Merge tag 'trace-v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux...
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/kstrtox.h>
22 #include <linux/of_irq.h>
23 #include <linux/of_address.h>
24 #include <linux/io.h>
25 #include <linux/slab.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched_clock.h>
28 #include <linux/acpi.h>
29 #include <linux/arm-smccc.h>
30 #include <linux/ptp_kvm.h>
31
32 #include <asm/arch_timer.h>
33 #include <asm/virt.h>
34
35 #include <clocksource/arm_arch_timer.h>
36
37 #define CNTTIDR         0x08
38 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
39
40 #define CNTACR(n)       (0x40 + ((n) * 4))
41 #define CNTACR_RPCT     BIT(0)
42 #define CNTACR_RVCT     BIT(1)
43 #define CNTACR_RFRQ     BIT(2)
44 #define CNTACR_RVOFF    BIT(3)
45 #define CNTACR_RWVT     BIT(4)
46 #define CNTACR_RWPT     BIT(5)
47
48 #define CNTPCT_LO       0x00
49 #define CNTVCT_LO       0x08
50 #define CNTFRQ          0x10
51 #define CNTP_CVAL_LO    0x20
52 #define CNTP_CTL        0x2c
53 #define CNTV_CVAL_LO    0x30
54 #define CNTV_CTL        0x3c
55
56 /*
57  * The minimum amount of time a generic counter is guaranteed to not roll over
58  * (40 years)
59  */
60 #define MIN_ROLLOVER_SECS       (40ULL * 365 * 24 * 3600)
61
62 static unsigned arch_timers_present __initdata;
63
64 struct arch_timer {
65         void __iomem *base;
66         struct clock_event_device evt;
67 };
68
69 static struct arch_timer *arch_timer_mem __ro_after_init;
70
71 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
72
73 static u32 arch_timer_rate __ro_after_init;
74 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
75
76 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
77         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
78         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
79         [ARCH_TIMER_VIRT_PPI]           = "virt",
80         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
81         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
82 };
83
84 static struct clock_event_device __percpu *arch_timer_evt;
85
86 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
87 static bool arch_timer_c3stop __ro_after_init;
88 static bool arch_timer_mem_use_virtual __ro_after_init;
89 static bool arch_counter_suspend_stop __ro_after_init;
90 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
91 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
92 #else
93 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
94 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
95
96 static cpumask_t evtstrm_available = CPU_MASK_NONE;
97 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
98
99 static int __init early_evtstrm_cfg(char *buf)
100 {
101         return kstrtobool(buf, &evtstrm_enable);
102 }
103 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
104
105 /*
106  * Makes an educated guess at a valid counter width based on the Generic Timer
107  * specification. Of note:
108  *   1) the system counter is at least 56 bits wide
109  *   2) a roll-over time of not less than 40 years
110  *
111  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
112  */
113 static int arch_counter_get_width(void)
114 {
115         u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
116
117         /* guarantee the returned width is within the valid range */
118         return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
119 }
120
121 /*
122  * Architected system timer support.
123  */
124
125 static __always_inline
126 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
127                           struct clock_event_device *clk)
128 {
129         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130                 struct arch_timer *timer = to_arch_timer(clk);
131                 switch (reg) {
132                 case ARCH_TIMER_REG_CTRL:
133                         writel_relaxed((u32)val, timer->base + CNTP_CTL);
134                         break;
135                 case ARCH_TIMER_REG_CVAL:
136                         /*
137                          * Not guaranteed to be atomic, so the timer
138                          * must be disabled at this point.
139                          */
140                         writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
141                         break;
142                 default:
143                         BUILD_BUG();
144                 }
145         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
146                 struct arch_timer *timer = to_arch_timer(clk);
147                 switch (reg) {
148                 case ARCH_TIMER_REG_CTRL:
149                         writel_relaxed((u32)val, timer->base + CNTV_CTL);
150                         break;
151                 case ARCH_TIMER_REG_CVAL:
152                         /* Same restriction as above */
153                         writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
154                         break;
155                 default:
156                         BUILD_BUG();
157                 }
158         } else {
159                 arch_timer_reg_write_cp15(access, reg, val);
160         }
161 }
162
163 static __always_inline
164 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
165                         struct clock_event_device *clk)
166 {
167         u32 val;
168
169         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
170                 struct arch_timer *timer = to_arch_timer(clk);
171                 switch (reg) {
172                 case ARCH_TIMER_REG_CTRL:
173                         val = readl_relaxed(timer->base + CNTP_CTL);
174                         break;
175                 default:
176                         BUILD_BUG();
177                 }
178         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
179                 struct arch_timer *timer = to_arch_timer(clk);
180                 switch (reg) {
181                 case ARCH_TIMER_REG_CTRL:
182                         val = readl_relaxed(timer->base + CNTV_CTL);
183                         break;
184                 default:
185                         BUILD_BUG();
186                 }
187         } else {
188                 val = arch_timer_reg_read_cp15(access, reg);
189         }
190
191         return val;
192 }
193
194 static notrace u64 arch_counter_get_cntpct_stable(void)
195 {
196         return __arch_counter_get_cntpct_stable();
197 }
198
199 static notrace u64 arch_counter_get_cntpct(void)
200 {
201         return __arch_counter_get_cntpct();
202 }
203
204 static notrace u64 arch_counter_get_cntvct_stable(void)
205 {
206         return __arch_counter_get_cntvct_stable();
207 }
208
209 static notrace u64 arch_counter_get_cntvct(void)
210 {
211         return __arch_counter_get_cntvct();
212 }
213
214 /*
215  * Default to cp15 based access because arm64 uses this function for
216  * sched_clock() before DT is probed and the cp15 method is guaranteed
217  * to exist on arm64. arm doesn't use this before DT is probed so even
218  * if we don't have the cp15 accessors we won't have a problem.
219  */
220 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
221 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
222
223 static u64 arch_counter_read(struct clocksource *cs)
224 {
225         return arch_timer_read_counter();
226 }
227
228 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
229 {
230         return arch_timer_read_counter();
231 }
232
233 static struct clocksource clocksource_counter = {
234         .name   = "arch_sys_counter",
235         .id     = CSID_ARM_ARCH_COUNTER,
236         .rating = 400,
237         .read   = arch_counter_read,
238         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
239 };
240
241 static struct cyclecounter cyclecounter __ro_after_init = {
242         .read   = arch_counter_read_cc,
243 };
244
245 struct ate_acpi_oem_info {
246         char oem_id[ACPI_OEM_ID_SIZE + 1];
247         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
248         u32 oem_revision;
249 };
250
251 #ifdef CONFIG_FSL_ERRATUM_A008585
252 /*
253  * The number of retries is an arbitrary value well beyond the highest number
254  * of iterations the loop has been observed to take.
255  */
256 #define __fsl_a008585_read_reg(reg) ({                  \
257         u64 _old, _new;                                 \
258         int _retries = 200;                             \
259                                                         \
260         do {                                            \
261                 _old = read_sysreg(reg);                \
262                 _new = read_sysreg(reg);                \
263                 _retries--;                             \
264         } while (unlikely(_old != _new) && _retries);   \
265                                                         \
266         WARN_ON_ONCE(!_retries);                        \
267         _new;                                           \
268 })
269
270 static u64 notrace fsl_a008585_read_cntpct_el0(void)
271 {
272         return __fsl_a008585_read_reg(cntpct_el0);
273 }
274
275 static u64 notrace fsl_a008585_read_cntvct_el0(void)
276 {
277         return __fsl_a008585_read_reg(cntvct_el0);
278 }
279 #endif
280
281 #ifdef CONFIG_HISILICON_ERRATUM_161010101
282 /*
283  * Verify whether the value of the second read is larger than the first by
284  * less than 32 is the only way to confirm the value is correct, so clear the
285  * lower 5 bits to check whether the difference is greater than 32 or not.
286  * Theoretically the erratum should not occur more than twice in succession
287  * when reading the system counter, but it is possible that some interrupts
288  * may lead to more than twice read errors, triggering the warning, so setting
289  * the number of retries far beyond the number of iterations the loop has been
290  * observed to take.
291  */
292 #define __hisi_161010101_read_reg(reg) ({                               \
293         u64 _old, _new;                                         \
294         int _retries = 50;                                      \
295                                                                 \
296         do {                                                    \
297                 _old = read_sysreg(reg);                        \
298                 _new = read_sysreg(reg);                        \
299                 _retries--;                                     \
300         } while (unlikely((_new - _old) >> 5) && _retries);     \
301                                                                 \
302         WARN_ON_ONCE(!_retries);                                \
303         _new;                                                   \
304 })
305
306 static u64 notrace hisi_161010101_read_cntpct_el0(void)
307 {
308         return __hisi_161010101_read_reg(cntpct_el0);
309 }
310
311 static u64 notrace hisi_161010101_read_cntvct_el0(void)
312 {
313         return __hisi_161010101_read_reg(cntvct_el0);
314 }
315
316 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
317         /*
318          * Note that trailing spaces are required to properly match
319          * the OEM table information.
320          */
321         {
322                 .oem_id         = "HISI  ",
323                 .oem_table_id   = "HIP05   ",
324                 .oem_revision   = 0,
325         },
326         {
327                 .oem_id         = "HISI  ",
328                 .oem_table_id   = "HIP06   ",
329                 .oem_revision   = 0,
330         },
331         {
332                 .oem_id         = "HISI  ",
333                 .oem_table_id   = "HIP07   ",
334                 .oem_revision   = 0,
335         },
336         { /* Sentinel indicating the end of the OEM array */ },
337 };
338 #endif
339
340 #ifdef CONFIG_ARM64_ERRATUM_858921
341 static u64 notrace arm64_858921_read_cntpct_el0(void)
342 {
343         u64 old, new;
344
345         old = read_sysreg(cntpct_el0);
346         new = read_sysreg(cntpct_el0);
347         return (((old ^ new) >> 32) & 1) ? old : new;
348 }
349
350 static u64 notrace arm64_858921_read_cntvct_el0(void)
351 {
352         u64 old, new;
353
354         old = read_sysreg(cntvct_el0);
355         new = read_sysreg(cntvct_el0);
356         return (((old ^ new) >> 32) & 1) ? old : new;
357 }
358 #endif
359
360 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
361 /*
362  * The low bits of the counter registers are indeterminate while bit 10 or
363  * greater is rolling over. Since the counter value can jump both backward
364  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
365  * with all ones or all zeros in the low bits. Bound the loop by the maximum
366  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
367  */
368 #define __sun50i_a64_read_reg(reg) ({                                   \
369         u64 _val;                                                       \
370         int _retries = 150;                                             \
371                                                                         \
372         do {                                                            \
373                 _val = read_sysreg(reg);                                \
374                 _retries--;                                             \
375         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
376                                                                         \
377         WARN_ON_ONCE(!_retries);                                        \
378         _val;                                                           \
379 })
380
381 static u64 notrace sun50i_a64_read_cntpct_el0(void)
382 {
383         return __sun50i_a64_read_reg(cntpct_el0);
384 }
385
386 static u64 notrace sun50i_a64_read_cntvct_el0(void)
387 {
388         return __sun50i_a64_read_reg(cntvct_el0);
389 }
390 #endif
391
392 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
393 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
394 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
395
396 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
397
398 /*
399  * Force the inlining of this function so that the register accesses
400  * can be themselves correctly inlined.
401  */
402 static __always_inline
403 void erratum_set_next_event_generic(const int access, unsigned long evt,
404                                     struct clock_event_device *clk)
405 {
406         unsigned long ctrl;
407         u64 cval;
408
409         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
410         ctrl |= ARCH_TIMER_CTRL_ENABLE;
411         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
412
413         if (access == ARCH_TIMER_PHYS_ACCESS) {
414                 cval = evt + arch_counter_get_cntpct_stable();
415                 write_sysreg(cval, cntp_cval_el0);
416         } else {
417                 cval = evt + arch_counter_get_cntvct_stable();
418                 write_sysreg(cval, cntv_cval_el0);
419         }
420
421         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
422 }
423
424 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
425                                             struct clock_event_device *clk)
426 {
427         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
428         return 0;
429 }
430
431 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
432                                             struct clock_event_device *clk)
433 {
434         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
435         return 0;
436 }
437
438 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
439 #ifdef CONFIG_FSL_ERRATUM_A008585
440         {
441                 .match_type = ate_match_dt,
442                 .id = "fsl,erratum-a008585",
443                 .desc = "Freescale erratum a005858",
444                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
445                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
446                 .set_next_event_phys = erratum_set_next_event_phys,
447                 .set_next_event_virt = erratum_set_next_event_virt,
448         },
449 #endif
450 #ifdef CONFIG_HISILICON_ERRATUM_161010101
451         {
452                 .match_type = ate_match_dt,
453                 .id = "hisilicon,erratum-161010101",
454                 .desc = "HiSilicon erratum 161010101",
455                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457                 .set_next_event_phys = erratum_set_next_event_phys,
458                 .set_next_event_virt = erratum_set_next_event_virt,
459         },
460         {
461                 .match_type = ate_match_acpi_oem_info,
462                 .id = hisi_161010101_oem_info,
463                 .desc = "HiSilicon erratum 161010101",
464                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
465                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
466                 .set_next_event_phys = erratum_set_next_event_phys,
467                 .set_next_event_virt = erratum_set_next_event_virt,
468         },
469 #endif
470 #ifdef CONFIG_ARM64_ERRATUM_858921
471         {
472                 .match_type = ate_match_local_cap_id,
473                 .id = (void *)ARM64_WORKAROUND_858921,
474                 .desc = "ARM erratum 858921",
475                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
476                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
477                 .set_next_event_phys = erratum_set_next_event_phys,
478                 .set_next_event_virt = erratum_set_next_event_virt,
479         },
480 #endif
481 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
482         {
483                 .match_type = ate_match_dt,
484                 .id = "allwinner,erratum-unknown1",
485                 .desc = "Allwinner erratum UNKNOWN1",
486                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
487                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
488                 .set_next_event_phys = erratum_set_next_event_phys,
489                 .set_next_event_virt = erratum_set_next_event_virt,
490         },
491 #endif
492 #ifdef CONFIG_ARM64_ERRATUM_1418040
493         {
494                 .match_type = ate_match_local_cap_id,
495                 .id = (void *)ARM64_WORKAROUND_1418040,
496                 .desc = "ARM erratum 1418040",
497                 .disable_compat_vdso = true,
498         },
499 #endif
500 };
501
502 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
503                                const void *);
504
505 static
506 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
507                                  const void *arg)
508 {
509         const struct device_node *np = arg;
510
511         return of_property_read_bool(np, wa->id);
512 }
513
514 static
515 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
516                                         const void *arg)
517 {
518         return this_cpu_has_cap((uintptr_t)wa->id);
519 }
520
521
522 static
523 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
524                                        const void *arg)
525 {
526         static const struct ate_acpi_oem_info empty_oem_info = {};
527         const struct ate_acpi_oem_info *info = wa->id;
528         const struct acpi_table_header *table = arg;
529
530         /* Iterate over the ACPI OEM info array, looking for a match */
531         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
532                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
533                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
534                     info->oem_revision == table->oem_revision)
535                         return true;
536
537                 info++;
538         }
539
540         return false;
541 }
542
543 static const struct arch_timer_erratum_workaround *
544 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
545                           ate_match_fn_t match_fn,
546                           void *arg)
547 {
548         int i;
549
550         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
551                 if (ool_workarounds[i].match_type != type)
552                         continue;
553
554                 if (match_fn(&ool_workarounds[i], arg))
555                         return &ool_workarounds[i];
556         }
557
558         return NULL;
559 }
560
561 static
562 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
563                                   bool local)
564 {
565         int i;
566
567         if (local) {
568                 __this_cpu_write(timer_unstable_counter_workaround, wa);
569         } else {
570                 for_each_possible_cpu(i)
571                         per_cpu(timer_unstable_counter_workaround, i) = wa;
572         }
573
574         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
575                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
576
577         /*
578          * Don't use the vdso fastpath if errata require using the
579          * out-of-line counter accessor. We may change our mind pretty
580          * late in the game (with a per-CPU erratum, for example), so
581          * change both the default value and the vdso itself.
582          */
583         if (wa->read_cntvct_el0) {
584                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
585                 vdso_default = VDSO_CLOCKMODE_NONE;
586         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
587                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
588                 clocksource_counter.vdso_clock_mode = vdso_default;
589         }
590 }
591
592 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
593                                             void *arg)
594 {
595         const struct arch_timer_erratum_workaround *wa, *__wa;
596         ate_match_fn_t match_fn = NULL;
597         bool local = false;
598
599         switch (type) {
600         case ate_match_dt:
601                 match_fn = arch_timer_check_dt_erratum;
602                 break;
603         case ate_match_local_cap_id:
604                 match_fn = arch_timer_check_local_cap_erratum;
605                 local = true;
606                 break;
607         case ate_match_acpi_oem_info:
608                 match_fn = arch_timer_check_acpi_oem_erratum;
609                 break;
610         default:
611                 WARN_ON(1);
612                 return;
613         }
614
615         wa = arch_timer_iterate_errata(type, match_fn, arg);
616         if (!wa)
617                 return;
618
619         __wa = __this_cpu_read(timer_unstable_counter_workaround);
620         if (__wa && wa != __wa)
621                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
622                         wa->desc, __wa->desc);
623
624         if (__wa)
625                 return;
626
627         arch_timer_enable_workaround(wa, local);
628         pr_info("Enabling %s workaround for %s\n",
629                 local ? "local" : "global", wa->desc);
630 }
631
632 static bool arch_timer_this_cpu_has_cntvct_wa(void)
633 {
634         return has_erratum_handler(read_cntvct_el0);
635 }
636
637 static bool arch_timer_counter_has_wa(void)
638 {
639         return atomic_read(&timer_unstable_counter_workaround_in_use);
640 }
641 #else
642 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
643 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
644 #define arch_timer_counter_has_wa()                     ({false;})
645 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
646
647 static __always_inline irqreturn_t timer_handler(const int access,
648                                         struct clock_event_device *evt)
649 {
650         unsigned long ctrl;
651
652         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
653         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
654                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
655                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
656                 evt->event_handler(evt);
657                 return IRQ_HANDLED;
658         }
659
660         return IRQ_NONE;
661 }
662
663 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
664 {
665         struct clock_event_device *evt = dev_id;
666
667         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
668 }
669
670 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
671 {
672         struct clock_event_device *evt = dev_id;
673
674         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
675 }
676
677 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
678 {
679         struct clock_event_device *evt = dev_id;
680
681         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
682 }
683
684 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
685 {
686         struct clock_event_device *evt = dev_id;
687
688         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
689 }
690
691 static __always_inline int arch_timer_shutdown(const int access,
692                                                struct clock_event_device *clk)
693 {
694         unsigned long ctrl;
695
696         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
697         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
698         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
699
700         return 0;
701 }
702
703 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
704 {
705         return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
706 }
707
708 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
709 {
710         return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
711 }
712
713 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
714 {
715         return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
716 }
717
718 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
719 {
720         return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
721 }
722
723 static __always_inline void set_next_event(const int access, unsigned long evt,
724                                            struct clock_event_device *clk)
725 {
726         unsigned long ctrl;
727         u64 cnt;
728
729         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
730         ctrl |= ARCH_TIMER_CTRL_ENABLE;
731         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
732
733         if (access == ARCH_TIMER_PHYS_ACCESS)
734                 cnt = __arch_counter_get_cntpct();
735         else
736                 cnt = __arch_counter_get_cntvct();
737
738         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
739         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
740 }
741
742 static int arch_timer_set_next_event_virt(unsigned long evt,
743                                           struct clock_event_device *clk)
744 {
745         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
746         return 0;
747 }
748
749 static int arch_timer_set_next_event_phys(unsigned long evt,
750                                           struct clock_event_device *clk)
751 {
752         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
753         return 0;
754 }
755
756 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
757 {
758         u32 cnt_lo, cnt_hi, tmp_hi;
759
760         do {
761                 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
762                 cnt_lo = readl_relaxed(t->base + offset_lo);
763                 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
764         } while (cnt_hi != tmp_hi);
765
766         return ((u64) cnt_hi << 32) | cnt_lo;
767 }
768
769 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
770                                            struct clock_event_device *clk)
771 {
772         struct arch_timer *timer = to_arch_timer(clk);
773         unsigned long ctrl;
774         u64 cnt;
775
776         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
777         ctrl |= ARCH_TIMER_CTRL_ENABLE;
778         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
779
780         if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
781                 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
782         else
783                 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
784
785         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
786         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
787 }
788
789 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
790                                               struct clock_event_device *clk)
791 {
792         set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
793         return 0;
794 }
795
796 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
797                                               struct clock_event_device *clk)
798 {
799         set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
800         return 0;
801 }
802
803 static u64 __arch_timer_check_delta(void)
804 {
805 #ifdef CONFIG_ARM64
806         const struct midr_range broken_cval_midrs[] = {
807                 /*
808                  * XGene-1 implements CVAL in terms of TVAL, meaning
809                  * that the maximum timer range is 32bit. Shame on them.
810                  *
811                  * Note that TVAL is signed, thus has only 31 of its
812                  * 32 bits to express magnitude.
813                  */
814                 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
815                                                  APM_CPU_PART_POTENZA)),
816                 {},
817         };
818
819         if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
820                 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
821                 return CLOCKSOURCE_MASK(31);
822         }
823 #endif
824         return CLOCKSOURCE_MASK(arch_counter_get_width());
825 }
826
827 static void __arch_timer_setup(unsigned type,
828                                struct clock_event_device *clk)
829 {
830         u64 max_delta;
831
832         clk->features = CLOCK_EVT_FEAT_ONESHOT;
833
834         if (type == ARCH_TIMER_TYPE_CP15) {
835                 typeof(clk->set_next_event) sne;
836
837                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
838
839                 if (arch_timer_c3stop)
840                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
841                 clk->name = "arch_sys_timer";
842                 clk->rating = 450;
843                 clk->cpumask = cpumask_of(smp_processor_id());
844                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
845                 switch (arch_timer_uses_ppi) {
846                 case ARCH_TIMER_VIRT_PPI:
847                         clk->set_state_shutdown = arch_timer_shutdown_virt;
848                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
849                         sne = erratum_handler(set_next_event_virt);
850                         break;
851                 case ARCH_TIMER_PHYS_SECURE_PPI:
852                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
853                 case ARCH_TIMER_HYP_PPI:
854                         clk->set_state_shutdown = arch_timer_shutdown_phys;
855                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
856                         sne = erratum_handler(set_next_event_phys);
857                         break;
858                 default:
859                         BUG();
860                 }
861
862                 clk->set_next_event = sne;
863                 max_delta = __arch_timer_check_delta();
864         } else {
865                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
866                 clk->name = "arch_mem_timer";
867                 clk->rating = 400;
868                 clk->cpumask = cpu_possible_mask;
869                 if (arch_timer_mem_use_virtual) {
870                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
871                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
872                         clk->set_next_event =
873                                 arch_timer_set_next_event_virt_mem;
874                 } else {
875                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
876                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
877                         clk->set_next_event =
878                                 arch_timer_set_next_event_phys_mem;
879                 }
880
881                 max_delta = CLOCKSOURCE_MASK(56);
882         }
883
884         clk->set_state_shutdown(clk);
885
886         clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
887 }
888
889 static void arch_timer_evtstrm_enable(unsigned int divider)
890 {
891         u32 cntkctl = arch_timer_get_cntkctl();
892
893 #ifdef CONFIG_ARM64
894         /* ECV is likely to require a large divider. Use the EVNTIS flag. */
895         if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
896                 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
897                 divider -= 8;
898         }
899 #endif
900
901         divider = min(divider, 15U);
902         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
903         /* Set the divider and enable virtual event stream */
904         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
905                         | ARCH_TIMER_VIRT_EVT_EN;
906         arch_timer_set_cntkctl(cntkctl);
907         arch_timer_set_evtstrm_feature();
908         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
909 }
910
911 static void arch_timer_configure_evtstream(void)
912 {
913         int evt_stream_div, lsb;
914
915         /*
916          * As the event stream can at most be generated at half the frequency
917          * of the counter, use half the frequency when computing the divider.
918          */
919         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
920
921         /*
922          * Find the closest power of two to the divisor. If the adjacent bit
923          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
924          */
925         lsb = fls(evt_stream_div) - 1;
926         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
927                 lsb++;
928
929         /* enable event stream */
930         arch_timer_evtstrm_enable(max(0, lsb));
931 }
932
933 static void arch_counter_set_user_access(void)
934 {
935         u32 cntkctl = arch_timer_get_cntkctl();
936
937         /* Disable user access to the timers and both counters */
938         /* Also disable virtual event stream */
939         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
940                         | ARCH_TIMER_USR_VT_ACCESS_EN
941                         | ARCH_TIMER_USR_VCT_ACCESS_EN
942                         | ARCH_TIMER_VIRT_EVT_EN
943                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
944
945         /*
946          * Enable user access to the virtual counter if it doesn't
947          * need to be workaround. The vdso may have been already
948          * disabled though.
949          */
950         if (arch_timer_this_cpu_has_cntvct_wa())
951                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
952         else
953                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
954
955         arch_timer_set_cntkctl(cntkctl);
956 }
957
958 static bool arch_timer_has_nonsecure_ppi(void)
959 {
960         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
961                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962 }
963
964 static u32 check_ppi_trigger(int irq)
965 {
966         u32 flags = irq_get_trigger_type(irq);
967
968         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
969                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
970                 pr_warn("WARNING: Please fix your firmware\n");
971                 flags = IRQF_TRIGGER_LOW;
972         }
973
974         return flags;
975 }
976
977 static int arch_timer_starting_cpu(unsigned int cpu)
978 {
979         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
980         u32 flags;
981
982         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
983
984         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
985         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
986
987         if (arch_timer_has_nonsecure_ppi()) {
988                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
989                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
990                                   flags);
991         }
992
993         arch_counter_set_user_access();
994         if (evtstrm_enable)
995                 arch_timer_configure_evtstream();
996
997         return 0;
998 }
999
1000 static int validate_timer_rate(void)
1001 {
1002         if (!arch_timer_rate)
1003                 return -EINVAL;
1004
1005         /* Arch timer frequency < 1MHz can cause trouble */
1006         WARN_ON(arch_timer_rate < 1000000);
1007
1008         return 0;
1009 }
1010
1011 /*
1012  * For historical reasons, when probing with DT we use whichever (non-zero)
1013  * rate was probed first, and don't verify that others match. If the first node
1014  * probed has a clock-frequency property, this overrides the HW register.
1015  */
1016 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1017 {
1018         /* Who has more than one independent system counter? */
1019         if (arch_timer_rate)
1020                 return;
1021
1022         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1023                 arch_timer_rate = rate;
1024
1025         /* Check the timer frequency. */
1026         if (validate_timer_rate())
1027                 pr_warn("frequency not available\n");
1028 }
1029
1030 static void __init arch_timer_banner(unsigned type)
1031 {
1032         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1033                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1034                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1035                         " and " : "",
1036                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1037                 (unsigned long)arch_timer_rate / 1000000,
1038                 (unsigned long)(arch_timer_rate / 10000) % 100,
1039                 type & ARCH_TIMER_TYPE_CP15 ?
1040                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1041                         "",
1042                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1043                 type & ARCH_TIMER_TYPE_MEM ?
1044                         arch_timer_mem_use_virtual ? "virt" : "phys" :
1045                         "");
1046 }
1047
1048 u32 arch_timer_get_rate(void)
1049 {
1050         return arch_timer_rate;
1051 }
1052
1053 bool arch_timer_evtstrm_available(void)
1054 {
1055         /*
1056          * We might get called from a preemptible context. This is fine
1057          * because availability of the event stream should be always the same
1058          * for a preemptible context and context where we might resume a task.
1059          */
1060         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1061 }
1062
1063 static u64 arch_counter_get_cntvct_mem(void)
1064 {
1065         return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1066 }
1067
1068 static struct arch_timer_kvm_info arch_timer_kvm_info;
1069
1070 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1071 {
1072         return &arch_timer_kvm_info;
1073 }
1074
1075 static void __init arch_counter_register(unsigned type)
1076 {
1077         u64 start_count;
1078         int width;
1079
1080         /* Register the CP15 based counter if we have one */
1081         if (type & ARCH_TIMER_TYPE_CP15) {
1082                 u64 (*rd)(void);
1083
1084                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1085                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1086                         if (arch_timer_counter_has_wa())
1087                                 rd = arch_counter_get_cntvct_stable;
1088                         else
1089                                 rd = arch_counter_get_cntvct;
1090                 } else {
1091                         if (arch_timer_counter_has_wa())
1092                                 rd = arch_counter_get_cntpct_stable;
1093                         else
1094                                 rd = arch_counter_get_cntpct;
1095                 }
1096
1097                 arch_timer_read_counter = rd;
1098                 clocksource_counter.vdso_clock_mode = vdso_default;
1099         } else {
1100                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1101         }
1102
1103         width = arch_counter_get_width();
1104         clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1105         cyclecounter.mask = CLOCKSOURCE_MASK(width);
1106
1107         if (!arch_counter_suspend_stop)
1108                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1109         start_count = arch_timer_read_counter();
1110         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1111         cyclecounter.mult = clocksource_counter.mult;
1112         cyclecounter.shift = clocksource_counter.shift;
1113         timecounter_init(&arch_timer_kvm_info.timecounter,
1114                          &cyclecounter, start_count);
1115
1116         sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1117 }
1118
1119 static void arch_timer_stop(struct clock_event_device *clk)
1120 {
1121         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1122
1123         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1124         if (arch_timer_has_nonsecure_ppi())
1125                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1126
1127         clk->set_state_shutdown(clk);
1128 }
1129
1130 static int arch_timer_dying_cpu(unsigned int cpu)
1131 {
1132         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1133
1134         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1135
1136         arch_timer_stop(clk);
1137         return 0;
1138 }
1139
1140 #ifdef CONFIG_CPU_PM
1141 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1142 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1143                                     unsigned long action, void *hcpu)
1144 {
1145         if (action == CPU_PM_ENTER) {
1146                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1147
1148                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1149         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1150                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1151
1152                 if (arch_timer_have_evtstrm_feature())
1153                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1154         }
1155         return NOTIFY_OK;
1156 }
1157
1158 static struct notifier_block arch_timer_cpu_pm_notifier = {
1159         .notifier_call = arch_timer_cpu_pm_notify,
1160 };
1161
1162 static int __init arch_timer_cpu_pm_init(void)
1163 {
1164         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1165 }
1166
1167 static void __init arch_timer_cpu_pm_deinit(void)
1168 {
1169         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1170 }
1171
1172 #else
1173 static int __init arch_timer_cpu_pm_init(void)
1174 {
1175         return 0;
1176 }
1177
1178 static void __init arch_timer_cpu_pm_deinit(void)
1179 {
1180 }
1181 #endif
1182
1183 static int __init arch_timer_register(void)
1184 {
1185         int err;
1186         int ppi;
1187
1188         arch_timer_evt = alloc_percpu(struct clock_event_device);
1189         if (!arch_timer_evt) {
1190                 err = -ENOMEM;
1191                 goto out;
1192         }
1193
1194         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1195         switch (arch_timer_uses_ppi) {
1196         case ARCH_TIMER_VIRT_PPI:
1197                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1198                                          "arch_timer", arch_timer_evt);
1199                 break;
1200         case ARCH_TIMER_PHYS_SECURE_PPI:
1201         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1202                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1203                                          "arch_timer", arch_timer_evt);
1204                 if (!err && arch_timer_has_nonsecure_ppi()) {
1205                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1206                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1207                                                  "arch_timer", arch_timer_evt);
1208                         if (err)
1209                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1210                                                 arch_timer_evt);
1211                 }
1212                 break;
1213         case ARCH_TIMER_HYP_PPI:
1214                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1215                                          "arch_timer", arch_timer_evt);
1216                 break;
1217         default:
1218                 BUG();
1219         }
1220
1221         if (err) {
1222                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1223                 goto out_free;
1224         }
1225
1226         err = arch_timer_cpu_pm_init();
1227         if (err)
1228                 goto out_unreg_notify;
1229
1230         /* Register and immediately configure the timer on the boot CPU */
1231         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1232                                 "clockevents/arm/arch_timer:starting",
1233                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1234         if (err)
1235                 goto out_unreg_cpupm;
1236         return 0;
1237
1238 out_unreg_cpupm:
1239         arch_timer_cpu_pm_deinit();
1240
1241 out_unreg_notify:
1242         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1243         if (arch_timer_has_nonsecure_ppi())
1244                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1245                                 arch_timer_evt);
1246
1247 out_free:
1248         free_percpu(arch_timer_evt);
1249 out:
1250         return err;
1251 }
1252
1253 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1254 {
1255         int ret;
1256         irq_handler_t func;
1257
1258         arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1259         if (!arch_timer_mem)
1260                 return -ENOMEM;
1261
1262         arch_timer_mem->base = base;
1263         arch_timer_mem->evt.irq = irq;
1264         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1265
1266         if (arch_timer_mem_use_virtual)
1267                 func = arch_timer_handler_virt_mem;
1268         else
1269                 func = arch_timer_handler_phys_mem;
1270
1271         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1272         if (ret) {
1273                 pr_err("Failed to request mem timer irq\n");
1274                 kfree(arch_timer_mem);
1275                 arch_timer_mem = NULL;
1276         }
1277
1278         return ret;
1279 }
1280
1281 static const struct of_device_id arch_timer_of_match[] __initconst = {
1282         { .compatible   = "arm,armv7-timer",    },
1283         { .compatible   = "arm,armv8-timer",    },
1284         {},
1285 };
1286
1287 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1288         { .compatible   = "arm,armv7-timer-mem", },
1289         {},
1290 };
1291
1292 static bool __init arch_timer_needs_of_probing(void)
1293 {
1294         struct device_node *dn;
1295         bool needs_probing = false;
1296         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1297
1298         /* We have two timers, and both device-tree nodes are probed. */
1299         if ((arch_timers_present & mask) == mask)
1300                 return false;
1301
1302         /*
1303          * Only one type of timer is probed,
1304          * check if we have another type of timer node in device-tree.
1305          */
1306         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1307                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1308         else
1309                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1310
1311         if (dn && of_device_is_available(dn))
1312                 needs_probing = true;
1313
1314         of_node_put(dn);
1315
1316         return needs_probing;
1317 }
1318
1319 static int __init arch_timer_common_init(void)
1320 {
1321         arch_timer_banner(arch_timers_present);
1322         arch_counter_register(arch_timers_present);
1323         return arch_timer_arch_init();
1324 }
1325
1326 /**
1327  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1328  *
1329  * If HYP mode is available, we know that the physical timer
1330  * has been configured to be accessible from PL1. Use it, so
1331  * that a guest can use the virtual timer instead.
1332  *
1333  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1334  * accesses to CNTP_*_EL1 registers are silently redirected to
1335  * their CNTHP_*_EL2 counterparts, and use a different PPI
1336  * number.
1337  *
1338  * If no interrupt provided for virtual timer, we'll have to
1339  * stick to the physical timer. It'd better be accessible...
1340  * For arm64 we never use the secure interrupt.
1341  *
1342  * Return: a suitable PPI type for the current system.
1343  */
1344 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1345 {
1346         if (is_kernel_in_hyp_mode())
1347                 return ARCH_TIMER_HYP_PPI;
1348
1349         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1350                 return ARCH_TIMER_VIRT_PPI;
1351
1352         if (IS_ENABLED(CONFIG_ARM64))
1353                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1354
1355         return ARCH_TIMER_PHYS_SECURE_PPI;
1356 }
1357
1358 static void __init arch_timer_populate_kvm_info(void)
1359 {
1360         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1361         if (is_kernel_in_hyp_mode())
1362                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1363 }
1364
1365 static int __init arch_timer_of_init(struct device_node *np)
1366 {
1367         int i, irq, ret;
1368         u32 rate;
1369         bool has_names;
1370
1371         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1372                 pr_warn("multiple nodes in dt, skipping\n");
1373                 return 0;
1374         }
1375
1376         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1377
1378         has_names = of_property_read_bool(np, "interrupt-names");
1379
1380         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1381                 if (has_names)
1382                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1383                 else
1384                         irq = of_irq_get(np, i);
1385                 if (irq > 0)
1386                         arch_timer_ppi[i] = irq;
1387         }
1388
1389         arch_timer_populate_kvm_info();
1390
1391         rate = arch_timer_get_cntfrq();
1392         arch_timer_of_configure_rate(rate, np);
1393
1394         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1395
1396         /* Check for globally applicable workarounds */
1397         arch_timer_check_ool_workaround(ate_match_dt, np);
1398
1399         /*
1400          * If we cannot rely on firmware initializing the timer registers then
1401          * we should use the physical timers instead.
1402          */
1403         if (IS_ENABLED(CONFIG_ARM) &&
1404             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1405                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1406         else
1407                 arch_timer_uses_ppi = arch_timer_select_ppi();
1408
1409         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1410                 pr_err("No interrupt available, giving up\n");
1411                 return -EINVAL;
1412         }
1413
1414         /* On some systems, the counter stops ticking when in suspend. */
1415         arch_counter_suspend_stop = of_property_read_bool(np,
1416                                                          "arm,no-tick-in-suspend");
1417
1418         ret = arch_timer_register();
1419         if (ret)
1420                 return ret;
1421
1422         if (arch_timer_needs_of_probing())
1423                 return 0;
1424
1425         return arch_timer_common_init();
1426 }
1427 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1428 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1429
1430 static u32 __init
1431 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1432 {
1433         void __iomem *base;
1434         u32 rate;
1435
1436         base = ioremap(frame->cntbase, frame->size);
1437         if (!base) {
1438                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1439                 return 0;
1440         }
1441
1442         rate = readl_relaxed(base + CNTFRQ);
1443
1444         iounmap(base);
1445
1446         return rate;
1447 }
1448
1449 static struct arch_timer_mem_frame * __init
1450 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1451 {
1452         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1453         void __iomem *cntctlbase;
1454         u32 cnttidr;
1455         int i;
1456
1457         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1458         if (!cntctlbase) {
1459                 pr_err("Can't map CNTCTLBase @ %pa\n",
1460                         &timer_mem->cntctlbase);
1461                 return NULL;
1462         }
1463
1464         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1465
1466         /*
1467          * Try to find a virtual capable frame. Otherwise fall back to a
1468          * physical capable frame.
1469          */
1470         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1471                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1472                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1473
1474                 frame = &timer_mem->frame[i];
1475                 if (!frame->valid)
1476                         continue;
1477
1478                 /* Try enabling everything, and see what sticks */
1479                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1480                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1481
1482                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1483                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1484                         best_frame = frame;
1485                         arch_timer_mem_use_virtual = true;
1486                         break;
1487                 }
1488
1489                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1490                         continue;
1491
1492                 best_frame = frame;
1493         }
1494
1495         iounmap(cntctlbase);
1496
1497         return best_frame;
1498 }
1499
1500 static int __init
1501 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1502 {
1503         void __iomem *base;
1504         int ret, irq = 0;
1505
1506         if (arch_timer_mem_use_virtual)
1507                 irq = frame->virt_irq;
1508         else
1509                 irq = frame->phys_irq;
1510
1511         if (!irq) {
1512                 pr_err("Frame missing %s irq.\n",
1513                        arch_timer_mem_use_virtual ? "virt" : "phys");
1514                 return -EINVAL;
1515         }
1516
1517         if (!request_mem_region(frame->cntbase, frame->size,
1518                                 "arch_mem_timer"))
1519                 return -EBUSY;
1520
1521         base = ioremap(frame->cntbase, frame->size);
1522         if (!base) {
1523                 pr_err("Can't map frame's registers\n");
1524                 return -ENXIO;
1525         }
1526
1527         ret = arch_timer_mem_register(base, irq);
1528         if (ret) {
1529                 iounmap(base);
1530                 return ret;
1531         }
1532
1533         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1534
1535         return 0;
1536 }
1537
1538 static int __init arch_timer_mem_of_init(struct device_node *np)
1539 {
1540         struct arch_timer_mem *timer_mem;
1541         struct arch_timer_mem_frame *frame;
1542         struct device_node *frame_node;
1543         struct resource res;
1544         int ret = -EINVAL;
1545         u32 rate;
1546
1547         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1548         if (!timer_mem)
1549                 return -ENOMEM;
1550
1551         if (of_address_to_resource(np, 0, &res))
1552                 goto out;
1553         timer_mem->cntctlbase = res.start;
1554         timer_mem->size = resource_size(&res);
1555
1556         for_each_available_child_of_node(np, frame_node) {
1557                 u32 n;
1558                 struct arch_timer_mem_frame *frame;
1559
1560                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1561                         pr_err(FW_BUG "Missing frame-number.\n");
1562                         of_node_put(frame_node);
1563                         goto out;
1564                 }
1565                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1566                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1567                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1568                         of_node_put(frame_node);
1569                         goto out;
1570                 }
1571                 frame = &timer_mem->frame[n];
1572
1573                 if (frame->valid) {
1574                         pr_err(FW_BUG "Duplicated frame-number.\n");
1575                         of_node_put(frame_node);
1576                         goto out;
1577                 }
1578
1579                 if (of_address_to_resource(frame_node, 0, &res)) {
1580                         of_node_put(frame_node);
1581                         goto out;
1582                 }
1583                 frame->cntbase = res.start;
1584                 frame->size = resource_size(&res);
1585
1586                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1587                                                        ARCH_TIMER_VIRT_SPI);
1588                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1589                                                        ARCH_TIMER_PHYS_SPI);
1590
1591                 frame->valid = true;
1592         }
1593
1594         frame = arch_timer_mem_find_best_frame(timer_mem);
1595         if (!frame) {
1596                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1597                         &timer_mem->cntctlbase);
1598                 ret = -EINVAL;
1599                 goto out;
1600         }
1601
1602         rate = arch_timer_mem_frame_get_cntfrq(frame);
1603         arch_timer_of_configure_rate(rate, np);
1604
1605         ret = arch_timer_mem_frame_register(frame);
1606         if (!ret && !arch_timer_needs_of_probing())
1607                 ret = arch_timer_common_init();
1608 out:
1609         kfree(timer_mem);
1610         return ret;
1611 }
1612 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1613                        arch_timer_mem_of_init);
1614
1615 #ifdef CONFIG_ACPI_GTDT
1616 static int __init
1617 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1618 {
1619         struct arch_timer_mem_frame *frame;
1620         u32 rate;
1621         int i;
1622
1623         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1624                 frame = &timer_mem->frame[i];
1625
1626                 if (!frame->valid)
1627                         continue;
1628
1629                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1630                 if (rate == arch_timer_rate)
1631                         continue;
1632
1633                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1634                         &frame->cntbase,
1635                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1636
1637                 return -EINVAL;
1638         }
1639
1640         return 0;
1641 }
1642
1643 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1644 {
1645         struct arch_timer_mem *timers, *timer;
1646         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1647         int timer_count, i, ret = 0;
1648
1649         timers = kcalloc(platform_timer_count, sizeof(*timers),
1650                             GFP_KERNEL);
1651         if (!timers)
1652                 return -ENOMEM;
1653
1654         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1655         if (ret || !timer_count)
1656                 goto out;
1657
1658         /*
1659          * While unlikely, it's theoretically possible that none of the frames
1660          * in a timer expose the combination of feature we want.
1661          */
1662         for (i = 0; i < timer_count; i++) {
1663                 timer = &timers[i];
1664
1665                 frame = arch_timer_mem_find_best_frame(timer);
1666                 if (!best_frame)
1667                         best_frame = frame;
1668
1669                 ret = arch_timer_mem_verify_cntfrq(timer);
1670                 if (ret) {
1671                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1672                         goto out;
1673                 }
1674
1675                 if (!best_frame) /* implies !frame */
1676                         /*
1677                          * Only complain about missing suitable frames if we
1678                          * haven't already found one in a previous iteration.
1679                          */
1680                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1681                                 &timer->cntctlbase);
1682         }
1683
1684         if (best_frame)
1685                 ret = arch_timer_mem_frame_register(best_frame);
1686 out:
1687         kfree(timers);
1688         return ret;
1689 }
1690
1691 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1692 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1693 {
1694         int ret, platform_timer_count;
1695
1696         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1697                 pr_warn("already initialized, skipping\n");
1698                 return -EINVAL;
1699         }
1700
1701         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1702
1703         ret = acpi_gtdt_init(table, &platform_timer_count);
1704         if (ret)
1705                 return ret;
1706
1707         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1708                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1709
1710         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1711                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1712
1713         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1714                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1715
1716         arch_timer_populate_kvm_info();
1717
1718         /*
1719          * When probing via ACPI, we have no mechanism to override the sysreg
1720          * CNTFRQ value. This *must* be correct.
1721          */
1722         arch_timer_rate = arch_timer_get_cntfrq();
1723         ret = validate_timer_rate();
1724         if (ret) {
1725                 pr_err(FW_BUG "frequency not available.\n");
1726                 return ret;
1727         }
1728
1729         arch_timer_uses_ppi = arch_timer_select_ppi();
1730         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1731                 pr_err("No interrupt available, giving up\n");
1732                 return -EINVAL;
1733         }
1734
1735         /* Always-on capability */
1736         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1737
1738         /* Check for globally applicable workarounds */
1739         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1740
1741         ret = arch_timer_register();
1742         if (ret)
1743                 return ret;
1744
1745         if (platform_timer_count &&
1746             arch_timer_mem_acpi_init(platform_timer_count))
1747                 pr_err("Failed to initialize memory-mapped timer.\n");
1748
1749         return arch_timer_common_init();
1750 }
1751 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1752 #endif
1753
1754 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1755                                  struct clocksource **cs)
1756 {
1757         struct arm_smccc_res hvc_res;
1758         u32 ptp_counter;
1759         ktime_t ktime;
1760
1761         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1762                 return -EOPNOTSUPP;
1763
1764         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1765                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1766         else
1767                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1768
1769         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1770                              ptp_counter, &hvc_res);
1771
1772         if ((int)(hvc_res.a0) < 0)
1773                 return -EOPNOTSUPP;
1774
1775         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1776         *ts = ktime_to_timespec64(ktime);
1777         if (cycle)
1778                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1779         if (cs)
1780                 *cs = &clocksource_counter;
1781
1782         return 0;
1783 }
1784 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);