Merge tag 'char-misc-6.1-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR         0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n)       (0x40 + ((n) * 4))
40 #define CNTACR_RPCT     BIT(0)
41 #define CNTACR_RVCT     BIT(1)
42 #define CNTACR_RFRQ     BIT(2)
43 #define CNTACR_RVOFF    BIT(3)
44 #define CNTACR_RWVT     BIT(4)
45 #define CNTACR_RWPT     BIT(5)
46
47 #define CNTPCT_LO       0x00
48 #define CNTVCT_LO       0x08
49 #define CNTFRQ          0x10
50 #define CNTP_CVAL_LO    0x20
51 #define CNTP_CTL        0x2c
52 #define CNTV_CVAL_LO    0x30
53 #define CNTV_CTL        0x3c
54
55 /*
56  * The minimum amount of time a generic counter is guaranteed to not roll over
57  * (40 years)
58  */
59 #define MIN_ROLLOVER_SECS       (40ULL * 365 * 24 * 3600)
60
61 static unsigned arch_timers_present __initdata;
62
63 struct arch_timer {
64         void __iomem *base;
65         struct clock_event_device evt;
66 };
67
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76         [ARCH_TIMER_PHYS_SECURE_PPI]    = "sec-phys",
77         [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78         [ARCH_TIMER_VIRT_PPI]           = "virt",
79         [ARCH_TIMER_HYP_PPI]            = "hyp-phys",
80         [ARCH_TIMER_HYP_VIRT_PPI]       = "hyp-virt",
81 };
82
83 static struct clock_event_device __percpu *arch_timer_evt;
84
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97
98 static int __init early_evtstrm_cfg(char *buf)
99 {
100         return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103
104 /*
105  * Makes an educated guess at a valid counter width based on the Generic Timer
106  * specification. Of note:
107  *   1) the system counter is at least 56 bits wide
108  *   2) a roll-over time of not less than 40 years
109  *
110  * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111  */
112 static int arch_counter_get_width(void)
113 {
114         u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115
116         /* guarantee the returned width is within the valid range */
117         return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119
120 /*
121  * Architected system timer support.
122  */
123
124 static __always_inline
125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126                           struct clock_event_device *clk)
127 {
128         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129                 struct arch_timer *timer = to_arch_timer(clk);
130                 switch (reg) {
131                 case ARCH_TIMER_REG_CTRL:
132                         writel_relaxed((u32)val, timer->base + CNTP_CTL);
133                         break;
134                 case ARCH_TIMER_REG_CVAL:
135                         /*
136                          * Not guaranteed to be atomic, so the timer
137                          * must be disabled at this point.
138                          */
139                         writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140                         break;
141                 default:
142                         BUILD_BUG();
143                 }
144         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145                 struct arch_timer *timer = to_arch_timer(clk);
146                 switch (reg) {
147                 case ARCH_TIMER_REG_CTRL:
148                         writel_relaxed((u32)val, timer->base + CNTV_CTL);
149                         break;
150                 case ARCH_TIMER_REG_CVAL:
151                         /* Same restriction as above */
152                         writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153                         break;
154                 default:
155                         BUILD_BUG();
156                 }
157         } else {
158                 arch_timer_reg_write_cp15(access, reg, val);
159         }
160 }
161
162 static __always_inline
163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164                         struct clock_event_device *clk)
165 {
166         u32 val;
167
168         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169                 struct arch_timer *timer = to_arch_timer(clk);
170                 switch (reg) {
171                 case ARCH_TIMER_REG_CTRL:
172                         val = readl_relaxed(timer->base + CNTP_CTL);
173                         break;
174                 default:
175                         BUILD_BUG();
176                 }
177         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178                 struct arch_timer *timer = to_arch_timer(clk);
179                 switch (reg) {
180                 case ARCH_TIMER_REG_CTRL:
181                         val = readl_relaxed(timer->base + CNTV_CTL);
182                         break;
183                 default:
184                         BUILD_BUG();
185                 }
186         } else {
187                 val = arch_timer_reg_read_cp15(access, reg);
188         }
189
190         return val;
191 }
192
193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195         return __arch_counter_get_cntpct_stable();
196 }
197
198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200         return __arch_counter_get_cntpct();
201 }
202
203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205         return __arch_counter_get_cntvct_stable();
206 }
207
208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210         return __arch_counter_get_cntvct();
211 }
212
213 /*
214  * Default to cp15 based access because arm64 uses this function for
215  * sched_clock() before DT is probed and the cp15 method is guaranteed
216  * to exist on arm64. arm doesn't use this before DT is probed so even
217  * if we don't have the cp15 accessors we won't have a problem.
218  */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221
222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224         return arch_timer_read_counter();
225 }
226
227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229         return arch_timer_read_counter();
230 }
231
232 static struct clocksource clocksource_counter = {
233         .name   = "arch_sys_counter",
234         .id     = CSID_ARM_ARCH_COUNTER,
235         .rating = 400,
236         .read   = arch_counter_read,
237         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239
240 static struct cyclecounter cyclecounter __ro_after_init = {
241         .read   = arch_counter_read_cc,
242 };
243
244 struct ate_acpi_oem_info {
245         char oem_id[ACPI_OEM_ID_SIZE + 1];
246         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247         u32 oem_revision;
248 };
249
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252  * The number of retries is an arbitrary value well beyond the highest number
253  * of iterations the loop has been observed to take.
254  */
255 #define __fsl_a008585_read_reg(reg) ({                  \
256         u64 _old, _new;                                 \
257         int _retries = 200;                             \
258                                                         \
259         do {                                            \
260                 _old = read_sysreg(reg);                \
261                 _new = read_sysreg(reg);                \
262                 _retries--;                             \
263         } while (unlikely(_old != _new) && _retries);   \
264                                                         \
265         WARN_ON_ONCE(!_retries);                        \
266         _new;                                           \
267 })
268
269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271         return __fsl_a008585_read_reg(cntpct_el0);
272 }
273
274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276         return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282  * Verify whether the value of the second read is larger than the first by
283  * less than 32 is the only way to confirm the value is correct, so clear the
284  * lower 5 bits to check whether the difference is greater than 32 or not.
285  * Theoretically the erratum should not occur more than twice in succession
286  * when reading the system counter, but it is possible that some interrupts
287  * may lead to more than twice read errors, triggering the warning, so setting
288  * the number of retries far beyond the number of iterations the loop has been
289  * observed to take.
290  */
291 #define __hisi_161010101_read_reg(reg) ({                               \
292         u64 _old, _new;                                         \
293         int _retries = 50;                                      \
294                                                                 \
295         do {                                                    \
296                 _old = read_sysreg(reg);                        \
297                 _new = read_sysreg(reg);                        \
298                 _retries--;                                     \
299         } while (unlikely((_new - _old) >> 5) && _retries);     \
300                                                                 \
301         WARN_ON_ONCE(!_retries);                                \
302         _new;                                                   \
303 })
304
305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307         return __hisi_161010101_read_reg(cntpct_el0);
308 }
309
310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312         return __hisi_161010101_read_reg(cntvct_el0);
313 }
314
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316         /*
317          * Note that trailing spaces are required to properly match
318          * the OEM table information.
319          */
320         {
321                 .oem_id         = "HISI  ",
322                 .oem_table_id   = "HIP05   ",
323                 .oem_revision   = 0,
324         },
325         {
326                 .oem_id         = "HISI  ",
327                 .oem_table_id   = "HIP06   ",
328                 .oem_revision   = 0,
329         },
330         {
331                 .oem_id         = "HISI  ",
332                 .oem_table_id   = "HIP07   ",
333                 .oem_revision   = 0,
334         },
335         { /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338
339 #ifdef CONFIG_ARM64_ERRATUM_858921
340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342         u64 old, new;
343
344         old = read_sysreg(cntpct_el0);
345         new = read_sysreg(cntpct_el0);
346         return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348
349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351         u64 old, new;
352
353         old = read_sysreg(cntvct_el0);
354         new = read_sysreg(cntvct_el0);
355         return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361  * The low bits of the counter registers are indeterminate while bit 10 or
362  * greater is rolling over. Since the counter value can jump both backward
363  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364  * with all ones or all zeros in the low bits. Bound the loop by the maximum
365  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366  */
367 #define __sun50i_a64_read_reg(reg) ({                                   \
368         u64 _val;                                                       \
369         int _retries = 150;                                             \
370                                                                         \
371         do {                                                            \
372                 _val = read_sysreg(reg);                                \
373                 _retries--;                                             \
374         } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries);        \
375                                                                         \
376         WARN_ON_ONCE(!_retries);                                        \
377         _val;                                                           \
378 })
379
380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382         return __sun50i_a64_read_reg(cntpct_el0);
383 }
384
385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387         return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396
397 /*
398  * Force the inlining of this function so that the register accesses
399  * can be themselves correctly inlined.
400  */
401 static __always_inline
402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403                                     struct clock_event_device *clk)
404 {
405         unsigned long ctrl;
406         u64 cval;
407
408         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409         ctrl |= ARCH_TIMER_CTRL_ENABLE;
410         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411
412         if (access == ARCH_TIMER_PHYS_ACCESS) {
413                 cval = evt + arch_counter_get_cntpct_stable();
414                 write_sysreg(cval, cntp_cval_el0);
415         } else {
416                 cval = evt + arch_counter_get_cntvct_stable();
417                 write_sysreg(cval, cntv_cval_el0);
418         }
419
420         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422
423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424                                             struct clock_event_device *clk)
425 {
426         erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427         return 0;
428 }
429
430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431                                             struct clock_event_device *clk)
432 {
433         erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434         return 0;
435 }
436
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439         {
440                 .match_type = ate_match_dt,
441                 .id = "fsl,erratum-a008585",
442                 .desc = "Freescale erratum a005858",
443                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445                 .set_next_event_phys = erratum_set_next_event_phys,
446                 .set_next_event_virt = erratum_set_next_event_virt,
447         },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450         {
451                 .match_type = ate_match_dt,
452                 .id = "hisilicon,erratum-161010101",
453                 .desc = "HiSilicon erratum 161010101",
454                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456                 .set_next_event_phys = erratum_set_next_event_phys,
457                 .set_next_event_virt = erratum_set_next_event_virt,
458         },
459         {
460                 .match_type = ate_match_acpi_oem_info,
461                 .id = hisi_161010101_oem_info,
462                 .desc = "HiSilicon erratum 161010101",
463                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465                 .set_next_event_phys = erratum_set_next_event_phys,
466                 .set_next_event_virt = erratum_set_next_event_virt,
467         },
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470         {
471                 .match_type = ate_match_local_cap_id,
472                 .id = (void *)ARM64_WORKAROUND_858921,
473                 .desc = "ARM erratum 858921",
474                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476                 .set_next_event_phys = erratum_set_next_event_phys,
477                 .set_next_event_virt = erratum_set_next_event_virt,
478         },
479 #endif
480 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
481         {
482                 .match_type = ate_match_dt,
483                 .id = "allwinner,erratum-unknown1",
484                 .desc = "Allwinner erratum UNKNOWN1",
485                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
486                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
487                 .set_next_event_phys = erratum_set_next_event_phys,
488                 .set_next_event_virt = erratum_set_next_event_virt,
489         },
490 #endif
491 #ifdef CONFIG_ARM64_ERRATUM_1418040
492         {
493                 .match_type = ate_match_local_cap_id,
494                 .id = (void *)ARM64_WORKAROUND_1418040,
495                 .desc = "ARM erratum 1418040",
496                 .disable_compat_vdso = true,
497         },
498 #endif
499 };
500
501 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
502                                const void *);
503
504 static
505 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
506                                  const void *arg)
507 {
508         const struct device_node *np = arg;
509
510         return of_property_read_bool(np, wa->id);
511 }
512
513 static
514 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
515                                         const void *arg)
516 {
517         return this_cpu_has_cap((uintptr_t)wa->id);
518 }
519
520
521 static
522 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
523                                        const void *arg)
524 {
525         static const struct ate_acpi_oem_info empty_oem_info = {};
526         const struct ate_acpi_oem_info *info = wa->id;
527         const struct acpi_table_header *table = arg;
528
529         /* Iterate over the ACPI OEM info array, looking for a match */
530         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
531                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
532                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
533                     info->oem_revision == table->oem_revision)
534                         return true;
535
536                 info++;
537         }
538
539         return false;
540 }
541
542 static const struct arch_timer_erratum_workaround *
543 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
544                           ate_match_fn_t match_fn,
545                           void *arg)
546 {
547         int i;
548
549         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
550                 if (ool_workarounds[i].match_type != type)
551                         continue;
552
553                 if (match_fn(&ool_workarounds[i], arg))
554                         return &ool_workarounds[i];
555         }
556
557         return NULL;
558 }
559
560 static
561 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
562                                   bool local)
563 {
564         int i;
565
566         if (local) {
567                 __this_cpu_write(timer_unstable_counter_workaround, wa);
568         } else {
569                 for_each_possible_cpu(i)
570                         per_cpu(timer_unstable_counter_workaround, i) = wa;
571         }
572
573         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
574                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
575
576         /*
577          * Don't use the vdso fastpath if errata require using the
578          * out-of-line counter accessor. We may change our mind pretty
579          * late in the game (with a per-CPU erratum, for example), so
580          * change both the default value and the vdso itself.
581          */
582         if (wa->read_cntvct_el0) {
583                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
584                 vdso_default = VDSO_CLOCKMODE_NONE;
585         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
586                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
587                 clocksource_counter.vdso_clock_mode = vdso_default;
588         }
589 }
590
591 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
592                                             void *arg)
593 {
594         const struct arch_timer_erratum_workaround *wa, *__wa;
595         ate_match_fn_t match_fn = NULL;
596         bool local = false;
597
598         switch (type) {
599         case ate_match_dt:
600                 match_fn = arch_timer_check_dt_erratum;
601                 break;
602         case ate_match_local_cap_id:
603                 match_fn = arch_timer_check_local_cap_erratum;
604                 local = true;
605                 break;
606         case ate_match_acpi_oem_info:
607                 match_fn = arch_timer_check_acpi_oem_erratum;
608                 break;
609         default:
610                 WARN_ON(1);
611                 return;
612         }
613
614         wa = arch_timer_iterate_errata(type, match_fn, arg);
615         if (!wa)
616                 return;
617
618         __wa = __this_cpu_read(timer_unstable_counter_workaround);
619         if (__wa && wa != __wa)
620                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
621                         wa->desc, __wa->desc);
622
623         if (__wa)
624                 return;
625
626         arch_timer_enable_workaround(wa, local);
627         pr_info("Enabling %s workaround for %s\n",
628                 local ? "local" : "global", wa->desc);
629 }
630
631 static bool arch_timer_this_cpu_has_cntvct_wa(void)
632 {
633         return has_erratum_handler(read_cntvct_el0);
634 }
635
636 static bool arch_timer_counter_has_wa(void)
637 {
638         return atomic_read(&timer_unstable_counter_workaround_in_use);
639 }
640 #else
641 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
642 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
643 #define arch_timer_counter_has_wa()                     ({false;})
644 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
645
646 static __always_inline irqreturn_t timer_handler(const int access,
647                                         struct clock_event_device *evt)
648 {
649         unsigned long ctrl;
650
651         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
652         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
653                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
654                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
655                 evt->event_handler(evt);
656                 return IRQ_HANDLED;
657         }
658
659         return IRQ_NONE;
660 }
661
662 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
663 {
664         struct clock_event_device *evt = dev_id;
665
666         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
667 }
668
669 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
670 {
671         struct clock_event_device *evt = dev_id;
672
673         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
674 }
675
676 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
677 {
678         struct clock_event_device *evt = dev_id;
679
680         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
681 }
682
683 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
684 {
685         struct clock_event_device *evt = dev_id;
686
687         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
688 }
689
690 static __always_inline int timer_shutdown(const int access,
691                                           struct clock_event_device *clk)
692 {
693         unsigned long ctrl;
694
695         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
696         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
697         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
698
699         return 0;
700 }
701
702 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
703 {
704         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
705 }
706
707 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
708 {
709         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
710 }
711
712 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
713 {
714         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
715 }
716
717 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
718 {
719         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
720 }
721
722 static __always_inline void set_next_event(const int access, unsigned long evt,
723                                            struct clock_event_device *clk)
724 {
725         unsigned long ctrl;
726         u64 cnt;
727
728         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
729         ctrl |= ARCH_TIMER_CTRL_ENABLE;
730         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
731
732         if (access == ARCH_TIMER_PHYS_ACCESS)
733                 cnt = __arch_counter_get_cntpct();
734         else
735                 cnt = __arch_counter_get_cntvct();
736
737         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
738         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
739 }
740
741 static int arch_timer_set_next_event_virt(unsigned long evt,
742                                           struct clock_event_device *clk)
743 {
744         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
745         return 0;
746 }
747
748 static int arch_timer_set_next_event_phys(unsigned long evt,
749                                           struct clock_event_device *clk)
750 {
751         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
752         return 0;
753 }
754
755 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
756 {
757         u32 cnt_lo, cnt_hi, tmp_hi;
758
759         do {
760                 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
761                 cnt_lo = readl_relaxed(t->base + offset_lo);
762                 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
763         } while (cnt_hi != tmp_hi);
764
765         return ((u64) cnt_hi << 32) | cnt_lo;
766 }
767
768 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
769                                            struct clock_event_device *clk)
770 {
771         struct arch_timer *timer = to_arch_timer(clk);
772         unsigned long ctrl;
773         u64 cnt;
774
775         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
776         ctrl |= ARCH_TIMER_CTRL_ENABLE;
777         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
778
779         if (access ==  ARCH_TIMER_MEM_VIRT_ACCESS)
780                 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
781         else
782                 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
783
784         arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
785         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
786 }
787
788 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
789                                               struct clock_event_device *clk)
790 {
791         set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
792         return 0;
793 }
794
795 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
796                                               struct clock_event_device *clk)
797 {
798         set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
799         return 0;
800 }
801
802 static u64 __arch_timer_check_delta(void)
803 {
804 #ifdef CONFIG_ARM64
805         const struct midr_range broken_cval_midrs[] = {
806                 /*
807                  * XGene-1 implements CVAL in terms of TVAL, meaning
808                  * that the maximum timer range is 32bit. Shame on them.
809                  *
810                  * Note that TVAL is signed, thus has only 31 of its
811                  * 32 bits to express magnitude.
812                  */
813                 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
814                                                  APM_CPU_PART_POTENZA)),
815                 {},
816         };
817
818         if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
819                 pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n");
820                 return CLOCKSOURCE_MASK(31);
821         }
822 #endif
823         return CLOCKSOURCE_MASK(arch_counter_get_width());
824 }
825
826 static void __arch_timer_setup(unsigned type,
827                                struct clock_event_device *clk)
828 {
829         u64 max_delta;
830
831         clk->features = CLOCK_EVT_FEAT_ONESHOT;
832
833         if (type == ARCH_TIMER_TYPE_CP15) {
834                 typeof(clk->set_next_event) sne;
835
836                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
837
838                 if (arch_timer_c3stop)
839                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
840                 clk->name = "arch_sys_timer";
841                 clk->rating = 450;
842                 clk->cpumask = cpumask_of(smp_processor_id());
843                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
844                 switch (arch_timer_uses_ppi) {
845                 case ARCH_TIMER_VIRT_PPI:
846                         clk->set_state_shutdown = arch_timer_shutdown_virt;
847                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
848                         sne = erratum_handler(set_next_event_virt);
849                         break;
850                 case ARCH_TIMER_PHYS_SECURE_PPI:
851                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
852                 case ARCH_TIMER_HYP_PPI:
853                         clk->set_state_shutdown = arch_timer_shutdown_phys;
854                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
855                         sne = erratum_handler(set_next_event_phys);
856                         break;
857                 default:
858                         BUG();
859                 }
860
861                 clk->set_next_event = sne;
862                 max_delta = __arch_timer_check_delta();
863         } else {
864                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
865                 clk->name = "arch_mem_timer";
866                 clk->rating = 400;
867                 clk->cpumask = cpu_possible_mask;
868                 if (arch_timer_mem_use_virtual) {
869                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
870                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
871                         clk->set_next_event =
872                                 arch_timer_set_next_event_virt_mem;
873                 } else {
874                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
875                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
876                         clk->set_next_event =
877                                 arch_timer_set_next_event_phys_mem;
878                 }
879
880                 max_delta = CLOCKSOURCE_MASK(56);
881         }
882
883         clk->set_state_shutdown(clk);
884
885         clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
886 }
887
888 static void arch_timer_evtstrm_enable(unsigned int divider)
889 {
890         u32 cntkctl = arch_timer_get_cntkctl();
891
892 #ifdef CONFIG_ARM64
893         /* ECV is likely to require a large divider. Use the EVNTIS flag. */
894         if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) {
895                 cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE;
896                 divider -= 8;
897         }
898 #endif
899
900         divider = min(divider, 15U);
901         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
902         /* Set the divider and enable virtual event stream */
903         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
904                         | ARCH_TIMER_VIRT_EVT_EN;
905         arch_timer_set_cntkctl(cntkctl);
906         arch_timer_set_evtstrm_feature();
907         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
908 }
909
910 static void arch_timer_configure_evtstream(void)
911 {
912         int evt_stream_div, lsb;
913
914         /*
915          * As the event stream can at most be generated at half the frequency
916          * of the counter, use half the frequency when computing the divider.
917          */
918         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
919
920         /*
921          * Find the closest power of two to the divisor. If the adjacent bit
922          * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
923          */
924         lsb = fls(evt_stream_div) - 1;
925         if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
926                 lsb++;
927
928         /* enable event stream */
929         arch_timer_evtstrm_enable(max(0, lsb));
930 }
931
932 static void arch_counter_set_user_access(void)
933 {
934         u32 cntkctl = arch_timer_get_cntkctl();
935
936         /* Disable user access to the timers and both counters */
937         /* Also disable virtual event stream */
938         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
939                         | ARCH_TIMER_USR_VT_ACCESS_EN
940                         | ARCH_TIMER_USR_VCT_ACCESS_EN
941                         | ARCH_TIMER_VIRT_EVT_EN
942                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
943
944         /*
945          * Enable user access to the virtual counter if it doesn't
946          * need to be workaround. The vdso may have been already
947          * disabled though.
948          */
949         if (arch_timer_this_cpu_has_cntvct_wa())
950                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
951         else
952                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
953
954         arch_timer_set_cntkctl(cntkctl);
955 }
956
957 static bool arch_timer_has_nonsecure_ppi(void)
958 {
959         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
960                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
961 }
962
963 static u32 check_ppi_trigger(int irq)
964 {
965         u32 flags = irq_get_trigger_type(irq);
966
967         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
968                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
969                 pr_warn("WARNING: Please fix your firmware\n");
970                 flags = IRQF_TRIGGER_LOW;
971         }
972
973         return flags;
974 }
975
976 static int arch_timer_starting_cpu(unsigned int cpu)
977 {
978         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
979         u32 flags;
980
981         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
982
983         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
984         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
985
986         if (arch_timer_has_nonsecure_ppi()) {
987                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
988                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
989                                   flags);
990         }
991
992         arch_counter_set_user_access();
993         if (evtstrm_enable)
994                 arch_timer_configure_evtstream();
995
996         return 0;
997 }
998
999 static int validate_timer_rate(void)
1000 {
1001         if (!arch_timer_rate)
1002                 return -EINVAL;
1003
1004         /* Arch timer frequency < 1MHz can cause trouble */
1005         WARN_ON(arch_timer_rate < 1000000);
1006
1007         return 0;
1008 }
1009
1010 /*
1011  * For historical reasons, when probing with DT we use whichever (non-zero)
1012  * rate was probed first, and don't verify that others match. If the first node
1013  * probed has a clock-frequency property, this overrides the HW register.
1014  */
1015 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1016 {
1017         /* Who has more than one independent system counter? */
1018         if (arch_timer_rate)
1019                 return;
1020
1021         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1022                 arch_timer_rate = rate;
1023
1024         /* Check the timer frequency. */
1025         if (validate_timer_rate())
1026                 pr_warn("frequency not available\n");
1027 }
1028
1029 static void __init arch_timer_banner(unsigned type)
1030 {
1031         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1032                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1033                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1034                         " and " : "",
1035                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1036                 (unsigned long)arch_timer_rate / 1000000,
1037                 (unsigned long)(arch_timer_rate / 10000) % 100,
1038                 type & ARCH_TIMER_TYPE_CP15 ?
1039                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1040                         "",
1041                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1042                 type & ARCH_TIMER_TYPE_MEM ?
1043                         arch_timer_mem_use_virtual ? "virt" : "phys" :
1044                         "");
1045 }
1046
1047 u32 arch_timer_get_rate(void)
1048 {
1049         return arch_timer_rate;
1050 }
1051
1052 bool arch_timer_evtstrm_available(void)
1053 {
1054         /*
1055          * We might get called from a preemptible context. This is fine
1056          * because availability of the event stream should be always the same
1057          * for a preemptible context and context where we might resume a task.
1058          */
1059         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1060 }
1061
1062 static u64 arch_counter_get_cntvct_mem(void)
1063 {
1064         return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1065 }
1066
1067 static struct arch_timer_kvm_info arch_timer_kvm_info;
1068
1069 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1070 {
1071         return &arch_timer_kvm_info;
1072 }
1073
1074 static void __init arch_counter_register(unsigned type)
1075 {
1076         u64 start_count;
1077         int width;
1078
1079         /* Register the CP15 based counter if we have one */
1080         if (type & ARCH_TIMER_TYPE_CP15) {
1081                 u64 (*rd)(void);
1082
1083                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1084                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1085                         if (arch_timer_counter_has_wa())
1086                                 rd = arch_counter_get_cntvct_stable;
1087                         else
1088                                 rd = arch_counter_get_cntvct;
1089                 } else {
1090                         if (arch_timer_counter_has_wa())
1091                                 rd = arch_counter_get_cntpct_stable;
1092                         else
1093                                 rd = arch_counter_get_cntpct;
1094                 }
1095
1096                 arch_timer_read_counter = rd;
1097                 clocksource_counter.vdso_clock_mode = vdso_default;
1098         } else {
1099                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1100         }
1101
1102         width = arch_counter_get_width();
1103         clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1104         cyclecounter.mask = CLOCKSOURCE_MASK(width);
1105
1106         if (!arch_counter_suspend_stop)
1107                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1108         start_count = arch_timer_read_counter();
1109         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1110         cyclecounter.mult = clocksource_counter.mult;
1111         cyclecounter.shift = clocksource_counter.shift;
1112         timecounter_init(&arch_timer_kvm_info.timecounter,
1113                          &cyclecounter, start_count);
1114
1115         sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1116 }
1117
1118 static void arch_timer_stop(struct clock_event_device *clk)
1119 {
1120         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1121
1122         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1123         if (arch_timer_has_nonsecure_ppi())
1124                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1125
1126         clk->set_state_shutdown(clk);
1127 }
1128
1129 static int arch_timer_dying_cpu(unsigned int cpu)
1130 {
1131         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1132
1133         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1134
1135         arch_timer_stop(clk);
1136         return 0;
1137 }
1138
1139 #ifdef CONFIG_CPU_PM
1140 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1141 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1142                                     unsigned long action, void *hcpu)
1143 {
1144         if (action == CPU_PM_ENTER) {
1145                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1146
1147                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1148         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1149                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1150
1151                 if (arch_timer_have_evtstrm_feature())
1152                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1153         }
1154         return NOTIFY_OK;
1155 }
1156
1157 static struct notifier_block arch_timer_cpu_pm_notifier = {
1158         .notifier_call = arch_timer_cpu_pm_notify,
1159 };
1160
1161 static int __init arch_timer_cpu_pm_init(void)
1162 {
1163         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1164 }
1165
1166 static void __init arch_timer_cpu_pm_deinit(void)
1167 {
1168         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1169 }
1170
1171 #else
1172 static int __init arch_timer_cpu_pm_init(void)
1173 {
1174         return 0;
1175 }
1176
1177 static void __init arch_timer_cpu_pm_deinit(void)
1178 {
1179 }
1180 #endif
1181
1182 static int __init arch_timer_register(void)
1183 {
1184         int err;
1185         int ppi;
1186
1187         arch_timer_evt = alloc_percpu(struct clock_event_device);
1188         if (!arch_timer_evt) {
1189                 err = -ENOMEM;
1190                 goto out;
1191         }
1192
1193         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1194         switch (arch_timer_uses_ppi) {
1195         case ARCH_TIMER_VIRT_PPI:
1196                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1197                                          "arch_timer", arch_timer_evt);
1198                 break;
1199         case ARCH_TIMER_PHYS_SECURE_PPI:
1200         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1201                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1202                                          "arch_timer", arch_timer_evt);
1203                 if (!err && arch_timer_has_nonsecure_ppi()) {
1204                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1205                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1206                                                  "arch_timer", arch_timer_evt);
1207                         if (err)
1208                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1209                                                 arch_timer_evt);
1210                 }
1211                 break;
1212         case ARCH_TIMER_HYP_PPI:
1213                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1214                                          "arch_timer", arch_timer_evt);
1215                 break;
1216         default:
1217                 BUG();
1218         }
1219
1220         if (err) {
1221                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1222                 goto out_free;
1223         }
1224
1225         err = arch_timer_cpu_pm_init();
1226         if (err)
1227                 goto out_unreg_notify;
1228
1229         /* Register and immediately configure the timer on the boot CPU */
1230         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1231                                 "clockevents/arm/arch_timer:starting",
1232                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1233         if (err)
1234                 goto out_unreg_cpupm;
1235         return 0;
1236
1237 out_unreg_cpupm:
1238         arch_timer_cpu_pm_deinit();
1239
1240 out_unreg_notify:
1241         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1242         if (arch_timer_has_nonsecure_ppi())
1243                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1244                                 arch_timer_evt);
1245
1246 out_free:
1247         free_percpu(arch_timer_evt);
1248 out:
1249         return err;
1250 }
1251
1252 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1253 {
1254         int ret;
1255         irq_handler_t func;
1256
1257         arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1258         if (!arch_timer_mem)
1259                 return -ENOMEM;
1260
1261         arch_timer_mem->base = base;
1262         arch_timer_mem->evt.irq = irq;
1263         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1264
1265         if (arch_timer_mem_use_virtual)
1266                 func = arch_timer_handler_virt_mem;
1267         else
1268                 func = arch_timer_handler_phys_mem;
1269
1270         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1271         if (ret) {
1272                 pr_err("Failed to request mem timer irq\n");
1273                 kfree(arch_timer_mem);
1274                 arch_timer_mem = NULL;
1275         }
1276
1277         return ret;
1278 }
1279
1280 static const struct of_device_id arch_timer_of_match[] __initconst = {
1281         { .compatible   = "arm,armv7-timer",    },
1282         { .compatible   = "arm,armv8-timer",    },
1283         {},
1284 };
1285
1286 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1287         { .compatible   = "arm,armv7-timer-mem", },
1288         {},
1289 };
1290
1291 static bool __init arch_timer_needs_of_probing(void)
1292 {
1293         struct device_node *dn;
1294         bool needs_probing = false;
1295         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1296
1297         /* We have two timers, and both device-tree nodes are probed. */
1298         if ((arch_timers_present & mask) == mask)
1299                 return false;
1300
1301         /*
1302          * Only one type of timer is probed,
1303          * check if we have another type of timer node in device-tree.
1304          */
1305         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1306                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1307         else
1308                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1309
1310         if (dn && of_device_is_available(dn))
1311                 needs_probing = true;
1312
1313         of_node_put(dn);
1314
1315         return needs_probing;
1316 }
1317
1318 static int __init arch_timer_common_init(void)
1319 {
1320         arch_timer_banner(arch_timers_present);
1321         arch_counter_register(arch_timers_present);
1322         return arch_timer_arch_init();
1323 }
1324
1325 /**
1326  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1327  *
1328  * If HYP mode is available, we know that the physical timer
1329  * has been configured to be accessible from PL1. Use it, so
1330  * that a guest can use the virtual timer instead.
1331  *
1332  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1333  * accesses to CNTP_*_EL1 registers are silently redirected to
1334  * their CNTHP_*_EL2 counterparts, and use a different PPI
1335  * number.
1336  *
1337  * If no interrupt provided for virtual timer, we'll have to
1338  * stick to the physical timer. It'd better be accessible...
1339  * For arm64 we never use the secure interrupt.
1340  *
1341  * Return: a suitable PPI type for the current system.
1342  */
1343 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1344 {
1345         if (is_kernel_in_hyp_mode())
1346                 return ARCH_TIMER_HYP_PPI;
1347
1348         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1349                 return ARCH_TIMER_VIRT_PPI;
1350
1351         if (IS_ENABLED(CONFIG_ARM64))
1352                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1353
1354         return ARCH_TIMER_PHYS_SECURE_PPI;
1355 }
1356
1357 static void __init arch_timer_populate_kvm_info(void)
1358 {
1359         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1360         if (is_kernel_in_hyp_mode())
1361                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1362 }
1363
1364 static int __init arch_timer_of_init(struct device_node *np)
1365 {
1366         int i, irq, ret;
1367         u32 rate;
1368         bool has_names;
1369
1370         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1371                 pr_warn("multiple nodes in dt, skipping\n");
1372                 return 0;
1373         }
1374
1375         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1376
1377         has_names = of_property_read_bool(np, "interrupt-names");
1378
1379         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1380                 if (has_names)
1381                         irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1382                 else
1383                         irq = of_irq_get(np, i);
1384                 if (irq > 0)
1385                         arch_timer_ppi[i] = irq;
1386         }
1387
1388         arch_timer_populate_kvm_info();
1389
1390         rate = arch_timer_get_cntfrq();
1391         arch_timer_of_configure_rate(rate, np);
1392
1393         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1394
1395         /* Check for globally applicable workarounds */
1396         arch_timer_check_ool_workaround(ate_match_dt, np);
1397
1398         /*
1399          * If we cannot rely on firmware initializing the timer registers then
1400          * we should use the physical timers instead.
1401          */
1402         if (IS_ENABLED(CONFIG_ARM) &&
1403             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1404                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1405         else
1406                 arch_timer_uses_ppi = arch_timer_select_ppi();
1407
1408         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1409                 pr_err("No interrupt available, giving up\n");
1410                 return -EINVAL;
1411         }
1412
1413         /* On some systems, the counter stops ticking when in suspend. */
1414         arch_counter_suspend_stop = of_property_read_bool(np,
1415                                                          "arm,no-tick-in-suspend");
1416
1417         ret = arch_timer_register();
1418         if (ret)
1419                 return ret;
1420
1421         if (arch_timer_needs_of_probing())
1422                 return 0;
1423
1424         return arch_timer_common_init();
1425 }
1426 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1427 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1428
1429 static u32 __init
1430 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1431 {
1432         void __iomem *base;
1433         u32 rate;
1434
1435         base = ioremap(frame->cntbase, frame->size);
1436         if (!base) {
1437                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1438                 return 0;
1439         }
1440
1441         rate = readl_relaxed(base + CNTFRQ);
1442
1443         iounmap(base);
1444
1445         return rate;
1446 }
1447
1448 static struct arch_timer_mem_frame * __init
1449 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1450 {
1451         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1452         void __iomem *cntctlbase;
1453         u32 cnttidr;
1454         int i;
1455
1456         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1457         if (!cntctlbase) {
1458                 pr_err("Can't map CNTCTLBase @ %pa\n",
1459                         &timer_mem->cntctlbase);
1460                 return NULL;
1461         }
1462
1463         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1464
1465         /*
1466          * Try to find a virtual capable frame. Otherwise fall back to a
1467          * physical capable frame.
1468          */
1469         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1470                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1471                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1472
1473                 frame = &timer_mem->frame[i];
1474                 if (!frame->valid)
1475                         continue;
1476
1477                 /* Try enabling everything, and see what sticks */
1478                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1479                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1480
1481                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1482                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1483                         best_frame = frame;
1484                         arch_timer_mem_use_virtual = true;
1485                         break;
1486                 }
1487
1488                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1489                         continue;
1490
1491                 best_frame = frame;
1492         }
1493
1494         iounmap(cntctlbase);
1495
1496         return best_frame;
1497 }
1498
1499 static int __init
1500 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1501 {
1502         void __iomem *base;
1503         int ret, irq = 0;
1504
1505         if (arch_timer_mem_use_virtual)
1506                 irq = frame->virt_irq;
1507         else
1508                 irq = frame->phys_irq;
1509
1510         if (!irq) {
1511                 pr_err("Frame missing %s irq.\n",
1512                        arch_timer_mem_use_virtual ? "virt" : "phys");
1513                 return -EINVAL;
1514         }
1515
1516         if (!request_mem_region(frame->cntbase, frame->size,
1517                                 "arch_mem_timer"))
1518                 return -EBUSY;
1519
1520         base = ioremap(frame->cntbase, frame->size);
1521         if (!base) {
1522                 pr_err("Can't map frame's registers\n");
1523                 return -ENXIO;
1524         }
1525
1526         ret = arch_timer_mem_register(base, irq);
1527         if (ret) {
1528                 iounmap(base);
1529                 return ret;
1530         }
1531
1532         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1533
1534         return 0;
1535 }
1536
1537 static int __init arch_timer_mem_of_init(struct device_node *np)
1538 {
1539         struct arch_timer_mem *timer_mem;
1540         struct arch_timer_mem_frame *frame;
1541         struct device_node *frame_node;
1542         struct resource res;
1543         int ret = -EINVAL;
1544         u32 rate;
1545
1546         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1547         if (!timer_mem)
1548                 return -ENOMEM;
1549
1550         if (of_address_to_resource(np, 0, &res))
1551                 goto out;
1552         timer_mem->cntctlbase = res.start;
1553         timer_mem->size = resource_size(&res);
1554
1555         for_each_available_child_of_node(np, frame_node) {
1556                 u32 n;
1557                 struct arch_timer_mem_frame *frame;
1558
1559                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1560                         pr_err(FW_BUG "Missing frame-number.\n");
1561                         of_node_put(frame_node);
1562                         goto out;
1563                 }
1564                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1565                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1566                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1567                         of_node_put(frame_node);
1568                         goto out;
1569                 }
1570                 frame = &timer_mem->frame[n];
1571
1572                 if (frame->valid) {
1573                         pr_err(FW_BUG "Duplicated frame-number.\n");
1574                         of_node_put(frame_node);
1575                         goto out;
1576                 }
1577
1578                 if (of_address_to_resource(frame_node, 0, &res)) {
1579                         of_node_put(frame_node);
1580                         goto out;
1581                 }
1582                 frame->cntbase = res.start;
1583                 frame->size = resource_size(&res);
1584
1585                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1586                                                        ARCH_TIMER_VIRT_SPI);
1587                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1588                                                        ARCH_TIMER_PHYS_SPI);
1589
1590                 frame->valid = true;
1591         }
1592
1593         frame = arch_timer_mem_find_best_frame(timer_mem);
1594         if (!frame) {
1595                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1596                         &timer_mem->cntctlbase);
1597                 ret = -EINVAL;
1598                 goto out;
1599         }
1600
1601         rate = arch_timer_mem_frame_get_cntfrq(frame);
1602         arch_timer_of_configure_rate(rate, np);
1603
1604         ret = arch_timer_mem_frame_register(frame);
1605         if (!ret && !arch_timer_needs_of_probing())
1606                 ret = arch_timer_common_init();
1607 out:
1608         kfree(timer_mem);
1609         return ret;
1610 }
1611 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1612                        arch_timer_mem_of_init);
1613
1614 #ifdef CONFIG_ACPI_GTDT
1615 static int __init
1616 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1617 {
1618         struct arch_timer_mem_frame *frame;
1619         u32 rate;
1620         int i;
1621
1622         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1623                 frame = &timer_mem->frame[i];
1624
1625                 if (!frame->valid)
1626                         continue;
1627
1628                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1629                 if (rate == arch_timer_rate)
1630                         continue;
1631
1632                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1633                         &frame->cntbase,
1634                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1635
1636                 return -EINVAL;
1637         }
1638
1639         return 0;
1640 }
1641
1642 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1643 {
1644         struct arch_timer_mem *timers, *timer;
1645         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1646         int timer_count, i, ret = 0;
1647
1648         timers = kcalloc(platform_timer_count, sizeof(*timers),
1649                             GFP_KERNEL);
1650         if (!timers)
1651                 return -ENOMEM;
1652
1653         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1654         if (ret || !timer_count)
1655                 goto out;
1656
1657         /*
1658          * While unlikely, it's theoretically possible that none of the frames
1659          * in a timer expose the combination of feature we want.
1660          */
1661         for (i = 0; i < timer_count; i++) {
1662                 timer = &timers[i];
1663
1664                 frame = arch_timer_mem_find_best_frame(timer);
1665                 if (!best_frame)
1666                         best_frame = frame;
1667
1668                 ret = arch_timer_mem_verify_cntfrq(timer);
1669                 if (ret) {
1670                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1671                         goto out;
1672                 }
1673
1674                 if (!best_frame) /* implies !frame */
1675                         /*
1676                          * Only complain about missing suitable frames if we
1677                          * haven't already found one in a previous iteration.
1678                          */
1679                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1680                                 &timer->cntctlbase);
1681         }
1682
1683         if (best_frame)
1684                 ret = arch_timer_mem_frame_register(best_frame);
1685 out:
1686         kfree(timers);
1687         return ret;
1688 }
1689
1690 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1691 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1692 {
1693         int ret, platform_timer_count;
1694
1695         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1696                 pr_warn("already initialized, skipping\n");
1697                 return -EINVAL;
1698         }
1699
1700         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1701
1702         ret = acpi_gtdt_init(table, &platform_timer_count);
1703         if (ret)
1704                 return ret;
1705
1706         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1707                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1708
1709         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1710                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1711
1712         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1713                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1714
1715         arch_timer_populate_kvm_info();
1716
1717         /*
1718          * When probing via ACPI, we have no mechanism to override the sysreg
1719          * CNTFRQ value. This *must* be correct.
1720          */
1721         arch_timer_rate = arch_timer_get_cntfrq();
1722         ret = validate_timer_rate();
1723         if (ret) {
1724                 pr_err(FW_BUG "frequency not available.\n");
1725                 return ret;
1726         }
1727
1728         arch_timer_uses_ppi = arch_timer_select_ppi();
1729         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1730                 pr_err("No interrupt available, giving up\n");
1731                 return -EINVAL;
1732         }
1733
1734         /* Always-on capability */
1735         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1736
1737         /* Check for globally applicable workarounds */
1738         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1739
1740         ret = arch_timer_register();
1741         if (ret)
1742                 return ret;
1743
1744         if (platform_timer_count &&
1745             arch_timer_mem_acpi_init(platform_timer_count))
1746                 pr_err("Failed to initialize memory-mapped timer.\n");
1747
1748         return arch_timer_common_init();
1749 }
1750 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1751 #endif
1752
1753 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1754                                  struct clocksource **cs)
1755 {
1756         struct arm_smccc_res hvc_res;
1757         u32 ptp_counter;
1758         ktime_t ktime;
1759
1760         if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1761                 return -EOPNOTSUPP;
1762
1763         if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1764                 ptp_counter = KVM_PTP_VIRT_COUNTER;
1765         else
1766                 ptp_counter = KVM_PTP_PHYS_COUNTER;
1767
1768         arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1769                              ptp_counter, &hvc_res);
1770
1771         if ((int)(hvc_res.a0) < 0)
1772                 return -EOPNOTSUPP;
1773
1774         ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1775         *ts = ktime_to_timespec64(ktime);
1776         if (cycle)
1777                 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1778         if (cs)
1779                 *cs = &clocksource_counter;
1780
1781         return 0;
1782 }
1783 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);