Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / drivers / clocksource / arm_arch_timer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/drivers/clocksource/arm_arch_timer.c
4  *
5  *  Copyright (C) 2011 ARM Ltd.
6  *  All Rights Reserved
7  */
8
9 #define pr_fmt(fmt)     "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched/clock.h>
25 #include <linux/sched_clock.h>
26 #include <linux/acpi.h>
27
28 #include <asm/arch_timer.h>
29 #include <asm/virt.h>
30
31 #include <clocksource/arm_arch_timer.h>
32
33 #define CNTTIDR         0x08
34 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
35
36 #define CNTACR(n)       (0x40 + ((n) * 4))
37 #define CNTACR_RPCT     BIT(0)
38 #define CNTACR_RVCT     BIT(1)
39 #define CNTACR_RFRQ     BIT(2)
40 #define CNTACR_RVOFF    BIT(3)
41 #define CNTACR_RWVT     BIT(4)
42 #define CNTACR_RWPT     BIT(5)
43
44 #define CNTVCT_LO       0x08
45 #define CNTVCT_HI       0x0c
46 #define CNTFRQ          0x10
47 #define CNTP_TVAL       0x28
48 #define CNTP_CTL        0x2c
49 #define CNTV_TVAL       0x38
50 #define CNTV_CTL        0x3c
51
52 static unsigned arch_timers_present __initdata;
53
54 static void __iomem *arch_counter_base;
55
56 struct arch_timer {
57         void __iomem *base;
58         struct clock_event_device evt;
59 };
60
61 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
62
63 static u32 arch_timer_rate;
64 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
65
66 static struct clock_event_device __percpu *arch_timer_evt;
67
68 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
69 static bool arch_timer_c3stop;
70 static bool arch_timer_mem_use_virtual;
71 static bool arch_counter_suspend_stop;
72 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
73 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
74 #else
75 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
76 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
77
78 static cpumask_t evtstrm_available = CPU_MASK_NONE;
79 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
80
81 static int __init early_evtstrm_cfg(char *buf)
82 {
83         return strtobool(buf, &evtstrm_enable);
84 }
85 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
86
87 /*
88  * Architected system timer support.
89  */
90
91 static __always_inline
92 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
93                           struct clock_event_device *clk)
94 {
95         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
96                 struct arch_timer *timer = to_arch_timer(clk);
97                 switch (reg) {
98                 case ARCH_TIMER_REG_CTRL:
99                         writel_relaxed(val, timer->base + CNTP_CTL);
100                         break;
101                 case ARCH_TIMER_REG_TVAL:
102                         writel_relaxed(val, timer->base + CNTP_TVAL);
103                         break;
104                 }
105         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
106                 struct arch_timer *timer = to_arch_timer(clk);
107                 switch (reg) {
108                 case ARCH_TIMER_REG_CTRL:
109                         writel_relaxed(val, timer->base + CNTV_CTL);
110                         break;
111                 case ARCH_TIMER_REG_TVAL:
112                         writel_relaxed(val, timer->base + CNTV_TVAL);
113                         break;
114                 }
115         } else {
116                 arch_timer_reg_write_cp15(access, reg, val);
117         }
118 }
119
120 static __always_inline
121 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
122                         struct clock_event_device *clk)
123 {
124         u32 val;
125
126         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
127                 struct arch_timer *timer = to_arch_timer(clk);
128                 switch (reg) {
129                 case ARCH_TIMER_REG_CTRL:
130                         val = readl_relaxed(timer->base + CNTP_CTL);
131                         break;
132                 case ARCH_TIMER_REG_TVAL:
133                         val = readl_relaxed(timer->base + CNTP_TVAL);
134                         break;
135                 }
136         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
137                 struct arch_timer *timer = to_arch_timer(clk);
138                 switch (reg) {
139                 case ARCH_TIMER_REG_CTRL:
140                         val = readl_relaxed(timer->base + CNTV_CTL);
141                         break;
142                 case ARCH_TIMER_REG_TVAL:
143                         val = readl_relaxed(timer->base + CNTV_TVAL);
144                         break;
145                 }
146         } else {
147                 val = arch_timer_reg_read_cp15(access, reg);
148         }
149
150         return val;
151 }
152
153 static notrace u64 arch_counter_get_cntpct_stable(void)
154 {
155         return __arch_counter_get_cntpct_stable();
156 }
157
158 static notrace u64 arch_counter_get_cntpct(void)
159 {
160         return __arch_counter_get_cntpct();
161 }
162
163 static notrace u64 arch_counter_get_cntvct_stable(void)
164 {
165         return __arch_counter_get_cntvct_stable();
166 }
167
168 static notrace u64 arch_counter_get_cntvct(void)
169 {
170         return __arch_counter_get_cntvct();
171 }
172
173 /*
174  * Default to cp15 based access because arm64 uses this function for
175  * sched_clock() before DT is probed and the cp15 method is guaranteed
176  * to exist on arm64. arm doesn't use this before DT is probed so even
177  * if we don't have the cp15 accessors we won't have a problem.
178  */
179 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
180 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
181
182 static u64 arch_counter_read(struct clocksource *cs)
183 {
184         return arch_timer_read_counter();
185 }
186
187 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
188 {
189         return arch_timer_read_counter();
190 }
191
192 static struct clocksource clocksource_counter = {
193         .name   = "arch_sys_counter",
194         .rating = 400,
195         .read   = arch_counter_read,
196         .mask   = CLOCKSOURCE_MASK(56),
197         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
198 };
199
200 static struct cyclecounter cyclecounter __ro_after_init = {
201         .read   = arch_counter_read_cc,
202         .mask   = CLOCKSOURCE_MASK(56),
203 };
204
205 struct ate_acpi_oem_info {
206         char oem_id[ACPI_OEM_ID_SIZE + 1];
207         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
208         u32 oem_revision;
209 };
210
211 #ifdef CONFIG_FSL_ERRATUM_A008585
212 /*
213  * The number of retries is an arbitrary value well beyond the highest number
214  * of iterations the loop has been observed to take.
215  */
216 #define __fsl_a008585_read_reg(reg) ({                  \
217         u64 _old, _new;                                 \
218         int _retries = 200;                             \
219                                                         \
220         do {                                            \
221                 _old = read_sysreg(reg);                \
222                 _new = read_sysreg(reg);                \
223                 _retries--;                             \
224         } while (unlikely(_old != _new) && _retries);   \
225                                                         \
226         WARN_ON_ONCE(!_retries);                        \
227         _new;                                           \
228 })
229
230 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
231 {
232         return __fsl_a008585_read_reg(cntp_tval_el0);
233 }
234
235 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
236 {
237         return __fsl_a008585_read_reg(cntv_tval_el0);
238 }
239
240 static u64 notrace fsl_a008585_read_cntpct_el0(void)
241 {
242         return __fsl_a008585_read_reg(cntpct_el0);
243 }
244
245 static u64 notrace fsl_a008585_read_cntvct_el0(void)
246 {
247         return __fsl_a008585_read_reg(cntvct_el0);
248 }
249 #endif
250
251 #ifdef CONFIG_HISILICON_ERRATUM_161010101
252 /*
253  * Verify whether the value of the second read is larger than the first by
254  * less than 32 is the only way to confirm the value is correct, so clear the
255  * lower 5 bits to check whether the difference is greater than 32 or not.
256  * Theoretically the erratum should not occur more than twice in succession
257  * when reading the system counter, but it is possible that some interrupts
258  * may lead to more than twice read errors, triggering the warning, so setting
259  * the number of retries far beyond the number of iterations the loop has been
260  * observed to take.
261  */
262 #define __hisi_161010101_read_reg(reg) ({                               \
263         u64 _old, _new;                                         \
264         int _retries = 50;                                      \
265                                                                 \
266         do {                                                    \
267                 _old = read_sysreg(reg);                        \
268                 _new = read_sysreg(reg);                        \
269                 _retries--;                                     \
270         } while (unlikely((_new - _old) >> 5) && _retries);     \
271                                                                 \
272         WARN_ON_ONCE(!_retries);                                \
273         _new;                                                   \
274 })
275
276 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
277 {
278         return __hisi_161010101_read_reg(cntp_tval_el0);
279 }
280
281 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
282 {
283         return __hisi_161010101_read_reg(cntv_tval_el0);
284 }
285
286 static u64 notrace hisi_161010101_read_cntpct_el0(void)
287 {
288         return __hisi_161010101_read_reg(cntpct_el0);
289 }
290
291 static u64 notrace hisi_161010101_read_cntvct_el0(void)
292 {
293         return __hisi_161010101_read_reg(cntvct_el0);
294 }
295
296 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
297         /*
298          * Note that trailing spaces are required to properly match
299          * the OEM table information.
300          */
301         {
302                 .oem_id         = "HISI  ",
303                 .oem_table_id   = "HIP05   ",
304                 .oem_revision   = 0,
305         },
306         {
307                 .oem_id         = "HISI  ",
308                 .oem_table_id   = "HIP06   ",
309                 .oem_revision   = 0,
310         },
311         {
312                 .oem_id         = "HISI  ",
313                 .oem_table_id   = "HIP07   ",
314                 .oem_revision   = 0,
315         },
316         { /* Sentinel indicating the end of the OEM array */ },
317 };
318 #endif
319
320 #ifdef CONFIG_ARM64_ERRATUM_858921
321 static u64 notrace arm64_858921_read_cntpct_el0(void)
322 {
323         u64 old, new;
324
325         old = read_sysreg(cntpct_el0);
326         new = read_sysreg(cntpct_el0);
327         return (((old ^ new) >> 32) & 1) ? old : new;
328 }
329
330 static u64 notrace arm64_858921_read_cntvct_el0(void)
331 {
332         u64 old, new;
333
334         old = read_sysreg(cntvct_el0);
335         new = read_sysreg(cntvct_el0);
336         return (((old ^ new) >> 32) & 1) ? old : new;
337 }
338 #endif
339
340 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
341 /*
342  * The low bits of the counter registers are indeterminate while bit 10 or
343  * greater is rolling over. Since the counter value can jump both backward
344  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
345  * with all ones or all zeros in the low bits. Bound the loop by the maximum
346  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
347  */
348 #define __sun50i_a64_read_reg(reg) ({                                   \
349         u64 _val;                                                       \
350         int _retries = 150;                                             \
351                                                                         \
352         do {                                                            \
353                 _val = read_sysreg(reg);                                \
354                 _retries--;                                             \
355         } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
356                                                                         \
357         WARN_ON_ONCE(!_retries);                                        \
358         _val;                                                           \
359 })
360
361 static u64 notrace sun50i_a64_read_cntpct_el0(void)
362 {
363         return __sun50i_a64_read_reg(cntpct_el0);
364 }
365
366 static u64 notrace sun50i_a64_read_cntvct_el0(void)
367 {
368         return __sun50i_a64_read_reg(cntvct_el0);
369 }
370
371 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
372 {
373         return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
374 }
375
376 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
377 {
378         return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
379 }
380 #endif
381
382 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
383 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
384 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
385
386 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
387
388 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
389                                                 struct clock_event_device *clk)
390 {
391         unsigned long ctrl;
392         u64 cval;
393
394         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
395         ctrl |= ARCH_TIMER_CTRL_ENABLE;
396         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
397
398         if (access == ARCH_TIMER_PHYS_ACCESS) {
399                 cval = evt + arch_counter_get_cntpct();
400                 write_sysreg(cval, cntp_cval_el0);
401         } else {
402                 cval = evt + arch_counter_get_cntvct();
403                 write_sysreg(cval, cntv_cval_el0);
404         }
405
406         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
407 }
408
409 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
410                                             struct clock_event_device *clk)
411 {
412         erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
413         return 0;
414 }
415
416 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
417                                             struct clock_event_device *clk)
418 {
419         erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
420         return 0;
421 }
422
423 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
424 #ifdef CONFIG_FSL_ERRATUM_A008585
425         {
426                 .match_type = ate_match_dt,
427                 .id = "fsl,erratum-a008585",
428                 .desc = "Freescale erratum a005858",
429                 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
430                 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
431                 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
432                 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
433                 .set_next_event_phys = erratum_set_next_event_tval_phys,
434                 .set_next_event_virt = erratum_set_next_event_tval_virt,
435         },
436 #endif
437 #ifdef CONFIG_HISILICON_ERRATUM_161010101
438         {
439                 .match_type = ate_match_dt,
440                 .id = "hisilicon,erratum-161010101",
441                 .desc = "HiSilicon erratum 161010101",
442                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
443                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
444                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
445                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
446                 .set_next_event_phys = erratum_set_next_event_tval_phys,
447                 .set_next_event_virt = erratum_set_next_event_tval_virt,
448         },
449         {
450                 .match_type = ate_match_acpi_oem_info,
451                 .id = hisi_161010101_oem_info,
452                 .desc = "HiSilicon erratum 161010101",
453                 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
454                 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
455                 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
456                 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
457                 .set_next_event_phys = erratum_set_next_event_tval_phys,
458                 .set_next_event_virt = erratum_set_next_event_tval_virt,
459         },
460 #endif
461 #ifdef CONFIG_ARM64_ERRATUM_858921
462         {
463                 .match_type = ate_match_local_cap_id,
464                 .id = (void *)ARM64_WORKAROUND_858921,
465                 .desc = "ARM erratum 858921",
466                 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
467                 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
468         },
469 #endif
470 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
471         {
472                 .match_type = ate_match_dt,
473                 .id = "allwinner,erratum-unknown1",
474                 .desc = "Allwinner erratum UNKNOWN1",
475                 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
476                 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
477                 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
478                 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
479                 .set_next_event_phys = erratum_set_next_event_tval_phys,
480                 .set_next_event_virt = erratum_set_next_event_tval_virt,
481         },
482 #endif
483 #ifdef CONFIG_ARM64_ERRATUM_1418040
484         {
485                 .match_type = ate_match_local_cap_id,
486                 .id = (void *)ARM64_WORKAROUND_1418040,
487                 .desc = "ARM erratum 1418040",
488                 .disable_compat_vdso = true,
489         },
490 #endif
491 };
492
493 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
494                                const void *);
495
496 static
497 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
498                                  const void *arg)
499 {
500         const struct device_node *np = arg;
501
502         return of_property_read_bool(np, wa->id);
503 }
504
505 static
506 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
507                                         const void *arg)
508 {
509         return this_cpu_has_cap((uintptr_t)wa->id);
510 }
511
512
513 static
514 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
515                                        const void *arg)
516 {
517         static const struct ate_acpi_oem_info empty_oem_info = {};
518         const struct ate_acpi_oem_info *info = wa->id;
519         const struct acpi_table_header *table = arg;
520
521         /* Iterate over the ACPI OEM info array, looking for a match */
522         while (memcmp(info, &empty_oem_info, sizeof(*info))) {
523                 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
524                     !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
525                     info->oem_revision == table->oem_revision)
526                         return true;
527
528                 info++;
529         }
530
531         return false;
532 }
533
534 static const struct arch_timer_erratum_workaround *
535 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
536                           ate_match_fn_t match_fn,
537                           void *arg)
538 {
539         int i;
540
541         for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
542                 if (ool_workarounds[i].match_type != type)
543                         continue;
544
545                 if (match_fn(&ool_workarounds[i], arg))
546                         return &ool_workarounds[i];
547         }
548
549         return NULL;
550 }
551
552 static
553 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
554                                   bool local)
555 {
556         int i;
557
558         if (local) {
559                 __this_cpu_write(timer_unstable_counter_workaround, wa);
560         } else {
561                 for_each_possible_cpu(i)
562                         per_cpu(timer_unstable_counter_workaround, i) = wa;
563         }
564
565         if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
566                 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
567
568         /*
569          * Don't use the vdso fastpath if errata require using the
570          * out-of-line counter accessor. We may change our mind pretty
571          * late in the game (with a per-CPU erratum, for example), so
572          * change both the default value and the vdso itself.
573          */
574         if (wa->read_cntvct_el0) {
575                 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
576                 vdso_default = VDSO_CLOCKMODE_NONE;
577         } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
578                 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
579                 clocksource_counter.vdso_clock_mode = vdso_default;
580         }
581 }
582
583 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
584                                             void *arg)
585 {
586         const struct arch_timer_erratum_workaround *wa, *__wa;
587         ate_match_fn_t match_fn = NULL;
588         bool local = false;
589
590         switch (type) {
591         case ate_match_dt:
592                 match_fn = arch_timer_check_dt_erratum;
593                 break;
594         case ate_match_local_cap_id:
595                 match_fn = arch_timer_check_local_cap_erratum;
596                 local = true;
597                 break;
598         case ate_match_acpi_oem_info:
599                 match_fn = arch_timer_check_acpi_oem_erratum;
600                 break;
601         default:
602                 WARN_ON(1);
603                 return;
604         }
605
606         wa = arch_timer_iterate_errata(type, match_fn, arg);
607         if (!wa)
608                 return;
609
610         __wa = __this_cpu_read(timer_unstable_counter_workaround);
611         if (__wa && wa != __wa)
612                 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
613                         wa->desc, __wa->desc);
614
615         if (__wa)
616                 return;
617
618         arch_timer_enable_workaround(wa, local);
619         pr_info("Enabling %s workaround for %s\n",
620                 local ? "local" : "global", wa->desc);
621 }
622
623 static bool arch_timer_this_cpu_has_cntvct_wa(void)
624 {
625         return has_erratum_handler(read_cntvct_el0);
626 }
627
628 static bool arch_timer_counter_has_wa(void)
629 {
630         return atomic_read(&timer_unstable_counter_workaround_in_use);
631 }
632 #else
633 #define arch_timer_check_ool_workaround(t,a)            do { } while(0)
634 #define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
635 #define arch_timer_counter_has_wa()                     ({false;})
636 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
637
638 static __always_inline irqreturn_t timer_handler(const int access,
639                                         struct clock_event_device *evt)
640 {
641         unsigned long ctrl;
642
643         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
644         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
645                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
646                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
647                 evt->event_handler(evt);
648                 return IRQ_HANDLED;
649         }
650
651         return IRQ_NONE;
652 }
653
654 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
655 {
656         struct clock_event_device *evt = dev_id;
657
658         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
659 }
660
661 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
662 {
663         struct clock_event_device *evt = dev_id;
664
665         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
666 }
667
668 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
669 {
670         struct clock_event_device *evt = dev_id;
671
672         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
673 }
674
675 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
676 {
677         struct clock_event_device *evt = dev_id;
678
679         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
680 }
681
682 static __always_inline int timer_shutdown(const int access,
683                                           struct clock_event_device *clk)
684 {
685         unsigned long ctrl;
686
687         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
688         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
689         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
690
691         return 0;
692 }
693
694 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
695 {
696         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
697 }
698
699 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
700 {
701         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
702 }
703
704 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
705 {
706         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
707 }
708
709 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
710 {
711         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
712 }
713
714 static __always_inline void set_next_event(const int access, unsigned long evt,
715                                            struct clock_event_device *clk)
716 {
717         unsigned long ctrl;
718         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
719         ctrl |= ARCH_TIMER_CTRL_ENABLE;
720         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
721         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
722         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
723 }
724
725 static int arch_timer_set_next_event_virt(unsigned long evt,
726                                           struct clock_event_device *clk)
727 {
728         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
729         return 0;
730 }
731
732 static int arch_timer_set_next_event_phys(unsigned long evt,
733                                           struct clock_event_device *clk)
734 {
735         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
736         return 0;
737 }
738
739 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
740                                               struct clock_event_device *clk)
741 {
742         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
743         return 0;
744 }
745
746 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
747                                               struct clock_event_device *clk)
748 {
749         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
750         return 0;
751 }
752
753 static void __arch_timer_setup(unsigned type,
754                                struct clock_event_device *clk)
755 {
756         clk->features = CLOCK_EVT_FEAT_ONESHOT;
757
758         if (type == ARCH_TIMER_TYPE_CP15) {
759                 typeof(clk->set_next_event) sne;
760
761                 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
762
763                 if (arch_timer_c3stop)
764                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
765                 clk->name = "arch_sys_timer";
766                 clk->rating = 450;
767                 clk->cpumask = cpumask_of(smp_processor_id());
768                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
769                 switch (arch_timer_uses_ppi) {
770                 case ARCH_TIMER_VIRT_PPI:
771                         clk->set_state_shutdown = arch_timer_shutdown_virt;
772                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
773                         sne = erratum_handler(set_next_event_virt);
774                         break;
775                 case ARCH_TIMER_PHYS_SECURE_PPI:
776                 case ARCH_TIMER_PHYS_NONSECURE_PPI:
777                 case ARCH_TIMER_HYP_PPI:
778                         clk->set_state_shutdown = arch_timer_shutdown_phys;
779                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
780                         sne = erratum_handler(set_next_event_phys);
781                         break;
782                 default:
783                         BUG();
784                 }
785
786                 clk->set_next_event = sne;
787         } else {
788                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
789                 clk->name = "arch_mem_timer";
790                 clk->rating = 400;
791                 clk->cpumask = cpu_possible_mask;
792                 if (arch_timer_mem_use_virtual) {
793                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
794                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
795                         clk->set_next_event =
796                                 arch_timer_set_next_event_virt_mem;
797                 } else {
798                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
799                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
800                         clk->set_next_event =
801                                 arch_timer_set_next_event_phys_mem;
802                 }
803         }
804
805         clk->set_state_shutdown(clk);
806
807         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
808 }
809
810 static void arch_timer_evtstrm_enable(int divider)
811 {
812         u32 cntkctl = arch_timer_get_cntkctl();
813
814         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
815         /* Set the divider and enable virtual event stream */
816         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
817                         | ARCH_TIMER_VIRT_EVT_EN;
818         arch_timer_set_cntkctl(cntkctl);
819         arch_timer_set_evtstrm_feature();
820         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
821 }
822
823 static void arch_timer_configure_evtstream(void)
824 {
825         int evt_stream_div, pos;
826
827         /* Find the closest power of two to the divisor */
828         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
829         pos = fls(evt_stream_div);
830         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
831                 pos--;
832         /* enable event stream */
833         arch_timer_evtstrm_enable(min(pos, 15));
834 }
835
836 static void arch_counter_set_user_access(void)
837 {
838         u32 cntkctl = arch_timer_get_cntkctl();
839
840         /* Disable user access to the timers and both counters */
841         /* Also disable virtual event stream */
842         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
843                         | ARCH_TIMER_USR_VT_ACCESS_EN
844                         | ARCH_TIMER_USR_VCT_ACCESS_EN
845                         | ARCH_TIMER_VIRT_EVT_EN
846                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
847
848         /*
849          * Enable user access to the virtual counter if it doesn't
850          * need to be workaround. The vdso may have been already
851          * disabled though.
852          */
853         if (arch_timer_this_cpu_has_cntvct_wa())
854                 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
855         else
856                 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
857
858         arch_timer_set_cntkctl(cntkctl);
859 }
860
861 static bool arch_timer_has_nonsecure_ppi(void)
862 {
863         return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
864                 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
865 }
866
867 static u32 check_ppi_trigger(int irq)
868 {
869         u32 flags = irq_get_trigger_type(irq);
870
871         if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
872                 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
873                 pr_warn("WARNING: Please fix your firmware\n");
874                 flags = IRQF_TRIGGER_LOW;
875         }
876
877         return flags;
878 }
879
880 static int arch_timer_starting_cpu(unsigned int cpu)
881 {
882         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
883         u32 flags;
884
885         __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
886
887         flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
888         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
889
890         if (arch_timer_has_nonsecure_ppi()) {
891                 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
892                 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
893                                   flags);
894         }
895
896         arch_counter_set_user_access();
897         if (evtstrm_enable)
898                 arch_timer_configure_evtstream();
899
900         return 0;
901 }
902
903 static int validate_timer_rate(void)
904 {
905         if (!arch_timer_rate)
906                 return -EINVAL;
907
908         /* Arch timer frequency < 1MHz can cause trouble */
909         WARN_ON(arch_timer_rate < 1000000);
910
911         return 0;
912 }
913
914 /*
915  * For historical reasons, when probing with DT we use whichever (non-zero)
916  * rate was probed first, and don't verify that others match. If the first node
917  * probed has a clock-frequency property, this overrides the HW register.
918  */
919 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
920 {
921         /* Who has more than one independent system counter? */
922         if (arch_timer_rate)
923                 return;
924
925         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
926                 arch_timer_rate = rate;
927
928         /* Check the timer frequency. */
929         if (validate_timer_rate())
930                 pr_warn("frequency not available\n");
931 }
932
933 static void arch_timer_banner(unsigned type)
934 {
935         pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
936                 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
937                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
938                         " and " : "",
939                 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
940                 (unsigned long)arch_timer_rate / 1000000,
941                 (unsigned long)(arch_timer_rate / 10000) % 100,
942                 type & ARCH_TIMER_TYPE_CP15 ?
943                         (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
944                         "",
945                 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
946                 type & ARCH_TIMER_TYPE_MEM ?
947                         arch_timer_mem_use_virtual ? "virt" : "phys" :
948                         "");
949 }
950
951 u32 arch_timer_get_rate(void)
952 {
953         return arch_timer_rate;
954 }
955
956 bool arch_timer_evtstrm_available(void)
957 {
958         /*
959          * We might get called from a preemptible context. This is fine
960          * because availability of the event stream should be always the same
961          * for a preemptible context and context where we might resume a task.
962          */
963         return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
964 }
965
966 static u64 arch_counter_get_cntvct_mem(void)
967 {
968         u32 vct_lo, vct_hi, tmp_hi;
969
970         do {
971                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
972                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
973                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
974         } while (vct_hi != tmp_hi);
975
976         return ((u64) vct_hi << 32) | vct_lo;
977 }
978
979 static struct arch_timer_kvm_info arch_timer_kvm_info;
980
981 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
982 {
983         return &arch_timer_kvm_info;
984 }
985
986 static void __init arch_counter_register(unsigned type)
987 {
988         u64 start_count;
989
990         /* Register the CP15 based counter if we have one */
991         if (type & ARCH_TIMER_TYPE_CP15) {
992                 u64 (*rd)(void);
993
994                 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
995                     arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
996                         if (arch_timer_counter_has_wa())
997                                 rd = arch_counter_get_cntvct_stable;
998                         else
999                                 rd = arch_counter_get_cntvct;
1000                 } else {
1001                         if (arch_timer_counter_has_wa())
1002                                 rd = arch_counter_get_cntpct_stable;
1003                         else
1004                                 rd = arch_counter_get_cntpct;
1005                 }
1006
1007                 arch_timer_read_counter = rd;
1008                 clocksource_counter.vdso_clock_mode = vdso_default;
1009         } else {
1010                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1011         }
1012
1013         if (!arch_counter_suspend_stop)
1014                 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1015         start_count = arch_timer_read_counter();
1016         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1017         cyclecounter.mult = clocksource_counter.mult;
1018         cyclecounter.shift = clocksource_counter.shift;
1019         timecounter_init(&arch_timer_kvm_info.timecounter,
1020                          &cyclecounter, start_count);
1021
1022         /* 56 bits minimum, so we assume worst case rollover */
1023         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1024 }
1025
1026 static void arch_timer_stop(struct clock_event_device *clk)
1027 {
1028         pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1029
1030         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1031         if (arch_timer_has_nonsecure_ppi())
1032                 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1033
1034         clk->set_state_shutdown(clk);
1035 }
1036
1037 static int arch_timer_dying_cpu(unsigned int cpu)
1038 {
1039         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1040
1041         cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1042
1043         arch_timer_stop(clk);
1044         return 0;
1045 }
1046
1047 #ifdef CONFIG_CPU_PM
1048 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1049 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1050                                     unsigned long action, void *hcpu)
1051 {
1052         if (action == CPU_PM_ENTER) {
1053                 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1054
1055                 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1056         } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1057                 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1058
1059                 if (arch_timer_have_evtstrm_feature())
1060                         cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1061         }
1062         return NOTIFY_OK;
1063 }
1064
1065 static struct notifier_block arch_timer_cpu_pm_notifier = {
1066         .notifier_call = arch_timer_cpu_pm_notify,
1067 };
1068
1069 static int __init arch_timer_cpu_pm_init(void)
1070 {
1071         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1072 }
1073
1074 static void __init arch_timer_cpu_pm_deinit(void)
1075 {
1076         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1077 }
1078
1079 #else
1080 static int __init arch_timer_cpu_pm_init(void)
1081 {
1082         return 0;
1083 }
1084
1085 static void __init arch_timer_cpu_pm_deinit(void)
1086 {
1087 }
1088 #endif
1089
1090 static int __init arch_timer_register(void)
1091 {
1092         int err;
1093         int ppi;
1094
1095         arch_timer_evt = alloc_percpu(struct clock_event_device);
1096         if (!arch_timer_evt) {
1097                 err = -ENOMEM;
1098                 goto out;
1099         }
1100
1101         ppi = arch_timer_ppi[arch_timer_uses_ppi];
1102         switch (arch_timer_uses_ppi) {
1103         case ARCH_TIMER_VIRT_PPI:
1104                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1105                                          "arch_timer", arch_timer_evt);
1106                 break;
1107         case ARCH_TIMER_PHYS_SECURE_PPI:
1108         case ARCH_TIMER_PHYS_NONSECURE_PPI:
1109                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1110                                          "arch_timer", arch_timer_evt);
1111                 if (!err && arch_timer_has_nonsecure_ppi()) {
1112                         ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1113                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
1114                                                  "arch_timer", arch_timer_evt);
1115                         if (err)
1116                                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1117                                                 arch_timer_evt);
1118                 }
1119                 break;
1120         case ARCH_TIMER_HYP_PPI:
1121                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1122                                          "arch_timer", arch_timer_evt);
1123                 break;
1124         default:
1125                 BUG();
1126         }
1127
1128         if (err) {
1129                 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1130                 goto out_free;
1131         }
1132
1133         err = arch_timer_cpu_pm_init();
1134         if (err)
1135                 goto out_unreg_notify;
1136
1137         /* Register and immediately configure the timer on the boot CPU */
1138         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1139                                 "clockevents/arm/arch_timer:starting",
1140                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
1141         if (err)
1142                 goto out_unreg_cpupm;
1143         return 0;
1144
1145 out_unreg_cpupm:
1146         arch_timer_cpu_pm_deinit();
1147
1148 out_unreg_notify:
1149         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1150         if (arch_timer_has_nonsecure_ppi())
1151                 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1152                                 arch_timer_evt);
1153
1154 out_free:
1155         free_percpu(arch_timer_evt);
1156 out:
1157         return err;
1158 }
1159
1160 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1161 {
1162         int ret;
1163         irq_handler_t func;
1164         struct arch_timer *t;
1165
1166         t = kzalloc(sizeof(*t), GFP_KERNEL);
1167         if (!t)
1168                 return -ENOMEM;
1169
1170         t->base = base;
1171         t->evt.irq = irq;
1172         __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1173
1174         if (arch_timer_mem_use_virtual)
1175                 func = arch_timer_handler_virt_mem;
1176         else
1177                 func = arch_timer_handler_phys_mem;
1178
1179         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1180         if (ret) {
1181                 pr_err("Failed to request mem timer irq\n");
1182                 kfree(t);
1183         }
1184
1185         return ret;
1186 }
1187
1188 static const struct of_device_id arch_timer_of_match[] __initconst = {
1189         { .compatible   = "arm,armv7-timer",    },
1190         { .compatible   = "arm,armv8-timer",    },
1191         {},
1192 };
1193
1194 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1195         { .compatible   = "arm,armv7-timer-mem", },
1196         {},
1197 };
1198
1199 static bool __init arch_timer_needs_of_probing(void)
1200 {
1201         struct device_node *dn;
1202         bool needs_probing = false;
1203         unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1204
1205         /* We have two timers, and both device-tree nodes are probed. */
1206         if ((arch_timers_present & mask) == mask)
1207                 return false;
1208
1209         /*
1210          * Only one type of timer is probed,
1211          * check if we have another type of timer node in device-tree.
1212          */
1213         if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1214                 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1215         else
1216                 dn = of_find_matching_node(NULL, arch_timer_of_match);
1217
1218         if (dn && of_device_is_available(dn))
1219                 needs_probing = true;
1220
1221         of_node_put(dn);
1222
1223         return needs_probing;
1224 }
1225
1226 static int __init arch_timer_common_init(void)
1227 {
1228         arch_timer_banner(arch_timers_present);
1229         arch_counter_register(arch_timers_present);
1230         return arch_timer_arch_init();
1231 }
1232
1233 /**
1234  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1235  *
1236  * If HYP mode is available, we know that the physical timer
1237  * has been configured to be accessible from PL1. Use it, so
1238  * that a guest can use the virtual timer instead.
1239  *
1240  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1241  * accesses to CNTP_*_EL1 registers are silently redirected to
1242  * their CNTHP_*_EL2 counterparts, and use a different PPI
1243  * number.
1244  *
1245  * If no interrupt provided for virtual timer, we'll have to
1246  * stick to the physical timer. It'd better be accessible...
1247  * For arm64 we never use the secure interrupt.
1248  *
1249  * Return: a suitable PPI type for the current system.
1250  */
1251 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1252 {
1253         if (is_kernel_in_hyp_mode())
1254                 return ARCH_TIMER_HYP_PPI;
1255
1256         if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1257                 return ARCH_TIMER_VIRT_PPI;
1258
1259         if (IS_ENABLED(CONFIG_ARM64))
1260                 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1261
1262         return ARCH_TIMER_PHYS_SECURE_PPI;
1263 }
1264
1265 static void __init arch_timer_populate_kvm_info(void)
1266 {
1267         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1268         if (is_kernel_in_hyp_mode())
1269                 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1270 }
1271
1272 static int __init arch_timer_of_init(struct device_node *np)
1273 {
1274         int i, ret;
1275         u32 rate;
1276
1277         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1278                 pr_warn("multiple nodes in dt, skipping\n");
1279                 return 0;
1280         }
1281
1282         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1283         for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1284                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1285
1286         arch_timer_populate_kvm_info();
1287
1288         rate = arch_timer_get_cntfrq();
1289         arch_timer_of_configure_rate(rate, np);
1290
1291         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1292
1293         /* Check for globally applicable workarounds */
1294         arch_timer_check_ool_workaround(ate_match_dt, np);
1295
1296         /*
1297          * If we cannot rely on firmware initializing the timer registers then
1298          * we should use the physical timers instead.
1299          */
1300         if (IS_ENABLED(CONFIG_ARM) &&
1301             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1302                 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1303         else
1304                 arch_timer_uses_ppi = arch_timer_select_ppi();
1305
1306         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1307                 pr_err("No interrupt available, giving up\n");
1308                 return -EINVAL;
1309         }
1310
1311         /* On some systems, the counter stops ticking when in suspend. */
1312         arch_counter_suspend_stop = of_property_read_bool(np,
1313                                                          "arm,no-tick-in-suspend");
1314
1315         ret = arch_timer_register();
1316         if (ret)
1317                 return ret;
1318
1319         if (arch_timer_needs_of_probing())
1320                 return 0;
1321
1322         return arch_timer_common_init();
1323 }
1324 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1325 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1326
1327 static u32 __init
1328 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1329 {
1330         void __iomem *base;
1331         u32 rate;
1332
1333         base = ioremap(frame->cntbase, frame->size);
1334         if (!base) {
1335                 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1336                 return 0;
1337         }
1338
1339         rate = readl_relaxed(base + CNTFRQ);
1340
1341         iounmap(base);
1342
1343         return rate;
1344 }
1345
1346 static struct arch_timer_mem_frame * __init
1347 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1348 {
1349         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1350         void __iomem *cntctlbase;
1351         u32 cnttidr;
1352         int i;
1353
1354         cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1355         if (!cntctlbase) {
1356                 pr_err("Can't map CNTCTLBase @ %pa\n",
1357                         &timer_mem->cntctlbase);
1358                 return NULL;
1359         }
1360
1361         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1362
1363         /*
1364          * Try to find a virtual capable frame. Otherwise fall back to a
1365          * physical capable frame.
1366          */
1367         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1368                 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1369                              CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1370
1371                 frame = &timer_mem->frame[i];
1372                 if (!frame->valid)
1373                         continue;
1374
1375                 /* Try enabling everything, and see what sticks */
1376                 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1377                 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1378
1379                 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1380                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1381                         best_frame = frame;
1382                         arch_timer_mem_use_virtual = true;
1383                         break;
1384                 }
1385
1386                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1387                         continue;
1388
1389                 best_frame = frame;
1390         }
1391
1392         iounmap(cntctlbase);
1393
1394         return best_frame;
1395 }
1396
1397 static int __init
1398 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1399 {
1400         void __iomem *base;
1401         int ret, irq = 0;
1402
1403         if (arch_timer_mem_use_virtual)
1404                 irq = frame->virt_irq;
1405         else
1406                 irq = frame->phys_irq;
1407
1408         if (!irq) {
1409                 pr_err("Frame missing %s irq.\n",
1410                        arch_timer_mem_use_virtual ? "virt" : "phys");
1411                 return -EINVAL;
1412         }
1413
1414         if (!request_mem_region(frame->cntbase, frame->size,
1415                                 "arch_mem_timer"))
1416                 return -EBUSY;
1417
1418         base = ioremap(frame->cntbase, frame->size);
1419         if (!base) {
1420                 pr_err("Can't map frame's registers\n");
1421                 return -ENXIO;
1422         }
1423
1424         ret = arch_timer_mem_register(base, irq);
1425         if (ret) {
1426                 iounmap(base);
1427                 return ret;
1428         }
1429
1430         arch_counter_base = base;
1431         arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1432
1433         return 0;
1434 }
1435
1436 static int __init arch_timer_mem_of_init(struct device_node *np)
1437 {
1438         struct arch_timer_mem *timer_mem;
1439         struct arch_timer_mem_frame *frame;
1440         struct device_node *frame_node;
1441         struct resource res;
1442         int ret = -EINVAL;
1443         u32 rate;
1444
1445         timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1446         if (!timer_mem)
1447                 return -ENOMEM;
1448
1449         if (of_address_to_resource(np, 0, &res))
1450                 goto out;
1451         timer_mem->cntctlbase = res.start;
1452         timer_mem->size = resource_size(&res);
1453
1454         for_each_available_child_of_node(np, frame_node) {
1455                 u32 n;
1456                 struct arch_timer_mem_frame *frame;
1457
1458                 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1459                         pr_err(FW_BUG "Missing frame-number.\n");
1460                         of_node_put(frame_node);
1461                         goto out;
1462                 }
1463                 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1464                         pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1465                                ARCH_TIMER_MEM_MAX_FRAMES - 1);
1466                         of_node_put(frame_node);
1467                         goto out;
1468                 }
1469                 frame = &timer_mem->frame[n];
1470
1471                 if (frame->valid) {
1472                         pr_err(FW_BUG "Duplicated frame-number.\n");
1473                         of_node_put(frame_node);
1474                         goto out;
1475                 }
1476
1477                 if (of_address_to_resource(frame_node, 0, &res)) {
1478                         of_node_put(frame_node);
1479                         goto out;
1480                 }
1481                 frame->cntbase = res.start;
1482                 frame->size = resource_size(&res);
1483
1484                 frame->virt_irq = irq_of_parse_and_map(frame_node,
1485                                                        ARCH_TIMER_VIRT_SPI);
1486                 frame->phys_irq = irq_of_parse_and_map(frame_node,
1487                                                        ARCH_TIMER_PHYS_SPI);
1488
1489                 frame->valid = true;
1490         }
1491
1492         frame = arch_timer_mem_find_best_frame(timer_mem);
1493         if (!frame) {
1494                 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1495                         &timer_mem->cntctlbase);
1496                 ret = -EINVAL;
1497                 goto out;
1498         }
1499
1500         rate = arch_timer_mem_frame_get_cntfrq(frame);
1501         arch_timer_of_configure_rate(rate, np);
1502
1503         ret = arch_timer_mem_frame_register(frame);
1504         if (!ret && !arch_timer_needs_of_probing())
1505                 ret = arch_timer_common_init();
1506 out:
1507         kfree(timer_mem);
1508         return ret;
1509 }
1510 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1511                        arch_timer_mem_of_init);
1512
1513 #ifdef CONFIG_ACPI_GTDT
1514 static int __init
1515 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1516 {
1517         struct arch_timer_mem_frame *frame;
1518         u32 rate;
1519         int i;
1520
1521         for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1522                 frame = &timer_mem->frame[i];
1523
1524                 if (!frame->valid)
1525                         continue;
1526
1527                 rate = arch_timer_mem_frame_get_cntfrq(frame);
1528                 if (rate == arch_timer_rate)
1529                         continue;
1530
1531                 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1532                         &frame->cntbase,
1533                         (unsigned long)rate, (unsigned long)arch_timer_rate);
1534
1535                 return -EINVAL;
1536         }
1537
1538         return 0;
1539 }
1540
1541 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1542 {
1543         struct arch_timer_mem *timers, *timer;
1544         struct arch_timer_mem_frame *frame, *best_frame = NULL;
1545         int timer_count, i, ret = 0;
1546
1547         timers = kcalloc(platform_timer_count, sizeof(*timers),
1548                             GFP_KERNEL);
1549         if (!timers)
1550                 return -ENOMEM;
1551
1552         ret = acpi_arch_timer_mem_init(timers, &timer_count);
1553         if (ret || !timer_count)
1554                 goto out;
1555
1556         /*
1557          * While unlikely, it's theoretically possible that none of the frames
1558          * in a timer expose the combination of feature we want.
1559          */
1560         for (i = 0; i < timer_count; i++) {
1561                 timer = &timers[i];
1562
1563                 frame = arch_timer_mem_find_best_frame(timer);
1564                 if (!best_frame)
1565                         best_frame = frame;
1566
1567                 ret = arch_timer_mem_verify_cntfrq(timer);
1568                 if (ret) {
1569                         pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1570                         goto out;
1571                 }
1572
1573                 if (!best_frame) /* implies !frame */
1574                         /*
1575                          * Only complain about missing suitable frames if we
1576                          * haven't already found one in a previous iteration.
1577                          */
1578                         pr_err("Unable to find a suitable frame in timer @ %pa\n",
1579                                 &timer->cntctlbase);
1580         }
1581
1582         if (best_frame)
1583                 ret = arch_timer_mem_frame_register(best_frame);
1584 out:
1585         kfree(timers);
1586         return ret;
1587 }
1588
1589 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
1590 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1591 {
1592         int ret, platform_timer_count;
1593
1594         if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1595                 pr_warn("already initialized, skipping\n");
1596                 return -EINVAL;
1597         }
1598
1599         arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1600
1601         ret = acpi_gtdt_init(table, &platform_timer_count);
1602         if (ret)
1603                 return ret;
1604
1605         arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1606                 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1607
1608         arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1609                 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1610
1611         arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1612                 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1613
1614         arch_timer_populate_kvm_info();
1615
1616         /*
1617          * When probing via ACPI, we have no mechanism to override the sysreg
1618          * CNTFRQ value. This *must* be correct.
1619          */
1620         arch_timer_rate = arch_timer_get_cntfrq();
1621         ret = validate_timer_rate();
1622         if (ret) {
1623                 pr_err(FW_BUG "frequency not available.\n");
1624                 return ret;
1625         }
1626
1627         arch_timer_uses_ppi = arch_timer_select_ppi();
1628         if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1629                 pr_err("No interrupt available, giving up\n");
1630                 return -EINVAL;
1631         }
1632
1633         /* Always-on capability */
1634         arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1635
1636         /* Check for globally applicable workarounds */
1637         arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1638
1639         ret = arch_timer_register();
1640         if (ret)
1641                 return ret;
1642
1643         if (platform_timer_count &&
1644             arch_timer_mem_acpi_init(platform_timer_count))
1645                 pr_err("Failed to initialize memory-mapped timer.\n");
1646
1647         return arch_timer_common_init();
1648 }
1649 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1650 #endif