Merge branches 'acpi-battery', 'acpi-video' and 'acpi-misc'
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTVCT_LO       0x00
48 #define CNTPCT_LO       0x08
49 #define CNTFRQ          0x10
50 #define CNTP_CVAL_LO    0x20
51 #define CNTP_CTL        0x2c
52 #define CNTV_CVAL_LO    0x30
53 #define CNTV_CTL        0x3c
54
55 /*
56  * The minimum amount of time a generic counter is guaranteed to not roll over
57  * (40 years)
58  */
59 #define MIN_ROLLOVER_SECS       (40ULL * 365 * 24 * 3600)
60
61 static unsigned arch_timers_present __initdata;
62
63 struct arch_timer {
64         void __iomem *base;
65         struct clock_event_device evt;
66 };
67
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
77         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78         [ARCH_TIMER_VIRT_PPI]           = "virt",
79         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
80         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
81 };
82
83 static struct clock_event_device __percpu *arch_timer_evt;
84
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97
98 static int __init early_evtstrm_cfg(char *buf)
99 {
100         return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103
104 /*
105  * Makes an educated guess at a valid counter width based on the Generic Timer
106  * specification. Of note:
107  *   1) the system counter is at least 56 bits wide
108  *   2) a roll-over time of not less than 40 years
109  *
110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111  */
112 static int arch_counter_get_width(void)
113 {
114         u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115
116         /* guarantee the returned width is within the valid range */
117         return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119
120 /*
121  * Architected system timer support.
122  */
123
124 static __always_inline
125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126                           struct clock_event_device *clk)
127 {
128         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129                 struct arch_timer *timer = to_arch_timer(clk);
130                 switch (reg) {
131                 case ARCH_TIMER_REG_CTRL:
132                         writel_relaxed((u32)val, timer->base + CNTP_CTL);
133                         break;
134                 case ARCH_TIMER_REG_CVAL:
135                         /*
136                          * Not guaranteed to be atomic, so the timer
137                          * must be disabled at this point.
138                          */
139                         writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140                         break;
141                 default:
142                         BUILD_BUG();
143                 }
144         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145                 struct arch_timer *timer = to_arch_timer(clk);
146                 switch (reg) {
147                 case ARCH_TIMER_REG_CTRL:
148                         writel_relaxed((u32)val, timer->base + CNTV_CTL);
149                         break;
150                 case ARCH_TIMER_REG_CVAL:
151                         /* Same restriction as above */
152                         writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153                         break;
154                 default:
155                         BUILD_BUG();
156                 }
157         } else {
158                 arch_timer_reg_write_cp15(access, reg, val);
159         }
160 }
161
162 static __always_inline
163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164                         struct clock_event_device *clk)
165 {
166         u32 val;
167
168         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169                 struct arch_timer *timer = to_arch_timer(clk);
170                 switch (reg) {
171                 case ARCH_TIMER_REG_CTRL:
172                         val = readl_relaxed(timer->base + CNTP_CTL);
173                         break;
174                 default:
175                         BUILD_BUG();
176                 }
177         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178                 struct arch_timer *timer = to_arch_timer(clk);
179                 switch (reg) {
180                 case ARCH_TIMER_REG_CTRL:
181                         val = readl_relaxed(timer->base + CNTV_CTL);
182                         break;
183                 default:
184                         BUILD_BUG();
185                 }
186         } else {
187                 val = arch_timer_reg_read_cp15(access, reg);
188         }
189
190         return val;
191 }
192
193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195         return __arch_counter_get_cntpct_stable();
196 }
197
198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200         return __arch_counter_get_cntpct();
201 }
202
203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205         return __arch_counter_get_cntvct_stable();
206 }
207
208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210         return __arch_counter_get_cntvct();
211 }
212
213 /*
214  * Default to cp15 based access because arm64 uses this function for
215  * sched_clock() before DT is probed and the cp15 method is guaranteed
216  * to exist on arm64. arm doesn't use this before DT is probed so even
217  * if we don't have the cp15 accessors we won't have a problem.
218  */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221
222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224         return arch_timer_read_counter();
225 }
226
227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229         return arch_timer_read_counter();
230 }
231
232 static struct clocksource clocksource_counter = {
233         .name   = "arch_sys_counter",
234         .id     = CSID_ARM_ARCH_COUNTER,
235         .rating = 400,
236         .read   = arch_counter_read,
237         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239
240 static struct cyclecounter cyclecounter __ro_after_init = {
241         .read   = arch_counter_read_cc,
242 };
243
244 struct ate_acpi_oem_info {
245         char oem_id[ACPI_OEM_ID_SIZE + 1];
246         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247         u32 oem_revision;
248 };
249
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252  * The number of retries is an arbitrary value well beyond the highest number
253  * of iterations the loop has been observed to take.
254  */
255 #define __fsl_a008585_read_reg(reg) ({                  \
256         u64 _old, _new;                                 \
257         int _retries = 200;                             \
258                                                         \
259         do {                                            \
260                 _old = read_sysreg(reg);                \
261                 _new = read_sysreg(reg);                \
262                 _retries--;                             \
263         } while (unlikely(_old != _new) && _retries);   \
264                                                         \
265         WARN_ON_ONCE(!_retries);                        \
266         _new;                                           \
267 })
268
269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271         return __fsl_a008585_read_reg(cntpct_el0);
272 }
273
274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276         return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282  * Verify whether the value of the second read is larger than the first by
283  * less than 32 is the only way to confirm the value is correct, so clear the
284  * lower 5 bits to check whether the difference is greater than 32 or not.
285  * Theoretically the erratum should not occur more than twice in succession
286  * when reading the system counter, but it is possible that some interrupts
287  * may lead to more than twice read errors, triggering the warning, so setting
288  * the number of retries far beyond the number of iterations the loop has been
289  * observed to take.
290  */
291 #define __hisi_161010101_read_reg(reg) ({                               \
292         u64 _old, _new;                                         \
293         int _retries = 50;                                      \
294                                                                 \
295         do {                                                    \
296                 _old = read_sysreg(reg);                        \
297                 _new = read_sysreg(reg);                        \
298                 _retries--;                                     \
299         } while (unlikely((_new - _old) >> 5) && _retries);     \
300                                                                 \
301         WARN_ON_ONCE(!_retries);                                \
302         _new;                                                   \
303 })
304
305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307         return __hisi_161010101_read_reg(cntpct_el0);
308 }
309
310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312         return __hisi_161010101_read_reg(cntvct_el0);
313 }
314
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316         /*
317          * Note that trailing spaces are required to properly match
318          * the OEM table information.
319          */
320         {
321                 .oem_id         = "HISI  ",
322                 .oem_table_id   = "HIP05   ",
323                 .oem_revision   = 0,
324         },
325         {
326                 .oem_id         = "HISI  ",
327                 .oem_table_id   = "HIP06   ",
328                 .oem_revision   = 0,
329         },
330         {
331                 .oem_id         = "HISI  ",
332                 .oem_table_id   = "HIP07   ",
333                 .oem_revision   = 0,
334         },
335         { /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338
339 #ifdef CONFIG_ARM64_ERRATUM_858921
340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342         u64 old, new;
343
344         old = read_sysreg(cntpct_el0);
345         new = read_sysreg(cntpct_el0);
346         return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348
349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351         u64 old, new;
352
353         old = read_sysreg(cntvct_el0);
354         new = read_sysreg(cntvct_el0);
355         return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361  * The low bits of the counter registers are indeterminate while bit 10 or
362  * greater is rolling over. Since the counter value can jump both backward
363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366  */
367 #define __sun50i_a64_read_reg(reg) ({                                   \
368         u64 _val;                                                       \
369         int _retries = 150;                                             \
370                                                                         \
371         do {                                                            \
372                 _val = read_sysreg(reg);                                \
373                 _retries--;                                             \
374         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
375                                                                         \
376         WARN_ON_ONCE(!_retries);                                        \
377         _val;                                                           \
378 })
379
380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382         return __sun50i_a64_read_reg(cntpct_el0);
383 }
384
385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387         return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396
397 /*
398  * Force the inlining of this function so that the register accesses
399  * can be themselves correctly inlined.
400  */
401 static __always_inline
402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403                                     struct clock_event_device *clk)
404 {
405         unsigned long ctrl;
406         u64 cval;
407
408         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409         ctrl |= ARCH_TIMER_CTRL_ENABLE;
410         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411
412         if (access == ARCH_TIMER_PHYS_ACCESS) {
413                 cval = evt + arch_counter_get_cntpct_stable();
414                 write_sysreg(cval, cntp_cval_el0);
415         } else {
416                 cval = evt + arch_counter_get_cntvct_stable();
417                 write_sysreg(cval, cntv_cval_el0);
418         }
419
420         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422
423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424                                             struct clock_event_device *clk)
425 {
426         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427         return 0;
428 }
429
430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431                                             struct clock_event_device *clk)
432 {
433         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434         return 0;
435 }
436
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439         {
440                 .match_type = ate_match_dt,
441                 .id = "fsl,erratum-a008585",
442                 .desc = "Freescale erratum a005858",
443                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445                 .set_next_event_phys = erratum_set_next_event_phys,
446                 .set_next_event_virt = erratum_set_next_event_virt,
447         },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450         {
451                 .match_type = ate_match_dt,
452                 .id = "hisilicon,erratum-161010101",
453                 .desc = "HiSilicon erratum 161010101",
454                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456                 .set_next_event_phys = erratum_set_next_event_phys,
457                 .set_next_event_virt = erratum_set_next_event_virt,
458         },
459         {
460                 .match_type = ate_match_acpi_oem_info,
461                 .id = hisi_161010101_oem_info,
462                 .desc = "HiSilicon erratum 161010101",
463                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465                 .set_next_event_phys = erratum_set_next_event_phys,
466                 .set_next_event_virt = erratum_set_next_event_virt,
467         },
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470         {
471                 .match_type = ate_match_local_cap_id,
472                 .id = (void *)ARM64_WORKAROUND_858921,
473                 .desc = "ARM erratum 858921",
474                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476         },
477 #endif
478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
479         {
480                 .match_type = ate_match_dt,
481                 .id = "allwinner,erratum-unknown1",
482                 .desc = "Allwinner erratum UNKNOWN1",
483                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
484                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
485                 .set_next_event_phys = erratum_set_next_event_phys,
486                 .set_next_event_virt = erratum_set_next_event_virt,
487         },
488 #endif
489 #ifdef CONFIG_ARM64_ERRATUM_1418040
490         {
491                 .match_type = ate_match_local_cap_id,
492                 .id = (void *)ARM64_WORKAROUND_1418040,
493                 .desc = "ARM erratum 1418040",
494                 .disable_compat_vdso = true,
495         },
496 #endif
497 };
498
499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
500                                const void *);
501
502 static
503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
504                                  const void *arg)
505 {
506         const struct device_node *np = arg;
507
508         return of_property_read_bool(np, wa->id);
509 }
510
511 static
512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
513                                         const void *arg)
514 {
515         return this_cpu_has_cap((uintptr_t)wa->id);
516 }
517
518
519 static
520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
521                                        const void *arg)
522 {
523         static const struct ate_acpi_oem_info empty_oem_info = {};
524         const struct ate_acpi_oem_info *info = wa->id;
525         const struct acpi_table_header *table = arg;
526
527         /* Iterate over the ACPI OEM info array, looking for a match */
528         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
529                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
530                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
531                     info->oem_revision == table->oem_revision)
532                         return true;
533
534                 info++;
535         }
536
537         return false;
538 }
539
540 static const struct arch_timer_erratum_workaround *
541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
542                           ate_match_fn_t match_fn,
543                           void *arg)
544 {
545         int i;
546
547         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
548                 if (ool_workarounds[i].match_type != type)
549                         continue;
550
551                 if (match_fn(&ool_workarounds[i], arg))
552                         return &ool_workarounds[i];
553         }
554
555         return NULL;
556 }
557
558 static
559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
560                                   bool local)
561 {
562         int i;
563
564         if (local) {
565                 __this_cpu_write(timer_unstable_counter_workaround, wa);
566         } else {
567                 for_each_possible_cpu(i)
568                         per_cpu(timer_unstable_counter_workaround, i) = wa;
569         }
570
571         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
572                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
573
574         /*
575          * Don't use the vdso fastpath if errata require using the
576          * out-of-line counter accessor. We may change our mind pretty
577          * late in the game (with a per-CPU erratum, for example), so
578          * change both the default value and the vdso itself.
579          */
580         if (wa->read_cntvct_el0) {
581                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
582                 vdso_default = VDSO_CLOCKMODE_NONE;
583         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
584                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
585                 clocksource_counter.vdso_clock_mode = vdso_default;
586         }
587 }
588
589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
590                                             void *arg)
591 {
592         const struct arch_timer_erratum_workaround *wa, *__wa;
593         ate_match_fn_t match_fn = NULL;
594         bool local = false;
595
596         switch (type) {
597         case ate_match_dt:
598                 match_fn = arch_timer_check_dt_erratum;
599                 break;
600         case ate_match_local_cap_id:
601                 match_fn = arch_timer_check_local_cap_erratum;
602                 local = true;
603                 break;
604         case ate_match_acpi_oem_info:
605                 match_fn = arch_timer_check_acpi_oem_erratum;
606                 break;
607         default:
608                 WARN_ON(1);
609                 return;
610         }
611
612         wa = arch_timer_iterate_errata(type, match_fn, arg);
613         if (!wa)
614                 return;
615
616         __wa = __this_cpu_read(timer_unstable_counter_workaround);
617         if (__wa && wa != __wa)
618                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
619                         wa->desc, __wa->desc);
620
621         if (__wa)
622                 return;
623
624         arch_timer_enable_workaround(wa, local);
625         pr_info("Enabling %s workaround for %s\n",
626                 local ? "local" : "global", wa->desc);
627 }
628
629 static bool arch_timer_this_cpu_has_cntvct_wa(void)
630 {
631         return has_erratum_handler(read_cntvct_el0);
632 }
633
634 static bool arch_timer_counter_has_wa(void)
635 {
636         return atomic_read(&timer_unstable_counter_workaround_in_use);
637 }
638 #else
639 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
640 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
641 #define arch_timer_counter_has_wa()                     ({false;})
642 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
643
644 static __always_inline irqreturn_t timer_handler(const int access,
645                                         struct clock_event_device *evt)
646 {
647         unsigned long ctrl;
648
649         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
650         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
651                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
652                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
653                 evt->event_handler(evt);
654                 return IRQ_HANDLED;
655         }
656
657         return IRQ_NONE;
658 }
659
660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
661 {
662         struct clock_event_device *evt = dev_id;
663
664         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
665 }
666
667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
668 {
669         struct clock_event_device *evt = dev_id;
670
671         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
672 }
673
674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
675 {
676         struct clock_event_device *evt = dev_id;
677
678         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
679 }
680
681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
682 {
683         struct clock_event_device *evt = dev_id;
684
685         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
686 }
687
688 static __always_inline int timer_shutdown(const int access,
689                                           struct clock_event_device *clk)
690 {
691         unsigned long ctrl;
692
693         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
694         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
695         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
696
697         return 0;
698 }
699
700 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
701 {
702         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
703 }
704
705 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
706 {
707         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
708 }
709
710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
711 {
712         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
713 }
714
715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
716 {
717         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
718 }
719
720 static __always_inline void set_next_event(const int access, unsigned long evt,
721                                            struct clock_event_device *clk)
722 {
723         unsigned long ctrl;
724         u64 cnt;
725
726         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
727         ctrl |= ARCH_TIMER_CTRL_ENABLE;
728         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
729
730         if (access == ARCH_TIMER_PHYS_ACCESS)
731                 cnt = __arch_counter_get_cntpct();
732         else
733                 cnt = __arch_counter_get_cntvct();
734
735         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
736         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
737 }
738
739 static int arch_timer_set_next_event_virt(unsigned long evt,
740                                           struct clock_event_device *clk)
741 {
742         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
743         return 0;
744 }
745
746 static int arch_timer_set_next_event_phys(unsigned long evt,
747                                           struct clock_event_device *clk)
748 {
749         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
750         return 0;
751 }
752
753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
754 {
755         u32 cnt_lo, cnt_hi, tmp_hi;
756
757         do {
758                 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
759                 cnt_lo = readl_relaxed(t->base + offset_lo);
760                 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
761         } while (cnt_hi != tmp_hi);
762
763         return ((u64) cnt_hi << 32) | cnt_lo;
764 }
765
766 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
767                                            struct clock_event_device *clk)
768 {
769         struct arch_timer *timer = to_arch_timer(clk);
770         unsigned long ctrl;
771         u64 cnt;
772
773         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
774         ctrl |= ARCH_TIMER_CTRL_ENABLE;
775         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
776
777         if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
778                 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
779         else
780                 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
781
782         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
783         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
784 }
785
786 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
787                                               struct clock_event_device *clk)
788 {
789         set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
790         return 0;
791 }
792
793 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
794                                               struct clock_event_device *clk)
795 {
796         set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
797         return 0;
798 }
799
800 static u64 __arch_timer_check_delta(void)
801 {
802 #ifdef CONFIG_ARM64
803         const struct midr_range broken_cval_midrs[] = {
804                 /*
805                  * XGene-1 implements CVAL in terms of TVAL, meaning
806                  * that the maximum timer range is 32bit. Shame on them.
807                  */
808                 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
809                                                  APM_CPU_PART_POTENZA)),
810                 {},
811         };
812
813         if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
814                 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
815                 return CLOCKSOURCE_MASK(32);
816         }
817 #endif
818         return CLOCKSOURCE_MASK(arch_counter_get_width());
819 }
820
821 static void __arch_timer_setup(unsigned type,
822                                struct clock_event_device *clk)
823 {
824         u64 max_delta;
825
826         clk->features = CLOCK_EVT_FEAT_ONESHOT;
827
828         if (type == ARCH_TIMER_TYPE_CP15) {
829                 typeof(clk->set_next_event) sne;
830
831                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
832
833                 if (arch_timer_c3stop)
834                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
835                 clk->name = "arch_sys_timer";
836                 clk->rating = 450;
837                 clk->cpumask = cpumask_of(smp_processor_id());
838                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
839                 switch (arch_timer_uses_ppi) {
840                 case ARCH_TIMER_VIRT_PPI:
841                         clk->set_state_shutdown = arch_timer_shutdown_virt;
842                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
843                         sne = erratum_handler(set_next_event_virt);
844                         break;
845                 case ARCH_TIMER_PHYS_SECURE_PPI:
846                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
847                 case ARCH_TIMER_HYP_PPI:
848                         clk->set_state_shutdown = arch_timer_shutdown_phys;
849                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
850                         sne = erratum_handler(set_next_event_phys);
851                         break;
852                 default:
853                         BUG();
854                 }
855
856                 clk->set_next_event = sne;
857                 max_delta = __arch_timer_check_delta();
858         } else {
859                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
860                 clk->name = "arch_mem_timer";
861                 clk->rating = 400;
862                 clk->cpumask = cpu_possible_mask;
863                 if (arch_timer_mem_use_virtual) {
864                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
865                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
866                         clk->set_next_event =
867                                 arch_timer_set_next_event_virt_mem;
868                 } else {
869                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
870                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
871                         clk->set_next_event =
872                                 arch_timer_set_next_event_phys_mem;
873                 }
874
875                 max_delta = CLOCKSOURCE_MASK(56);
876         }
877
878         clk->set_state_shutdown(clk);
879
880         clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
881 }
882
883 static void arch_timer_evtstrm_enable(unsigned int divider)
884 {
885         u32 cntkctl = arch_timer_get_cntkctl();
886
887 #ifdef CONFIG_ARM64
888         /* ECV is likely to require a large divider. Use the EVNTIS flag. */
889         if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
890                 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
891                 divider -= 8;
892         }
893 #endif
894
895         divider = min(divider, 15U);
896         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
897         /* Set the divider and enable virtual event stream */
898         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
899                         | ARCH_TIMER_VIRT_EVT_EN;
900         arch_timer_set_cntkctl(cntkctl);
901         arch_timer_set_evtstrm_feature();
902         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
903 }
904
905 static void arch_timer_configure_evtstream(void)
906 {
907         int evt_stream_div, lsb;
908
909         /*
910          * As the event stream can at most be generated at half the frequency
911          * of the counter, use half the frequency when computing the divider.
912          */
913         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
914
915         /*
916          * Find the closest power of two to the divisor. If the adjacent bit
917          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
918          */
919         lsb = fls(evt_stream_div) - 1;
920         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
921                 lsb++;
922
923         /* enable event stream */
924         arch_timer_evtstrm_enable(max(0, lsb));
925 }
926
927 static void arch_counter_set_user_access(void)
928 {
929         u32 cntkctl = arch_timer_get_cntkctl();
930
931         /* Disable user access to the timers and both counters */
932         /* Also disable virtual event stream */
933         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
934                         | ARCH_TIMER_USR_VT_ACCESS_EN
935                         | ARCH_TIMER_USR_VCT_ACCESS_EN
936                         | ARCH_TIMER_VIRT_EVT_EN
937                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
938
939         /*
940          * Enable user access to the virtual counter if it doesn't
941          * need to be workaround. The vdso may have been already
942          * disabled though.
943          */
944         if (arch_timer_this_cpu_has_cntvct_wa())
945                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
946         else
947                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
948
949         arch_timer_set_cntkctl(cntkctl);
950 }
951
952 static bool arch_timer_has_nonsecure_ppi(void)
953 {
954         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
955                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
956 }
957
958 static u32 check_ppi_trigger(int irq)
959 {
960         u32 flags = irq_get_trigger_type(irq);
961
962         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
963                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
964                 pr_warn("WARNING: Please fix your firmware\n");
965                 flags = IRQF_TRIGGER_LOW;
966         }
967
968         return flags;
969 }
970
971 static int arch_timer_starting_cpu(unsigned int cpu)
972 {
973         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
974         u32 flags;
975
976         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
977
978         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
979         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
980
981         if (arch_timer_has_nonsecure_ppi()) {
982                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
983                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
984                                   flags);
985         }
986
987         arch_counter_set_user_access();
988         if (evtstrm_enable)
989                 arch_timer_configure_evtstream();
990
991         return 0;
992 }
993
994 static int validate_timer_rate(void)
995 {
996         if (!arch_timer_rate)
997                 return -EINVAL;
998
999         /* Arch timer frequency < 1MHz can cause trouble */
1000         WARN_ON(arch_timer_rate < 1000000);
1001
1002         return 0;
1003 }
1004
1005 /*
1006  * For historical reasons, when probing with DT we use whichever (non-zero)
1007  * rate was probed first, and don't verify that others match. If the first node
1008  * probed has a clock-frequency property, this overrides the HW register.
1009  */
1010 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1011 {
1012         /* Who has more than one independent system counter? */
1013         if (arch_timer_rate)
1014                 return;
1015
1016         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1017                 arch_timer_rate = rate;
1018
1019         /* Check the timer frequency. */
1020         if (validate_timer_rate())
1021                 pr_warn("frequency not available\n");
1022 }
1023
1024 static void __init arch_timer_banner(unsigned type)
1025 {
1026         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1027                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1028                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1029                         " and " : "",
1030                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1031                 (unsigned long)arch_timer_rate / 1000000,
1032                 (unsigned long)(arch_timer_rate / 10000) % 100,
1033                 type & ARCH_TIMER_TYPE_CP15 ?
1034                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1035                         "",
1036                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1037                 type & ARCH_TIMER_TYPE_MEM ?
1038                         arch_timer_mem_use_virtual ? "virt" : "phys" :
1039                         "");
1040 }
1041
1042 u32 arch_timer_get_rate(void)
1043 {
1044         return arch_timer_rate;
1045 }
1046
1047 bool arch_timer_evtstrm_available(void)
1048 {
1049         /*
1050          * We might get called from a preemptible context. This is fine
1051          * because availability of the event stream should be always the same
1052          * for a preemptible context and context where we might resume a task.
1053          */
1054         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1055 }
1056
1057 static u64 arch_counter_get_cntvct_mem(void)
1058 {
1059         return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1060 }
1061
1062 static struct arch_timer_kvm_info arch_timer_kvm_info;
1063
1064 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1065 {
1066         return &arch_timer_kvm_info;
1067 }
1068
1069 static void __init arch_counter_register(unsigned type)
1070 {
1071         u64 start_count;
1072         int width;
1073
1074         /* Register the CP15 based counter if we have one */
1075         if (type & ARCH_TIMER_TYPE_CP15) {
1076                 u64 (*rd)(void);
1077
1078                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1079                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1080                         if (arch_timer_counter_has_wa())
1081                                 rd = arch_counter_get_cntvct_stable;
1082                         else
1083                                 rd = arch_counter_get_cntvct;
1084                 } else {
1085                         if (arch_timer_counter_has_wa())
1086                                 rd = arch_counter_get_cntpct_stable;
1087                         else
1088                                 rd = arch_counter_get_cntpct;
1089                 }
1090
1091                 arch_timer_read_counter = rd;
1092                 clocksource_counter.vdso_clock_mode = vdso_default;
1093         } else {
1094                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1095         }
1096
1097         width = arch_counter_get_width();
1098         clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1099         cyclecounter.mask = CLOCKSOURCE_MASK(width);
1100
1101         if (!arch_counter_suspend_stop)
1102                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1103         start_count = arch_timer_read_counter();
1104         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1105         cyclecounter.mult = clocksource_counter.mult;
1106         cyclecounter.shift = clocksource_counter.shift;
1107         timecounter_init(&arch_timer_kvm_info.timecounter,
1108                          &cyclecounter, start_count);
1109
1110         sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1111 }
1112
1113 static void arch_timer_stop(struct clock_event_device *clk)
1114 {
1115         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1116
1117         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1118         if (arch_timer_has_nonsecure_ppi())
1119                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1120
1121         clk->set_state_shutdown(clk);
1122 }
1123
1124 static int arch_timer_dying_cpu(unsigned int cpu)
1125 {
1126         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1127
1128         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1129
1130         arch_timer_stop(clk);
1131         return 0;
1132 }
1133
1134 #ifdef CONFIG_CPU_PM
1135 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1136 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1137                                     unsigned long action, void *hcpu)
1138 {
1139         if (action == CPU_PM_ENTER) {
1140                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1141
1142                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1143         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1144                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1145
1146                 if (arch_timer_have_evtstrm_feature())
1147                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1148         }
1149         return NOTIFY_OK;
1150 }
1151
1152 static struct notifier_block arch_timer_cpu_pm_notifier = {
1153         .notifier_call = arch_timer_cpu_pm_notify,
1154 };
1155
1156 static int __init arch_timer_cpu_pm_init(void)
1157 {
1158         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1159 }
1160
1161 static void __init arch_timer_cpu_pm_deinit(void)
1162 {
1163         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1164 }
1165
1166 #else
1167 static int __init arch_timer_cpu_pm_init(void)
1168 {
1169         return 0;
1170 }
1171
1172 static void __init arch_timer_cpu_pm_deinit(void)
1173 {
1174 }
1175 #endif
1176
1177 static int __init arch_timer_register(void)
1178 {
1179         int err;
1180         int ppi;
1181
1182         arch_timer_evt = alloc_percpu(struct clock_event_device);
1183         if (!arch_timer_evt) {
1184                 err = -ENOMEM;
1185                 goto out;
1186         }
1187
1188         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1189         switch (arch_timer_uses_ppi) {
1190         case ARCH_TIMER_VIRT_PPI:
1191                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1192                                          "arch_timer", arch_timer_evt);
1193                 break;
1194         case ARCH_TIMER_PHYS_SECURE_PPI:
1195         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1196                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1197                                          "arch_timer", arch_timer_evt);
1198                 if (!err && arch_timer_has_nonsecure_ppi()) {
1199                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1200                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1201                                                  "arch_timer", arch_timer_evt);
1202                         if (err)
1203                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1204                                                 arch_timer_evt);
1205                 }
1206                 break;
1207         case ARCH_TIMER_HYP_PPI:
1208                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1209                                          "arch_timer", arch_timer_evt);
1210                 break;
1211         default:
1212                 BUG();
1213         }
1214
1215         if (err) {
1216                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1217                 goto out_free;
1218         }
1219
1220         err = arch_timer_cpu_pm_init();
1221         if (err)
1222                 goto out_unreg_notify;
1223
1224         /* Register and immediately configure the timer on the boot CPU */
1225         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1226                                 "clockevents/arm/arch_timer:starting",
1227                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1228         if (err)
1229                 goto out_unreg_cpupm;
1230         return 0;
1231
1232 out_unreg_cpupm:
1233         arch_timer_cpu_pm_deinit();
1234
1235 out_unreg_notify:
1236         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1237         if (arch_timer_has_nonsecure_ppi())
1238                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1239                                 arch_timer_evt);
1240
1241 out_free:
1242         free_percpu(arch_timer_evt);
1243 out:
1244         return err;
1245 }
1246
1247 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1248 {
1249         int ret;
1250         irq_handler_t func;
1251
1252         arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1253         if (!arch_timer_mem)
1254                 return -ENOMEM;
1255
1256         arch_timer_mem->base = base;
1257         arch_timer_mem->evt.irq = irq;
1258         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1259
1260         if (arch_timer_mem_use_virtual)
1261                 func = arch_timer_handler_virt_mem;
1262         else
1263                 func = arch_timer_handler_phys_mem;
1264
1265         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1266         if (ret) {
1267                 pr_err("Failed to request mem timer irq\n");
1268                 kfree(arch_timer_mem);
1269                 arch_timer_mem = NULL;
1270         }
1271
1272         return ret;
1273 }
1274
1275 static const struct of_device_id arch_timer_of_match[] __initconst = {
1276         { .compatible   = "arm,armv7-timer",    },
1277         { .compatible   = "arm,armv8-timer",    },
1278         {},
1279 };
1280
1281 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1282         { .compatible   = "arm,armv7-timer-mem", },
1283         {},
1284 };
1285
1286 static bool __init arch_timer_needs_of_probing(void)
1287 {
1288         struct device_node *dn;
1289         bool needs_probing = false;
1290         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1291
1292         /* We have two timers, and both device-tree nodes are probed. */
1293         if ((arch_timers_present & mask) == mask)
1294                 return false;
1295
1296         /*
1297          * Only one type of timer is probed,
1298          * check if we have another type of timer node in device-tree.
1299          */
1300         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1301                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1302         else
1303                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1304
1305         if (dn && of_device_is_available(dn))
1306                 needs_probing = true;
1307
1308         of_node_put(dn);
1309
1310         return needs_probing;
1311 }
1312
1313 static int __init arch_timer_common_init(void)
1314 {
1315         arch_timer_banner(arch_timers_present);
1316         arch_counter_register(arch_timers_present);
1317         return arch_timer_arch_init();
1318 }
1319
1320 /**
1321  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1322  *
1323  * If HYP mode is available, we know that the physical timer
1324  * has been configured to be accessible from PL1. Use it, so
1325  * that a guest can use the virtual timer instead.
1326  *
1327  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1328  * accesses to CNTP_*_EL1 registers are silently redirected to
1329  * their CNTHP_*_EL2 counterparts, and use a different PPI
1330  * number.
1331  *
1332  * If no interrupt provided for virtual timer, we'll have to
1333  * stick to the physical timer. It'd better be accessible...
1334  * For arm64 we never use the secure interrupt.
1335  *
1336  * Return: a suitable PPI type for the current system.
1337  */
1338 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1339 {
1340         if (is_kernel_in_hyp_mode())
1341                 return ARCH_TIMER_HYP_PPI;
1342
1343         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1344                 return ARCH_TIMER_VIRT_PPI;
1345
1346         if (IS_ENABLED(CONFIG_ARM64))
1347                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1348
1349         return ARCH_TIMER_PHYS_SECURE_PPI;
1350 }
1351
1352 static void __init arch_timer_populate_kvm_info(void)
1353 {
1354         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1355         if (is_kernel_in_hyp_mode())
1356                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1357 }
1358
1359 static int __init arch_timer_of_init(struct device_node *np)
1360 {
1361         int i, irq, ret;
1362         u32 rate;
1363         bool has_names;
1364
1365         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1366                 pr_warn("multiple nodes in dt, skipping\n");
1367                 return 0;
1368         }
1369
1370         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1371
1372         has_names = of_property_read_bool(np, "interrupt-names");
1373
1374         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1375                 if (has_names)
1376                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1377                 else
1378                         irq = of_irq_get(np, i);
1379                 if (irq > 0)
1380                         arch_timer_ppi[i] = irq;
1381         }
1382
1383         arch_timer_populate_kvm_info();
1384
1385         rate = arch_timer_get_cntfrq();
1386         arch_timer_of_configure_rate(rate, np);
1387
1388         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1389
1390         /* Check for globally applicable workarounds */
1391         arch_timer_check_ool_workaround(ate_match_dt, np);
1392
1393         /*
1394          * If we cannot rely on firmware initializing the timer registers then
1395          * we should use the physical timers instead.
1396          */
1397         if (IS_ENABLED(CONFIG_ARM) &&
1398             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1399                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1400         else
1401                 arch_timer_uses_ppi = arch_timer_select_ppi();
1402
1403         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1404                 pr_err("No interrupt available, giving up\n");
1405                 return -EINVAL;
1406         }
1407
1408         /* On some systems, the counter stops ticking when in suspend. */
1409         arch_counter_suspend_stop = of_property_read_bool(np,
1410                                                          "arm,no-tick-in-suspend");
1411
1412         ret = arch_timer_register();
1413         if (ret)
1414                 return ret;
1415
1416         if (arch_timer_needs_of_probing())
1417                 return 0;
1418
1419         return arch_timer_common_init();
1420 }
1421 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1422 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1423
1424 static u32 __init
1425 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1426 {
1427         void __iomem *base;
1428         u32 rate;
1429
1430         base = ioremap(frame->cntbase, frame->size);
1431         if (!base) {
1432                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1433                 return 0;
1434         }
1435
1436         rate = readl_relaxed(base + CNTFRQ);
1437
1438         iounmap(base);
1439
1440         return rate;
1441 }
1442
1443 static struct arch_timer_mem_frame * __init
1444 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1445 {
1446         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1447         void __iomem *cntctlbase;
1448         u32 cnttidr;
1449         int i;
1450
1451         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1452         if (!cntctlbase) {
1453                 pr_err("Can't map CNTCTLBase @ %pa\n",
1454                         &timer_mem->cntctlbase);
1455                 return NULL;
1456         }
1457
1458         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1459
1460         /*
1461          * Try to find a virtual capable frame. Otherwise fall back to a
1462          * physical capable frame.
1463          */
1464         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1465                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1466                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1467
1468                 frame = &timer_mem->frame[i];
1469                 if (!frame->valid)
1470                         continue;
1471
1472                 /* Try enabling everything, and see what sticks */
1473                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1474                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1475
1476                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1477                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1478                         best_frame = frame;
1479                         arch_timer_mem_use_virtual = true;
1480                         break;
1481                 }
1482
1483                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1484                         continue;
1485
1486                 best_frame = frame;
1487         }
1488
1489         iounmap(cntctlbase);
1490
1491         return best_frame;
1492 }
1493
1494 static int __init
1495 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1496 {
1497         void __iomem *base;
1498         int ret, irq = 0;
1499
1500         if (arch_timer_mem_use_virtual)
1501                 irq = frame->virt_irq;
1502         else
1503                 irq = frame->phys_irq;
1504
1505         if (!irq) {
1506                 pr_err("Frame missing %s irq.\n",
1507                        arch_timer_mem_use_virtual ? "virt" : "phys");
1508                 return -EINVAL;
1509         }
1510
1511         if (!request_mem_region(frame->cntbase, frame->size,
1512                                 "arch_mem_timer"))
1513                 return -EBUSY;
1514
1515         base = ioremap(frame->cntbase, frame->size);
1516         if (!base) {
1517                 pr_err("Can't map frame's registers\n");
1518                 return -ENXIO;
1519         }
1520
1521         ret = arch_timer_mem_register(base, irq);
1522         if (ret) {
1523                 iounmap(base);
1524                 return ret;
1525         }
1526
1527         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1528
1529         return 0;
1530 }
1531
1532 static int __init arch_timer_mem_of_init(struct device_node *np)
1533 {
1534         struct arch_timer_mem *timer_mem;
1535         struct arch_timer_mem_frame *frame;
1536         struct device_node *frame_node;
1537         struct resource res;
1538         int ret = -EINVAL;
1539         u32 rate;
1540
1541         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1542         if (!timer_mem)
1543                 return -ENOMEM;
1544
1545         if (of_address_to_resource(np, 0, &res))
1546                 goto out;
1547         timer_mem->cntctlbase = res.start;
1548         timer_mem->size = resource_size(&res);
1549
1550         for_each_available_child_of_node(np, frame_node) {
1551                 u32 n;
1552                 struct arch_timer_mem_frame *frame;
1553
1554                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1555                         pr_err(FW_BUG "Missing frame-number.\n");
1556                         of_node_put(frame_node);
1557                         goto out;
1558                 }
1559                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1560                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1561                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1562                         of_node_put(frame_node);
1563                         goto out;
1564                 }
1565                 frame = &timer_mem->frame[n];
1566
1567                 if (frame->valid) {
1568                         pr_err(FW_BUG "Duplicated frame-number.\n");
1569                         of_node_put(frame_node);
1570                         goto out;
1571                 }
1572
1573                 if (of_address_to_resource(frame_node, 0, &res)) {
1574                         of_node_put(frame_node);
1575                         goto out;
1576                 }
1577                 frame->cntbase = res.start;
1578                 frame->size = resource_size(&res);
1579
1580                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1581                                                        ARCH_TIMER_VIRT_SPI);
1582                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1583                                                        ARCH_TIMER_PHYS_SPI);
1584
1585                 frame->valid = true;
1586         }
1587
1588         frame = arch_timer_mem_find_best_frame(timer_mem);
1589         if (!frame) {
1590                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1591                         &timer_mem->cntctlbase);
1592                 ret = -EINVAL;
1593                 goto out;
1594         }
1595
1596         rate = arch_timer_mem_frame_get_cntfrq(frame);
1597         arch_timer_of_configure_rate(rate, np);
1598
1599         ret = arch_timer_mem_frame_register(frame);
1600         if (!ret && !arch_timer_needs_of_probing())
1601                 ret = arch_timer_common_init();
1602 out:
1603         kfree(timer_mem);
1604         return ret;
1605 }
1606 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1607                        arch_timer_mem_of_init);
1608
1609 #ifdef CONFIG_ACPI_GTDT
1610 static int __init
1611 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1612 {
1613         struct arch_timer_mem_frame *frame;
1614         u32 rate;
1615         int i;
1616
1617         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1618                 frame = &timer_mem->frame[i];
1619
1620                 if (!frame->valid)
1621                         continue;
1622
1623                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1624                 if (rate == arch_timer_rate)
1625                         continue;
1626
1627                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1628                         &frame->cntbase,
1629                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1630
1631                 return -EINVAL;
1632         }
1633
1634         return 0;
1635 }
1636
1637 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1638 {
1639         struct arch_timer_mem *timers, *timer;
1640         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1641         int timer_count, i, ret = 0;
1642
1643         timers = kcalloc(platform_timer_count, sizeof(*timers),
1644                             GFP_KERNEL);
1645         if (!timers)
1646                 return -ENOMEM;
1647
1648         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1649         if (ret || !timer_count)
1650                 goto out;
1651
1652         /*
1653          * While unlikely, it's theoretically possible that none of the frames
1654          * in a timer expose the combination of feature we want.
1655          */
1656         for (i = 0; i < timer_count; i++) {
1657                 timer = &timers[i];
1658
1659                 frame = arch_timer_mem_find_best_frame(timer);
1660                 if (!best_frame)
1661                         best_frame = frame;
1662
1663                 ret = arch_timer_mem_verify_cntfrq(timer);
1664                 if (ret) {
1665                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1666                         goto out;
1667                 }
1668
1669                 if (!best_frame) /* implies !frame */
1670                         /*
1671                          * Only complain about missing suitable frames if we
1672                          * haven't already found one in a previous iteration.
1673                          */
1674                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1675                                 &timer->cntctlbase);
1676         }
1677
1678         if (best_frame)
1679                 ret = arch_timer_mem_frame_register(best_frame);
1680 out:
1681         kfree(timers);
1682         return ret;
1683 }
1684
1685 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1686 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1687 {
1688         int ret, platform_timer_count;
1689
1690         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1691                 pr_warn("already initialized, skipping\n");
1692                 return -EINVAL;
1693         }
1694
1695         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1696
1697         ret = acpi_gtdt_init(table, &platform_timer_count);
1698         if (ret)
1699                 return ret;
1700
1701         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1702                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1703
1704         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1705                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1706
1707         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1708                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1709
1710         arch_timer_populate_kvm_info();
1711
1712         /*
1713          * When probing via ACPI, we have no mechanism to override the sysreg
1714          * CNTFRQ value. This *must* be correct.
1715          */
1716         arch_timer_rate = arch_timer_get_cntfrq();
1717         ret = validate_timer_rate();
1718         if (ret) {
1719                 pr_err(FW_BUG "frequency not available.\n");
1720                 return ret;
1721         }
1722
1723         arch_timer_uses_ppi = arch_timer_select_ppi();
1724         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1725                 pr_err("No interrupt available, giving up\n");
1726                 return -EINVAL;
1727         }
1728
1729         /* Always-on capability */
1730         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1731
1732         /* Check for globally applicable workarounds */
1733         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1734
1735         ret = arch_timer_register();
1736         if (ret)
1737                 return ret;
1738
1739         if (platform_timer_count &&
1740             arch_timer_mem_acpi_init(platform_timer_count))
1741                 pr_err("Failed to initialize memory-mapped timer.\n");
1742
1743         return arch_timer_common_init();
1744 }
1745 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1746 #endif
1747
1748 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1749                                  struct clocksource **cs)
1750 {
1751         struct arm_smccc_res hvc_res;
1752         u32 ptp_counter;
1753         ktime_t ktime;
1754
1755         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1756                 return -EOPNOTSUPP;
1757
1758         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1759                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1760         else
1761                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1762
1763         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1764                              ptp_counter, &hvc_res);
1765
1766         if ((int)(hvc_res.a0) < 0)
1767                 return -EOPNOTSUPP;
1768
1769         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1770         *ts = ktime_to_timespec64(ktime);
1771         if (cycle)
1772                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1773         if (cs)
1774                 *cs = &clocksource_counter;
1775
1776         return 0;
1777 }
1778 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);