Merge tag 'x86-mm-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / drivers / clk / tegra / clk-dfll.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * clk-dfll.c - Tegra DFLL clock source common code
4  *
5  * Copyright (C) 2012-2019 NVIDIA Corporation. All rights reserved.
6  *
7  * Aleksandr Frid <afrid@nvidia.com>
8  * Paul Walmsley <pwalmsley@nvidia.com>
9  *
10  * This library is for the DVCO and DFLL IP blocks on the Tegra124
11  * SoC. These IP blocks together are also known at NVIDIA as
12  * "CL-DVFS". To try to avoid confusion, this code refers to them
13  * collectively as the "DFLL."
14  *
15  * The DFLL is a root clocksource which tolerates some amount of
16  * supply voltage noise. Tegra124 uses it to clock the fast CPU
17  * complex when the target CPU speed is above a particular rate. The
18  * DFLL can be operated in either open-loop mode or closed-loop mode.
19  * In open-loop mode, the DFLL generates an output clock appropriate
20  * to the supply voltage. In closed-loop mode, when configured with a
21  * target frequency, the DFLL minimizes supply voltage while
22  * delivering an average frequency equal to the target.
23  *
24  * Devices clocked by the DFLL must be able to tolerate frequency
25  * variation. In the case of the CPU, it's important to note that the
26  * CPU cycle time will vary. This has implications for
27  * performance-measurement code and any code that relies on the CPU
28  * cycle time to delay for a certain length of time.
29  */
30
31 #include <linux/clk.h>
32 #include <linux/clk-provider.h>
33 #include <linux/debugfs.h>
34 #include <linux/device.h>
35 #include <linux/err.h>
36 #include <linux/i2c.h>
37 #include <linux/io.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/of.h>
41 #include <linux/pinctrl/consumer.h>
42 #include <linux/pm_opp.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/regmap.h>
45 #include <linux/regulator/consumer.h>
46 #include <linux/reset.h>
47 #include <linux/seq_file.h>
48
49 #include "clk-dfll.h"
50 #include "cvb.h"
51
52 /*
53  * DFLL control registers - access via dfll_{readl,writel}
54  */
55
56 /* DFLL_CTRL: DFLL control register */
57 #define DFLL_CTRL                       0x00
58 #define DFLL_CTRL_MODE_MASK             0x03
59
60 /* DFLL_CONFIG: DFLL sample rate control */
61 #define DFLL_CONFIG                     0x04
62 #define DFLL_CONFIG_DIV_MASK            0xff
63 #define DFLL_CONFIG_DIV_PRESCALE        32
64
65 /* DFLL_PARAMS: tuning coefficients for closed loop integrator */
66 #define DFLL_PARAMS                     0x08
67 #define DFLL_PARAMS_CG_SCALE            (0x1 << 24)
68 #define DFLL_PARAMS_FORCE_MODE_SHIFT    22
69 #define DFLL_PARAMS_FORCE_MODE_MASK     (0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT)
70 #define DFLL_PARAMS_CF_PARAM_SHIFT      16
71 #define DFLL_PARAMS_CF_PARAM_MASK       (0x3f << DFLL_PARAMS_CF_PARAM_SHIFT)
72 #define DFLL_PARAMS_CI_PARAM_SHIFT      8
73 #define DFLL_PARAMS_CI_PARAM_MASK       (0x7 << DFLL_PARAMS_CI_PARAM_SHIFT)
74 #define DFLL_PARAMS_CG_PARAM_SHIFT      0
75 #define DFLL_PARAMS_CG_PARAM_MASK       (0xff << DFLL_PARAMS_CG_PARAM_SHIFT)
76
77 /* DFLL_TUNE0: delay line configuration register 0 */
78 #define DFLL_TUNE0                      0x0c
79
80 /* DFLL_TUNE1: delay line configuration register 1 */
81 #define DFLL_TUNE1                      0x10
82
83 /* DFLL_FREQ_REQ: target DFLL frequency control */
84 #define DFLL_FREQ_REQ                   0x14
85 #define DFLL_FREQ_REQ_FORCE_ENABLE      (0x1 << 28)
86 #define DFLL_FREQ_REQ_FORCE_SHIFT       16
87 #define DFLL_FREQ_REQ_FORCE_MASK        (0xfff << DFLL_FREQ_REQ_FORCE_SHIFT)
88 #define FORCE_MAX                       2047
89 #define FORCE_MIN                       -2048
90 #define DFLL_FREQ_REQ_SCALE_SHIFT       8
91 #define DFLL_FREQ_REQ_SCALE_MASK        (0xff << DFLL_FREQ_REQ_SCALE_SHIFT)
92 #define DFLL_FREQ_REQ_SCALE_MAX         256
93 #define DFLL_FREQ_REQ_FREQ_VALID        (0x1 << 7)
94 #define DFLL_FREQ_REQ_MULT_SHIFT        0
95 #define DFLL_FREQ_REG_MULT_MASK         (0x7f << DFLL_FREQ_REQ_MULT_SHIFT)
96 #define FREQ_MAX                        127
97
98 /* DFLL_DROOP_CTRL: droop prevention control */
99 #define DFLL_DROOP_CTRL                 0x1c
100
101 /* DFLL_OUTPUT_CFG: closed loop mode control registers */
102 /* NOTE: access via dfll_i2c_{readl,writel} */
103 #define DFLL_OUTPUT_CFG                 0x20
104 #define DFLL_OUTPUT_CFG_I2C_ENABLE      (0x1 << 30)
105 #define OUT_MASK                        0x3f
106 #define DFLL_OUTPUT_CFG_SAFE_SHIFT      24
107 #define DFLL_OUTPUT_CFG_SAFE_MASK       \
108                 (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT)
109 #define DFLL_OUTPUT_CFG_MAX_SHIFT       16
110 #define DFLL_OUTPUT_CFG_MAX_MASK        \
111                 (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT)
112 #define DFLL_OUTPUT_CFG_MIN_SHIFT       8
113 #define DFLL_OUTPUT_CFG_MIN_MASK        \
114                 (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT)
115 #define DFLL_OUTPUT_CFG_PWM_DELTA       (0x1 << 7)
116 #define DFLL_OUTPUT_CFG_PWM_ENABLE      (0x1 << 6)
117 #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT   0
118 #define DFLL_OUTPUT_CFG_PWM_DIV_MASK    \
119                 (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
120
121 /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */
122 #define DFLL_OUTPUT_FORCE               0x24
123 #define DFLL_OUTPUT_FORCE_ENABLE        (0x1 << 6)
124 #define DFLL_OUTPUT_FORCE_VALUE_SHIFT   0
125 #define DFLL_OUTPUT_FORCE_VALUE_MASK    \
126                 (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT)
127
128 /* DFLL_MONITOR_CTRL: internal monitor data source control */
129 #define DFLL_MONITOR_CTRL               0x28
130 #define DFLL_MONITOR_CTRL_FREQ          6
131
132 /* DFLL_MONITOR_DATA: internal monitor data output */
133 #define DFLL_MONITOR_DATA               0x2c
134 #define DFLL_MONITOR_DATA_NEW_MASK      (0x1 << 16)
135 #define DFLL_MONITOR_DATA_VAL_SHIFT     0
136 #define DFLL_MONITOR_DATA_VAL_MASK      (0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT)
137
138 /*
139  * I2C output control registers - access via dfll_i2c_{readl,writel}
140  */
141
142 /* DFLL_I2C_CFG: I2C controller configuration register */
143 #define DFLL_I2C_CFG                    0x40
144 #define DFLL_I2C_CFG_ARB_ENABLE         (0x1 << 20)
145 #define DFLL_I2C_CFG_HS_CODE_SHIFT      16
146 #define DFLL_I2C_CFG_HS_CODE_MASK       (0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT)
147 #define DFLL_I2C_CFG_PACKET_ENABLE      (0x1 << 15)
148 #define DFLL_I2C_CFG_SIZE_SHIFT         12
149 #define DFLL_I2C_CFG_SIZE_MASK          (0x7 << DFLL_I2C_CFG_SIZE_SHIFT)
150 #define DFLL_I2C_CFG_SLAVE_ADDR_10      (0x1 << 10)
151 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT      1
152 #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT     0
153
154 /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */
155 #define DFLL_I2C_VDD_REG_ADDR           0x44
156
157 /* DFLL_I2C_STS: I2C controller status */
158 #define DFLL_I2C_STS                    0x48
159 #define DFLL_I2C_STS_I2C_LAST_SHIFT     1
160 #define DFLL_I2C_STS_I2C_REQ_PENDING    0x1
161
162 /* DFLL_INTR_STS: DFLL interrupt status register */
163 #define DFLL_INTR_STS                   0x5c
164
165 /* DFLL_INTR_EN: DFLL interrupt enable register */
166 #define DFLL_INTR_EN                    0x60
167 #define DFLL_INTR_MIN_MASK              0x1
168 #define DFLL_INTR_MAX_MASK              0x2
169
170 /*
171  * Integrated I2C controller registers - relative to td->i2c_controller_base
172  */
173
174 /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */
175 #define DFLL_I2C_CLK_DIVISOR            0x6c
176 #define DFLL_I2C_CLK_DIVISOR_MASK       0xffff
177 #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT   16
178 #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT   0
179 #define DFLL_I2C_CLK_DIVISOR_PREDIV     8
180 #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV      12
181
182 /*
183  * Other constants
184  */
185
186 /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */
187 #define MAX_DFLL_VOLTAGES               33
188
189 /*
190  * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware
191  *    integrates the DVCO counter over - used for debug rate monitoring and
192  *    droop control
193  */
194 #define REF_CLK_CYC_PER_DVCO_SAMPLE     4
195
196 /*
197  * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this
198  * driver, in Hz
199  */
200 #define REF_CLOCK_RATE                  51000000UL
201
202 #define DVCO_RATE_TO_MULT(rate, ref_rate)       ((rate) / ((ref_rate) / 2))
203 #define MULT_TO_DVCO_RATE(mult, ref_rate)       ((mult) * ((ref_rate) / 2))
204
205 /**
206  * enum dfll_ctrl_mode - DFLL hardware operating mode
207  * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield)
208  * @DFLL_DISABLED: DFLL not generating an output clock
209  * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage
210  * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match
211  *                    the requested rate
212  *
213  * The integer corresponding to the last two states, minus one, is
214  * written to the DFLL hardware to change operating modes.
215  */
216 enum dfll_ctrl_mode {
217         DFLL_UNINITIALIZED = 0,
218         DFLL_DISABLED = 1,
219         DFLL_OPEN_LOOP = 2,
220         DFLL_CLOSED_LOOP = 3,
221 };
222
223 /**
224  * enum dfll_tune_range - voltage range that the driver believes it's in
225  * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed
226  * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode)
227  *
228  * Some DFLL tuning parameters may need to change depending on the
229  * DVCO's voltage; these states represent the ranges that the driver
230  * supports. These are software states; these values are never
231  * written into registers.
232  */
233 enum dfll_tune_range {
234         DFLL_TUNE_UNINITIALIZED = 0,
235         DFLL_TUNE_LOW = 1,
236 };
237
238
239 enum tegra_dfll_pmu_if {
240         TEGRA_DFLL_PMU_I2C = 0,
241         TEGRA_DFLL_PMU_PWM = 1,
242 };
243
244 /**
245  * struct dfll_rate_req - target DFLL rate request data
246  * @rate: target frequency, after the postscaling
247  * @dvco_target_rate: target frequency, after the postscaling
248  * @lut_index: LUT index at which voltage the dvco_target_rate will be reached
249  * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register
250  * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register
251  */
252 struct dfll_rate_req {
253         unsigned long rate;
254         unsigned long dvco_target_rate;
255         int lut_index;
256         u8 mult_bits;
257         u8 scale_bits;
258 };
259
260 struct tegra_dfll {
261         struct device                   *dev;
262         struct tegra_dfll_soc_data      *soc;
263
264         void __iomem                    *base;
265         void __iomem                    *i2c_base;
266         void __iomem                    *i2c_controller_base;
267         void __iomem                    *lut_base;
268
269         struct regulator                *vdd_reg;
270         struct clk                      *soc_clk;
271         struct clk                      *ref_clk;
272         struct clk                      *i2c_clk;
273         struct clk                      *dfll_clk;
274         struct reset_control            *dfll_rst;
275         struct reset_control            *dvco_rst;
276         unsigned long                   ref_rate;
277         unsigned long                   i2c_clk_rate;
278         unsigned long                   dvco_rate_min;
279
280         enum dfll_ctrl_mode             mode;
281         enum dfll_tune_range            tune_range;
282         struct dentry                   *debugfs_dir;
283         struct clk_hw                   dfll_clk_hw;
284         const char                      *output_clock_name;
285         struct dfll_rate_req            last_req;
286         unsigned long                   last_unrounded_rate;
287
288         /* Parameters from DT */
289         u32                             droop_ctrl;
290         u32                             sample_rate;
291         u32                             force_mode;
292         u32                             cf;
293         u32                             ci;
294         u32                             cg;
295         bool                            cg_scale;
296
297         /* I2C interface parameters */
298         u32                             i2c_fs_rate;
299         u32                             i2c_reg;
300         u32                             i2c_slave_addr;
301
302         /* lut array entries are regulator framework selectors or PWM values*/
303         unsigned                        lut[MAX_DFLL_VOLTAGES];
304         unsigned long                   lut_uv[MAX_DFLL_VOLTAGES];
305         int                             lut_size;
306         u8                              lut_bottom, lut_min, lut_max, lut_safe;
307
308         /* PWM interface */
309         enum tegra_dfll_pmu_if          pmu_if;
310         unsigned long                   pwm_rate;
311         struct pinctrl                  *pwm_pin;
312         struct pinctrl_state            *pwm_enable_state;
313         struct pinctrl_state            *pwm_disable_state;
314         u32                             reg_init_uV;
315 };
316
317 #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw)
318
319 /* mode_name: map numeric DFLL modes to names for friendly console messages */
320 static const char * const mode_name[] = {
321         [DFLL_UNINITIALIZED] = "uninitialized",
322         [DFLL_DISABLED] = "disabled",
323         [DFLL_OPEN_LOOP] = "open_loop",
324         [DFLL_CLOSED_LOOP] = "closed_loop",
325 };
326
327 /*
328  * Register accessors
329  */
330
331 static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs)
332 {
333         return __raw_readl(td->base + offs);
334 }
335
336 static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs)
337 {
338         WARN_ON(offs >= DFLL_I2C_CFG);
339         __raw_writel(val, td->base + offs);
340 }
341
342 static inline void dfll_wmb(struct tegra_dfll *td)
343 {
344         dfll_readl(td, DFLL_CTRL);
345 }
346
347 /* I2C output control registers - for addresses above DFLL_I2C_CFG */
348
349 static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs)
350 {
351         return __raw_readl(td->i2c_base + offs);
352 }
353
354 static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs)
355 {
356         __raw_writel(val, td->i2c_base + offs);
357 }
358
359 static inline void dfll_i2c_wmb(struct tegra_dfll *td)
360 {
361         dfll_i2c_readl(td, DFLL_I2C_CFG);
362 }
363
364 /**
365  * dfll_is_running - is the DFLL currently generating a clock?
366  * @td: DFLL instance
367  *
368  * If the DFLL is currently generating an output clock signal, return
369  * true; otherwise return false.
370  */
371 static bool dfll_is_running(struct tegra_dfll *td)
372 {
373         return td->mode >= DFLL_OPEN_LOOP;
374 }
375
376 /*
377  * Runtime PM suspend/resume callbacks
378  */
379
380 /**
381  * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL
382  * @dev: DFLL device *
383  *
384  * Enable all clocks needed by the DFLL. Assumes that clk_prepare()
385  * has already been called on all the clocks.
386  *
387  * XXX Should also handle context restore when returning from off.
388  */
389 int tegra_dfll_runtime_resume(struct device *dev)
390 {
391         struct tegra_dfll *td = dev_get_drvdata(dev);
392         int ret;
393
394         ret = clk_enable(td->ref_clk);
395         if (ret) {
396                 dev_err(dev, "could not enable ref clock: %d\n", ret);
397                 return ret;
398         }
399
400         ret = clk_enable(td->soc_clk);
401         if (ret) {
402                 dev_err(dev, "could not enable register clock: %d\n", ret);
403                 clk_disable(td->ref_clk);
404                 return ret;
405         }
406
407         ret = clk_enable(td->i2c_clk);
408         if (ret) {
409                 dev_err(dev, "could not enable i2c clock: %d\n", ret);
410                 clk_disable(td->soc_clk);
411                 clk_disable(td->ref_clk);
412                 return ret;
413         }
414
415         return 0;
416 }
417 EXPORT_SYMBOL(tegra_dfll_runtime_resume);
418
419 /**
420  * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL
421  * @dev: DFLL device *
422  *
423  * Disable all clocks needed by the DFLL. Assumes that other code
424  * will later call clk_unprepare().
425  */
426 int tegra_dfll_runtime_suspend(struct device *dev)
427 {
428         struct tegra_dfll *td = dev_get_drvdata(dev);
429
430         clk_disable(td->ref_clk);
431         clk_disable(td->soc_clk);
432         clk_disable(td->i2c_clk);
433
434         return 0;
435 }
436 EXPORT_SYMBOL(tegra_dfll_runtime_suspend);
437
438 /*
439  * DFLL tuning operations (per-voltage-range tuning settings)
440  */
441
442 /**
443  * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage
444  * @td: DFLL instance
445  *
446  * Tune the DFLL oscillator parameters and the CPU clock shaper for
447  * the low-voltage range. These settings are valid for any voltage,
448  * but may not be optimal.
449  */
450 static void dfll_tune_low(struct tegra_dfll *td)
451 {
452         td->tune_range = DFLL_TUNE_LOW;
453
454         dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0);
455         dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1);
456         dfll_wmb(td);
457
458         if (td->soc->set_clock_trimmers_low)
459                 td->soc->set_clock_trimmers_low();
460 }
461
462 /*
463  * Output clock scaler helpers
464  */
465
466 /**
467  * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate
468  * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field)
469  * @dvco_rate: the DVCO rate
470  *
471  * Apply the same scaling formula that the DFLL hardware uses to scale
472  * the DVCO rate.
473  */
474 static unsigned long dfll_scale_dvco_rate(int scale_bits,
475                                           unsigned long dvco_rate)
476 {
477         return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX;
478 }
479
480 /*
481  * DFLL mode switching
482  */
483
484 /**
485  * dfll_set_mode - change the DFLL control mode
486  * @td: DFLL instance
487  * @mode: DFLL control mode (see enum dfll_ctrl_mode)
488  *
489  * Change the DFLL's operating mode between disabled, open-loop mode,
490  * and closed-loop mode, or vice versa.
491  */
492 static void dfll_set_mode(struct tegra_dfll *td,
493                           enum dfll_ctrl_mode mode)
494 {
495         td->mode = mode;
496         dfll_writel(td, mode - 1, DFLL_CTRL);
497         dfll_wmb(td);
498 }
499
500 /*
501  * DVCO rate control
502  */
503
504 static unsigned long get_dvco_rate_below(struct tegra_dfll *td, u8 out_min)
505 {
506         struct dev_pm_opp *opp;
507         unsigned long rate, prev_rate;
508         unsigned long uv, min_uv;
509
510         min_uv = td->lut_uv[out_min];
511         for (rate = 0, prev_rate = 0; ; rate++) {
512                 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
513                 if (IS_ERR(opp))
514                         break;
515
516                 uv = dev_pm_opp_get_voltage(opp);
517                 dev_pm_opp_put(opp);
518
519                 if (uv && uv > min_uv)
520                         return prev_rate;
521
522                 prev_rate = rate;
523         }
524
525         return prev_rate;
526 }
527
528 /*
529  * DFLL-to-I2C controller interface
530  */
531
532 /**
533  * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests
534  * @td: DFLL instance
535  * @enable: whether to enable or disable the I2C voltage requests
536  *
537  * Set the master enable control for I2C control value updates. If disabled,
538  * then I2C control messages are inhibited, regardless of the DFLL mode.
539  */
540 static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable)
541 {
542         u32 val;
543
544         val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG);
545
546         if (enable)
547                 val |= DFLL_OUTPUT_CFG_I2C_ENABLE;
548         else
549                 val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE;
550
551         dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG);
552         dfll_i2c_wmb(td);
553
554         return 0;
555 }
556
557
558 /*
559  * DFLL-to-PWM controller interface
560  */
561
562 /**
563  * dfll_pwm_set_output_enabled - enable/disable PWM voltage requests
564  * @td: DFLL instance
565  * @enable: whether to enable or disable the PWM voltage requests
566  *
567  * Set the master enable control for PWM control value updates. If disabled,
568  * then the PWM signal is not driven. Also configure the PWM output pad
569  * to the appropriate state.
570  */
571 static int dfll_pwm_set_output_enabled(struct tegra_dfll *td, bool enable)
572 {
573         int ret;
574         u32 val, div;
575
576         if (enable) {
577                 ret = pinctrl_select_state(td->pwm_pin, td->pwm_enable_state);
578                 if (ret < 0) {
579                         dev_err(td->dev, "setting enable state failed\n");
580                         return -EINVAL;
581                 }
582                 val = dfll_readl(td, DFLL_OUTPUT_CFG);
583                 val &= ~DFLL_OUTPUT_CFG_PWM_DIV_MASK;
584                 div = DIV_ROUND_UP(td->ref_rate, td->pwm_rate);
585                 val |= (div << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT)
586                                 & DFLL_OUTPUT_CFG_PWM_DIV_MASK;
587                 dfll_writel(td, val, DFLL_OUTPUT_CFG);
588                 dfll_wmb(td);
589
590                 val |= DFLL_OUTPUT_CFG_PWM_ENABLE;
591                 dfll_writel(td, val, DFLL_OUTPUT_CFG);
592                 dfll_wmb(td);
593         } else {
594                 ret = pinctrl_select_state(td->pwm_pin, td->pwm_disable_state);
595                 if (ret < 0)
596                         dev_warn(td->dev, "setting disable state failed\n");
597
598                 val = dfll_readl(td, DFLL_OUTPUT_CFG);
599                 val &= ~DFLL_OUTPUT_CFG_PWM_ENABLE;
600                 dfll_writel(td, val, DFLL_OUTPUT_CFG);
601                 dfll_wmb(td);
602         }
603
604         return 0;
605 }
606
607 /**
608  * dfll_set_force_output_value - set fixed value for force output
609  * @td: DFLL instance
610  * @out_val: value to force output
611  *
612  * Set the fixed value for force output, DFLL will output this value when
613  * force output is enabled.
614  */
615 static u32 dfll_set_force_output_value(struct tegra_dfll *td, u8 out_val)
616 {
617         u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
618
619         val = (val & DFLL_OUTPUT_FORCE_ENABLE) | (out_val & OUT_MASK);
620         dfll_writel(td, val, DFLL_OUTPUT_FORCE);
621         dfll_wmb(td);
622
623         return dfll_readl(td, DFLL_OUTPUT_FORCE);
624 }
625
626 /**
627  * dfll_set_force_output_enabled - enable/disable force output
628  * @td: DFLL instance
629  * @enable: whether to enable or disable the force output
630  *
631  * Set the enable control for fouce output with fixed value.
632  */
633 static void dfll_set_force_output_enabled(struct tegra_dfll *td, bool enable)
634 {
635         u32 val = dfll_readl(td, DFLL_OUTPUT_FORCE);
636
637         if (enable)
638                 val |= DFLL_OUTPUT_FORCE_ENABLE;
639         else
640                 val &= ~DFLL_OUTPUT_FORCE_ENABLE;
641
642         dfll_writel(td, val, DFLL_OUTPUT_FORCE);
643         dfll_wmb(td);
644 }
645
646 /**
647  * dfll_force_output - force output a fixed value
648  * @td: DFLL instance
649  * @out_sel: value to force output
650  *
651  * Set the fixed value for force output, DFLL will output this value.
652  */
653 static int dfll_force_output(struct tegra_dfll *td, unsigned int out_sel)
654 {
655         u32 val;
656
657         if (out_sel > OUT_MASK)
658                 return -EINVAL;
659
660         val = dfll_set_force_output_value(td, out_sel);
661         if ((td->mode < DFLL_CLOSED_LOOP) &&
662             !(val & DFLL_OUTPUT_FORCE_ENABLE)) {
663                 dfll_set_force_output_enabled(td, true);
664         }
665
666         return 0;
667 }
668
669 /**
670  * dfll_load_i2c_lut - load the voltage lookup table
671  * @td: struct tegra_dfll *
672  *
673  * Load the voltage-to-PMIC register value lookup table into the DFLL
674  * IP block memory. Look-up tables can be loaded at any time.
675  */
676 static void dfll_load_i2c_lut(struct tegra_dfll *td)
677 {
678         int i, lut_index;
679         u32 val;
680
681         for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
682                 if (i < td->lut_min)
683                         lut_index = td->lut_min;
684                 else if (i > td->lut_max)
685                         lut_index = td->lut_max;
686                 else
687                         lut_index = i;
688
689                 val = regulator_list_hardware_vsel(td->vdd_reg,
690                                                      td->lut[lut_index]);
691                 __raw_writel(val, td->lut_base + i * 4);
692         }
693
694         dfll_i2c_wmb(td);
695 }
696
697 /**
698  * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface
699  * @td: DFLL instance
700  *
701  * During DFLL driver initialization, program the DFLL-I2C interface
702  * with the PMU slave address, vdd register offset, and transfer mode.
703  * This data is used by the DFLL to automatically construct I2C
704  * voltage-set commands, which are then passed to the DFLL's internal
705  * I2C controller.
706  */
707 static void dfll_init_i2c_if(struct tegra_dfll *td)
708 {
709         u32 val;
710
711         if (td->i2c_slave_addr > 0x7f) {
712                 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT;
713                 val |= DFLL_I2C_CFG_SLAVE_ADDR_10;
714         } else {
715                 val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT;
716         }
717         val |= DFLL_I2C_CFG_SIZE_MASK;
718         val |= DFLL_I2C_CFG_ARB_ENABLE;
719         dfll_i2c_writel(td, val, DFLL_I2C_CFG);
720
721         dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR);
722
723         val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8);
724         BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK));
725         val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT;
726
727         /* default hs divisor just in case */
728         val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT;
729         __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR);
730         dfll_i2c_wmb(td);
731 }
732
733 /**
734  * dfll_init_out_if - prepare DFLL-to-PMIC interface
735  * @td: DFLL instance
736  *
737  * During DFLL driver initialization or resume from context loss,
738  * disable the I2C command output to the PMIC, set safe voltage and
739  * output limits, and disable and clear limit interrupts.
740  */
741 static void dfll_init_out_if(struct tegra_dfll *td)
742 {
743         u32 val;
744
745         td->lut_min = td->lut_bottom;
746         td->lut_max = td->lut_size - 1;
747         td->lut_safe = td->lut_min + (td->lut_min < td->lut_max ? 1 : 0);
748
749         /* clear DFLL_OUTPUT_CFG before setting new value */
750         dfll_writel(td, 0, DFLL_OUTPUT_CFG);
751         dfll_wmb(td);
752
753         val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) |
754               (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) |
755               (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT);
756         dfll_writel(td, val, DFLL_OUTPUT_CFG);
757         dfll_wmb(td);
758
759         dfll_writel(td, 0, DFLL_OUTPUT_FORCE);
760         dfll_i2c_writel(td, 0, DFLL_INTR_EN);
761         dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK,
762                         DFLL_INTR_STS);
763
764         if (td->pmu_if == TEGRA_DFLL_PMU_PWM) {
765                 u32 vinit = td->reg_init_uV;
766                 int vstep = td->soc->alignment.step_uv;
767                 unsigned long vmin = td->lut_uv[0];
768
769                 /* set initial voltage */
770                 if ((vinit >= vmin) && vstep) {
771                         unsigned int vsel;
772
773                         vsel = DIV_ROUND_UP((vinit - vmin), vstep);
774                         dfll_force_output(td, vsel);
775                 }
776         } else {
777                 dfll_load_i2c_lut(td);
778                 dfll_init_i2c_if(td);
779         }
780 }
781
782 /*
783  * Set/get the DFLL's targeted output clock rate
784  */
785
786 /**
787  * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate
788  * @td: DFLL instance
789  * @rate: clock rate
790  *
791  * Determines the index of a I2C LUT entry for a voltage that approximately
792  * produces the given DFLL clock rate. This is used when forcing a value
793  * to the integrator during rate changes. Returns -ENOENT if a suitable
794  * LUT index is not found.
795  */
796 static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate)
797 {
798         struct dev_pm_opp *opp;
799         int i, align_step;
800
801         opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
802         if (IS_ERR(opp))
803                 return PTR_ERR(opp);
804
805         align_step = dev_pm_opp_get_voltage(opp) / td->soc->alignment.step_uv;
806         dev_pm_opp_put(opp);
807
808         for (i = td->lut_bottom; i < td->lut_size; i++) {
809                 if ((td->lut_uv[i] / td->soc->alignment.step_uv) >= align_step)
810                         return i;
811         }
812
813         return -ENOENT;
814 }
815
816 /**
817  * dfll_calculate_rate_request - calculate DFLL parameters for a given rate
818  * @td: DFLL instance
819  * @req: DFLL-rate-request structure
820  * @rate: the desired DFLL rate
821  *
822  * Populate the DFLL-rate-request record @req fields with the scale_bits
823  * and mult_bits fields, based on the target input rate. Returns 0 upon
824  * success, or -EINVAL if the requested rate in req->rate is too high
825  * or low for the DFLL to generate.
826  */
827 static int dfll_calculate_rate_request(struct tegra_dfll *td,
828                                        struct dfll_rate_req *req,
829                                        unsigned long rate)
830 {
831         u32 val;
832
833         /*
834          * If requested rate is below the minimum DVCO rate, active the scaler.
835          * In the future the DVCO minimum voltage should be selected based on
836          * chip temperature and the actual minimum rate should be calibrated
837          * at runtime.
838          */
839         req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1;
840         if (rate < td->dvco_rate_min) {
841                 int scale;
842
843                 scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX,
844                                           td->dvco_rate_min / 1000);
845                 if (!scale) {
846                         dev_err(td->dev, "%s: Rate %lu is too low\n",
847                                 __func__, rate);
848                         return -EINVAL;
849                 }
850                 req->scale_bits = scale - 1;
851                 rate = td->dvco_rate_min;
852         }
853
854         /* Convert requested rate into frequency request and scale settings */
855         val = DVCO_RATE_TO_MULT(rate, td->ref_rate);
856         if (val > FREQ_MAX) {
857                 dev_err(td->dev, "%s: Rate %lu is above dfll range\n",
858                         __func__, rate);
859                 return -EINVAL;
860         }
861         req->mult_bits = val;
862         req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate);
863         req->rate = dfll_scale_dvco_rate(req->scale_bits,
864                                          req->dvco_target_rate);
865         req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate);
866         if (req->lut_index < 0)
867                 return req->lut_index;
868
869         return 0;
870 }
871
872 /**
873  * dfll_set_frequency_request - start the frequency change operation
874  * @td: DFLL instance
875  * @req: rate request structure
876  *
877  * Tell the DFLL to try to change its output frequency to the
878  * frequency represented by @req. DFLL must be in closed-loop mode.
879  */
880 static void dfll_set_frequency_request(struct tegra_dfll *td,
881                                        struct dfll_rate_req *req)
882 {
883         u32 val = 0;
884         int force_val;
885         int coef = 128; /* FIXME: td->cg_scale? */;
886
887         force_val = (req->lut_index - td->lut_safe) * coef / td->cg;
888         force_val = clamp(force_val, FORCE_MIN, FORCE_MAX);
889
890         val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT;
891         val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT;
892         val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) &
893                 DFLL_FREQ_REQ_FORCE_MASK;
894         val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE;
895
896         dfll_writel(td, val, DFLL_FREQ_REQ);
897         dfll_wmb(td);
898 }
899
900 /**
901  * dfll_request_rate - set the next rate for the DFLL to tune to
902  * @td: DFLL instance
903  * @rate: clock rate to target
904  *
905  * Convert the requested clock rate @rate into the DFLL control logic
906  * settings. In closed-loop mode, update new settings immediately to
907  * adjust DFLL output rate accordingly. Otherwise, just save them
908  * until the next switch to closed loop. Returns 0 upon success,
909  * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL
910  * if @rate is outside the DFLL's tunable range.
911  */
912 static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate)
913 {
914         int ret;
915         struct dfll_rate_req req;
916
917         if (td->mode == DFLL_UNINITIALIZED) {
918                 dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n",
919                         __func__, mode_name[td->mode]);
920                 return -EPERM;
921         }
922
923         ret = dfll_calculate_rate_request(td, &req, rate);
924         if (ret)
925                 return ret;
926
927         td->last_unrounded_rate = rate;
928         td->last_req = req;
929
930         if (td->mode == DFLL_CLOSED_LOOP)
931                 dfll_set_frequency_request(td, &td->last_req);
932
933         return 0;
934 }
935
936 /*
937  * DFLL enable/disable & open-loop <-> closed-loop transitions
938  */
939
940 /**
941  * dfll_disable - switch from open-loop mode to disabled mode
942  * @td: DFLL instance
943  *
944  * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success
945  * or -EPERM if the DFLL is not currently in open-loop mode.
946  */
947 static int dfll_disable(struct tegra_dfll *td)
948 {
949         if (td->mode != DFLL_OPEN_LOOP) {
950                 dev_err(td->dev, "cannot disable DFLL in %s mode\n",
951                         mode_name[td->mode]);
952                 return -EINVAL;
953         }
954
955         dfll_set_mode(td, DFLL_DISABLED);
956         pm_runtime_put_sync(td->dev);
957
958         return 0;
959 }
960
961 /**
962  * dfll_enable - switch a disabled DFLL to open-loop mode
963  * @td: DFLL instance
964  *
965  * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success
966  * or -EPERM if the DFLL is not currently disabled.
967  */
968 static int dfll_enable(struct tegra_dfll *td)
969 {
970         if (td->mode != DFLL_DISABLED) {
971                 dev_err(td->dev, "cannot enable DFLL in %s mode\n",
972                         mode_name[td->mode]);
973                 return -EPERM;
974         }
975
976         pm_runtime_get_sync(td->dev);
977         dfll_set_mode(td, DFLL_OPEN_LOOP);
978
979         return 0;
980 }
981
982 /**
983  * dfll_set_open_loop_config - prepare to switch to open-loop mode
984  * @td: DFLL instance
985  *
986  * Prepare to switch the DFLL to open-loop mode. This switches the
987  * DFLL to the low-voltage tuning range, ensures that I2C output
988  * forcing is disabled, and disables the output clock rate scaler.
989  * The DFLL's low-voltage tuning range parameters must be
990  * characterized to keep the downstream device stable at any DVCO
991  * input voltage. No return value.
992  */
993 static void dfll_set_open_loop_config(struct tegra_dfll *td)
994 {
995         u32 val;
996
997         /* always tune low (safe) in open loop */
998         if (td->tune_range != DFLL_TUNE_LOW)
999                 dfll_tune_low(td);
1000
1001         val = dfll_readl(td, DFLL_FREQ_REQ);
1002         val |= DFLL_FREQ_REQ_SCALE_MASK;
1003         val &= ~DFLL_FREQ_REQ_FORCE_ENABLE;
1004         dfll_writel(td, val, DFLL_FREQ_REQ);
1005         dfll_wmb(td);
1006 }
1007
1008 /**
1009  * dfll_lock - switch from open-loop to closed-loop mode
1010  * @td: DFLL instance
1011  *
1012  * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success,
1013  * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the
1014  * DFLL is not currently in open-loop mode.
1015  */
1016 static int dfll_lock(struct tegra_dfll *td)
1017 {
1018         struct dfll_rate_req *req = &td->last_req;
1019
1020         switch (td->mode) {
1021         case DFLL_CLOSED_LOOP:
1022                 return 0;
1023
1024         case DFLL_OPEN_LOOP:
1025                 if (req->rate == 0) {
1026                         dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n",
1027                                 __func__);
1028                         return -EINVAL;
1029                 }
1030
1031                 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1032                         dfll_pwm_set_output_enabled(td, true);
1033                 else
1034                         dfll_i2c_set_output_enabled(td, true);
1035
1036                 dfll_set_mode(td, DFLL_CLOSED_LOOP);
1037                 dfll_set_frequency_request(td, req);
1038                 dfll_set_force_output_enabled(td, false);
1039                 return 0;
1040
1041         default:
1042                 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1043                 dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n",
1044                         __func__, mode_name[td->mode]);
1045                 return -EPERM;
1046         }
1047 }
1048
1049 /**
1050  * dfll_unlock - switch from closed-loop to open-loop mode
1051  * @td: DFLL instance
1052  *
1053  * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success,
1054  * or -EPERM if the DFLL is not currently in open-loop mode.
1055  */
1056 static int dfll_unlock(struct tegra_dfll *td)
1057 {
1058         switch (td->mode) {
1059         case DFLL_CLOSED_LOOP:
1060                 dfll_set_open_loop_config(td);
1061                 dfll_set_mode(td, DFLL_OPEN_LOOP);
1062                 if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1063                         dfll_pwm_set_output_enabled(td, false);
1064                 else
1065                         dfll_i2c_set_output_enabled(td, false);
1066                 return 0;
1067
1068         case DFLL_OPEN_LOOP:
1069                 return 0;
1070
1071         default:
1072                 BUG_ON(td->mode > DFLL_CLOSED_LOOP);
1073                 dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n",
1074                         __func__, mode_name[td->mode]);
1075                 return -EPERM;
1076         }
1077 }
1078
1079 /*
1080  * Clock framework integration
1081  *
1082  * When the DFLL is being controlled by the CCF, always enter closed loop
1083  * mode when the clk is enabled. This requires that a DFLL rate request
1084  * has been set beforehand, which implies that a clk_set_rate() call is
1085  * always required before a clk_enable().
1086  */
1087
1088 static int dfll_clk_is_enabled(struct clk_hw *hw)
1089 {
1090         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1091
1092         return dfll_is_running(td);
1093 }
1094
1095 static int dfll_clk_enable(struct clk_hw *hw)
1096 {
1097         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1098         int ret;
1099
1100         ret = dfll_enable(td);
1101         if (ret)
1102                 return ret;
1103
1104         ret = dfll_lock(td);
1105         if (ret)
1106                 dfll_disable(td);
1107
1108         return ret;
1109 }
1110
1111 static void dfll_clk_disable(struct clk_hw *hw)
1112 {
1113         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1114         int ret;
1115
1116         ret = dfll_unlock(td);
1117         if (!ret)
1118                 dfll_disable(td);
1119 }
1120
1121 static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw,
1122                                           unsigned long parent_rate)
1123 {
1124         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1125
1126         return td->last_unrounded_rate;
1127 }
1128
1129 /* Must use determine_rate since it allows for rates exceeding 2^31-1 */
1130 static int dfll_clk_determine_rate(struct clk_hw *hw,
1131                                    struct clk_rate_request *clk_req)
1132 {
1133         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1134         struct dfll_rate_req req;
1135         int ret;
1136
1137         ret = dfll_calculate_rate_request(td, &req, clk_req->rate);
1138         if (ret)
1139                 return ret;
1140
1141         /*
1142          * Don't set the rounded rate, since it doesn't really matter as
1143          * the output rate will be voltage controlled anyway, and cpufreq
1144          * freaks out if any rounding happens.
1145          */
1146
1147         return 0;
1148 }
1149
1150 static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate,
1151                              unsigned long parent_rate)
1152 {
1153         struct tegra_dfll *td = clk_hw_to_dfll(hw);
1154
1155         return dfll_request_rate(td, rate);
1156 }
1157
1158 static const struct clk_ops dfll_clk_ops = {
1159         .is_enabled     = dfll_clk_is_enabled,
1160         .enable         = dfll_clk_enable,
1161         .disable        = dfll_clk_disable,
1162         .recalc_rate    = dfll_clk_recalc_rate,
1163         .determine_rate = dfll_clk_determine_rate,
1164         .set_rate       = dfll_clk_set_rate,
1165 };
1166
1167 static struct clk_init_data dfll_clk_init_data = {
1168         .ops            = &dfll_clk_ops,
1169         .num_parents    = 0,
1170 };
1171
1172 /**
1173  * dfll_register_clk - register the DFLL output clock with the clock framework
1174  * @td: DFLL instance
1175  *
1176  * Register the DFLL's output clock with the Linux clock framework and register
1177  * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL
1178  * or -ENOMEM upon failure.
1179  */
1180 static int dfll_register_clk(struct tegra_dfll *td)
1181 {
1182         int ret;
1183
1184         dfll_clk_init_data.name = td->output_clock_name;
1185         td->dfll_clk_hw.init = &dfll_clk_init_data;
1186
1187         td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw);
1188         if (IS_ERR(td->dfll_clk)) {
1189                 dev_err(td->dev, "DFLL clock registration error\n");
1190                 return -EINVAL;
1191         }
1192
1193         ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get,
1194                                   td->dfll_clk);
1195         if (ret) {
1196                 dev_err(td->dev, "of_clk_add_provider() failed\n");
1197
1198                 clk_unregister(td->dfll_clk);
1199                 return ret;
1200         }
1201
1202         return 0;
1203 }
1204
1205 /**
1206  * dfll_unregister_clk - unregister the DFLL output clock
1207  * @td: DFLL instance
1208  *
1209  * Unregister the DFLL's output clock from the Linux clock framework
1210  * and from clkdev. No return value.
1211  */
1212 static void dfll_unregister_clk(struct tegra_dfll *td)
1213 {
1214         of_clk_del_provider(td->dev->of_node);
1215         clk_unregister(td->dfll_clk);
1216         td->dfll_clk = NULL;
1217 }
1218
1219 /*
1220  * Debugfs interface
1221  */
1222
1223 #ifdef CONFIG_DEBUG_FS
1224 /*
1225  * Monitor control
1226  */
1227
1228 /**
1229  * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq
1230  * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield
1231  * @ref_rate: DFLL reference clock rate
1232  *
1233  * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles
1234  * per second. Returns the converted value.
1235  */
1236 static u64 dfll_calc_monitored_rate(u32 monitor_data,
1237                                     unsigned long ref_rate)
1238 {
1239         return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE);
1240 }
1241
1242 /**
1243  * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor
1244  * @td: DFLL instance
1245  *
1246  * If the DFLL is enabled, return the last rate reported by the DFLL's
1247  * internal monitoring hardware. This works in both open-loop and
1248  * closed-loop mode, and takes the output scaler setting into account.
1249  * Assumes that the monitor was programmed to monitor frequency before
1250  * the sample period started. If the driver believes that the DFLL is
1251  * currently uninitialized or disabled, it will return 0, since
1252  * otherwise the DFLL monitor data register will return the last
1253  * measured rate from when the DFLL was active.
1254  */
1255 static u64 dfll_read_monitor_rate(struct tegra_dfll *td)
1256 {
1257         u32 v, s;
1258         u64 pre_scaler_rate, post_scaler_rate;
1259
1260         if (!dfll_is_running(td))
1261                 return 0;
1262
1263         v = dfll_readl(td, DFLL_MONITOR_DATA);
1264         v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT;
1265         pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate);
1266
1267         s = dfll_readl(td, DFLL_FREQ_REQ);
1268         s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT;
1269         post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate);
1270
1271         return post_scaler_rate;
1272 }
1273
1274 static int attr_enable_get(void *data, u64 *val)
1275 {
1276         struct tegra_dfll *td = data;
1277
1278         *val = dfll_is_running(td);
1279
1280         return 0;
1281 }
1282 static int attr_enable_set(void *data, u64 val)
1283 {
1284         struct tegra_dfll *td = data;
1285
1286         return val ? dfll_enable(td) : dfll_disable(td);
1287 }
1288 DEFINE_DEBUGFS_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set,
1289                          "%llu\n");
1290
1291 static int attr_lock_get(void *data, u64 *val)
1292 {
1293         struct tegra_dfll *td = data;
1294
1295         *val = (td->mode == DFLL_CLOSED_LOOP);
1296
1297         return 0;
1298 }
1299 static int attr_lock_set(void *data, u64 val)
1300 {
1301         struct tegra_dfll *td = data;
1302
1303         return val ? dfll_lock(td) :  dfll_unlock(td);
1304 }
1305 DEFINE_DEBUGFS_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, "%llu\n");
1306
1307 static int attr_rate_get(void *data, u64 *val)
1308 {
1309         struct tegra_dfll *td = data;
1310
1311         *val = dfll_read_monitor_rate(td);
1312
1313         return 0;
1314 }
1315
1316 static int attr_rate_set(void *data, u64 val)
1317 {
1318         struct tegra_dfll *td = data;
1319
1320         return dfll_request_rate(td, val);
1321 }
1322 DEFINE_DEBUGFS_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n");
1323
1324 static int attr_registers_show(struct seq_file *s, void *data)
1325 {
1326         u32 val, offs;
1327         struct tegra_dfll *td = s->private;
1328
1329         seq_puts(s, "CONTROL REGISTERS:\n");
1330         for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) {
1331                 if (offs == DFLL_OUTPUT_CFG)
1332                         val = dfll_i2c_readl(td, offs);
1333                 else
1334                         val = dfll_readl(td, offs);
1335                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val);
1336         }
1337
1338         seq_puts(s, "\nI2C and INTR REGISTERS:\n");
1339         for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4)
1340                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1341                            dfll_i2c_readl(td, offs));
1342         for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4)
1343                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1344                            dfll_i2c_readl(td, offs));
1345
1346         if (td->pmu_if == TEGRA_DFLL_PMU_I2C) {
1347                 seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n");
1348                 offs = DFLL_I2C_CLK_DIVISOR;
1349                 seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1350                            __raw_readl(td->i2c_controller_base + offs));
1351
1352                 seq_puts(s, "\nLUT:\n");
1353                 for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4)
1354                         seq_printf(s, "[0x%02x] = 0x%08x\n", offs,
1355                                    __raw_readl(td->lut_base + offs));
1356         }
1357
1358         return 0;
1359 }
1360
1361 DEFINE_SHOW_ATTRIBUTE(attr_registers);
1362
1363 static void dfll_debug_init(struct tegra_dfll *td)
1364 {
1365         struct dentry *root;
1366
1367         if (!td || (td->mode == DFLL_UNINITIALIZED))
1368                 return;
1369
1370         root = debugfs_create_dir("tegra_dfll_fcpu", NULL);
1371         td->debugfs_dir = root;
1372
1373         debugfs_create_file_unsafe("enable", 0644, root, td,
1374                                    &enable_fops);
1375         debugfs_create_file_unsafe("lock", 0444, root, td, &lock_fops);
1376         debugfs_create_file_unsafe("rate", 0444, root, td, &rate_fops);
1377         debugfs_create_file("registers", 0444, root, td, &attr_registers_fops);
1378 }
1379
1380 #else
1381 static inline void dfll_debug_init(struct tegra_dfll *td) { }
1382 #endif /* CONFIG_DEBUG_FS */
1383
1384 /*
1385  * DFLL initialization
1386  */
1387
1388 /**
1389  * dfll_set_default_params - program non-output related DFLL parameters
1390  * @td: DFLL instance
1391  *
1392  * During DFLL driver initialization or resume from context loss,
1393  * program parameters for the closed loop integrator, DVCO tuning,
1394  * voltage droop control and monitor control.
1395  */
1396 static void dfll_set_default_params(struct tegra_dfll *td)
1397 {
1398         u32 val;
1399
1400         val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32);
1401         BUG_ON(val > DFLL_CONFIG_DIV_MASK);
1402         dfll_writel(td, val, DFLL_CONFIG);
1403
1404         val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) |
1405                 (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) |
1406                 (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) |
1407                 (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) |
1408                 (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0);
1409         dfll_writel(td, val, DFLL_PARAMS);
1410
1411         dfll_tune_low(td);
1412         dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL);
1413         dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL);
1414 }
1415
1416 /**
1417  * dfll_init_clks - clk_get() the DFLL source clocks
1418  * @td: DFLL instance
1419  *
1420  * Call clk_get() on the DFLL source clocks and save the pointers for later
1421  * use. Returns 0 upon success or error (see devm_clk_get) if one or more
1422  * of the clocks couldn't be looked up.
1423  */
1424 static int dfll_init_clks(struct tegra_dfll *td)
1425 {
1426         td->ref_clk = devm_clk_get(td->dev, "ref");
1427         if (IS_ERR(td->ref_clk)) {
1428                 dev_err(td->dev, "missing ref clock\n");
1429                 return PTR_ERR(td->ref_clk);
1430         }
1431
1432         td->soc_clk = devm_clk_get(td->dev, "soc");
1433         if (IS_ERR(td->soc_clk)) {
1434                 dev_err(td->dev, "missing soc clock\n");
1435                 return PTR_ERR(td->soc_clk);
1436         }
1437
1438         td->i2c_clk = devm_clk_get(td->dev, "i2c");
1439         if (IS_ERR(td->i2c_clk)) {
1440                 dev_err(td->dev, "missing i2c clock\n");
1441                 return PTR_ERR(td->i2c_clk);
1442         }
1443         td->i2c_clk_rate = clk_get_rate(td->i2c_clk);
1444
1445         return 0;
1446 }
1447
1448 /**
1449  * dfll_init - Prepare the DFLL IP block for use
1450  * @td: DFLL instance
1451  *
1452  * Do everything necessary to prepare the DFLL IP block for use. The
1453  * DFLL will be left in DISABLED state. Called by dfll_probe().
1454  * Returns 0 upon success, or passes along the error from whatever
1455  * function returned it.
1456  */
1457 static int dfll_init(struct tegra_dfll *td)
1458 {
1459         int ret;
1460
1461         td->ref_rate = clk_get_rate(td->ref_clk);
1462         if (td->ref_rate != REF_CLOCK_RATE) {
1463                 dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu",
1464                         td->ref_rate, REF_CLOCK_RATE);
1465                 return -EINVAL;
1466         }
1467
1468         reset_control_deassert(td->dfll_rst);
1469         reset_control_deassert(td->dvco_rst);
1470
1471         ret = clk_prepare(td->ref_clk);
1472         if (ret) {
1473                 dev_err(td->dev, "failed to prepare ref_clk\n");
1474                 return ret;
1475         }
1476
1477         ret = clk_prepare(td->soc_clk);
1478         if (ret) {
1479                 dev_err(td->dev, "failed to prepare soc_clk\n");
1480                 goto di_err1;
1481         }
1482
1483         ret = clk_prepare(td->i2c_clk);
1484         if (ret) {
1485                 dev_err(td->dev, "failed to prepare i2c_clk\n");
1486                 goto di_err2;
1487         }
1488
1489         td->last_unrounded_rate = 0;
1490
1491         pm_runtime_enable(td->dev);
1492         pm_runtime_get_sync(td->dev);
1493
1494         dfll_set_mode(td, DFLL_DISABLED);
1495         dfll_set_default_params(td);
1496
1497         if (td->soc->init_clock_trimmers)
1498                 td->soc->init_clock_trimmers();
1499
1500         dfll_set_open_loop_config(td);
1501
1502         dfll_init_out_if(td);
1503
1504         pm_runtime_put_sync(td->dev);
1505
1506         return 0;
1507
1508 di_err2:
1509         clk_unprepare(td->soc_clk);
1510 di_err1:
1511         clk_unprepare(td->ref_clk);
1512
1513         reset_control_assert(td->dvco_rst);
1514         reset_control_assert(td->dfll_rst);
1515
1516         return ret;
1517 }
1518
1519 /**
1520  * tegra_dfll_suspend - check DFLL is disabled
1521  * @dev: DFLL instance
1522  *
1523  * DFLL clock should be disabled by the CPUFreq driver. So, make
1524  * sure it is disabled and disable all clocks needed by the DFLL.
1525  */
1526 int tegra_dfll_suspend(struct device *dev)
1527 {
1528         struct tegra_dfll *td = dev_get_drvdata(dev);
1529
1530         if (dfll_is_running(td)) {
1531                 dev_err(td->dev, "DFLL still enabled while suspending\n");
1532                 return -EBUSY;
1533         }
1534
1535         reset_control_assert(td->dvco_rst);
1536         reset_control_assert(td->dfll_rst);
1537
1538         return 0;
1539 }
1540 EXPORT_SYMBOL(tegra_dfll_suspend);
1541
1542 /**
1543  * tegra_dfll_resume - reinitialize DFLL on resume
1544  * @dev: DFLL instance
1545  *
1546  * DFLL is disabled and reset during suspend and resume.
1547  * So, reinitialize the DFLL IP block back for use.
1548  * DFLL clock is enabled later in closed loop mode by CPUFreq
1549  * driver before switching its clock source to DFLL output.
1550  */
1551 int tegra_dfll_resume(struct device *dev)
1552 {
1553         struct tegra_dfll *td = dev_get_drvdata(dev);
1554
1555         reset_control_deassert(td->dfll_rst);
1556         reset_control_deassert(td->dvco_rst);
1557
1558         pm_runtime_get_sync(td->dev);
1559
1560         dfll_set_mode(td, DFLL_DISABLED);
1561         dfll_set_default_params(td);
1562
1563         if (td->soc->init_clock_trimmers)
1564                 td->soc->init_clock_trimmers();
1565
1566         dfll_set_open_loop_config(td);
1567
1568         dfll_init_out_if(td);
1569
1570         pm_runtime_put_sync(td->dev);
1571
1572         return 0;
1573 }
1574 EXPORT_SYMBOL(tegra_dfll_resume);
1575
1576 /*
1577  * DT data fetch
1578  */
1579
1580 /*
1581  * Find a PMIC voltage register-to-voltage mapping for the given voltage.
1582  * An exact voltage match is required.
1583  */
1584 static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV)
1585 {
1586         int i, n_voltages, reg_uV,reg_volt_id, align_step;
1587
1588         if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1589                 return -EINVAL;
1590
1591         align_step = uV / td->soc->alignment.step_uv;
1592         n_voltages = regulator_count_voltages(td->vdd_reg);
1593         for (i = 0; i < n_voltages; i++) {
1594                 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1595                 if (reg_uV < 0)
1596                         break;
1597
1598                 reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1599
1600                 if (align_step == reg_volt_id)
1601                         return i;
1602         }
1603
1604         dev_err(td->dev, "no voltage map entry for %d uV\n", uV);
1605         return -EINVAL;
1606 }
1607
1608 /*
1609  * Find a PMIC voltage register-to-voltage mapping for the given voltage,
1610  * rounding up to the closest supported voltage.
1611  * */
1612 static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV)
1613 {
1614         int i, n_voltages, reg_uV, reg_volt_id, align_step;
1615
1616         if (WARN_ON(td->pmu_if == TEGRA_DFLL_PMU_PWM))
1617                 return -EINVAL;
1618
1619         align_step = uV / td->soc->alignment.step_uv;
1620         n_voltages = regulator_count_voltages(td->vdd_reg);
1621         for (i = 0; i < n_voltages; i++) {
1622                 reg_uV = regulator_list_voltage(td->vdd_reg, i);
1623                 if (reg_uV < 0)
1624                         break;
1625
1626                 reg_volt_id = reg_uV / td->soc->alignment.step_uv;
1627
1628                 if (align_step <= reg_volt_id)
1629                         return i;
1630         }
1631
1632         dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV);
1633         return -EINVAL;
1634 }
1635
1636 /*
1637  * dfll_build_pwm_lut - build the PWM regulator lookup table
1638  * @td: DFLL instance
1639  * @v_max: Vmax from OPP table
1640  *
1641  * Look-up table in h/w is ignored when PWM is used as DFLL interface to PMIC.
1642  * In this case closed loop output is controlling duty cycle directly. The s/w
1643  * look-up that maps PWM duty cycle to voltage is still built by this function.
1644  */
1645 static int dfll_build_pwm_lut(struct tegra_dfll *td, unsigned long v_max)
1646 {
1647         int i;
1648         unsigned long rate, reg_volt;
1649         u8 lut_bottom = MAX_DFLL_VOLTAGES;
1650         int v_min = td->soc->cvb->min_millivolts * 1000;
1651
1652         for (i = 0; i < MAX_DFLL_VOLTAGES; i++) {
1653                 reg_volt = td->lut_uv[i];
1654
1655                 /* since opp voltage is exact mv */
1656                 reg_volt = (reg_volt / 1000) * 1000;
1657                 if (reg_volt > v_max)
1658                         break;
1659
1660                 td->lut[i] = i;
1661                 if ((lut_bottom == MAX_DFLL_VOLTAGES) && (reg_volt >= v_min))
1662                         lut_bottom = i;
1663         }
1664
1665         /* determine voltage boundaries */
1666         td->lut_size = i;
1667         if ((lut_bottom == MAX_DFLL_VOLTAGES) ||
1668             (lut_bottom + 1 >= td->lut_size)) {
1669                 dev_err(td->dev, "no voltage above DFLL minimum %d mV\n",
1670                         td->soc->cvb->min_millivolts);
1671                 return -EINVAL;
1672         }
1673         td->lut_bottom = lut_bottom;
1674
1675         /* determine rate boundaries */
1676         rate = get_dvco_rate_below(td, td->lut_bottom);
1677         if (!rate) {
1678                 dev_err(td->dev, "no opp below DFLL minimum voltage %d mV\n",
1679                         td->soc->cvb->min_millivolts);
1680                 return -EINVAL;
1681         }
1682         td->dvco_rate_min = rate;
1683
1684         return 0;
1685 }
1686
1687 /**
1688  * dfll_build_i2c_lut - build the I2C voltage register lookup table
1689  * @td: DFLL instance
1690  * @v_max: Vmax from OPP table
1691  *
1692  * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with
1693  * PMIC voltage register values that span the entire DFLL operating range.
1694  * This function builds the look-up table based on the OPP table provided by
1695  * the soc-specific platform driver (td->soc->opp_dev) and the PMIC
1696  * register-to-voltage mapping queried from the regulator framework.
1697  *
1698  * On success, fills in td->lut and returns 0, or -err on failure.
1699  */
1700 static int dfll_build_i2c_lut(struct tegra_dfll *td, unsigned long v_max)
1701 {
1702         unsigned long rate, v, v_opp;
1703         int ret = -EINVAL;
1704         int j, selector, lut;
1705
1706         v = td->soc->cvb->min_millivolts * 1000;
1707         lut = find_vdd_map_entry_exact(td, v);
1708         if (lut < 0)
1709                 goto out;
1710         td->lut[0] = lut;
1711         td->lut_bottom = 0;
1712
1713         for (j = 1, rate = 0; ; rate++) {
1714                 struct dev_pm_opp *opp;
1715
1716                 opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate);
1717                 if (IS_ERR(opp))
1718                         break;
1719                 v_opp = dev_pm_opp_get_voltage(opp);
1720
1721                 if (v_opp <= td->soc->cvb->min_millivolts * 1000)
1722                         td->dvco_rate_min = dev_pm_opp_get_freq(opp);
1723
1724                 dev_pm_opp_put(opp);
1725
1726                 for (;;) {
1727                         v += max(1UL, (v_max - v) / (MAX_DFLL_VOLTAGES - j));
1728                         if (v >= v_opp)
1729                                 break;
1730
1731                         selector = find_vdd_map_entry_min(td, v);
1732                         if (selector < 0)
1733                                 goto out;
1734                         if (selector != td->lut[j - 1])
1735                                 td->lut[j++] = selector;
1736                 }
1737
1738                 v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp;
1739                 selector = find_vdd_map_entry_exact(td, v);
1740                 if (selector < 0)
1741                         goto out;
1742                 if (selector != td->lut[j - 1])
1743                         td->lut[j++] = selector;
1744
1745                 if (v >= v_max)
1746                         break;
1747         }
1748         td->lut_size = j;
1749
1750         if (!td->dvco_rate_min)
1751                 dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n",
1752                         td->soc->cvb->min_millivolts);
1753         else {
1754                 ret = 0;
1755                 for (j = 0; j < td->lut_size; j++)
1756                         td->lut_uv[j] =
1757                                 regulator_list_voltage(td->vdd_reg,
1758                                                        td->lut[j]);
1759         }
1760
1761 out:
1762         return ret;
1763 }
1764
1765 static int dfll_build_lut(struct tegra_dfll *td)
1766 {
1767         unsigned long rate, v_max;
1768         struct dev_pm_opp *opp;
1769
1770         rate = ULONG_MAX;
1771         opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate);
1772         if (IS_ERR(opp)) {
1773                 dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n");
1774                 return -EINVAL;
1775         }
1776         v_max = dev_pm_opp_get_voltage(opp);
1777         dev_pm_opp_put(opp);
1778
1779         if (td->pmu_if == TEGRA_DFLL_PMU_PWM)
1780                 return dfll_build_pwm_lut(td, v_max);
1781         else
1782                 return dfll_build_i2c_lut(td, v_max);
1783 }
1784
1785 /**
1786  * read_dt_param - helper function for reading required parameters from the DT
1787  * @td: DFLL instance
1788  * @param: DT property name
1789  * @dest: output pointer for the value read
1790  *
1791  * Read a required numeric parameter from the DFLL device node, or complain
1792  * if the property doesn't exist. Returns a boolean indicating success for
1793  * easy chaining of multiple calls to this function.
1794  */
1795 static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest)
1796 {
1797         int err = of_property_read_u32(td->dev->of_node, param, dest);
1798
1799         if (err < 0) {
1800                 dev_err(td->dev, "failed to read DT parameter %s: %d\n",
1801                         param, err);
1802                 return false;
1803         }
1804
1805         return true;
1806 }
1807
1808 /**
1809  * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem
1810  * @td: DFLL instance
1811  *
1812  * Read all the parameters required for operation in I2C mode. The parameters
1813  * can originate from the device tree or the regulator subsystem.
1814  * Returns 0 on success or -err on failure.
1815  */
1816 static int dfll_fetch_i2c_params(struct tegra_dfll *td)
1817 {
1818         struct regmap *regmap;
1819         struct device *i2c_dev;
1820         struct i2c_client *i2c_client;
1821         int vsel_reg, vsel_mask;
1822         int ret;
1823
1824         if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate))
1825                 return -EINVAL;
1826
1827         regmap = regulator_get_regmap(td->vdd_reg);
1828         i2c_dev = regmap_get_device(regmap);
1829         i2c_client = to_i2c_client(i2c_dev);
1830
1831         td->i2c_slave_addr = i2c_client->addr;
1832
1833         ret = regulator_get_hardware_vsel_register(td->vdd_reg,
1834                                                    &vsel_reg,
1835                                                    &vsel_mask);
1836         if (ret < 0) {
1837                 dev_err(td->dev,
1838                         "regulator unsuitable for DFLL I2C operation\n");
1839                 return -EINVAL;
1840         }
1841         td->i2c_reg = vsel_reg;
1842
1843         return 0;
1844 }
1845
1846 static int dfll_fetch_pwm_params(struct tegra_dfll *td)
1847 {
1848         int ret, i;
1849         u32 pwm_period;
1850
1851         if (!td->soc->alignment.step_uv || !td->soc->alignment.offset_uv) {
1852                 dev_err(td->dev,
1853                         "Missing step or alignment info for PWM regulator");
1854                 return -EINVAL;
1855         }
1856         for (i = 0; i < MAX_DFLL_VOLTAGES; i++)
1857                 td->lut_uv[i] = td->soc->alignment.offset_uv +
1858                                 i * td->soc->alignment.step_uv;
1859
1860         ret = read_dt_param(td, "nvidia,pwm-tristate-microvolts",
1861                             &td->reg_init_uV);
1862         if (!ret) {
1863                 dev_err(td->dev, "couldn't get initialized voltage\n");
1864                 return -EINVAL;
1865         }
1866
1867         ret = read_dt_param(td, "nvidia,pwm-period-nanoseconds", &pwm_period);
1868         if (!ret) {
1869                 dev_err(td->dev, "couldn't get PWM period\n");
1870                 return -EINVAL;
1871         }
1872         td->pwm_rate = (NSEC_PER_SEC / pwm_period) * (MAX_DFLL_VOLTAGES - 1);
1873
1874         td->pwm_pin = devm_pinctrl_get(td->dev);
1875         if (IS_ERR(td->pwm_pin)) {
1876                 dev_err(td->dev, "DT: missing pinctrl device\n");
1877                 return PTR_ERR(td->pwm_pin);
1878         }
1879
1880         td->pwm_enable_state = pinctrl_lookup_state(td->pwm_pin,
1881                                                     "dvfs_pwm_enable");
1882         if (IS_ERR(td->pwm_enable_state)) {
1883                 dev_err(td->dev, "DT: missing pwm enabled state\n");
1884                 return PTR_ERR(td->pwm_enable_state);
1885         }
1886
1887         td->pwm_disable_state = pinctrl_lookup_state(td->pwm_pin,
1888                                                      "dvfs_pwm_disable");
1889         if (IS_ERR(td->pwm_disable_state)) {
1890                 dev_err(td->dev, "DT: missing pwm disabled state\n");
1891                 return PTR_ERR(td->pwm_disable_state);
1892         }
1893
1894         return 0;
1895 }
1896
1897 /**
1898  * dfll_fetch_common_params - read DFLL parameters from the device tree
1899  * @td: DFLL instance
1900  *
1901  * Read all the DT parameters that are common to both I2C and PWM operation.
1902  * Returns 0 on success or -EINVAL on any failure.
1903  */
1904 static int dfll_fetch_common_params(struct tegra_dfll *td)
1905 {
1906         bool ok = true;
1907
1908         ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl);
1909         ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate);
1910         ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode);
1911         ok &= read_dt_param(td, "nvidia,cf", &td->cf);
1912         ok &= read_dt_param(td, "nvidia,ci", &td->ci);
1913         ok &= read_dt_param(td, "nvidia,cg", &td->cg);
1914         td->cg_scale = of_property_read_bool(td->dev->of_node,
1915                                              "nvidia,cg-scale");
1916
1917         if (of_property_read_string(td->dev->of_node, "clock-output-names",
1918                                     &td->output_clock_name)) {
1919                 dev_err(td->dev, "missing clock-output-names property\n");
1920                 ok = false;
1921         }
1922
1923         return ok ? 0 : -EINVAL;
1924 }
1925
1926 /*
1927  * API exported to per-SoC platform drivers
1928  */
1929
1930 /**
1931  * tegra_dfll_register - probe a Tegra DFLL device
1932  * @pdev: DFLL platform_device *
1933  * @soc: Per-SoC integration and characterization data for this DFLL instance
1934  *
1935  * Probe and initialize a DFLL device instance. Intended to be called
1936  * by a SoC-specific shim driver that passes in per-SoC integration
1937  * and configuration data via @soc. Returns 0 on success or -err on failure.
1938  */
1939 int tegra_dfll_register(struct platform_device *pdev,
1940                         struct tegra_dfll_soc_data *soc)
1941 {
1942         struct resource *mem;
1943         struct tegra_dfll *td;
1944         int ret;
1945
1946         if (!soc) {
1947                 dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n");
1948                 return -EINVAL;
1949         }
1950
1951         td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL);
1952         if (!td)
1953                 return -ENOMEM;
1954         td->dev = &pdev->dev;
1955         platform_set_drvdata(pdev, td);
1956
1957         td->soc = soc;
1958
1959         td->dfll_rst = devm_reset_control_get_optional(td->dev, "dfll");
1960         if (IS_ERR(td->dfll_rst)) {
1961                 dev_err(td->dev, "couldn't get dfll reset\n");
1962                 return PTR_ERR(td->dfll_rst);
1963         }
1964
1965         td->dvco_rst = devm_reset_control_get(td->dev, "dvco");
1966         if (IS_ERR(td->dvco_rst)) {
1967                 dev_err(td->dev, "couldn't get dvco reset\n");
1968                 return PTR_ERR(td->dvco_rst);
1969         }
1970
1971         ret = dfll_fetch_common_params(td);
1972         if (ret) {
1973                 dev_err(td->dev, "couldn't parse device tree parameters\n");
1974                 return ret;
1975         }
1976
1977         if (of_property_read_bool(td->dev->of_node, "nvidia,pwm-to-pmic")) {
1978                 td->pmu_if = TEGRA_DFLL_PMU_PWM;
1979                 ret = dfll_fetch_pwm_params(td);
1980         } else  {
1981                 td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu");
1982                 if (IS_ERR(td->vdd_reg)) {
1983                         dev_err(td->dev, "couldn't get vdd_cpu regulator\n");
1984                         return PTR_ERR(td->vdd_reg);
1985                 }
1986                 td->pmu_if = TEGRA_DFLL_PMU_I2C;
1987                 ret = dfll_fetch_i2c_params(td);
1988         }
1989         if (ret)
1990                 return ret;
1991
1992         ret = dfll_build_lut(td);
1993         if (ret) {
1994                 dev_err(td->dev, "couldn't build LUT\n");
1995                 return ret;
1996         }
1997
1998         mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1999         if (!mem) {
2000                 dev_err(td->dev, "no control register resource\n");
2001                 return -ENODEV;
2002         }
2003
2004         td->base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2005         if (!td->base) {
2006                 dev_err(td->dev, "couldn't ioremap DFLL control registers\n");
2007                 return -ENODEV;
2008         }
2009
2010         mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2011         if (!mem) {
2012                 dev_err(td->dev, "no i2c_base resource\n");
2013                 return -ENODEV;
2014         }
2015
2016         td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2017         if (!td->i2c_base) {
2018                 dev_err(td->dev, "couldn't ioremap i2c_base resource\n");
2019                 return -ENODEV;
2020         }
2021
2022         mem = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2023         if (!mem) {
2024                 dev_err(td->dev, "no i2c_controller_base resource\n");
2025                 return -ENODEV;
2026         }
2027
2028         td->i2c_controller_base = devm_ioremap(td->dev, mem->start,
2029                                                resource_size(mem));
2030         if (!td->i2c_controller_base) {
2031                 dev_err(td->dev,
2032                         "couldn't ioremap i2c_controller_base resource\n");
2033                 return -ENODEV;
2034         }
2035
2036         mem = platform_get_resource(pdev, IORESOURCE_MEM, 3);
2037         if (!mem) {
2038                 dev_err(td->dev, "no lut_base resource\n");
2039                 return -ENODEV;
2040         }
2041
2042         td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem));
2043         if (!td->lut_base) {
2044                 dev_err(td->dev,
2045                         "couldn't ioremap lut_base resource\n");
2046                 return -ENODEV;
2047         }
2048
2049         ret = dfll_init_clks(td);
2050         if (ret) {
2051                 dev_err(&pdev->dev, "DFLL clock init error\n");
2052                 return ret;
2053         }
2054
2055         /* Enable the clocks and set the device up */
2056         ret = dfll_init(td);
2057         if (ret)
2058                 return ret;
2059
2060         ret = dfll_register_clk(td);
2061         if (ret) {
2062                 dev_err(&pdev->dev, "DFLL clk registration failed\n");
2063                 return ret;
2064         }
2065
2066         dfll_debug_init(td);
2067
2068         return 0;
2069 }
2070 EXPORT_SYMBOL(tegra_dfll_register);
2071
2072 /**
2073  * tegra_dfll_unregister - release all of the DFLL driver resources for a device
2074  * @pdev: DFLL platform_device *
2075  *
2076  * Unbind this driver from the DFLL hardware device represented by
2077  * @pdev. The DFLL must be disabled for this to succeed. Returns a
2078  * soc pointer upon success or -EBUSY if the DFLL is still active.
2079  */
2080 struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev)
2081 {
2082         struct tegra_dfll *td = platform_get_drvdata(pdev);
2083
2084         /* Try to prevent removal while the DFLL is active */
2085         if (td->mode != DFLL_DISABLED) {
2086                 dev_err(&pdev->dev,
2087                         "must disable DFLL before removing driver\n");
2088                 return ERR_PTR(-EBUSY);
2089         }
2090
2091         debugfs_remove_recursive(td->debugfs_dir);
2092
2093         dfll_unregister_clk(td);
2094         pm_runtime_disable(&pdev->dev);
2095
2096         clk_unprepare(td->ref_clk);
2097         clk_unprepare(td->soc_clk);
2098         clk_unprepare(td->i2c_clk);
2099
2100         reset_control_assert(td->dvco_rst);
2101         reset_control_assert(td->dfll_rst);
2102
2103         return td->soc;
2104 }
2105 EXPORT_SYMBOL(tegra_dfll_unregister);