Merge tag 'usb-6.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34
35 #include <clocksource/arm_arch_timer.h>
36
37 #define CNTTIDR         0x08
38 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40 #define CNTACR(n)       (0x40 + ((n) * 4))
41 #define CNTACR_RPCT     BIT(0)
42 #define CNTACR_RVCT     BIT(1)
43 #define CNTACR_RFRQ     BIT(2)
44 #define CNTACR_RVOFF    BIT(3)
45 #define CNTACR_RWVT     BIT(4)
46 #define CNTACR_RWPT     BIT(5)
47
48 #define CNTPCT_LO       0x00
49 #define CNTVCT_LO       0x08
50 #define CNTFRQ          0x10
51 #define CNTP_CVAL_LO    0x20
52 #define CNTP_CTL        0x2c
53 #define CNTV_CVAL_LO    0x30
54 #define CNTV_CTL        0x3c
55
56 /*
57  * The minimum amount of time a generic counter is guaranteed to not roll over
58  * (40 years)
59  */
60 #define MIN_ROLLOVER_SECS       (40ULL * 365 * 24 * 3600)
61
62 static unsigned arch_timers_present __initdata;
63
64 struct arch_timer {
65         void __iomem *base;
66         struct clock_event_device evt;
67 };
68
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
78         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79         [ARCH_TIMER_VIRT_PPI]           = "virt",
80         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
81         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
82 };
83
84 static struct clock_event_device __percpu *arch_timer_evt;
85
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
99 static int __init early_evtstrm_cfg(char *buf)
100 {
101         return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105 /*
106  * Makes an educated guess at a valid counter width based on the Generic Timer
107  * specification. Of note:
108  *   1) the system counter is at least 56 bits wide
109  *   2) a roll-over time of not less than 40 years
110  *
111  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112  */
113 static int arch_counter_get_width(void)
114 {
115         u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117         /* guarantee the returned width is within the valid range */
118         return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120
121 /*
122  * Architected system timer support.
123  */
124
125 static __always_inline
126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127                           struct clock_event_device *clk)
128 {
129         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130                 struct arch_timer *timer = to_arch_timer(clk);
131                 switch (reg) {
132                 case ARCH_TIMER_REG_CTRL:
133                         writel_relaxed((u32)val, timer->base + CNTP_CTL);
134                         break;
135                 case ARCH_TIMER_REG_CVAL:
136                         /*
137                          * Not guaranteed to be atomic, so the timer
138                          * must be disabled at this point.
139                          */
140                         writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141                         break;
142                 default:
143                         BUILD_BUG();
144                 }
145         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146                 struct arch_timer *timer = to_arch_timer(clk);
147                 switch (reg) {
148                 case ARCH_TIMER_REG_CTRL:
149                         writel_relaxed((u32)val, timer->base + CNTV_CTL);
150                         break;
151                 case ARCH_TIMER_REG_CVAL:
152                         /* Same restriction as above */
153                         writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154                         break;
155                 default:
156                         BUILD_BUG();
157                 }
158         } else {
159                 arch_timer_reg_write_cp15(access, reg, val);
160         }
161 }
162
163 static __always_inline
164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165                         struct clock_event_device *clk)
166 {
167         u32 val;
168
169         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170                 struct arch_timer *timer = to_arch_timer(clk);
171                 switch (reg) {
172                 case ARCH_TIMER_REG_CTRL:
173                         val = readl_relaxed(timer->base + CNTP_CTL);
174                         break;
175                 default:
176                         BUILD_BUG();
177                 }
178         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179                 struct arch_timer *timer = to_arch_timer(clk);
180                 switch (reg) {
181                 case ARCH_TIMER_REG_CTRL:
182                         val = readl_relaxed(timer->base + CNTV_CTL);
183                         break;
184                 default:
185                         BUILD_BUG();
186                 }
187         } else {
188                 val = arch_timer_reg_read_cp15(access, reg);
189         }
190
191         return val;
192 }
193
194 static noinstr u64 raw_counter_get_cntpct_stable(void)
195 {
196         return __arch_counter_get_cntpct_stable();
197 }
198
199 static notrace u64 arch_counter_get_cntpct_stable(void)
200 {
201         u64 val;
202         preempt_disable_notrace();
203         val = __arch_counter_get_cntpct_stable();
204         preempt_enable_notrace();
205         return val;
206 }
207
208 static noinstr u64 arch_counter_get_cntpct(void)
209 {
210         return __arch_counter_get_cntpct();
211 }
212
213 static noinstr u64 raw_counter_get_cntvct_stable(void)
214 {
215         return __arch_counter_get_cntvct_stable();
216 }
217
218 static notrace u64 arch_counter_get_cntvct_stable(void)
219 {
220         u64 val;
221         preempt_disable_notrace();
222         val = __arch_counter_get_cntvct_stable();
223         preempt_enable_notrace();
224         return val;
225 }
226
227 static noinstr u64 arch_counter_get_cntvct(void)
228 {
229         return __arch_counter_get_cntvct();
230 }
231
232 /*
233  * Default to cp15 based access because arm64 uses this function for
234  * sched_clock() before DT is probed and the cp15 method is guaranteed
235  * to exist on arm64. arm doesn't use this before DT is probed so even
236  * if we don't have the cp15 accessors we won't have a problem.
237  */
238 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
239 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
240
241 static u64 arch_counter_read(struct clocksource *cs)
242 {
243         return arch_timer_read_counter();
244 }
245
246 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
247 {
248         return arch_timer_read_counter();
249 }
250
251 static struct clocksource clocksource_counter = {
252         .name   = "arch_sys_counter",
253         .id     = CSID_ARM_ARCH_COUNTER,
254         .rating = 400,
255         .read   = arch_counter_read,
256         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
257 };
258
259 static struct cyclecounter cyclecounter __ro_after_init = {
260         .read   = arch_counter_read_cc,
261 };
262
263 struct ate_acpi_oem_info {
264         char oem_id[ACPI_OEM_ID_SIZE + 1];
265         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
266         u32 oem_revision;
267 };
268
269 #ifdef CONFIG_FSL_ERRATUM_A008585
270 /*
271  * The number of retries is an arbitrary value well beyond the highest number
272  * of iterations the loop has been observed to take.
273  */
274 #define __fsl_a008585_read_reg(reg) ({                  \
275         u64 _old, _new;                                 \
276         int _retries = 200;                             \
277                                                         \
278         do {                                            \
279                 _old = read_sysreg(reg);                \
280                 _new = read_sysreg(reg);                \
281                 _retries--;                             \
282         } while (unlikely(_old != _new) && _retries);   \
283                                                         \
284         WARN_ON_ONCE(!_retries);                        \
285         _new;                                           \
286 })
287
288 static u64 notrace fsl_a008585_read_cntpct_el0(void)
289 {
290         return __fsl_a008585_read_reg(cntpct_el0);
291 }
292
293 static u64 notrace fsl_a008585_read_cntvct_el0(void)
294 {
295         return __fsl_a008585_read_reg(cntvct_el0);
296 }
297 #endif
298
299 #ifdef CONFIG_HISILICON_ERRATUM_161010101
300 /*
301  * Verify whether the value of the second read is larger than the first by
302  * less than 32 is the only way to confirm the value is correct, so clear the
303  * lower 5 bits to check whether the difference is greater than 32 or not.
304  * Theoretically the erratum should not occur more than twice in succession
305  * when reading the system counter, but it is possible that some interrupts
306  * may lead to more than twice read errors, triggering the warning, so setting
307  * the number of retries far beyond the number of iterations the loop has been
308  * observed to take.
309  */
310 #define __hisi_161010101_read_reg(reg) ({                               \
311         u64 _old, _new;                                         \
312         int _retries = 50;                                      \
313                                                                 \
314         do {                                                    \
315                 _old = read_sysreg(reg);                        \
316                 _new = read_sysreg(reg);                        \
317                 _retries--;                                     \
318         } while (unlikely((_new - _old) >> 5) && _retries);     \
319                                                                 \
320         WARN_ON_ONCE(!_retries);                                \
321         _new;                                                   \
322 })
323
324 static u64 notrace hisi_161010101_read_cntpct_el0(void)
325 {
326         return __hisi_161010101_read_reg(cntpct_el0);
327 }
328
329 static u64 notrace hisi_161010101_read_cntvct_el0(void)
330 {
331         return __hisi_161010101_read_reg(cntvct_el0);
332 }
333
334 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
335         /*
336          * Note that trailing spaces are required to properly match
337          * the OEM table information.
338          */
339         {
340                 .oem_id         = "HISI  ",
341                 .oem_table_id   = "HIP05   ",
342                 .oem_revision   = 0,
343         },
344         {
345                 .oem_id         = "HISI  ",
346                 .oem_table_id   = "HIP06   ",
347                 .oem_revision   = 0,
348         },
349         {
350                 .oem_id         = "HISI  ",
351                 .oem_table_id   = "HIP07   ",
352                 .oem_revision   = 0,
353         },
354         { /* Sentinel indicating the end of the OEM array */ },
355 };
356 #endif
357
358 #ifdef CONFIG_ARM64_ERRATUM_858921
359 static u64 notrace arm64_858921_read_cntpct_el0(void)
360 {
361         u64 old, new;
362
363         old = read_sysreg(cntpct_el0);
364         new = read_sysreg(cntpct_el0);
365         return (((old ^ new) >> 32) & 1) ? old : new;
366 }
367
368 static u64 notrace arm64_858921_read_cntvct_el0(void)
369 {
370         u64 old, new;
371
372         old = read_sysreg(cntvct_el0);
373         new = read_sysreg(cntvct_el0);
374         return (((old ^ new) >> 32) & 1) ? old : new;
375 }
376 #endif
377
378 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
379 /*
380  * The low bits of the counter registers are indeterminate while bit 10 or
381  * greater is rolling over. Since the counter value can jump both backward
382  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
383  * with all ones or all zeros in the low bits. Bound the loop by the maximum
384  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
385  */
386 #define __sun50i_a64_read_reg(reg) ({                                   \
387         u64 _val;                                                       \
388         int _retries = 150;                                             \
389                                                                         \
390         do {                                                            \
391                 _val = read_sysreg(reg);                                \
392                 _retries--;                                             \
393         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
394                                                                         \
395         WARN_ON_ONCE(!_retries);                                        \
396         _val;                                                           \
397 })
398
399 static u64 notrace sun50i_a64_read_cntpct_el0(void)
400 {
401         return __sun50i_a64_read_reg(cntpct_el0);
402 }
403
404 static u64 notrace sun50i_a64_read_cntvct_el0(void)
405 {
406         return __sun50i_a64_read_reg(cntvct_el0);
407 }
408 #endif
409
410 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
411 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
412 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
413
414 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
415
416 /*
417  * Force the inlining of this function so that the register accesses
418  * can be themselves correctly inlined.
419  */
420 static __always_inline
421 void erratum_set_next_event_generic(const int access, unsigned long evt,
422                                     struct clock_event_device *clk)
423 {
424         unsigned long ctrl;
425         u64 cval;
426
427         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
428         ctrl |= ARCH_TIMER_CTRL_ENABLE;
429         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
430
431         if (access == ARCH_TIMER_PHYS_ACCESS) {
432                 cval = evt + arch_counter_get_cntpct_stable();
433                 write_sysreg(cval, cntp_cval_el0);
434         } else {
435                 cval = evt + arch_counter_get_cntvct_stable();
436                 write_sysreg(cval, cntv_cval_el0);
437         }
438
439         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
440 }
441
442 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
443                                             struct clock_event_device *clk)
444 {
445         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
446         return 0;
447 }
448
449 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
450                                             struct clock_event_device *clk)
451 {
452         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
453         return 0;
454 }
455
456 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
457 #ifdef CONFIG_FSL_ERRATUM_A008585
458         {
459                 .match_type = ate_match_dt,
460                 .id = "fsl,erratum-a008585",
461                 .desc = "Freescale erratum a005858",
462                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
463                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
464                 .set_next_event_phys = erratum_set_next_event_phys,
465                 .set_next_event_virt = erratum_set_next_event_virt,
466         },
467 #endif
468 #ifdef CONFIG_HISILICON_ERRATUM_161010101
469         {
470                 .match_type = ate_match_dt,
471                 .id = "hisilicon,erratum-161010101",
472                 .desc = "HiSilicon erratum 161010101",
473                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
474                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
475                 .set_next_event_phys = erratum_set_next_event_phys,
476                 .set_next_event_virt = erratum_set_next_event_virt,
477         },
478         {
479                 .match_type = ate_match_acpi_oem_info,
480                 .id = hisi_161010101_oem_info,
481                 .desc = "HiSilicon erratum 161010101",
482                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
483                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
484                 .set_next_event_phys = erratum_set_next_event_phys,
485                 .set_next_event_virt = erratum_set_next_event_virt,
486         },
487 #endif
488 #ifdef CONFIG_ARM64_ERRATUM_858921
489         {
490                 .match_type = ate_match_local_cap_id,
491                 .id = (void *)ARM64_WORKAROUND_858921,
492                 .desc = "ARM erratum 858921",
493                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
494                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
495                 .set_next_event_phys = erratum_set_next_event_phys,
496                 .set_next_event_virt = erratum_set_next_event_virt,
497         },
498 #endif
499 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
500         {
501                 .match_type = ate_match_dt,
502                 .id = "allwinner,erratum-unknown1",
503                 .desc = "Allwinner erratum UNKNOWN1",
504                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
505                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
506                 .set_next_event_phys = erratum_set_next_event_phys,
507                 .set_next_event_virt = erratum_set_next_event_virt,
508         },
509 #endif
510 #ifdef CONFIG_ARM64_ERRATUM_1418040
511         {
512                 .match_type = ate_match_local_cap_id,
513                 .id = (void *)ARM64_WORKAROUND_1418040,
514                 .desc = "ARM erratum 1418040",
515                 .disable_compat_vdso = true,
516         },
517 #endif
518 };
519
520 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
521                                const void *);
522
523 static
524 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
525                                  const void *arg)
526 {
527         const struct device_node *np = arg;
528
529         return of_property_read_bool(np, wa->id);
530 }
531
532 static
533 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
534                                         const void *arg)
535 {
536         return this_cpu_has_cap((uintptr_t)wa->id);
537 }
538
539
540 static
541 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
542                                        const void *arg)
543 {
544         static const struct ate_acpi_oem_info empty_oem_info = {};
545         const struct ate_acpi_oem_info *info = wa->id;
546         const struct acpi_table_header *table = arg;
547
548         /* Iterate over the ACPI OEM info array, looking for a match */
549         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
550                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
551                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
552                     info->oem_revision == table->oem_revision)
553                         return true;
554
555                 info++;
556         }
557
558         return false;
559 }
560
561 static const struct arch_timer_erratum_workaround *
562 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
563                           ate_match_fn_t match_fn,
564                           void *arg)
565 {
566         int i;
567
568         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
569                 if (ool_workarounds[i].match_type != type)
570                         continue;
571
572                 if (match_fn(&ool_workarounds[i], arg))
573                         return &ool_workarounds[i];
574         }
575
576         return NULL;
577 }
578
579 static
580 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
581                                   bool local)
582 {
583         int i;
584
585         if (local) {
586                 __this_cpu_write(timer_unstable_counter_workaround, wa);
587         } else {
588                 for_each_possible_cpu(i)
589                         per_cpu(timer_unstable_counter_workaround, i) = wa;
590         }
591
592         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
593                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
594
595         /*
596          * Don't use the vdso fastpath if errata require using the
597          * out-of-line counter accessor. We may change our mind pretty
598          * late in the game (with a per-CPU erratum, for example), so
599          * change both the default value and the vdso itself.
600          */
601         if (wa->read_cntvct_el0) {
602                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
603                 vdso_default = VDSO_CLOCKMODE_NONE;
604         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
605                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
606                 clocksource_counter.vdso_clock_mode = vdso_default;
607         }
608 }
609
610 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
611                                             void *arg)
612 {
613         const struct arch_timer_erratum_workaround *wa, *__wa;
614         ate_match_fn_t match_fn = NULL;
615         bool local = false;
616
617         switch (type) {
618         case ate_match_dt:
619                 match_fn = arch_timer_check_dt_erratum;
620                 break;
621         case ate_match_local_cap_id:
622                 match_fn = arch_timer_check_local_cap_erratum;
623                 local = true;
624                 break;
625         case ate_match_acpi_oem_info:
626                 match_fn = arch_timer_check_acpi_oem_erratum;
627                 break;
628         default:
629                 WARN_ON(1);
630                 return;
631         }
632
633         wa = arch_timer_iterate_errata(type, match_fn, arg);
634         if (!wa)
635                 return;
636
637         __wa = __this_cpu_read(timer_unstable_counter_workaround);
638         if (__wa && wa != __wa)
639                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
640                         wa->desc, __wa->desc);
641
642         if (__wa)
643                 return;
644
645         arch_timer_enable_workaround(wa, local);
646         pr_info("Enabling %s workaround for %s\n",
647                 local ? "local" : "global", wa->desc);
648 }
649
650 static bool arch_timer_this_cpu_has_cntvct_wa(void)
651 {
652         return has_erratum_handler(read_cntvct_el0);
653 }
654
655 static bool arch_timer_counter_has_wa(void)
656 {
657         return atomic_read(&timer_unstable_counter_workaround_in_use);
658 }
659 #else
660 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
661 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
662 #define arch_timer_counter_has_wa()                     ({false;})
663 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
664
665 static __always_inline irqreturn_t timer_handler(const int access,
666                                         struct clock_event_device *evt)
667 {
668         unsigned long ctrl;
669
670         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
671         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
672                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
673                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
674                 evt->event_handler(evt);
675                 return IRQ_HANDLED;
676         }
677
678         return IRQ_NONE;
679 }
680
681 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
682 {
683         struct clock_event_device *evt = dev_id;
684
685         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
686 }
687
688 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
689 {
690         struct clock_event_device *evt = dev_id;
691
692         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
693 }
694
695 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
696 {
697         struct clock_event_device *evt = dev_id;
698
699         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
700 }
701
702 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
703 {
704         struct clock_event_device *evt = dev_id;
705
706         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
707 }
708
709 static __always_inline int arch_timer_shutdown(const int access,
710                                                struct clock_event_device *clk)
711 {
712         unsigned long ctrl;
713
714         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
716         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
717
718         return 0;
719 }
720
721 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
722 {
723         return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
724 }
725
726 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
727 {
728         return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
729 }
730
731 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
732 {
733         return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
734 }
735
736 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
737 {
738         return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
739 }
740
741 static __always_inline void set_next_event(const int access, unsigned long evt,
742                                            struct clock_event_device *clk)
743 {
744         unsigned long ctrl;
745         u64 cnt;
746
747         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
748         ctrl |= ARCH_TIMER_CTRL_ENABLE;
749         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
750
751         if (access == ARCH_TIMER_PHYS_ACCESS)
752                 cnt = __arch_counter_get_cntpct();
753         else
754                 cnt = __arch_counter_get_cntvct();
755
756         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
757         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
758 }
759
760 static int arch_timer_set_next_event_virt(unsigned long evt,
761                                           struct clock_event_device *clk)
762 {
763         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
764         return 0;
765 }
766
767 static int arch_timer_set_next_event_phys(unsigned long evt,
768                                           struct clock_event_device *clk)
769 {
770         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
771         return 0;
772 }
773
774 static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
775 {
776         u32 cnt_lo, cnt_hi, tmp_hi;
777
778         do {
779                 cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
780                 cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo));
781                 tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4));
782         } while (cnt_hi != tmp_hi);
783
784         return ((u64) cnt_hi << 32) | cnt_lo;
785 }
786
787 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
788                                            struct clock_event_device *clk)
789 {
790         struct arch_timer *timer = to_arch_timer(clk);
791         unsigned long ctrl;
792         u64 cnt;
793
794         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
795         ctrl |= ARCH_TIMER_CTRL_ENABLE;
796         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
797
798         if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
799                 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
800         else
801                 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
802
803         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
804         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
805 }
806
807 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
808                                               struct clock_event_device *clk)
809 {
810         set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
811         return 0;
812 }
813
814 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
815                                               struct clock_event_device *clk)
816 {
817         set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
818         return 0;
819 }
820
821 static u64 __arch_timer_check_delta(void)
822 {
823 #ifdef CONFIG_ARM64
824         const struct midr_range broken_cval_midrs[] = {
825                 /*
826                  * XGene-1 implements CVAL in terms of TVAL, meaning
827                  * that the maximum timer range is 32bit. Shame on them.
828                  *
829                  * Note that TVAL is signed, thus has only 31 of its
830                  * 32 bits to express magnitude.
831                  */
832                 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
833                                                  APM_CPU_PART_POTENZA)),
834                 {},
835         };
836
837         if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
838                 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
839                 return CLOCKSOURCE_MASK(31);
840         }
841 #endif
842         return CLOCKSOURCE_MASK(arch_counter_get_width());
843 }
844
845 static void __arch_timer_setup(unsigned type,
846                                struct clock_event_device *clk)
847 {
848         u64 max_delta;
849
850         clk->features = CLOCK_EVT_FEAT_ONESHOT;
851
852         if (type == ARCH_TIMER_TYPE_CP15) {
853                 typeof(clk->set_next_event) sne;
854
855                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
856
857                 if (arch_timer_c3stop)
858                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
859                 clk->name = "arch_sys_timer";
860                 clk->rating = 450;
861                 clk->cpumask = cpumask_of(smp_processor_id());
862                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
863                 switch (arch_timer_uses_ppi) {
864                 case ARCH_TIMER_VIRT_PPI:
865                         clk->set_state_shutdown = arch_timer_shutdown_virt;
866                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
867                         sne = erratum_handler(set_next_event_virt);
868                         break;
869                 case ARCH_TIMER_PHYS_SECURE_PPI:
870                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
871                 case ARCH_TIMER_HYP_PPI:
872                         clk->set_state_shutdown = arch_timer_shutdown_phys;
873                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
874                         sne = erratum_handler(set_next_event_phys);
875                         break;
876                 default:
877                         BUG();
878                 }
879
880                 clk->set_next_event = sne;
881                 max_delta = __arch_timer_check_delta();
882         } else {
883                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
884                 clk->name = "arch_mem_timer";
885                 clk->rating = 400;
886                 clk->cpumask = cpu_possible_mask;
887                 if (arch_timer_mem_use_virtual) {
888                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
889                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
890                         clk->set_next_event =
891                                 arch_timer_set_next_event_virt_mem;
892                 } else {
893                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
894                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
895                         clk->set_next_event =
896                                 arch_timer_set_next_event_phys_mem;
897                 }
898
899                 max_delta = CLOCKSOURCE_MASK(56);
900         }
901
902         clk->set_state_shutdown(clk);
903
904         clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
905 }
906
907 static void arch_timer_evtstrm_enable(unsigned int divider)
908 {
909         u32 cntkctl = arch_timer_get_cntkctl();
910
911 #ifdef CONFIG_ARM64
912         /* ECV is likely to require a large divider. Use the EVNTIS flag. */
913         if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
914                 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
915                 divider -= 8;
916         }
917 #endif
918
919         divider = min(divider, 15U);
920         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
921         /* Set the divider and enable virtual event stream */
922         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
923                         | ARCH_TIMER_VIRT_EVT_EN;
924         arch_timer_set_cntkctl(cntkctl);
925         arch_timer_set_evtstrm_feature();
926         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
927 }
928
929 static void arch_timer_configure_evtstream(void)
930 {
931         int evt_stream_div, lsb;
932
933         /*
934          * As the event stream can at most be generated at half the frequency
935          * of the counter, use half the frequency when computing the divider.
936          */
937         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
938
939         /*
940          * Find the closest power of two to the divisor. If the adjacent bit
941          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
942          */
943         lsb = fls(evt_stream_div) - 1;
944         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
945                 lsb++;
946
947         /* enable event stream */
948         arch_timer_evtstrm_enable(max(0, lsb));
949 }
950
951 static void arch_counter_set_user_access(void)
952 {
953         u32 cntkctl = arch_timer_get_cntkctl();
954
955         /* Disable user access to the timers and both counters */
956         /* Also disable virtual event stream */
957         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
958                         | ARCH_TIMER_USR_VT_ACCESS_EN
959                         | ARCH_TIMER_USR_VCT_ACCESS_EN
960                         | ARCH_TIMER_VIRT_EVT_EN
961                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
962
963         /*
964          * Enable user access to the virtual counter if it doesn't
965          * need to be workaround. The vdso may have been already
966          * disabled though.
967          */
968         if (arch_timer_this_cpu_has_cntvct_wa())
969                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
970         else
971                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
972
973         arch_timer_set_cntkctl(cntkctl);
974 }
975
976 static bool arch_timer_has_nonsecure_ppi(void)
977 {
978         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
979                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
980 }
981
982 static u32 check_ppi_trigger(int irq)
983 {
984         u32 flags = irq_get_trigger_type(irq);
985
986         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
987                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
988                 pr_warn("WARNING: Please fix your firmware\n");
989                 flags = IRQF_TRIGGER_LOW;
990         }
991
992         return flags;
993 }
994
995 static int arch_timer_starting_cpu(unsigned int cpu)
996 {
997         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
998         u32 flags;
999
1000         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
1001
1002         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
1003         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
1004
1005         if (arch_timer_has_nonsecure_ppi()) {
1006                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1007                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1008                                   flags);
1009         }
1010
1011         arch_counter_set_user_access();
1012         if (evtstrm_enable)
1013                 arch_timer_configure_evtstream();
1014
1015         return 0;
1016 }
1017
1018 static int validate_timer_rate(void)
1019 {
1020         if (!arch_timer_rate)
1021                 return -EINVAL;
1022
1023         /* Arch timer frequency < 1MHz can cause trouble */
1024         WARN_ON(arch_timer_rate < 1000000);
1025
1026         return 0;
1027 }
1028
1029 /*
1030  * For historical reasons, when probing with DT we use whichever (non-zero)
1031  * rate was probed first, and don't verify that others match. If the first node
1032  * probed has a clock-frequency property, this overrides the HW register.
1033  */
1034 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1035 {
1036         /* Who has more than one independent system counter? */
1037         if (arch_timer_rate)
1038                 return;
1039
1040         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1041                 arch_timer_rate = rate;
1042
1043         /* Check the timer frequency. */
1044         if (validate_timer_rate())
1045                 pr_warn("frequency not available\n");
1046 }
1047
1048 static void __init arch_timer_banner(unsigned type)
1049 {
1050         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1051                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1052                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1053                         " and " : "",
1054                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1055                 (unsigned long)arch_timer_rate / 1000000,
1056                 (unsigned long)(arch_timer_rate / 10000) % 100,
1057                 type & ARCH_TIMER_TYPE_CP15 ?
1058                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1059                         "",
1060                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1061                 type & ARCH_TIMER_TYPE_MEM ?
1062                         arch_timer_mem_use_virtual ? "virt" : "phys" :
1063                         "");
1064 }
1065
1066 u32 arch_timer_get_rate(void)
1067 {
1068         return arch_timer_rate;
1069 }
1070
1071 bool arch_timer_evtstrm_available(void)
1072 {
1073         /*
1074          * We might get called from a preemptible context. This is fine
1075          * because availability of the event stream should be always the same
1076          * for a preemptible context and context where we might resume a task.
1077          */
1078         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1079 }
1080
1081 static noinstr u64 arch_counter_get_cntvct_mem(void)
1082 {
1083         return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1084 }
1085
1086 static struct arch_timer_kvm_info arch_timer_kvm_info;
1087
1088 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1089 {
1090         return &arch_timer_kvm_info;
1091 }
1092
1093 static void __init arch_counter_register(unsigned type)
1094 {
1095         u64 (*scr)(void);
1096         u64 start_count;
1097         int width;
1098
1099         /* Register the CP15 based counter if we have one */
1100         if (type & ARCH_TIMER_TYPE_CP15) {
1101                 u64 (*rd)(void);
1102
1103                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1104                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1105                         if (arch_timer_counter_has_wa()) {
1106                                 rd = arch_counter_get_cntvct_stable;
1107                                 scr = raw_counter_get_cntvct_stable;
1108                         } else {
1109                                 rd = arch_counter_get_cntvct;
1110                                 scr = arch_counter_get_cntvct;
1111                         }
1112                 } else {
1113                         if (arch_timer_counter_has_wa()) {
1114                                 rd = arch_counter_get_cntpct_stable;
1115                                 scr = raw_counter_get_cntpct_stable;
1116                         } else {
1117                                 rd = arch_counter_get_cntpct;
1118                                 scr = arch_counter_get_cntpct;
1119                         }
1120                 }
1121
1122                 arch_timer_read_counter = rd;
1123                 clocksource_counter.vdso_clock_mode = vdso_default;
1124         } else {
1125                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1126                 scr = arch_counter_get_cntvct_mem;
1127         }
1128
1129         width = arch_counter_get_width();
1130         clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1131         cyclecounter.mask = CLOCKSOURCE_MASK(width);
1132
1133         if (!arch_counter_suspend_stop)
1134                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1135         start_count = arch_timer_read_counter();
1136         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1137         cyclecounter.mult = clocksource_counter.mult;
1138         cyclecounter.shift = clocksource_counter.shift;
1139         timecounter_init(&arch_timer_kvm_info.timecounter,
1140                          &cyclecounter, start_count);
1141
1142         sched_clock_register(scr, width, arch_timer_rate);
1143 }
1144
1145 static void arch_timer_stop(struct clock_event_device *clk)
1146 {
1147         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1148
1149         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1150         if (arch_timer_has_nonsecure_ppi())
1151                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1152
1153         clk->set_state_shutdown(clk);
1154 }
1155
1156 static int arch_timer_dying_cpu(unsigned int cpu)
1157 {
1158         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1159
1160         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1161
1162         arch_timer_stop(clk);
1163         return 0;
1164 }
1165
1166 #ifdef CONFIG_CPU_PM
1167 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1168 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1169                                     unsigned long action, void *hcpu)
1170 {
1171         if (action == CPU_PM_ENTER) {
1172                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1173
1174                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1175         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1176                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1177
1178                 if (arch_timer_have_evtstrm_feature())
1179                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1180         }
1181         return NOTIFY_OK;
1182 }
1183
1184 static struct notifier_block arch_timer_cpu_pm_notifier = {
1185         .notifier_call = arch_timer_cpu_pm_notify,
1186 };
1187
1188 static int __init arch_timer_cpu_pm_init(void)
1189 {
1190         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1191 }
1192
1193 static void __init arch_timer_cpu_pm_deinit(void)
1194 {
1195         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1196 }
1197
1198 #else
1199 static int __init arch_timer_cpu_pm_init(void)
1200 {
1201         return 0;
1202 }
1203
1204 static void __init arch_timer_cpu_pm_deinit(void)
1205 {
1206 }
1207 #endif
1208
1209 static int __init arch_timer_register(void)
1210 {
1211         int err;
1212         int ppi;
1213
1214         arch_timer_evt = alloc_percpu(struct clock_event_device);
1215         if (!arch_timer_evt) {
1216                 err = -ENOMEM;
1217                 goto out;
1218         }
1219
1220         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1221         switch (arch_timer_uses_ppi) {
1222         case ARCH_TIMER_VIRT_PPI:
1223                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1224                                          "arch_timer", arch_timer_evt);
1225                 break;
1226         case ARCH_TIMER_PHYS_SECURE_PPI:
1227         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1228                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1229                                          "arch_timer", arch_timer_evt);
1230                 if (!err && arch_timer_has_nonsecure_ppi()) {
1231                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1232                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1233                                                  "arch_timer", arch_timer_evt);
1234                         if (err)
1235                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1236                                                 arch_timer_evt);
1237                 }
1238                 break;
1239         case ARCH_TIMER_HYP_PPI:
1240                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1241                                          "arch_timer", arch_timer_evt);
1242                 break;
1243         default:
1244                 BUG();
1245         }
1246
1247         if (err) {
1248                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1249                 goto out_free;
1250         }
1251
1252         err = arch_timer_cpu_pm_init();
1253         if (err)
1254                 goto out_unreg_notify;
1255
1256         /* Register and immediately configure the timer on the boot CPU */
1257         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1258                                 "clockevents/arm/arch_timer:starting",
1259                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1260         if (err)
1261                 goto out_unreg_cpupm;
1262         return 0;
1263
1264 out_unreg_cpupm:
1265         arch_timer_cpu_pm_deinit();
1266
1267 out_unreg_notify:
1268         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1269         if (arch_timer_has_nonsecure_ppi())
1270                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1271                                 arch_timer_evt);
1272
1273 out_free:
1274         free_percpu(arch_timer_evt);
1275 out:
1276         return err;
1277 }
1278
1279 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1280 {
1281         int ret;
1282         irq_handler_t func;
1283
1284         arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1285         if (!arch_timer_mem)
1286                 return -ENOMEM;
1287
1288         arch_timer_mem->base = base;
1289         arch_timer_mem->evt.irq = irq;
1290         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1291
1292         if (arch_timer_mem_use_virtual)
1293                 func = arch_timer_handler_virt_mem;
1294         else
1295                 func = arch_timer_handler_phys_mem;
1296
1297         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1298         if (ret) {
1299                 pr_err("Failed to request mem timer irq\n");
1300                 kfree(arch_timer_mem);
1301                 arch_timer_mem = NULL;
1302         }
1303
1304         return ret;
1305 }
1306
1307 static const struct of_device_id arch_timer_of_match[] __initconst = {
1308         { .compatible   = "arm,armv7-timer",    },
1309         { .compatible   = "arm,armv8-timer",    },
1310         {},
1311 };
1312
1313 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1314         { .compatible   = "arm,armv7-timer-mem", },
1315         {},
1316 };
1317
1318 static bool __init arch_timer_needs_of_probing(void)
1319 {
1320         struct device_node *dn;
1321         bool needs_probing = false;
1322         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1323
1324         /* We have two timers, and both device-tree nodes are probed. */
1325         if ((arch_timers_present & mask) == mask)
1326                 return false;
1327
1328         /*
1329          * Only one type of timer is probed,
1330          * check if we have another type of timer node in device-tree.
1331          */
1332         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1333                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1334         else
1335                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1336
1337         if (dn && of_device_is_available(dn))
1338                 needs_probing = true;
1339
1340         of_node_put(dn);
1341
1342         return needs_probing;
1343 }
1344
1345 static int __init arch_timer_common_init(void)
1346 {
1347         arch_timer_banner(arch_timers_present);
1348         arch_counter_register(arch_timers_present);
1349         return arch_timer_arch_init();
1350 }
1351
1352 /**
1353  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1354  *
1355  * If HYP mode is available, we know that the physical timer
1356  * has been configured to be accessible from PL1. Use it, so
1357  * that a guest can use the virtual timer instead.
1358  *
1359  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1360  * accesses to CNTP_*_EL1 registers are silently redirected to
1361  * their CNTHP_*_EL2 counterparts, and use a different PPI
1362  * number.
1363  *
1364  * If no interrupt provided for virtual timer, we'll have to
1365  * stick to the physical timer. It'd better be accessible...
1366  * For arm64 we never use the secure interrupt.
1367  *
1368  * Return: a suitable PPI type for the current system.
1369  */
1370 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1371 {
1372         if (is_kernel_in_hyp_mode())
1373                 return ARCH_TIMER_HYP_PPI;
1374
1375         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1376                 return ARCH_TIMER_VIRT_PPI;
1377
1378         if (IS_ENABLED(CONFIG_ARM64))
1379                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1380
1381         return ARCH_TIMER_PHYS_SECURE_PPI;
1382 }
1383
1384 static void __init arch_timer_populate_kvm_info(void)
1385 {
1386         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1387         if (is_kernel_in_hyp_mode())
1388                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1389 }
1390
1391 static int __init arch_timer_of_init(struct device_node *np)
1392 {
1393         int i, irq, ret;
1394         u32 rate;
1395         bool has_names;
1396
1397         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1398                 pr_warn("multiple nodes in dt, skipping\n");
1399                 return 0;
1400         }
1401
1402         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1403
1404         has_names = of_property_read_bool(np, "interrupt-names");
1405
1406         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1407                 if (has_names)
1408                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1409                 else
1410                         irq = of_irq_get(np, i);
1411                 if (irq > 0)
1412                         arch_timer_ppi[i] = irq;
1413         }
1414
1415         arch_timer_populate_kvm_info();
1416
1417         rate = arch_timer_get_cntfrq();
1418         arch_timer_of_configure_rate(rate, np);
1419
1420         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1421
1422         /* Check for globally applicable workarounds */
1423         arch_timer_check_ool_workaround(ate_match_dt, np);
1424
1425         /*
1426          * If we cannot rely on firmware initializing the timer registers then
1427          * we should use the physical timers instead.
1428          */
1429         if (IS_ENABLED(CONFIG_ARM) &&
1430             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1431                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1432         else
1433                 arch_timer_uses_ppi = arch_timer_select_ppi();
1434
1435         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1436                 pr_err("No interrupt available, giving up\n");
1437                 return -EINVAL;
1438         }
1439
1440         /* On some systems, the counter stops ticking when in suspend. */
1441         arch_counter_suspend_stop = of_property_read_bool(np,
1442                                                          "arm,no-tick-in-suspend");
1443
1444         ret = arch_timer_register();
1445         if (ret)
1446                 return ret;
1447
1448         if (arch_timer_needs_of_probing())
1449                 return 0;
1450
1451         return arch_timer_common_init();
1452 }
1453 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1454 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1455
1456 static u32 __init
1457 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1458 {
1459         void __iomem *base;
1460         u32 rate;
1461
1462         base = ioremap(frame->cntbase, frame->size);
1463         if (!base) {
1464                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1465                 return 0;
1466         }
1467
1468         rate = readl_relaxed(base + CNTFRQ);
1469
1470         iounmap(base);
1471
1472         return rate;
1473 }
1474
1475 static struct arch_timer_mem_frame * __init
1476 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1477 {
1478         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1479         void __iomem *cntctlbase;
1480         u32 cnttidr;
1481         int i;
1482
1483         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1484         if (!cntctlbase) {
1485                 pr_err("Can't map CNTCTLBase @ %pa\n",
1486                         &timer_mem->cntctlbase);
1487                 return NULL;
1488         }
1489
1490         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1491
1492         /*
1493          * Try to find a virtual capable frame. Otherwise fall back to a
1494          * physical capable frame.
1495          */
1496         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1497                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1498                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1499
1500                 frame = &timer_mem->frame[i];
1501                 if (!frame->valid)
1502                         continue;
1503
1504                 /* Try enabling everything, and see what sticks */
1505                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1506                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1507
1508                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1509                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1510                         best_frame = frame;
1511                         arch_timer_mem_use_virtual = true;
1512                         break;
1513                 }
1514
1515                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1516                         continue;
1517
1518                 best_frame = frame;
1519         }
1520
1521         iounmap(cntctlbase);
1522
1523         return best_frame;
1524 }
1525
1526 static int __init
1527 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1528 {
1529         void __iomem *base;
1530         int ret, irq = 0;
1531
1532         if (arch_timer_mem_use_virtual)
1533                 irq = frame->virt_irq;
1534         else
1535                 irq = frame->phys_irq;
1536
1537         if (!irq) {
1538                 pr_err("Frame missing %s irq.\n",
1539                        arch_timer_mem_use_virtual ? "virt" : "phys");
1540                 return -EINVAL;
1541         }
1542
1543         if (!request_mem_region(frame->cntbase, frame->size,
1544                                 "arch_mem_timer"))
1545                 return -EBUSY;
1546
1547         base = ioremap(frame->cntbase, frame->size);
1548         if (!base) {
1549                 pr_err("Can't map frame's registers\n");
1550                 return -ENXIO;
1551         }
1552
1553         ret = arch_timer_mem_register(base, irq);
1554         if (ret) {
1555                 iounmap(base);
1556                 return ret;
1557         }
1558
1559         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1560
1561         return 0;
1562 }
1563
1564 static int __init arch_timer_mem_of_init(struct device_node *np)
1565 {
1566         struct arch_timer_mem *timer_mem;
1567         struct arch_timer_mem_frame *frame;
1568         struct device_node *frame_node;
1569         struct resource res;
1570         int ret = -EINVAL;
1571         u32 rate;
1572
1573         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1574         if (!timer_mem)
1575                 return -ENOMEM;
1576
1577         if (of_address_to_resource(np, 0, &res))
1578                 goto out;
1579         timer_mem->cntctlbase = res.start;
1580         timer_mem->size = resource_size(&res);
1581
1582         for_each_available_child_of_node(np, frame_node) {
1583                 u32 n;
1584                 struct arch_timer_mem_frame *frame;
1585
1586                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1587                         pr_err(FW_BUG "Missing frame-number.\n");
1588                         of_node_put(frame_node);
1589                         goto out;
1590                 }
1591                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1592                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1593                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1594                         of_node_put(frame_node);
1595                         goto out;
1596                 }
1597                 frame = &timer_mem->frame[n];
1598
1599                 if (frame->valid) {
1600                         pr_err(FW_BUG "Duplicated frame-number.\n");
1601                         of_node_put(frame_node);
1602                         goto out;
1603                 }
1604
1605                 if (of_address_to_resource(frame_node, 0, &res)) {
1606                         of_node_put(frame_node);
1607                         goto out;
1608                 }
1609                 frame->cntbase = res.start;
1610                 frame->size = resource_size(&res);
1611
1612                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1613                                                        ARCH_TIMER_VIRT_SPI);
1614                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1615                                                        ARCH_TIMER_PHYS_SPI);
1616
1617                 frame->valid = true;
1618         }
1619
1620         frame = arch_timer_mem_find_best_frame(timer_mem);
1621         if (!frame) {
1622                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1623                         &timer_mem->cntctlbase);
1624                 ret = -EINVAL;
1625                 goto out;
1626         }
1627
1628         rate = arch_timer_mem_frame_get_cntfrq(frame);
1629         arch_timer_of_configure_rate(rate, np);
1630
1631         ret = arch_timer_mem_frame_register(frame);
1632         if (!ret && !arch_timer_needs_of_probing())
1633                 ret = arch_timer_common_init();
1634 out:
1635         kfree(timer_mem);
1636         return ret;
1637 }
1638 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1639                        arch_timer_mem_of_init);
1640
1641 #ifdef CONFIG_ACPI_GTDT
1642 static int __init
1643 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1644 {
1645         struct arch_timer_mem_frame *frame;
1646         u32 rate;
1647         int i;
1648
1649         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1650                 frame = &timer_mem->frame[i];
1651
1652                 if (!frame->valid)
1653                         continue;
1654
1655                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1656                 if (rate == arch_timer_rate)
1657                         continue;
1658
1659                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1660                         &frame->cntbase,
1661                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1662
1663                 return -EINVAL;
1664         }
1665
1666         return 0;
1667 }
1668
1669 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1670 {
1671         struct arch_timer_mem *timers, *timer;
1672         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1673         int timer_count, i, ret = 0;
1674
1675         timers = kcalloc(platform_timer_count, sizeof(*timers),
1676                             GFP_KERNEL);
1677         if (!timers)
1678                 return -ENOMEM;
1679
1680         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1681         if (ret || !timer_count)
1682                 goto out;
1683
1684         /*
1685          * While unlikely, it's theoretically possible that none of the frames
1686          * in a timer expose the combination of feature we want.
1687          */
1688         for (i = 0; i < timer_count; i++) {
1689                 timer = &timers[i];
1690
1691                 frame = arch_timer_mem_find_best_frame(timer);
1692                 if (!best_frame)
1693                         best_frame = frame;
1694
1695                 ret = arch_timer_mem_verify_cntfrq(timer);
1696                 if (ret) {
1697                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1698                         goto out;
1699                 }
1700
1701                 if (!best_frame) /* implies !frame */
1702                         /*
1703                          * Only complain about missing suitable frames if we
1704                          * haven't already found one in a previous iteration.
1705                          */
1706                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1707                                 &timer->cntctlbase);
1708         }
1709
1710         if (best_frame)
1711                 ret = arch_timer_mem_frame_register(best_frame);
1712 out:
1713         kfree(timers);
1714         return ret;
1715 }
1716
1717 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1718 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1719 {
1720         int ret, platform_timer_count;
1721
1722         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1723                 pr_warn("already initialized, skipping\n");
1724                 return -EINVAL;
1725         }
1726
1727         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1728
1729         ret = acpi_gtdt_init(table, &platform_timer_count);
1730         if (ret)
1731                 return ret;
1732
1733         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1734                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1735
1736         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1737                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1738
1739         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1740                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1741
1742         arch_timer_populate_kvm_info();
1743
1744         /*
1745          * When probing via ACPI, we have no mechanism to override the sysreg
1746          * CNTFRQ value. This *must* be correct.
1747          */
1748         arch_timer_rate = arch_timer_get_cntfrq();
1749         ret = validate_timer_rate();
1750         if (ret) {
1751                 pr_err(FW_BUG "frequency not available.\n");
1752                 return ret;
1753         }
1754
1755         arch_timer_uses_ppi = arch_timer_select_ppi();
1756         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1757                 pr_err("No interrupt available, giving up\n");
1758                 return -EINVAL;
1759         }
1760
1761         /* Always-on capability */
1762         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1763
1764         /* Check for globally applicable workarounds */
1765         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1766
1767         ret = arch_timer_register();
1768         if (ret)
1769                 return ret;
1770
1771         if (platform_timer_count &&
1772             arch_timer_mem_acpi_init(platform_timer_count))
1773                 pr_err("Failed to initialize memory-mapped timer.\n");
1774
1775         return arch_timer_common_init();
1776 }
1777 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1778 #endif
1779
1780 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1781                                  struct clocksource **cs)
1782 {
1783         struct arm_smccc_res hvc_res;
1784         u32 ptp_counter;
1785         ktime_t ktime;
1786
1787         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1788                 return -EOPNOTSUPP;
1789
1790         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1791                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1792         else
1793                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1794
1795         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1796                              ptp_counter, &hvc_res);
1797
1798         if ((int)(hvc_res.a0) < 0)
1799                 return -EOPNOTSUPP;
1800
1801         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1802         *ts = ktime_to_timespec64(ktime);
1803         if (cycle)
1804                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1805         if (cs)
1806                 *cs = &clocksource_counter;
1807
1808         return 0;
1809 }
1810 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);