Merge tag 'mmc-v5.11' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80
81 static int __init early_evtstrm_cfg(char *buf)
82 {
83         return strtobool(buf, &evtstrm_enable);
84 }
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86
87 /*
88  * Architected system timer support.
89  */
90
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93                           struct clock_event_device *clk)
94 {
95         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96                 struct arch_timer *timer = to_arch_timer(clk);
97                 switch (reg) {
98                 case ARCH_TIMER_REG_CTRL:
99                         writel_relaxed(val, timer->base + CNTP_CTL);
100                         break;
101                 case ARCH_TIMER_REG_TVAL:
102                         writel_relaxed(val, timer->base + CNTP_TVAL);
103                         break;
104                 }
105         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106                 struct arch_timer *timer = to_arch_timer(clk);
107                 switch (reg) {
108                 case ARCH_TIMER_REG_CTRL:
109                         writel_relaxed(val, timer->base + CNTV_CTL);
110                         break;
111                 case ARCH_TIMER_REG_TVAL:
112                         writel_relaxed(val, timer->base + CNTV_TVAL);
113                         break;
114                 }
115         } else {
116                 arch_timer_reg_write_cp15(access, reg, val);
117         }
118 }
119
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122                         struct clock_event_device *clk)
123 {
124         u32 val;
125
126         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127                 struct arch_timer *timer = to_arch_timer(clk);
128                 switch (reg) {
129                 case ARCH_TIMER_REG_CTRL:
130                         val = readl_relaxed(timer->base + CNTP_CTL);
131                         break;
132                 case ARCH_TIMER_REG_TVAL:
133                         val = readl_relaxed(timer->base + CNTP_TVAL);
134                         break;
135                 }
136         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137                 struct arch_timer *timer = to_arch_timer(clk);
138                 switch (reg) {
139                 case ARCH_TIMER_REG_CTRL:
140                         val = readl_relaxed(timer->base + CNTV_CTL);
141                         break;
142                 case ARCH_TIMER_REG_TVAL:
143                         val = readl_relaxed(timer->base + CNTV_TVAL);
144                         break;
145                 }
146         } else {
147                 val = arch_timer_reg_read_cp15(access, reg);
148         }
149
150         return val;
151 }
152
153 static notrace u64 arch_counter_get_cntpct_stable(void)
154 {
155         return __arch_counter_get_cntpct_stable();
156 }
157
158 static notrace u64 arch_counter_get_cntpct(void)
159 {
160         return __arch_counter_get_cntpct();
161 }
162
163 static notrace u64 arch_counter_get_cntvct_stable(void)
164 {
165         return __arch_counter_get_cntvct_stable();
166 }
167
168 static notrace u64 arch_counter_get_cntvct(void)
169 {
170         return __arch_counter_get_cntvct();
171 }
172
173 /*
174  * Default to cp15 based access because arm64 uses this function for
175  * sched_clock() before DT is probed and the cp15 method is guaranteed
176  * to exist on arm64. arm doesn't use this before DT is probed so even
177  * if we don't have the cp15 accessors we won't have a problem.
178  */
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181
182 static u64 arch_counter_read(struct clocksource *cs)
183 {
184         return arch_timer_read_counter();
185 }
186
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188 {
189         return arch_timer_read_counter();
190 }
191
192 static struct clocksource clocksource_counter = {
193         .name   = "arch_sys_counter",
194         .rating = 400,
195         .read   = arch_counter_read,
196         .mask   = CLOCKSOURCE_MASK(56),
197         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
198 };
199
200 static struct cyclecounter cyclecounter __ro_after_init = {
201         .read   = arch_counter_read_cc,
202         .mask   = CLOCKSOURCE_MASK(56),
203 };
204
205 struct ate_acpi_oem_info {
206         char oem_id[ACPI_OEM_ID_SIZE + 1];
207         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208         u32 oem_revision;
209 };
210
211 #ifdef CONFIG_FSL_ERRATUM_A008585
212 /*
213  * The number of retries is an arbitrary value well beyond the highest number
214  * of iterations the loop has been observed to take.
215  */
216 #define __fsl_a008585_read_reg(reg) ({                  \
217         u64 _old, _new;                                 \
218         int _retries = 200;                             \
219                                                         \
220         do {                                            \
221                 _old = read_sysreg(reg);                \
222                 _new = read_sysreg(reg);                \
223                 _retries--;                             \
224         } while (unlikely(_old != _new) && _retries);   \
225                                                         \
226         WARN_ON_ONCE(!_retries);                        \
227         _new;                                           \
228 })
229
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231 {
232         return __fsl_a008585_read_reg(cntp_tval_el0);
233 }
234
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236 {
237         return __fsl_a008585_read_reg(cntv_tval_el0);
238 }
239
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
241 {
242         return __fsl_a008585_read_reg(cntpct_el0);
243 }
244
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
246 {
247         return __fsl_a008585_read_reg(cntvct_el0);
248 }
249 #endif
250
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
252 /*
253  * Verify whether the value of the second read is larger than the first by
254  * less than 32 is the only way to confirm the value is correct, so clear the
255  * lower 5 bits to check whether the difference is greater than 32 or not.
256  * Theoretically the erratum should not occur more than twice in succession
257  * when reading the system counter, but it is possible that some interrupts
258  * may lead to more than twice read errors, triggering the warning, so setting
259  * the number of retries far beyond the number of iterations the loop has been
260  * observed to take.
261  */
262 #define __hisi_161010101_read_reg(reg) ({                               \
263         u64 _old, _new;                                         \
264         int _retries = 50;                                      \
265                                                                 \
266         do {                                                    \
267                 _old = read_sysreg(reg);                        \
268                 _new = read_sysreg(reg);                        \
269                 _retries--;                                     \
270         } while (unlikely((_new - _old) >> 5) && _retries);     \
271                                                                 \
272         WARN_ON_ONCE(!_retries);                                \
273         _new;                                                   \
274 })
275
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277 {
278         return __hisi_161010101_read_reg(cntp_tval_el0);
279 }
280
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282 {
283         return __hisi_161010101_read_reg(cntv_tval_el0);
284 }
285
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
287 {
288         return __hisi_161010101_read_reg(cntpct_el0);
289 }
290
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
292 {
293         return __hisi_161010101_read_reg(cntvct_el0);
294 }
295
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297         /*
298          * Note that trailing spaces are required to properly match
299          * the OEM table information.
300          */
301         {
302                 .oem_id         = "HISI  ",
303                 .oem_table_id   = "HIP05   ",
304                 .oem_revision   = 0,
305         },
306         {
307                 .oem_id         = "HISI  ",
308                 .oem_table_id   = "HIP06   ",
309                 .oem_revision   = 0,
310         },
311         {
312                 .oem_id         = "HISI  ",
313                 .oem_table_id   = "HIP07   ",
314                 .oem_revision   = 0,
315         },
316         { /* Sentinel indicating the end of the OEM array */ },
317 };
318 #endif
319
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
322 {
323         u64 old, new;
324
325         old = read_sysreg(cntpct_el0);
326         new = read_sysreg(cntpct_el0);
327         return (((old ^ new) >> 32) & 1) ? old : new;
328 }
329
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
331 {
332         u64 old, new;
333
334         old = read_sysreg(cntvct_el0);
335         new = read_sysreg(cntvct_el0);
336         return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 #endif
339
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341 /*
342  * The low bits of the counter registers are indeterminate while bit 10 or
343  * greater is rolling over. Since the counter value can jump both backward
344  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345  * with all ones or all zeros in the low bits. Bound the loop by the maximum
346  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347  */
348 #define __sun50i_a64_read_reg(reg) ({                                   \
349         u64 _val;                                                       \
350         int _retries = 150;                                             \
351                                                                         \
352         do {                                                            \
353                 _val = read_sysreg(reg);                                \
354                 _retries--;                                             \
355         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
356                                                                         \
357         WARN_ON_ONCE(!_retries);                                        \
358         _val;                                                           \
359 })
360
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
362 {
363         return __sun50i_a64_read_reg(cntpct_el0);
364 }
365
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
367 {
368         return __sun50i_a64_read_reg(cntvct_el0);
369 }
370
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372 {
373         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374 }
375
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377 {
378         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379 }
380 #endif
381
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389                                                 struct clock_event_device *clk)
390 {
391         unsigned long ctrl;
392         u64 cval;
393
394         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395         ctrl |= ARCH_TIMER_CTRL_ENABLE;
396         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397
398         if (access == ARCH_TIMER_PHYS_ACCESS) {
399                 cval = evt + arch_counter_get_cntpct_stable();
400                 write_sysreg(cval, cntp_cval_el0);
401         } else {
402                 cval = evt + arch_counter_get_cntvct_stable();
403                 write_sysreg(cval, cntv_cval_el0);
404         }
405
406         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407 }
408
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410                                             struct clock_event_device *clk)
411 {
412         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413         return 0;
414 }
415
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417                                             struct clock_event_device *clk)
418 {
419         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420         return 0;
421 }
422
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
425         {
426                 .match_type = ate_match_dt,
427                 .id = "fsl,erratum-a008585",
428                 .desc = "Freescale erratum a005858",
429                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433                 .set_next_event_phys = erratum_set_next_event_tval_phys,
434                 .set_next_event_virt = erratum_set_next_event_tval_virt,
435         },
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
438         {
439                 .match_type = ate_match_dt,
440                 .id = "hisilicon,erratum-161010101",
441                 .desc = "HiSilicon erratum 161010101",
442                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446                 .set_next_event_phys = erratum_set_next_event_tval_phys,
447                 .set_next_event_virt = erratum_set_next_event_tval_virt,
448         },
449         {
450                 .match_type = ate_match_acpi_oem_info,
451                 .id = hisi_161010101_oem_info,
452                 .desc = "HiSilicon erratum 161010101",
453                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457                 .set_next_event_phys = erratum_set_next_event_tval_phys,
458                 .set_next_event_virt = erratum_set_next_event_tval_virt,
459         },
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
462         {
463                 .match_type = ate_match_local_cap_id,
464                 .id = (void *)ARM64_WORKAROUND_858921,
465                 .desc = "ARM erratum 858921",
466                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468         },
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471         {
472                 .match_type = ate_match_dt,
473                 .id = "allwinner,erratum-unknown1",
474                 .desc = "Allwinner erratum UNKNOWN1",
475                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479                 .set_next_event_phys = erratum_set_next_event_tval_phys,
480                 .set_next_event_virt = erratum_set_next_event_tval_virt,
481         },
482 #endif
483 #ifdef CONFIG_ARM64_ERRATUM_1418040
484         {
485                 .match_type = ate_match_local_cap_id,
486                 .id = (void *)ARM64_WORKAROUND_1418040,
487                 .desc = "ARM erratum 1418040",
488                 .disable_compat_vdso = true,
489         },
490 #endif
491 };
492
493 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
494                                const void *);
495
496 static
497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
498                                  const void *arg)
499 {
500         const struct device_node *np = arg;
501
502         return of_property_read_bool(np, wa->id);
503 }
504
505 static
506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
507                                         const void *arg)
508 {
509         return this_cpu_has_cap((uintptr_t)wa->id);
510 }
511
512
513 static
514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
515                                        const void *arg)
516 {
517         static const struct ate_acpi_oem_info empty_oem_info = {};
518         const struct ate_acpi_oem_info *info = wa->id;
519         const struct acpi_table_header *table = arg;
520
521         /* Iterate over the ACPI OEM info array, looking for a match */
522         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
523                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
524                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
525                     info->oem_revision == table->oem_revision)
526                         return true;
527
528                 info++;
529         }
530
531         return false;
532 }
533
534 static const struct arch_timer_erratum_workaround *
535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
536                           ate_match_fn_t match_fn,
537                           void *arg)
538 {
539         int i;
540
541         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
542                 if (ool_workarounds[i].match_type != type)
543                         continue;
544
545                 if (match_fn(&ool_workarounds[i], arg))
546                         return &ool_workarounds[i];
547         }
548
549         return NULL;
550 }
551
552 static
553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
554                                   bool local)
555 {
556         int i;
557
558         if (local) {
559                 __this_cpu_write(timer_unstable_counter_workaround, wa);
560         } else {
561                 for_each_possible_cpu(i)
562                         per_cpu(timer_unstable_counter_workaround, i) = wa;
563         }
564
565         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
566                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
567
568         /*
569          * Don't use the vdso fastpath if errata require using the
570          * out-of-line counter accessor. We may change our mind pretty
571          * late in the game (with a per-CPU erratum, for example), so
572          * change both the default value and the vdso itself.
573          */
574         if (wa->read_cntvct_el0) {
575                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
576                 vdso_default = VDSO_CLOCKMODE_NONE;
577         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
578                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
579                 clocksource_counter.vdso_clock_mode = vdso_default;
580         }
581 }
582
583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
584                                             void *arg)
585 {
586         const struct arch_timer_erratum_workaround *wa, *__wa;
587         ate_match_fn_t match_fn = NULL;
588         bool local = false;
589
590         switch (type) {
591         case ate_match_dt:
592                 match_fn = arch_timer_check_dt_erratum;
593                 break;
594         case ate_match_local_cap_id:
595                 match_fn = arch_timer_check_local_cap_erratum;
596                 local = true;
597                 break;
598         case ate_match_acpi_oem_info:
599                 match_fn = arch_timer_check_acpi_oem_erratum;
600                 break;
601         default:
602                 WARN_ON(1);
603                 return;
604         }
605
606         wa = arch_timer_iterate_errata(type, match_fn, arg);
607         if (!wa)
608                 return;
609
610         __wa = __this_cpu_read(timer_unstable_counter_workaround);
611         if (__wa && wa != __wa)
612                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613                         wa->desc, __wa->desc);
614
615         if (__wa)
616                 return;
617
618         arch_timer_enable_workaround(wa, local);
619         pr_info("Enabling %s workaround for %s\n",
620                 local ? "local" : "global", wa->desc);
621 }
622
623 static bool arch_timer_this_cpu_has_cntvct_wa(void)
624 {
625         return has_erratum_handler(read_cntvct_el0);
626 }
627
628 static bool arch_timer_counter_has_wa(void)
629 {
630         return atomic_read(&timer_unstable_counter_workaround_in_use);
631 }
632 #else
633 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
634 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
635 #define arch_timer_counter_has_wa()                     ({false;})
636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
637
638 static __always_inline irqreturn_t timer_handler(const int access,
639                                         struct clock_event_device *evt)
640 {
641         unsigned long ctrl;
642
643         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
644         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
645                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
646                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
647                 evt->event_handler(evt);
648                 return IRQ_HANDLED;
649         }
650
651         return IRQ_NONE;
652 }
653
654 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
655 {
656         struct clock_event_device *evt = dev_id;
657
658         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
659 }
660
661 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
662 {
663         struct clock_event_device *evt = dev_id;
664
665         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
666 }
667
668 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
669 {
670         struct clock_event_device *evt = dev_id;
671
672         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
673 }
674
675 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
676 {
677         struct clock_event_device *evt = dev_id;
678
679         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
680 }
681
682 static __always_inline int timer_shutdown(const int access,
683                                           struct clock_event_device *clk)
684 {
685         unsigned long ctrl;
686
687         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
688         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
689         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
690
691         return 0;
692 }
693
694 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
695 {
696         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
697 }
698
699 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
700 {
701         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
702 }
703
704 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
705 {
706         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
707 }
708
709 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
710 {
711         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
712 }
713
714 static __always_inline void set_next_event(const int access, unsigned long evt,
715                                            struct clock_event_device *clk)
716 {
717         unsigned long ctrl;
718         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
719         ctrl |= ARCH_TIMER_CTRL_ENABLE;
720         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
721         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
722         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
723 }
724
725 static int arch_timer_set_next_event_virt(unsigned long evt,
726                                           struct clock_event_device *clk)
727 {
728         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
729         return 0;
730 }
731
732 static int arch_timer_set_next_event_phys(unsigned long evt,
733                                           struct clock_event_device *clk)
734 {
735         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
736         return 0;
737 }
738
739 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
740                                               struct clock_event_device *clk)
741 {
742         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
743         return 0;
744 }
745
746 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
747                                               struct clock_event_device *clk)
748 {
749         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
750         return 0;
751 }
752
753 static void __arch_timer_setup(unsigned type,
754                                struct clock_event_device *clk)
755 {
756         clk->features = CLOCK_EVT_FEAT_ONESHOT;
757
758         if (type == ARCH_TIMER_TYPE_CP15) {
759                 typeof(clk->set_next_event) sne;
760
761                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
762
763                 if (arch_timer_c3stop)
764                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
765                 clk->name = "arch_sys_timer";
766                 clk->rating = 450;
767                 clk->cpumask = cpumask_of(smp_processor_id());
768                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
769                 switch (arch_timer_uses_ppi) {
770                 case ARCH_TIMER_VIRT_PPI:
771                         clk->set_state_shutdown = arch_timer_shutdown_virt;
772                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
773                         sne = erratum_handler(set_next_event_virt);
774                         break;
775                 case ARCH_TIMER_PHYS_SECURE_PPI:
776                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
777                 case ARCH_TIMER_HYP_PPI:
778                         clk->set_state_shutdown = arch_timer_shutdown_phys;
779                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
780                         sne = erratum_handler(set_next_event_phys);
781                         break;
782                 default:
783                         BUG();
784                 }
785
786                 clk->set_next_event = sne;
787         } else {
788                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
789                 clk->name = "arch_mem_timer";
790                 clk->rating = 400;
791                 clk->cpumask = cpu_possible_mask;
792                 if (arch_timer_mem_use_virtual) {
793                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
794                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
795                         clk->set_next_event =
796                                 arch_timer_set_next_event_virt_mem;
797                 } else {
798                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
799                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
800                         clk->set_next_event =
801                                 arch_timer_set_next_event_phys_mem;
802                 }
803         }
804
805         clk->set_state_shutdown(clk);
806
807         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
808 }
809
810 static void arch_timer_evtstrm_enable(int divider)
811 {
812         u32 cntkctl = arch_timer_get_cntkctl();
813
814         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
815         /* Set the divider and enable virtual event stream */
816         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
817                         | ARCH_TIMER_VIRT_EVT_EN;
818         arch_timer_set_cntkctl(cntkctl);
819         arch_timer_set_evtstrm_feature();
820         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
821 }
822
823 static void arch_timer_configure_evtstream(void)
824 {
825         int evt_stream_div, lsb;
826
827         /*
828          * As the event stream can at most be generated at half the frequency
829          * of the counter, use half the frequency when computing the divider.
830          */
831         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
832
833         /*
834          * Find the closest power of two to the divisor. If the adjacent bit
835          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
836          */
837         lsb = fls(evt_stream_div) - 1;
838         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
839                 lsb++;
840
841         /* enable event stream */
842         arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
843 }
844
845 static void arch_counter_set_user_access(void)
846 {
847         u32 cntkctl = arch_timer_get_cntkctl();
848
849         /* Disable user access to the timers and both counters */
850         /* Also disable virtual event stream */
851         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
852                         | ARCH_TIMER_USR_VT_ACCESS_EN
853                         | ARCH_TIMER_USR_VCT_ACCESS_EN
854                         | ARCH_TIMER_VIRT_EVT_EN
855                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
856
857         /*
858          * Enable user access to the virtual counter if it doesn't
859          * need to be workaround. The vdso may have been already
860          * disabled though.
861          */
862         if (arch_timer_this_cpu_has_cntvct_wa())
863                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
864         else
865                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
866
867         arch_timer_set_cntkctl(cntkctl);
868 }
869
870 static bool arch_timer_has_nonsecure_ppi(void)
871 {
872         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
873                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
874 }
875
876 static u32 check_ppi_trigger(int irq)
877 {
878         u32 flags = irq_get_trigger_type(irq);
879
880         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
881                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
882                 pr_warn("WARNING: Please fix your firmware\n");
883                 flags = IRQF_TRIGGER_LOW;
884         }
885
886         return flags;
887 }
888
889 static int arch_timer_starting_cpu(unsigned int cpu)
890 {
891         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
892         u32 flags;
893
894         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
895
896         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
897         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
898
899         if (arch_timer_has_nonsecure_ppi()) {
900                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
901                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
902                                   flags);
903         }
904
905         arch_counter_set_user_access();
906         if (evtstrm_enable)
907                 arch_timer_configure_evtstream();
908
909         return 0;
910 }
911
912 static int validate_timer_rate(void)
913 {
914         if (!arch_timer_rate)
915                 return -EINVAL;
916
917         /* Arch timer frequency < 1MHz can cause trouble */
918         WARN_ON(arch_timer_rate < 1000000);
919
920         return 0;
921 }
922
923 /*
924  * For historical reasons, when probing with DT we use whichever (non-zero)
925  * rate was probed first, and don't verify that others match. If the first node
926  * probed has a clock-frequency property, this overrides the HW register.
927  */
928 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
929 {
930         /* Who has more than one independent system counter? */
931         if (arch_timer_rate)
932                 return;
933
934         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
935                 arch_timer_rate = rate;
936
937         /* Check the timer frequency. */
938         if (validate_timer_rate())
939                 pr_warn("frequency not available\n");
940 }
941
942 static void arch_timer_banner(unsigned type)
943 {
944         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
945                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
946                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
947                         " and " : "",
948                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
949                 (unsigned long)arch_timer_rate / 1000000,
950                 (unsigned long)(arch_timer_rate / 10000) % 100,
951                 type & ARCH_TIMER_TYPE_CP15 ?
952                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
953                         "",
954                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
955                 type & ARCH_TIMER_TYPE_MEM ?
956                         arch_timer_mem_use_virtual ? "virt" : "phys" :
957                         "");
958 }
959
960 u32 arch_timer_get_rate(void)
961 {
962         return arch_timer_rate;
963 }
964
965 bool arch_timer_evtstrm_available(void)
966 {
967         /*
968          * We might get called from a preemptible context. This is fine
969          * because availability of the event stream should be always the same
970          * for a preemptible context and context where we might resume a task.
971          */
972         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
973 }
974
975 static u64 arch_counter_get_cntvct_mem(void)
976 {
977         u32 vct_lo, vct_hi, tmp_hi;
978
979         do {
980                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
981                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
982                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
983         } while (vct_hi != tmp_hi);
984
985         return ((u64) vct_hi << 32) | vct_lo;
986 }
987
988 static struct arch_timer_kvm_info arch_timer_kvm_info;
989
990 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
991 {
992         return &arch_timer_kvm_info;
993 }
994
995 static void __init arch_counter_register(unsigned type)
996 {
997         u64 start_count;
998
999         /* Register the CP15 based counter if we have one */
1000         if (type & ARCH_TIMER_TYPE_CP15) {
1001                 u64 (*rd)(void);
1002
1003                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1004                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1005                         if (arch_timer_counter_has_wa())
1006                                 rd = arch_counter_get_cntvct_stable;
1007                         else
1008                                 rd = arch_counter_get_cntvct;
1009                 } else {
1010                         if (arch_timer_counter_has_wa())
1011                                 rd = arch_counter_get_cntpct_stable;
1012                         else
1013                                 rd = arch_counter_get_cntpct;
1014                 }
1015
1016                 arch_timer_read_counter = rd;
1017                 clocksource_counter.vdso_clock_mode = vdso_default;
1018         } else {
1019                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1020         }
1021
1022         if (!arch_counter_suspend_stop)
1023                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1024         start_count = arch_timer_read_counter();
1025         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1026         cyclecounter.mult = clocksource_counter.mult;
1027         cyclecounter.shift = clocksource_counter.shift;
1028         timecounter_init(&arch_timer_kvm_info.timecounter,
1029                          &cyclecounter, start_count);
1030
1031         /* 56 bits minimum, so we assume worst case rollover */
1032         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1033 }
1034
1035 static void arch_timer_stop(struct clock_event_device *clk)
1036 {
1037         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1038
1039         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1040         if (arch_timer_has_nonsecure_ppi())
1041                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1042
1043         clk->set_state_shutdown(clk);
1044 }
1045
1046 static int arch_timer_dying_cpu(unsigned int cpu)
1047 {
1048         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1049
1050         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1051
1052         arch_timer_stop(clk);
1053         return 0;
1054 }
1055
1056 #ifdef CONFIG_CPU_PM
1057 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1058 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1059                                     unsigned long action, void *hcpu)
1060 {
1061         if (action == CPU_PM_ENTER) {
1062                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1063
1064                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1065         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1066                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1067
1068                 if (arch_timer_have_evtstrm_feature())
1069                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1070         }
1071         return NOTIFY_OK;
1072 }
1073
1074 static struct notifier_block arch_timer_cpu_pm_notifier = {
1075         .notifier_call = arch_timer_cpu_pm_notify,
1076 };
1077
1078 static int __init arch_timer_cpu_pm_init(void)
1079 {
1080         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1081 }
1082
1083 static void __init arch_timer_cpu_pm_deinit(void)
1084 {
1085         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1086 }
1087
1088 #else
1089 static int __init arch_timer_cpu_pm_init(void)
1090 {
1091         return 0;
1092 }
1093
1094 static void __init arch_timer_cpu_pm_deinit(void)
1095 {
1096 }
1097 #endif
1098
1099 static int __init arch_timer_register(void)
1100 {
1101         int err;
1102         int ppi;
1103
1104         arch_timer_evt = alloc_percpu(struct clock_event_device);
1105         if (!arch_timer_evt) {
1106                 err = -ENOMEM;
1107                 goto out;
1108         }
1109
1110         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1111         switch (arch_timer_uses_ppi) {
1112         case ARCH_TIMER_VIRT_PPI:
1113                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1114                                          "arch_timer", arch_timer_evt);
1115                 break;
1116         case ARCH_TIMER_PHYS_SECURE_PPI:
1117         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1118                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1119                                          "arch_timer", arch_timer_evt);
1120                 if (!err && arch_timer_has_nonsecure_ppi()) {
1121                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1122                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1123                                                  "arch_timer", arch_timer_evt);
1124                         if (err)
1125                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1126                                                 arch_timer_evt);
1127                 }
1128                 break;
1129         case ARCH_TIMER_HYP_PPI:
1130                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131                                          "arch_timer", arch_timer_evt);
1132                 break;
1133         default:
1134                 BUG();
1135         }
1136
1137         if (err) {
1138                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1139                 goto out_free;
1140         }
1141
1142         err = arch_timer_cpu_pm_init();
1143         if (err)
1144                 goto out_unreg_notify;
1145
1146         /* Register and immediately configure the timer on the boot CPU */
1147         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1148                                 "clockevents/arm/arch_timer:starting",
1149                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1150         if (err)
1151                 goto out_unreg_cpupm;
1152         return 0;
1153
1154 out_unreg_cpupm:
1155         arch_timer_cpu_pm_deinit();
1156
1157 out_unreg_notify:
1158         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1159         if (arch_timer_has_nonsecure_ppi())
1160                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1161                                 arch_timer_evt);
1162
1163 out_free:
1164         free_percpu(arch_timer_evt);
1165 out:
1166         return err;
1167 }
1168
1169 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1170 {
1171         int ret;
1172         irq_handler_t func;
1173         struct arch_timer *t;
1174
1175         t = kzalloc(sizeof(*t), GFP_KERNEL);
1176         if (!t)
1177                 return -ENOMEM;
1178
1179         t->base = base;
1180         t->evt.irq = irq;
1181         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1182
1183         if (arch_timer_mem_use_virtual)
1184                 func = arch_timer_handler_virt_mem;
1185         else
1186                 func = arch_timer_handler_phys_mem;
1187
1188         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1189         if (ret) {
1190                 pr_err("Failed to request mem timer irq\n");
1191                 kfree(t);
1192         }
1193
1194         return ret;
1195 }
1196
1197 static const struct of_device_id arch_timer_of_match[] __initconst = {
1198         { .compatible   = "arm,armv7-timer",    },
1199         { .compatible   = "arm,armv8-timer",    },
1200         {},
1201 };
1202
1203 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1204         { .compatible   = "arm,armv7-timer-mem", },
1205         {},
1206 };
1207
1208 static bool __init arch_timer_needs_of_probing(void)
1209 {
1210         struct device_node *dn;
1211         bool needs_probing = false;
1212         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1213
1214         /* We have two timers, and both device-tree nodes are probed. */
1215         if ((arch_timers_present & mask) == mask)
1216                 return false;
1217
1218         /*
1219          * Only one type of timer is probed,
1220          * check if we have another type of timer node in device-tree.
1221          */
1222         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1223                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1224         else
1225                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1226
1227         if (dn && of_device_is_available(dn))
1228                 needs_probing = true;
1229
1230         of_node_put(dn);
1231
1232         return needs_probing;
1233 }
1234
1235 static int __init arch_timer_common_init(void)
1236 {
1237         arch_timer_banner(arch_timers_present);
1238         arch_counter_register(arch_timers_present);
1239         return arch_timer_arch_init();
1240 }
1241
1242 /**
1243  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1244  *
1245  * If HYP mode is available, we know that the physical timer
1246  * has been configured to be accessible from PL1. Use it, so
1247  * that a guest can use the virtual timer instead.
1248  *
1249  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1250  * accesses to CNTP_*_EL1 registers are silently redirected to
1251  * their CNTHP_*_EL2 counterparts, and use a different PPI
1252  * number.
1253  *
1254  * If no interrupt provided for virtual timer, we'll have to
1255  * stick to the physical timer. It'd better be accessible...
1256  * For arm64 we never use the secure interrupt.
1257  *
1258  * Return: a suitable PPI type for the current system.
1259  */
1260 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1261 {
1262         if (is_kernel_in_hyp_mode())
1263                 return ARCH_TIMER_HYP_PPI;
1264
1265         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1266                 return ARCH_TIMER_VIRT_PPI;
1267
1268         if (IS_ENABLED(CONFIG_ARM64))
1269                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1270
1271         return ARCH_TIMER_PHYS_SECURE_PPI;
1272 }
1273
1274 static void __init arch_timer_populate_kvm_info(void)
1275 {
1276         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1277         if (is_kernel_in_hyp_mode())
1278                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1279 }
1280
1281 static int __init arch_timer_of_init(struct device_node *np)
1282 {
1283         int i, ret;
1284         u32 rate;
1285
1286         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1287                 pr_warn("multiple nodes in dt, skipping\n");
1288                 return 0;
1289         }
1290
1291         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1292         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1293                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1294
1295         arch_timer_populate_kvm_info();
1296
1297         rate = arch_timer_get_cntfrq();
1298         arch_timer_of_configure_rate(rate, np);
1299
1300         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1301
1302         /* Check for globally applicable workarounds */
1303         arch_timer_check_ool_workaround(ate_match_dt, np);
1304
1305         /*
1306          * If we cannot rely on firmware initializing the timer registers then
1307          * we should use the physical timers instead.
1308          */
1309         if (IS_ENABLED(CONFIG_ARM) &&
1310             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1311                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1312         else
1313                 arch_timer_uses_ppi = arch_timer_select_ppi();
1314
1315         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1316                 pr_err("No interrupt available, giving up\n");
1317                 return -EINVAL;
1318         }
1319
1320         /* On some systems, the counter stops ticking when in suspend. */
1321         arch_counter_suspend_stop = of_property_read_bool(np,
1322                                                          "arm,no-tick-in-suspend");
1323
1324         ret = arch_timer_register();
1325         if (ret)
1326                 return ret;
1327
1328         if (arch_timer_needs_of_probing())
1329                 return 0;
1330
1331         return arch_timer_common_init();
1332 }
1333 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1334 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1335
1336 static u32 __init
1337 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1338 {
1339         void __iomem *base;
1340         u32 rate;
1341
1342         base = ioremap(frame->cntbase, frame->size);
1343         if (!base) {
1344                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1345                 return 0;
1346         }
1347
1348         rate = readl_relaxed(base + CNTFRQ);
1349
1350         iounmap(base);
1351
1352         return rate;
1353 }
1354
1355 static struct arch_timer_mem_frame * __init
1356 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1357 {
1358         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1359         void __iomem *cntctlbase;
1360         u32 cnttidr;
1361         int i;
1362
1363         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1364         if (!cntctlbase) {
1365                 pr_err("Can't map CNTCTLBase @ %pa\n",
1366                         &timer_mem->cntctlbase);
1367                 return NULL;
1368         }
1369
1370         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1371
1372         /*
1373          * Try to find a virtual capable frame. Otherwise fall back to a
1374          * physical capable frame.
1375          */
1376         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1377                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1378                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1379
1380                 frame = &timer_mem->frame[i];
1381                 if (!frame->valid)
1382                         continue;
1383
1384                 /* Try enabling everything, and see what sticks */
1385                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1386                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1387
1388                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1389                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1390                         best_frame = frame;
1391                         arch_timer_mem_use_virtual = true;
1392                         break;
1393                 }
1394
1395                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1396                         continue;
1397
1398                 best_frame = frame;
1399         }
1400
1401         iounmap(cntctlbase);
1402
1403         return best_frame;
1404 }
1405
1406 static int __init
1407 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1408 {
1409         void __iomem *base;
1410         int ret, irq = 0;
1411
1412         if (arch_timer_mem_use_virtual)
1413                 irq = frame->virt_irq;
1414         else
1415                 irq = frame->phys_irq;
1416
1417         if (!irq) {
1418                 pr_err("Frame missing %s irq.\n",
1419                        arch_timer_mem_use_virtual ? "virt" : "phys");
1420                 return -EINVAL;
1421         }
1422
1423         if (!request_mem_region(frame->cntbase, frame->size,
1424                                 "arch_mem_timer"))
1425                 return -EBUSY;
1426
1427         base = ioremap(frame->cntbase, frame->size);
1428         if (!base) {
1429                 pr_err("Can't map frame's registers\n");
1430                 return -ENXIO;
1431         }
1432
1433         ret = arch_timer_mem_register(base, irq);
1434         if (ret) {
1435                 iounmap(base);
1436                 return ret;
1437         }
1438
1439         arch_counter_base = base;
1440         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1441
1442         return 0;
1443 }
1444
1445 static int __init arch_timer_mem_of_init(struct device_node *np)
1446 {
1447         struct arch_timer_mem *timer_mem;
1448         struct arch_timer_mem_frame *frame;
1449         struct device_node *frame_node;
1450         struct resource res;
1451         int ret = -EINVAL;
1452         u32 rate;
1453
1454         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1455         if (!timer_mem)
1456                 return -ENOMEM;
1457
1458         if (of_address_to_resource(np, 0, &res))
1459                 goto out;
1460         timer_mem->cntctlbase = res.start;
1461         timer_mem->size = resource_size(&res);
1462
1463         for_each_available_child_of_node(np, frame_node) {
1464                 u32 n;
1465                 struct arch_timer_mem_frame *frame;
1466
1467                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1468                         pr_err(FW_BUG "Missing frame-number.\n");
1469                         of_node_put(frame_node);
1470                         goto out;
1471                 }
1472                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1473                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1474                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1475                         of_node_put(frame_node);
1476                         goto out;
1477                 }
1478                 frame = &timer_mem->frame[n];
1479
1480                 if (frame->valid) {
1481                         pr_err(FW_BUG "Duplicated frame-number.\n");
1482                         of_node_put(frame_node);
1483                         goto out;
1484                 }
1485
1486                 if (of_address_to_resource(frame_node, 0, &res)) {
1487                         of_node_put(frame_node);
1488                         goto out;
1489                 }
1490                 frame->cntbase = res.start;
1491                 frame->size = resource_size(&res);
1492
1493                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1494                                                        ARCH_TIMER_VIRT_SPI);
1495                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1496                                                        ARCH_TIMER_PHYS_SPI);
1497
1498                 frame->valid = true;
1499         }
1500
1501         frame = arch_timer_mem_find_best_frame(timer_mem);
1502         if (!frame) {
1503                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1504                         &timer_mem->cntctlbase);
1505                 ret = -EINVAL;
1506                 goto out;
1507         }
1508
1509         rate = arch_timer_mem_frame_get_cntfrq(frame);
1510         arch_timer_of_configure_rate(rate, np);
1511
1512         ret = arch_timer_mem_frame_register(frame);
1513         if (!ret && !arch_timer_needs_of_probing())
1514                 ret = arch_timer_common_init();
1515 out:
1516         kfree(timer_mem);
1517         return ret;
1518 }
1519 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1520                        arch_timer_mem_of_init);
1521
1522 #ifdef CONFIG_ACPI_GTDT
1523 static int __init
1524 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1525 {
1526         struct arch_timer_mem_frame *frame;
1527         u32 rate;
1528         int i;
1529
1530         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1531                 frame = &timer_mem->frame[i];
1532
1533                 if (!frame->valid)
1534                         continue;
1535
1536                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1537                 if (rate == arch_timer_rate)
1538                         continue;
1539
1540                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1541                         &frame->cntbase,
1542                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1543
1544                 return -EINVAL;
1545         }
1546
1547         return 0;
1548 }
1549
1550 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1551 {
1552         struct arch_timer_mem *timers, *timer;
1553         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1554         int timer_count, i, ret = 0;
1555
1556         timers = kcalloc(platform_timer_count, sizeof(*timers),
1557                             GFP_KERNEL);
1558         if (!timers)
1559                 return -ENOMEM;
1560
1561         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1562         if (ret || !timer_count)
1563                 goto out;
1564
1565         /*
1566          * While unlikely, it's theoretically possible that none of the frames
1567          * in a timer expose the combination of feature we want.
1568          */
1569         for (i = 0; i < timer_count; i++) {
1570                 timer = &timers[i];
1571
1572                 frame = arch_timer_mem_find_best_frame(timer);
1573                 if (!best_frame)
1574                         best_frame = frame;
1575
1576                 ret = arch_timer_mem_verify_cntfrq(timer);
1577                 if (ret) {
1578                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1579                         goto out;
1580                 }
1581
1582                 if (!best_frame) /* implies !frame */
1583                         /*
1584                          * Only complain about missing suitable frames if we
1585                          * haven't already found one in a previous iteration.
1586                          */
1587                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1588                                 &timer->cntctlbase);
1589         }
1590
1591         if (best_frame)
1592                 ret = arch_timer_mem_frame_register(best_frame);
1593 out:
1594         kfree(timers);
1595         return ret;
1596 }
1597
1598 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1599 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1600 {
1601         int ret, platform_timer_count;
1602
1603         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1604                 pr_warn("already initialized, skipping\n");
1605                 return -EINVAL;
1606         }
1607
1608         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1609
1610         ret = acpi_gtdt_init(table, &platform_timer_count);
1611         if (ret)
1612                 return ret;
1613
1614         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1615                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1616
1617         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1618                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1619
1620         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1621                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1622
1623         arch_timer_populate_kvm_info();
1624
1625         /*
1626          * When probing via ACPI, we have no mechanism to override the sysreg
1627          * CNTFRQ value. This *must* be correct.
1628          */
1629         arch_timer_rate = arch_timer_get_cntfrq();
1630         ret = validate_timer_rate();
1631         if (ret) {
1632                 pr_err(FW_BUG "frequency not available.\n");
1633                 return ret;
1634         }
1635
1636         arch_timer_uses_ppi = arch_timer_select_ppi();
1637         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1638                 pr_err("No interrupt available, giving up\n");
1639                 return -EINVAL;
1640         }
1641
1642         /* Always-on capability */
1643         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1644
1645         /* Check for globally applicable workarounds */
1646         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1647
1648         ret = arch_timer_register();
1649         if (ret)
1650                 return ret;
1651
1652         if (platform_timer_count &&
1653             arch_timer_mem_acpi_init(platform_timer_count))
1654                 pr_err("Failed to initialize memory-mapped timer.\n");
1655
1656         return arch_timer_common_init();
1657 }
1658 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1659 #endif