specification. Of note:
107  *   1) the system counter is at least 56 bits wide
108  *   2) a roll-over time of not less than 40 years
109  *
110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111  */
112 static int arch_counter_get_width(void)
113 {
114         u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115
116         /* guarantee the returned width is within the valid range */
117         return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119
120 /*
121  * Architected system timer support.
122  */
123
124 static __always_inline
125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126                           struct clock_event_device *clk)
127 {
128         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129                 struct arch_timer *timer = to_arch_timer(clk);
130                 switch (reg) {
131                 case ARCH_TIMER_REG_CTRL:
132                         writel_relaxed((u32)val, timer->base + CNTP_CTL);
133                         break;
134                 case ARCH_TIMER_REG_CVAL:
135                         /*
136                          * Not guaranteed to be atomic, so the timer
137                          * must be disabled at this point.
138                          */
139                         writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140                         break;
141                 default:
142                         BUILD_BUG();
143                 }
144         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145                 struct arch_timer *timer = to_arch_timer(clk);
146                 switch (reg) {
147                 case ARCH_TIMER_REG_CTRL:
148                         writel_relaxed((u32)val, timer->base + CNTV_CTL);
149                         break;
150                 case ARCH_TIMER_REG_CVAL:
151                         /* Same restriction as above */
152                         writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153                         break;
154                 default:
155                         BUILD_BUG();
156                 }
157         } else {
158                 arch_timer_reg_write_cp15(access, reg, val);
159         }
160 }
161
162 static __always_inline
163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164                         struct clock_event_device *clk)
165 {
166         u32 val;
167
168         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169                 struct arch_timer *timer = to_arch_timer(clk);
170                 switch (reg) {
171                 case ARCH_TIMER_REG_CTRL:
172                         val = readl_relaxed(timer->base + CNTP_CTL);
173                         break;
174                 default:
175                         BUILD_BUG();
176                 }
177         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178                 struct arch_timer *timer = to_arch_timer(clk);
179                 switch (reg) {
180                 case ARCH_TIMER_REG_CTRL:
181                         val = readl_relaxed(timer->base + CNTV_CTL);
182                         break;
183                 default:
184                         BUILD_BUG();
185                 }
186         } else {
187                 val = arch_timer_reg_read_cp15(access, reg);
188         }
189
190         return val;
191 }
192
193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195         return __arch_counter_get_cntpct_stable();
196 }
197
198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200         return __arch_counter_get_cntpct();
201 }
202
203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205         return __arch_counter_get_cntvct_stable();
206 }
207
208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210         return __arch_counter_get_cntvct();
211 }
212
213 /*
214  * Default to cp15 based access because arm64 uses this function for
215  * sched_clock() before DT is probed and the cp15 method is guaranteed
216  * to exist on arm64. arm doesn't use this before DT is probed so even
217  * if we don't have the cp15 accessors we won't have a problem.
218  */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221
222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224         return arch_timer_read_counter();
225 }
226
227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229         return arch_timer_read_counter();
230 }
231
232 static struct clocksource clocksource_counter = {
233         .name   = "arch_sys_counter",
234         .id     = CSID_ARM_ARCH_COUNTER,
235         .rating = 400,
236         .read   = arch_counter_read,
237         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239
240 static struct cyclecounter cyclecounter __ro_after_init = {
241         .read   = arch_counter_read_cc,
242 };
243
244 struct ate_acpi_oem_info {
245         char oem_id[ACPI_OEM_ID_SIZE + 1];
246         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247         u32 oem_revision;
248 };
249
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252  * The number of retries is an arbitrary value well beyond the highest number
253  * of iterations the loop has been observed to take.
254  */
255 #define __fsl_a008585_read_reg(reg) ({                  \
256         u64 _old, _new;                                 \
257         int _retries = 200;                             \
258                                                         \
259         do {                                            \
260                 _old = read_sysreg(reg);                \
261                 _new = read_sysreg(reg);                \
262                 _retries--;                             \
263         } while (unlikely(_old != _new) && _retries);   \
264                                                         \
265         WARN_ON_ONCE(!_retries);                        \
266         _new;                                           \
267 })
268
269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271         return __fsl_a008585_read_reg(cntpct_el0);
272 }
273
274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276         return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282  * Verify whether the value of the second read is larger than the first by
283  * less than 32 is the only way to confirm the value is correct, so clear the
284  * lower 5 bits to check whether the difference is greater than 32 or not.
285  * Theoretically the erratum should not occur more than twice in succession
286  * when reading the system counter, but it is possible that some interrupts
287  * may lead to more than twice read errors, triggering the warning, so setting
288  * the number of retries far beyond the number of iterations the loop has been
289  * observed to take.
290  */
291 #define __hisi_161010101_read_reg(reg) ({                               \
292         u64 _old, _new;                                         \
293         int _retries = 50;                                      \
294                                                                 \
295         do {                                                    \
296                 _old = read_sysreg(reg);                        \
297                 _new = read_sysreg(reg);                        \
298                 _retries--;                                     \
299         } while (unlikely((_new - _old) >> 5) && _retries);     \
300                                                                 \
301         WARN_ON_ONCE(!_retries);                                \
302         _new;                                                   \
303 })
304
305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307         return __hisi_161010101_read_reg(cntpct_el0);
308 }
309
310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312         return __hisi_161010101_read_reg(cntvct_el0);
313 }
314
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316         /*
317          * Note that trailing spaces are required to properly match
318          * the OEM table information.
319          */
320         {
321                 .oem_id         = "HISI  ",
322                 .oem_table_id   = "HIP05   ",
323                 .oem_revision   = 0,
324         },
325         {
326                 .oem_id         = "HISI  ",
327                 .oem_table_id   = "HIP06   ",
328                 .oem_revision   = 0,
329         },
330         {
331                 .oem_id         = "HISI  ",
332                 .oem_table_id   = "HIP07   ",
333                 .oem_revision   = 0,
334         },
335         { /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338
339 #ifdef CONFIG_ARM64_ERRATUM_858921
340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342         u64 old, new;
343
344         old = read_sysreg(cntpct_el0);
345         new = read_sysreg(cntpct_el0);
346         return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348
349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351         u64 old, new;
352
353         old = read_sysreg(cntvct_el0);
354         new = read_sysreg(cntvct_el0);
355         return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361  * The low bits of the counter registers are indeterminate while bit 10 or
362  * greater is rolling over. Since the counter value can jump both backward
363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366  */
367 #define __sun50i_a64_read_reg(reg) ({                                   \
368         u64 _val;                                                       \
369         int _retries = 150;                                             \
370                                                                         \
371         do {                                                            \
372                 _val = read_sysreg(reg);                                \
373                 _retries--;                                             \
374         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
375                                                                         \
376         WARN_ON_ONCE(!_retries);                                        \
377         _val;                                                           \
378 })
379
380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382         return __sun50i_a64_read_reg(cntpct_el0);
383 }
384
385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387         return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396
397 /*
398  * Force the inlining of this function so that the register accesses
399  * can be themselves correctly inlined.
400  */
401 static __always_inline
402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403                                     struct clock_event_device *clk)
404 {
405         unsigned long ctrl;
406         u64 cval;
407
408         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409         ctrl |= ARCH_TIMER_CTRL_ENABLE;
410         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411
412         if (access == ARCH_TIMER_PHYS_ACCESS) {
413                 cval = evt + arch_counter_get_cntpct_stable();
414                 write_sysreg(cval, cntp_cval_el0);
415         } else {
416                 cval = evt + arch_counter_get_cntvct_stable();
417                 write_sysreg(cval, cntv_cval_el0);
418         }
419
420         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422
423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424                                             struct clock_event_device *clk)
425 {
426         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427         return 0;
428 }
429
430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431                                             struct clock_event_device *clk)
432 {
433         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434         return 0;
435 }
436
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439         {
440                 .match_type = ate_match_dt,
441                 .id = "fsl,erratum-a008585",
442                 .desc = "Freescale erratum a005858",
443                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445                 .set_next_event_phys = erratum_set_next_event_phys,
446                 .set_next_event_virt = erratum_set_next_event_virt,
447         },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450         {
451                 .match_type = ate_match_dt,
452                 .id = "hisilicon,erratum-161010101",
453                 .desc = "HiSilicon erratum 161010101",
454                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456                 .set_next_event_phys = erratum_set_next_event_phys,
457                 .set_next_event_virt = erratum_set_next_event_virt,
458         },
459         {
460                 .match_type = ate_match_acpi_oem_info,
461                 .id = hisi_161010101_oem_info,
462                 .desc = "HiSilicon erratum 161010101",
463                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465                 .set_next_event_phys = erratum_set_next_event_phys,
466                 .set_next_event_virt = erratum_set_next_event_virt,
467         },
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470         {
471                 .match_type = ate_match_local_cap_id,
472                 .id = (void *)ARM64_WORKAROUND_858921,
473                 .desc = "ARM erratum 858921",
474                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476         },
477 #endif
478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
479         {
480                 .match_type = ate_match_dt,
481                 .id = "allwinner,erratum-unknown1",
482                 .desc = "Allwinner erratum UNKNOWN1",
483                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
484                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
485                 .set_next_event_phys = erratum_set_next_event_phys,
486                 .set_next_event_virt = erratum_set_next_event_virt,
487         },
488 #endif
489 #ifdef CONFIG_ARM64_ERRATUM_1418040
490         {
491                 .match_type = ate_match_local_cap_id,
492                 .id = (void *)ARM64_WORKAROUND_1418040,
493                 .desc = "ARM erratum 1418040",
494                 .disable_compat_vdso = true,
495         },
496 #endif
497 };
498
499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
500                                const void *);
501
502 static
503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
504                                  const void *arg)
505 {
506         const struct device_node *np = arg;
507
508         return of_property_read_bool(np, wa->id);
509 }
510
511 static
512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
513                                         const void *arg)
514 {
515         return this_cpu_has_cap((uintptr_t)wa->id);
516 }
517
518
519 static
520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
521                                        const void *arg)
522 {
523         static const struct ate_acpi_oem_info empty_oem_info = {};
524         const struct ate_acpi_oem_info *info = wa->id;
525         const struct acpi_table_header *table = arg;
526
527         /* Iterate over the ACPI OEM info array, looking for a match */
528         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
529                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
530                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
531                     info->oem_revision == table->oem_revision)
532                         return true;
533
534                 info++;
535         }
536
537         return false;
538 }
539
540 static const struct arch_timer_erratum_workaround *
541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
542                           ate_match_fn_t match_fn,
543                           void *arg)
544 {
545         int i;
546
547         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
548                 if (ool_workarounds[i].match_type != type)
549                         continue;
550
551                 if (match_fn(&ool_workarounds[i], arg))
552                         return &ool_workarounds[i];
553         }
554
555         return NULL;
556 }
557
558 static
559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
560                                   bool local)
561 {
562         int i;
563
564         if (local) {
565                 __this_cpu_write(timer_unstable_counter_workaround, wa);
566         } else {
567                 for_each_possible_cpu(i)
568                         per_cpu(timer_unstable_counter_workaround, i) = wa;
569         }
570
571         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
572                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
573
574         /*
575          * Don't use the vdso fastpath if errata require using the
576          * out-of-line counter accessor. We may change our mind pretty
577          * late in the game (with a per-CPU erratum, for example), so
578          * change both the default value and the vdso itself.
579          */
580         if (wa->read_cntvct_el0) {
581                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
582                 vdso_default = VDSO_CLOCKMODE_NONE;
583         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
584                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
585                 clocksource_counter.vdso_clock_mode = vdso_default;
586         }
587 }
588
589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
590                                             void *arg)
591 {
592         const struct arch_timer_erratum_workaround *wa, *__wa;
593         ate_match_fn_t match_fn = NULL;
594         bool local = false;
595
596         switch (type) {
597         case ate_match_dt:
598                 match_fn = arch_timer_check_dt_erratum;
599                 break;
600         case ate_match_local_cap_id:
601                 match_fn = arch_timer_check_local_cap_erratum;
602                 local = true;
603                 break;
604         case ate_match_acpi_oem_info:
605                 match_fn = arch_timer_check_acpi_oem_erratum;
606                 break;
607         default:
608                 WARN_ON(1);
609                 return;
610         }
611
612         wa = arch_timer_iterate_errata(type, match_fn, arg);
613         if (!wa)
614                 return;
615
616         __wa = __this_cpu_read(timer_unstable_counter_workaround);
617         if (__wa && wa != __wa)
618                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
619                         wa->desc, __wa->desc);
620
621         if (__wa)
622                 return;
623
624         arch_timer_enable_workaround(wa, local);
625         pr_info("Enabling %s workaround for %s\n",
626                 local ? "local" : "global", wa->desc);
627 }
628
629 static bool arch_timer_this_cpu_has_cntvct_wa(void)
630 {
631         return has_erratum_handler(read_cntvct_el0);
632 }
633
634 static bool arch_timer_counter_has_wa(void)
635 {
636         return atomic_read(&timer_unstable_counter_workaround_in_use);
637 }
638 #else
639 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
640 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
641 #define arch_timer_counter_has_wa()                     ({false;})
642 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
643
644 static __always_inline irqreturn_t timer_handler(const int access,
645                                         struct clock_event_device *evt)
646 {
647         unsigned long ctrl;
648
649         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
650         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
651                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
652                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
653                 evt->event_handler(evt);
654                 return IRQ_HANDLED;
655         }
656
657         return IRQ_NONE;
658 }
659
660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
661 {
662         struct clock_event_device *evt = dev_id;
663
664         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
665 }
666
667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
668 {
669         struct clock_event_device *evt = dev_id;
670
671         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
672 }
673
674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
675 {
676         struct clock_event_device *evt = dev_id;
677
678         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
679 }
680
681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
682 {
683         struct clock_event_device *evt = dev_id;
684
685         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
686 }
687
688 static __always_inline int timer_shutdown(const int access,
689                                           struct clock_event_device *clk)
690 {
691         unsigned long ctrl;
692
693         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
694         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
695         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
696
697         return 0;
698 }
699
700 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
701 {
702         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
703 }
704
705 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
706 {
707         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
708 }
709
710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
711 {
712         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
713 }
714
715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
716 {
717         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
718 }
719
720 static __always_inline void set_next_event(const int access, unsigned long evt,
721                                            struct clock_event_device *clk)
722 {
723         unsigned long ctrl;
724         u64 cnt;
725
726         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
727         ctrl |= ARCH_TIMER_CTRL_ENABLE;
728         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
729
730         if (access == ARCH_TIMER_PHYS_ACCESS)
731                 cnt = __arch_counter_get_cntpct();
732         else
733                 cnt = __arch_counter_get_cntvct();
734
735         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
736         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
737 }
738
739 static int arch_timer_set_next_event_virt(unsigned long evt,
740                                           struct clock_event_device *clk)
741 {
742         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
743         return 0;
744 }
745
746 static int arch_timer_set_next_event_phys(unsigned long evt,
747                                           struct clock_event_device *clk)
748 {
749         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
750         return 0;
751 }
752
753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
754 {
755         u32 cnt_lo, cnt_hi, tmp_hi;
756
757         do {
758                 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
759                 cnt_lo = readl_relaxed(t->base + offset_lo);
760                 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
761         } while (cnt_hi != tmp_hi);
762
763         return ((u64) cnt_hi << 32) | cnt_lo;
764 }
765
766 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
767                                            struct clock_event_device *clk)
768 {
769         struct arch_timer *timer = to_arch_timer(clk);
770         unsigned long ctrl;
771         u64 cnt;
772
773         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
774         ctrl |= ARCH_TIMER_CTRL_ENABLE;
775         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
776
777         if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
778                 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
779         else
780                 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
781
782         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
783         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
784 }
785
786 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
787                                               struct clock_event_device *clk)
788 {
789         set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
790         return 0;
791 }
792
793 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
794                                               struct clock_event_device *clk)
795 {
796         set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
797         return 0;
798 }
799
800 static u64 __arch_timer_check_delta(void)
801 {
802 #ifdef CONFIG_ARM64
803         const struct midr_range broken_cval_midrs[] = {
804                 /*
805                  * XGene-1 implements CVAL in terms of TVAL, meaning
806                  * that the maximum timer range is 32bit. Shame on them.
807                  */
808                 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
809                                                  APM_CPU_PART_POTENZA)),
810                 {},
811         };
812
813         if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
814                 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
815                 return CLOCKSOURCE_MASK(32);
816         }
817 #endif
818         return CLOCKSOURCE_MASK(arch_counter_get_width());
819 }
820
821 static void __arch_timer_setup(unsigned type,
822                                struct clock_event_device *clk)
823 {
824         u64 max_delta;
825
826         clk->features = CLOCK_EVT_FEAT_ONESHOT;
827
828         if (type == ARCH_TIMER_TYPE_CP15) {
829                 typeof(clk->set_next_event) sne;
830
831                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
832
833                 if (arch_timer_c3stop)
834                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
835                 clk->name = "arch_sys_timer";
836                 clk->rating = 450;
837                 clk->cpumask = cpumask_of(smp_processor_id());
838                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
839                 switch (arch_timer_uses_ppi) {
840                 case ARCH_TIMER_VIRT_PPI:
841                         clk->set_state_shutdown = arch_timer_shutdown_virt;
842                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
843                         sne = erratum_handler(set_next_event_virt);
844                         break;
845                 case ARCH_TIMER_PHYS_SECURE_PPI:
846                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
847                 case ARCH_TIMER_HYP_PPI:
848                         clk->set_state_shutdown = arch_timer_shutdown_phys;
849                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
850                         sne = erratum_handler(set_next_event_phys);
851                         break;
852                 default:
853                         BUG();
854                 }
855
856                 clk->set_next_event = sne;
857                 max_delta = __arch_timer_check_delta();
858         } else {
859                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
860                 clk->name = "arch_mem_timer";
861                 clk->rating = 400;
862                 clk->cpumask = cpu_possible_mask;
863                 if (arch_timer_mem_use_virtual) {
864                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
865                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
866                         clk->set_next_event =
867                                 arch_timer_set_next_event_virt_mem;
868                 } else {
869                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
870                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
871                         clk->set_next_event =
872                                 arch_timer_set_next_event_phys_mem;
873                 }
874
875                 max_delta = CLOCKSOURCE_MASK(56);
876         }
877
878         clk->set_state_shutdown(clk);
879
880         clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
881 }
882
883 static void arch_timer_evtstrm_enable(int divider)
884 {
885         u32 cntkctl = arch_timer_get_cntkctl();
886
887         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
888         /* Set the divider and enable virtual event stream */
889         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
890                         | ARCH_TIMER_VIRT_EVT_EN;
891         arch_timer_set_cntkctl(cntkctl);
892         arch_timer_set_evtstrm_feature();
893         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
894 }
895
896 static void arch_timer_configure_evtstream(void)
897 {
898         int evt_stream_div, lsb;
899
900         /*
901          * As the event stream can at most be generated at half the frequency
902          * of the counter, use half the frequency when computing the divider.
903          */
904         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
905
906         /*
907          * Find the closest power of two to the divisor. If the adjacent bit
908          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
909          */
910         lsb = fls(evt_stream_div) - 1;
911         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
912                 lsb++;
913
914         /* enable event stream */
915         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
916 }
917
918 static void arch_counter_set_user_access(void)
919 {
920         u32 cntkctl = arch_timer_get_cntkctl();
921
922         /* Disable user access to the timers and both counters */
923         /* Also disable virtual event stream */
924         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
925                         | ARCH_TIMER_USR_VT_ACCESS_EN
926                         | ARCH_TIMER_USR_VCT_ACCESS_EN
927                         | ARCH_TIMER_VIRT_EVT_EN
928                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
929
930         /*
931          * Enable user access to the virtual counter if it doesn't
932          * need to be workaround. The vdso may have been already
933          * disabled though.
934          */
935         if (arch_timer_this_cpu_has_cntvct_wa())
936                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
937         else
938                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
939
940         arch_timer_set_cntkctl(cntkctl);
941 }
942
943 static bool arch_timer_has_nonsecure_ppi(void)
944 {
945         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
946                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
947 }
948
949 static u32 check_ppi_trigger(int irq)
950 {
951         u32 flags = irq_get_trigger_type(irq);
952
953         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
954                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
955                 pr_warn("WARNING: Please fix your firmware\n");
956                 flags = IRQF_TRIGGER_LOW;
957         }
958
959         return flags;
960 }
961
962 static int arch_timer_starting_cpu(unsigned int cpu)
963 {
964         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
965         u32 flags;
966
967         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
968
969         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
970         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
971
972         if (arch_timer_has_nonsecure_ppi()) {
973                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
974                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
975                                   flags);
976         }
977
978         arch_counter_set_user_access();
979         if (evtstrm_enable)
980                 arch_timer_configure_evtstream();
981
982         return 0;
983 }
984
985 static int validate_timer_rate(void)
986 {
987         if (!arch_timer_rate)
988                 return -EINVAL;
989
990         /* Arch timer frequency < 1MHz can cause trouble */
991         WARN_ON(arch_timer_rate < 1000000);
992
993         return 0;
994 }
995
996 /*
997  * For historical reasons, when probing with DT we use whichever (non-zero)
998  * rate was probed first, and don't verify that others match. If the first node
999  * probed has a clock-frequency property, this overrides the HW register.
1000  */
1001 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1002 {
1003         /* Who has more than one independent system counter? */
1004         if (arch_timer_rate)
1005                 return;
1006
1007         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1008                 arch_timer_rate = rate;
1009
1010         /* Check the timer frequency. */
1011         if (validate_timer_rate())
1012                 pr_warn("frequency not available\n");
1013 }
1014
1015 static void __init arch_timer_banner(unsigned type)
1016 {
1017         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1018                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1019                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1020                         " and " : "",
1021                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1022                 (unsigned long)arch_timer_rate / 1000000,
1023                 (unsigned long)(arch_timer_rate / 10000) % 100,
1024                 type & ARCH_TIMER_TYPE_CP15 ?
1025                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1026                         "",
1027                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1028                 type & ARCH_TIMER_TYPE_MEM ?
1029                         arch_timer_mem_use_virtual ? "virt" : "phys" :
1030                         "");
1031 }
1032
1033 u32 arch_timer_get_rate(void)
1034 {
1035         return arch_timer_rate;
1036 }
1037
1038 bool arch_timer_evtstrm_available(void)
1039 {
1040         /*
1041          * We might get called from a preemptible context. This is fine
1042          * because availability of the event stream should be always the same
1043          * for a preemptible context and context where we might resume a task.
1044          */
1045         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1046 }
1047
1048 static u64 arch_counter_get_cntvct_mem(void)
1049 {
1050         return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1051 }
1052
1053 static struct arch_timer_kvm_info arch_timer_kvm_info;
1054
1055 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1056 {
1057         return &arch_timer_kvm_info;
1058 }
1059
1060 static void __init arch_counter_register(unsigned type)
1061 {
1062         u64 start_count;
1063         int width;
1064
1065         /* Register the CP15 based counter if we have one */
1066         if (type & ARCH_TIMER_TYPE_CP15) {
1067                 u64 (*rd)(void);
1068
1069                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1070                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1071                         if (arch_timer_counter_has_wa())
1072                                 rd = arch_counter_get_cntvct_stable;
1073                         else
1074                                 rd = arch_counter_get_cntvct;
1075                 } else {
1076                         if (arch_timer_counter_has_wa())
1077                                 rd = arch_counter_get_cntpct_stable;
1078                         else
1079                                 rd = arch_counter_get_cntpct;
1080                 }
1081
1082                 arch_timer_read_counter = rd;
1083                 clocksource_counter.vdso_clock_mode = vdso_default;
1084         } else {
1085                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1086         }
1087
1088         width = arch_counter_get_width();
1089         clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1090         cyclecounter.mask = CLOCKSOURCE_MASK(width);
1091
1092         if (!arch_counter_suspend_stop)
1093                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1094         start_count = arch_timer_read_counter();
1095         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1096         cyclecounter.mult = clocksource_counter.mult;
1097         cyclecounter.shift = clocksource_counter.shift;
1098         timecounter_init(&arch_timer_kvm_info.timecounter,
1099                          &cyclecounter, start_count);
1100
1101         sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1102 }
1103
1104 static void arch_timer_stop(struct clock_event_device *clk)
1105 {
1106         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1107
1108         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1109         if (arch_timer_has_nonsecure_ppi())
1110                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1111
1112         clk->set_state_shutdown(clk);
1113 }
1114
1115 static int arch_timer_dying_cpu(unsigned int cpu)
1116 {
1117         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1118
1119         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1120
1121         arch_timer_stop(clk);
1122         return 0;
1123 }
1124
1125 #ifdef CONFIG_CPU_PM
1126 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1127 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1128                                     unsigned long action, void *hcpu)
1129 {
1130         if (action == CPU_PM_ENTER) {
1131                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1132
1133                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1134         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1135                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1136
1137                 if (arch_timer_have_evtstrm_feature())
1138                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1139         }
1140         return NOTIFY_OK;
1141 }
1142
1143 static struct notifier_block arch_timer_cpu_pm_notifier = {
1144         .notifier_call = arch_timer_cpu_pm_notify,
1145 };
1146
1147 static int __init arch_timer_cpu_pm_init(void)
1148 {
1149         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1150 }
1151
1152 static void __init arch_timer_cpu_pm_deinit(void)
1153 {
1154         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1155 }
1156
1157 #else
1158 static int __init arch_timer_cpu_pm_init(void)
1159 {
1160         return 0;
1161 }
1162
1163 static void __init arch_timer_cpu_pm_deinit(void)
1164 {
1165 }
1166 #endif
1167
1168 static int __init arch_timer_register(void)
1169 {
1170         int err;
1171         int ppi;
1172
1173         arch_timer_evt = alloc_percpu(struct clock_event_device);
1174         if (!arch_timer_evt) {
1175                 err = -ENOMEM;
1176                 goto out;
1177         }
1178
1179         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1180         switch (arch_timer_uses_ppi) {
1181         case ARCH_TIMER_VIRT_PPI:
1182                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1183                                          "arch_timer", arch_timer_evt);
1184                 break;
1185         case ARCH_TIMER_PHYS_SECURE_PPI:
1186         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1187                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1188                                          "arch_timer", arch_timer_evt);
1189                 if (!err && arch_timer_has_nonsecure_ppi()) {
1190                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1191                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1192                                                  "arch_timer", arch_timer_evt);
1193                         if (err)
1194                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1195                                                 arch_timer_evt);
1196                 }
1197                 break;
1198         case ARCH_TIMER_HYP_PPI:
1199                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1200                                          "arch_timer", arch_timer_evt);
1201                 break;
1202         default:
1203                 BUG();
1204         }
1205
1206         if (err) {
1207                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1208                 goto out_free;
1209         }
1210
1211         err = arch_timer_cpu_pm_init();
1212         if (err)
1213                 goto out_unreg_notify;
1214
1215         /* Register and immediately configure the timer on the boot CPU */
1216         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1217                                 "clockevents/arm/arch_timer:starting",
1218                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1219         if (err)
1220                 goto out_unreg_cpupm;
1221         return 0;
1222
1223 out_unreg_cpupm:
1224         arch_timer_cpu_pm_deinit();
1225
1226 out_unreg_notify:
1227         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1228         if (arch_timer_has_nonsecure_ppi())
1229                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1230                                 arch_timer_evt);
1231
1232 out_free:
1233         free_percpu(arch_timer_evt);
1234 out:
1235         return err;
1236 }
1237
1238 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1239 {
1240         int ret;
1241         irq_handler_t func;
1242
1243         arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1244         if (!arch_timer_mem)
1245                 return -ENOMEM;
1246
1247         arch_timer_mem->base = base;
1248         arch_timer_mem->evt.irq = irq;
1249         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1250
1251         if (arch_timer_mem_use_virtual)
1252                 func = arch_timer_handler_virt_mem;
1253         else
1254                 func = arch_timer_handler_phys_mem;
1255
1256         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1257         if (ret) {
1258                 pr_err("Failed to request mem timer irq\n");
1259                 kfree(arch_timer_mem);
1260                 arch_timer_mem = NULL;
1261         }
1262
1263         return ret;
1264 }
1265
1266 static const struct of_device_id arch_timer_of_match[] __initconst = {
1267         { .compatible   = "arm,armv7-timer",    },
1268         { .compatible   = "arm,armv8-timer",    },
1269         {},
1270 };
1271
1272 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1273         { .compatible   = "arm,armv7-timer-mem", },
1274         {},
1275 };
1276
1277 static bool __init arch_timer_needs_of_probing(void)
1278 {
1279         struct device_node *dn;
1280         bool needs_probing = false;
1281         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1282
1283         /* We have two timers, and both device-tree nodes are probed. */
1284         if ((arch_timers_present & mask) == mask)
1285                 return false;
1286
1287         /*
1288          * Only one type of timer is probed,
1289          * check if we have another type of timer node in device-tree.
1290          */
1291         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1292                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1293         else
1294                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1295
1296         if (dn && of_device_is_available(dn))
1297                 needs_probing = true;
1298
1299         of_node_put(dn);
1300
1301         return needs_probing;
1302 }
1303
1304 static int __init arch_timer_common_init(void)
1305 {
1306         arch_timer_banner(arch_timers_present);
1307         arch_counter_register(arch_timers_present);
1308         return arch_timer_arch_init();
1309 }
1310
1311 /**
1312  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1313  *
1314  * If HYP mode is available, we know that the physical timer
1315  * has been configured to be accessible from PL1. Use it, so
1316  * that a guest can use the virtual timer instead.
1317  *
1318  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1319  * accesses to CNTP_*_EL1 registers are silently redirected to
1320  * their CNTHP_*_EL2 counterparts, and use a different PPI
1321  * number.
1322  *
1323  * If no interrupt provided for virtual timer, we'll have to
1324  * stick to the physical timer. It'd better be accessible...
1325  * For arm64 we never use the secure interrupt.
1326  *
1327  * Return: a suitable PPI type for the current system.
1328  */
1329 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1330 {
1331         if (is_kernel_in_hyp_mode())
1332                 return ARCH_TIMER_HYP_PPI;
1333
1334         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1335                 return ARCH_TIMER_VIRT_PPI;
1336
1337         if (IS_ENABLED(CONFIG_ARM64))
1338                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1339
1340         return ARCH_TIMER_PHYS_SECURE_PPI;
1341 }
1342
1343 static void __init arch_timer_populate_kvm_info(void)
1344 {
1345         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1346         if (is_kernel_in_hyp_mode())
1347                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1348 }
1349
1350 static int __init arch_timer_of_init(struct device_node *np)
1351 {
1352         int i, irq, ret;
1353         u32 rate;
1354         bool has_names;
1355
1356         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1357                 pr_warn("multiple nodes in dt, skipping\n");
1358                 return 0;
1359         }
1360
1361         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1362
1363         has_names = of_property_read_bool(np, "interrupt-names");
1364
1365         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1366                 if (has_names)
1367                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1368                 else
1369                         irq = of_irq_get(np, i);
1370                 if (irq > 0)
1371                         arch_timer_ppi[i] = irq;
1372         }
1373
1374         arch_timer_populate_kvm_info();
1375
1376         rate = arch_timer_get_cntfrq();
1377         arch_timer_of_configure_rate(rate, np);
1378
1379         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1380
1381         /* Check for globally applicable workarounds */
1382         arch_timer_check_ool_workaround(ate_match_dt, np);
1383
1384         /*
1385          * If we cannot rely on firmware initializing the timer registers then
1386          * we should use the physical timers instead.
1387          */
1388         if (IS_ENABLED(CONFIG_ARM) &&
1389             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1390                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1391         else
1392                 arch_timer_uses_ppi = arch_timer_select_ppi();
1393
1394         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1395                 pr_err("No interrupt available, giving up\n");
1396                 return -EINVAL;
1397         }
1398
1399         /* On some systems, the counter stops ticking when in suspend. */
1400         arch_counter_suspend_stop = of_property_read_bool(np,
1401                                                          "arm,no-tick-in-suspend");
1402
1403         ret = arch_timer_register();
1404         if (ret)
1405                 return ret;
1406
1407         if (arch_timer_needs_of_probing())
1408                 return 0;
1409
1410         return arch_timer_common_init();
1411 }
1412 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1413 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1414
1415 static u32 __init
1416 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1417 {
1418         void __iomem *base;
1419         u32 rate;
1420
1421         base = ioremap(frame->cntbase, frame->size);
1422         if (!base) {
1423                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1424                 return 0;
1425         }
1426
1427         rate = readl_relaxed(base + CNTFRQ);
1428
1429         iounmap(base);
1430
1431         return rate;
1432 }
1433
1434 static struct arch_timer_mem_frame * __init
1435 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1436 {
1437         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1438         void __iomem *cntctlbase;
1439         u32 cnttidr;
1440         int i;
1441
1442         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1443         if (!cntctlbase) {
1444                 pr_err("Can't map CNTCTLBase @ %pa\n",
1445                         &timer_mem->cntctlbase);
1446                 return NULL;
1447         }
1448
1449         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1450
1451         /*
1452          * Try to find a virtual capable frame. Otherwise fall back to a
1453          * physical capable frame.
1454          */
1455         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1456                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1457                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1458
1459                 frame = &timer_mem->frame[i];
1460                 if (!frame->valid)
1461                         continue;
1462
1463                 /* Try enabling everything, and see what sticks */
1464                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1465                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1466
1467                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1468                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1469                         best_frame = frame;
1470                         arch_timer_mem_use_virtual = true;
1471                         break;
1472                 }
1473
1474                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1475                         continue;
1476
1477                 best_frame = frame;
1478         }
1479
1480         iounmap(cntctlbase);
1481
1482         return best_frame;
1483 }
1484
1485 static int __init
1486 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1487 {
1488         void __iomem *base;
1489         int ret, irq = 0;
1490
1491         if (arch_timer_mem_use_virtual)
1492                 irq = frame->virt_irq;
1493         else
1494                 irq = frame->phys_irq;
1495
1496         if (!irq) {
1497                 pr_err("Frame missing %s irq.\n",
1498                        arch_timer_mem_use_virtual ? "virt" : "phys");
1499                 return -EINVAL;
1500         }
1501
1502         if (!request_mem_region(frame->cntbase, frame->size,
1503                                 "arch_mem_timer"))
1504                 return -EBUSY;
1505
1506         base = ioremap(frame->cntbase, frame->size);
1507         if (!base) {
1508                 pr_err("Can't map frame's registers\n");
1509                 return -ENXIO;
1510         }
1511
1512         ret = arch_timer_mem_register(base, irq);
1513         if (ret) {
1514                 iounmap(base);
1515                 return ret;
1516         }
1517
1518         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1519
1520         return 0;
1521 }
1522
1523 static int __init arch_timer_mem_of_init(struct device_node *np)
1524 {
1525         struct arch_timer_mem *timer_mem;
1526         struct arch_timer_mem_frame *frame;
1527         struct device_node *frame_node;
1528         struct resource res;
1529         int ret = -EINVAL;
1530         u32 rate;
1531
1532         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1533         if (!timer_mem)
1534                 return -ENOMEM;
1535
1536         if (of_address_to_resource(np, 0, &res))
1537                 goto out;
1538         timer_mem->cntctlbase = res.start;
1539         timer_mem->size = resource_size(&res);
1540
1541         for_each_available_child_of_node(np, frame_node) {
1542                 u32 n;
1543                 struct arch_timer_mem_frame *frame;
1544
1545                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1546                         pr_err(FW_BUG "Missing frame-number.\n");
1547                         of_node_put(frame_node);
1548                         goto out;
1549                 }
1550                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1551                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1552                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1553                         of_node_put(frame_node);
1554                         goto out;
1555                 }
1556                 frame = &timer_mem->frame[n];
1557
1558                 if (frame->valid) {
1559                         pr_err(FW_BUG "Duplicated frame-number.\n");
1560                         of_node_put(frame_node);
1561                         goto out;
1562                 }
1563
1564                 if (of_address_to_resource(frame_node, 0, &res)) {
1565                         of_node_put(frame_node);
1566                         goto out;
1567                 }
1568                 frame->cntbase = res.start;
1569                 frame->size = resource_size(&res);
1570
1571                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1572                                                        ARCH_TIMER_VIRT_SPI);
1573                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1574                                                        ARCH_TIMER_PHYS_SPI);
1575
1576                 frame->valid = true;
1577         }
1578
1579         frame = arch_timer_mem_find_best_frame(timer_mem);
1580         if (!frame) {
1581                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1582                         &timer_mem->cntctlbase);
1583                 ret = -EINVAL;
1584                 goto out;
1585         }
1586
1587         rate = arch_timer_mem_frame_get_cntfrq(frame);
1588         arch_timer_of_configure_rate(rate, np);
1589
1590         ret = arch_timer_mem_frame_register(frame);
1591         if (!ret && !arch_timer_needs_of_probing())
1592                 ret = arch_timer_common_init();
1593 out:
1594         kfree(timer_mem);
1595         return ret;
1596 }
1597 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1598                        arch_timer_mem_of_init);
1599
1600 #ifdef CONFIG_ACPI_GTDT
1601 static int __init
1602 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1603 {
1604         struct arch_timer_mem_frame *frame;
1605         u32 rate;
1606         int i;
1607
1608         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1609                 frame = &timer_mem->frame[i];
1610
1611                 if (!frame->valid)
1612                         continue;
1613
1614                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1615                 if (rate == arch_timer_rate)
1616                         continue;
1617
1618                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1619                         &frame->cntbase,
1620                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1621
1622                 return -EINVAL;
1623         }
1624
1625         return 0;
1626 }
1627
1628 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1629 {
1630         struct arch_timer_mem *timers, *timer;
1631         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1632         int timer_count, i, ret = 0;
1633
1634         timers = kcalloc(platform_timer_count, sizeof(*timers),
1635                             GFP_KERNEL);
1636         if (!timers)
1637                 return -ENOMEM;
1638
1639         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1640         if (ret || !timer_count)
1641                 goto out;
1642
1643         /*
1644          * While unlikely, it's theoretically possible that none of the frames
1645          * in a timer expose the combination of feature we want.
1646          */
1647         for (i = 0; i < timer_count; i++) {
1648                 timer = &timers[i];
1649
1650                 frame = arch_timer_mem_find_best_frame(timer);
1651                 if (!best_frame)
1652                         best_frame = frame;
1653
1654                 ret = arch_timer_mem_verify_cntfrq(timer);
1655                 if (ret) {
1656                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1657                         goto out;
1658                 }
1659
1660                 if (!best_frame) /* implies !frame */
1661                         /*
1662                          * Only complain about missing suitable frames if we
1663                          * haven't already found one in a previous iteration.
1664                          */
1665                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1666                                 &timer->cntctlbase);
1667         }
1668
1669         if (best_frame)
1670                 ret = arch_timer_mem_frame_register(best_frame);
1671 out:
1672         kfree(timers);
1673         return ret;
1674 }
1675
1676 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1677 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1678 {
1679         int ret, platform_timer_count;
1680
1681         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1682                 pr_warn("already initialized, skipping\n");
1683                 return -EINVAL;
1684         }
1685
1686         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1687
1688         ret = acpi_gtdt_init(table, &platform_timer_count);
1689         if (ret)
1690                 return ret;
1691
1692         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1693                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1694
1695         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1696                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1697
1698         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1699                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1700
1701         arch_timer_populate_kvm_info();
1702
1703         /*
1704          * When probing via ACPI, we have no mechanism to override the sysreg
1705          * CNTFRQ value. This *must* be correct.
1706          */
1707         arch_timer_rate = arch_timer_get_cntfrq();
1708         ret = validate_timer_rate();
1709         if (ret) {
1710                 pr_err(FW_BUG "frequency not available.\n");
1711                 return ret;
1712         }
1713
1714         arch_timer_uses_ppi = arch_timer_select_ppi();
1715         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1716                 pr_err("No interrupt available, giving up\n");
1717                 return -EINVAL;
1718         }
1719
1720         /* Always-on capability */
1721         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1722
1723         /* Check for globally applicable workarounds */
1724         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1725
1726         ret = arch_timer_register();
1727         if (ret)
1728                 return ret;
1729
1730         if (platform_timer_count &&
1731             arch_timer_mem_acpi_init(platform_timer_count))
1732                 pr_err("Failed to initialize memory-mapped timer.\n");
1733
1734         return arch_timer_common_init();
1735 }
1736 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1737 #endif
1738
1739 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1740                                  struct clocksource **cs)
1741 {
1742         struct arm_smccc_res hvc_res;
1743         u32 ptp_counter;
1744         ktime_t ktime;
1745
1746         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1747                 return -EOPNOTSUPP;
1748
1749         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1750                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1751         else
1752                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1753
1754         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1755                              ptp_counter, &hvc_res);
1756
1757         if ((int)(hvc_res.a0) < 0)
1758                 return -EOPNOTSUPP;
1759
1760         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1761         *ts = ktime_to_timespec64(ktime);
1762         if (cycle)
1763                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1764         if (cs)
1765                 *cs = &clocksource_counter;
1766
1767         return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);